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Abstract We discuss the notion of characteristic Lie algebra of a hyperbolic PDE. The
integrability of a hyperbolic PDE is closely related to the properties of the corresponding
characteristic Lie algebra χ . We establish two explicit isomorphisms:

1) the first one is between the characteristic Lie algebra χ(sinhu) of the sinh-Gordon
equation uxy = sinh u and the non-negative part L(sl(2,C))≥0 of the loop algebra of

sl(2,C) that corresponds to the Kac-Moody algebra A
(1)
1

χ(sinhu) ∼= L(sl(2,C))≥0 = sl(2,C) ⊗ C[t].
2) the second isomorphism is for the Tzitzeica equation uxy = eu+e−2u

χ(eu+e−2u) ∼= L(sl(3,C), μ)≥0 =
+∞⊕

j=0

gj (mod 2) ⊗ tj ,

where L(sl(3,C), μ) = ⊕
j∈Z gj (mod 2) ⊗ tj is the twisted loop algebra of the simple

Lie algebra sl(3,C) that corresponds to the Kac-Moody algebra A
(2)
2 .

Hence the Lie algebras χ(sinhu) and χ(eu+e−2u) are slowly linearly growing Lie algebras
with average growth rates 3

2 and 4
3 respectively.
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1 Introduction

The concept of characteristic Lie algebra χ(f ) of a hyperbolic system of PDE

ui
xy = f i(u1, . . . , un), i = 1, . . . , n, (1)

was introduced by Leznov, Smirnov, Shabat and Yamilov [18, 24]. It is a natural generaliza-
tion of the notion of characteristic vector field of a hyperbolic PDE that was first proposed
by Goursat in 1899. In his classical paper [7] Goursat introduced a very effective algebraic
approach to the problem of classifying Darboux-integrable equations.

In spite of the rather large number of papers where this algebraic object is studied [18,
22, 24, 26, 27], it can not be said that there exists any completely unambiguous definition
of characteristic Lie algebra χ of a hyperbolic non-linear PDE. We use in the present article
the definition of characteristic Lie algebra proposed in the original papers [18, 24].

An important step in the study of hyperbolic nonlinear Liouville-type systems was made
in [15, 16, 18] where exponential hyperbolic systems were considered

u
j
xy = eρj , ρj = aj1u

1 + · · · + ajnu
n, j = 1, . . . , n. (2)

It pas proved in [15] that if A = (aij ) is a non-degenerate Cartan matrix then the corre-
sponding exponential hyperbolic system (2) is Darboux-integrable. The proof [15] consists
in finding an explicit solution which depends on 2n arbitrary functions, i.e. it generalizes
the one-dimensional case of the classical Liouville equation uxy = eu. Later it was claimed
in the preprint [24] that the main result in [15] can be extended to an arbitrary generalized
Cartan matrix A (possibly degenerate) by applying the inverse scattering problem method.
The two-dimensional case n = 2 was studied explicitly in [18, 24].

{
u1xy = e(a11u

1+a12u
2),

u2xy = e(a21u
1+a22u

2),
, A =

(
a11 a12
a21 a22

)
. (3)

It was proved in [18, 24] that for the generalized Cartan matrices

A1 =
(

2 −2
−2 2

)
, A2 =

(
2 −4

−1 2

)

the corresponding exponential systems (3) are integrable by the inverse scattering method.
Moreover, the commutants [χ(A1), χ(A1)], [χ(A2), χ(A2)] of the corresponding charac-
teristic Lie algebras χ(A1), χ(A2) are isomorphic to maximal pro-nilpotent subalgebras
N(A

(1)
1 ), N(A

(2)
2 ) of the Kac-Moody algebras A

(1)
1 , A

(2)
2 respectively (that correspond to

the generalized Cartan matrices A1 and A2). Exponential systems (3) corresponding to
nondegenerate Cartan 2 × 2-matrices

(
2 0
0 2

)
,

(
2 −1

−1 2

)(
2 −2

−1 2

)
,

(
2 −3

−1 2

)

of the semisimple Lie algebras A1⊕A1, A2, C2,G2 are Darboux-integrable. Their charac-
teristic Lie algebras are finite-dimensional Borel subalgebras in semisimple Lie algebras
listed above. These finite-dimensional solvable Lie algebras and infinite-dimensional char-
acteristic Lie algebras χ(A1), χ(A2) can be unified into a class of slowly growing Lie
algebras [18, 24].
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Originally, when it was talked about the characteristic Lie algebra of slow growth [18,
24], it was in mind Kac’s classification [10] of simple Z-graded Lie algebras of finite
growth. The condition of simple Z-grading is very restrictive, meanwhile, the growth of a
characteristic Lie algebra χ(f ) must be understood from the point of view of the behavior
of its growth function Fg(n), i.e. the asymptotics of the dimension Fg(n) = dimVn of the
space Vn of commutators of order at most n of generators.

A finitely generated characteristic Lie algebra χ(f ) of a hyperbolic Klein-Gordon sys-
tem (1) is a pro-solvable Lie algebra whose commutant [χ(f ), χ(f )] is a pro-nilpotent
naturally graded Lie algebra.

By Lemma 2 we assert that the growth functions of χ(f ) and its commutant
[χ(f ), χ(f )] differ by a positive constant C(χ(f )), which equals to the dimension of the
maximal toral subalgebra of χ(f ).

Fχ(f )(n) = F[χ(f ),χ(f )](n) + C(χ(f )).

Thus, the study of the growth function Fχ(f )(n) of the entire characteristic Lie algebra χ(f )

reduces to studying the growth of the commutant [χ(f ), χ(f )].
The problem of classification of N-graded Lie algebras of slow growth is much more

complicated problem than the classification of simple Z-graded Lie algebras of finite
growth. The Kac list [10] contains a countably many different Lie algebras, meanwhile in
the case of naturally graded Lie algebras with two generators, an uncountable family of
pairwise non-isomorphic Lie algebras of linear growth appears [20]. There are only three
Klein-Gordon equations admitting non-trivial higher symmetries [28].

– Liouville equation uxy = eu;
– sinh-Gordon equation uxy = sinhu;
– Tzitzeica equation uxy = eu + e−2u.

1) It’s an elementary exercise to show that the characteristic Lie algebra χ(eu) of the
Liouville equation is the two-dimensional solvable Lie algebra. It can be defined by its
basis X0, X1 and the unique relation [X0, X1] = X1. Its commutant [χ(eu), χ(eu)] is
one-dimensional abelian Lie algebra spanned by X1.

We study two remaining cases and prove
2) Theorem 2. The characteristic Lie algebra χ(sinhu) of the sinh-Gordon equation

uxy = sinh u is isomorphic to the polynomial loop algebra L(sl(2,C))≥0 (current Lie
algebra)

χ(sinhu) ∼= L(sl(2,C))≥0 = sl(2,C)⊗C[t],
Its commutant [χ(sinhu), χ(sinhu)] is isomorphic to the maximal pro-nilpotent Lie
subalgebra N(A

(1)
1 ) of the Kac-Moody algebra A

(1)
1 .

3) Theorem 3. The characteristic Lie algebra χ(eu+e−2u) of the Tzitzeica equation
uxy = eu+e−2u is isomorphic to the twisted polynomial loop algebraL(sl(3,C), μ)≥0

χ(eu+e−2u) ∼= L(sl(3,C), μ)≥0 =
+∞⊕

j=0

gj (mod 2) ⊗ tj , sl(3,C) = g0 ⊕ g1

where μ is a diagram automorphism of sl(3,C), μ2 = Id, and g0, g1 are eigen-spaces
of μ corresponding to eigen-values 1, −1 respectively, [gs , gq ] ⊂ gs+q (mod 2).

Its commutant [χ(eu+e−2u), χ(eu+e−2u)] is isomorphic to the maximal pro-nilpotent Lie
subalgebra N(A

(2)
2 ) of the Kac-Moody algebra A

(2)
2 .

At this point some very important observation need to be made.
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It was discussed in [17, 18] that there is a reduction of two-dimensional systems (3)
with matrices A1 and A2 to the sine-Gordon and Tzitzeika equations respectively. However,
explicitly the characteristic Lie algebras χ(sinhu) and χ(eu+e−2u) have not been described
there. The question of describing such algebras is very important, because, the characteristic
Lie algebras of the one-dimensional and two-dimensional systems (3) are different by the
definition. This circumstance, as well as some gaps in proofs of [17, 18] led to the appear-
ance of [22, 26], where the problem of an explicit description of characteristic Lie algebras
χ(sinhu) and χ(eu+e−2u) was posed and solved. It was solved from the point of view of
constructing infinite bases and structure relations (different from the bases and relations
proposed in this article). However the extremely important relationship between the charac-
teristic Lie algebras of χ(sinhu) and χ(eu+e−2u) of sinh-Gordon and Tzitzeica equations
and affine Kac-Moody algebras A

(1)
1 and A

(2)
2 escaped the attention of the authors in [22,

26]. In addition, we wrote the generators of these algebras in terms of Bell polynomials,
which helped us to determine and relate various gradings of χ(sinhu) and χ(eu+e−2u).
Also an interesting feature was the observation that the Lie algebras χ(sinhu) and χ(sin u)

are non-isomorphic over R (but isomorphic over C).

2 Characteristic Lie Algebra of Hyperbolic Non-linear PDE

Here and in the sequel, we define, unless otherwise stated, all Lie algebras over the field K,
which is either the field R of reals or the field C of complex numbers.

Consider a system of hyperbolic PDE

u
j
xy = f j (u), j = 1, . . . , n, u = (u1, . . . , un), (4)

where each function f j (u), j = 1, . . . , n, belongs to a K-algebra Cω(�) of analytic
K-valued functions of n real variables u = (u1, . . . , un) defined on some open domain
� ⊂ R

n (it is more convinient to consider germs instead of functions, but we will keep
the definition from [18, 24]). By x, y we denote two coordinates on the real plane R2 and
assume solutions of Eq. 4 to be analytic functions of x, y.

Take an algebra Cω(�)[u1, u2, . . . ] = Cω(�)[u11, . . . , un
1, u

1
2, . . . , u

n
2, . . . ] of polyno-

mials in an infinite set of variables {ui = (u1i , . . . , u
n
i ), i ≥ 1} with coefficients in Cω(�).

The multiplicative structure in Cω(�)[u1, u2, . . . ] is defined as the standard product of
polynomials.

Example 1 For n = 2 the following polynomial

P(u1, u2; u11, u
2
1, u

1
2, u

2
2, . . . ) = sin (u1+2u2) · (u11)

2 + 2 cos u1 · (u12)
3,

belongs to the algebra Cω(�)[u11, u21, u12, u22, . . . ] = Cω(�)[u1, u2, . . . ].

Define a Lie algebra L of first order linear differential operators of the form

X =
+∞∑

k=1

P α
k (u; u1, u2, . . . )

∂

∂uα
k

, (5)
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where all coefficients P α
i (u;u1, u2, . . . ), α = 1, . . . , n, i ≥ 1, are polynomials from

Cω(�)[u1, u2, . . . ]. We used tensor rules in Eq. 5 for summation

P α
i (u; u1, u2, . . . )

∂

∂uα
k

=
n∑

α=1

P α
i (u; u1, u2, . . . )

∂

∂uα
k

.

Remark 1 We have already said in the Introduction that there does not seem to exist a canon-
ical definition of the characteristic Lie algebra of a hyperbolic PDE. To all appearances,
the characteristic Lie algebra χ(f ) of a hyperbolic equation uxy = f (u) with additional
structure of a (K, Cω(�)-Lie algebra with trivial χ(f )-action on Cω(�) is called the char-
acteristic Lie ring of uxy = f (u) in a series of papers [22, 26, 27] et al. Linear dependence
or independence of vector fields, the choice of basis in the characteristic Lie algebra χ(f )

is understood in [22, 26, 27] with respect to the left module structure over the localization
of Cω(�).

In [24], one of the very first and key papers on the characteristic Lie algebras of hyper-
bolic systems of PDE, vector fields are considered for some fixed value uM of the variables
u = (u1, . . . , un).

More precisely, let M = (u1M, . . . , un
M) = uM be a fixed point in �. One can consider

an evaluation map ev : L → L defined by

X =
+∞∑

k=1

P α
k (u; u1, u2, . . . )

∂

∂uα
k

evM−−→ XM =
+∞∑

k=1

P α
k (uM ; u1, u2, . . . )

∂

∂uα
k

.

Sometimes by characteristic Lie algebra χ(f ) of a hyperbolic equation uxy = f (u) is
called the image evM(χ(f )) of the evaluation map evM for some choice of a point M ∈ �

[24]. Thus, the Lie algebra evM(χ(f )) consists of first order linear differential operators∑+∞
k=1 Pk

∂
∂uk

with coefficients Pk taken from the standard polynomial ring C[u1, u2, . . . ]
[24].

The following formulas are valid

[
∂

∂uj
,X

]
=
[

∂

∂uj
,

+∞∑

k=1

P α
k (u; u1, u2, . . . )

∂

∂uα
k

]
=

+∞∑

k=1

∂P α
k (u; u1, u2, . . . )

∂uj

∂

∂uα
k

Consider an operator D : Cω(�)[u1, u2, . . . ] → Cω(�)(�)[u1, u2, . . . ].

D = uα
1

∂

∂uα
+ uα

2
∂

∂uα
1

+ uα
3

∂

∂uα
2

+ · · · + uα
k+1

∂

∂uα
k

+ . . . , (6)

The operatorD is called the operator of the full partial derivative ∂
∂x
. The definition of the

operator D has a formal algebraic meaning, but the formula (6) defining it has a completely
concrete analytic origin. Indeed, consider a solution u(x, y) = (u1(x, y), . . . , un(x, y)) of
the system (4). Let gj (u; u1, u2, . . . ) ∈ Cω(�)[u1, u2, . . . ], j = 1, . . . , n. Define with a
help of u(x, y) a composite function g(x, y) = (g1(x, y), . . . , gn(x, y)) of two arguments
x, y:

gj (x, y) = gj (u(x, y);u1x(x, y), . . . , un
x(x, y), u1xx(x, y), . . . , un

xx(x, y), . . . )

In other words, we have a parametrization uα
j = ∂j uα

∂xj , α = 1, . . . , n, j ≥ 1.

(u11, . . . , u
n
1) = (u1x, . . . , u

n
x), (u

1
2, . . . , u

n
2) = (u1xx, . . . , u

n
xx), . . . ,



1042 D. Millionshchikov

In particular we have obvious formulas

∂uα

∂x
= D(uα) = uα

1 ,
∂uα

k

∂x
= D(uα

k ) = uα
k+1, α = 1, . . . , n, k ≥ 1.

Computing the partial derivative ∂gj

∂x
of the composite function gj (x, y), we obtain

∂gj

∂x
= ∂uα

∂x

∂gj

∂uα
+ ∂uα

1

∂x

∂gj

∂uα
1
+· · ·+ ∂uα

k

∂x

∂gj

∂uα
k

+· · · = uα
1

∂gj

∂uα
+uα

2
∂gj

∂uα
1
+· · ·+uα

k+1
∂gj

∂uα
k

+. . .

Similar arguments lead us to the formula for ∂
∂y

”on solutions of” Eq. 4

X(f ) = ∂

∂y
= f α ∂

∂uα
1

+ D(f α)
∂

∂uα
2

+ D2(f α)
∂

∂uα
3

+ · · · + Dk+1(f α)
∂

∂uα
k

+ . . .

Definition 1 ([18, 24]) A Lie algebra χ(f ) generated by n + 1 vector fields

X(f ),
∂

∂u1
, . . . ,

∂

∂un
,

is called characteristic Lie algebra of the hyperbolic system (4).

A linear span of ∂

∂u1
, . . . , ∂

∂un determines an abelian subalgebra χ0(f ) of χ(f ). One can

easily verify the followng commutation relations ∂
∂uj with X(f )

[
∂

∂uj
,X(f )

]
= X

(
∂f

∂uj

)
=

+∞∑

k=1

Dk−1
(

∂f α

∂uj

)
∂

∂uα
k

, j = 1, . . . , n.

We denote by χ1(f ) the smallest invariant subspace of χ0-action on χ(f ) containing
the operator X(f ). The subspace χ1(f ) coinsides with the linear span of all operators

X
(

∂sf

∂uj1 ...∂ujs

)
, s ≥ 0 and we have

[χ0(f ), χ1(f )] = χ1(f ).

In this article we are interested mainly in the one-dimensional case n = 1. The corre-
sponding scalar PDE is well known and sometimes it is called the Klein-Gordon equation
[27, 28].

Indeed, consider the classical Klein-Gordon equation

utt − uzz = f (u).

Making a linear change of variables x = z+t
2 , y = z−t

2 we’ll get

uxy = f (u), (7)

where we assume that f (u) is an analytic function on one variable u.
The operator D of the full derivative with respect to x is

D = u1
∂

∂u
+ u2

∂

∂u1
+ u3

∂

∂u2
+ · · · + un+1

∂

∂un

+ . . . ,

We recall that ui are parametrized by some solution u(x, y) of Eq. 7.

u1 = ux, u2 = uxx, . . . , ui = ∂iu

∂xi
, . . .

In this case we have
∂

∂x
(g(u(x, y), u1(x, y), u2(x, y), . . . ) = D(g(u(x, y), u1(x, y), u2(x, y), . . . )).
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Example 2 It’s an elementary exercise to verify by recursion that

Dk(eλu) = eλuBk(λu1, . . . , λuk),

where
Bk(λu1, . . . , λuk) = uk

1λ
k + · · · + ukλ, k = 0, 1, 2, . . . ,

are complete Bell polynomials of degree k. Complete Bell polynomials are well-known
combinatorial object and they have a lot of properties and applications, see [2] for
references. We want just to recall only a few basic facts about them.

Complete Bell polynomials can be defined recursively by the formula

Bn+1(u1, u2, . . . , un+1) =
n∑

i=0

(
n

i

)
Bn−i (u1, u2, . . . , un−i )ui+1,

with the initial condition B0 = 1.
The first few complete Bell polynomials are:

B1(u1) = u1, B2(u1, u2) = u21 + u2, B3(u1, u2, u3) = u31 + 3u1u2 + u3,

B4(u1, u2, u3, u4) = u41 + 6u21u2 + 4u1u3 + 3u22 + u4, . . .

The generating function for complete Bell polynomials is

exp

(+∞∑

i=1

ui

t i

i!

)
=

+∞∑

n=0

Bn(u1, . . . , un)
tn

n! .

An one-dimensional version of the general Definition 1 is

Definition 2 The characterisitic Lie algebra χ(f ) of Klein-Gordon equation (7) is a Lie
algebra of vector fields generated by two vector fields X0 and X1

X0 = ∂

∂u
, X1 = X(f ) = f

∂

∂u1
+ D(f )

∂

∂u2
+ · · · + Dn−1(f )

∂

∂un

+ . . .

It is an elementary exercise to express Dk(f ) for an arbitrary analytic f in terms of
complete differential Bell polynomials Bn(u1

d
du

, . . . , un
d
du

), i.e.

Dn(f ) = Bn

(
u1

d

du
, . . . , un

d

du

)
(f ),

where first four differential Bell polynomials are

B0 = 1, B1(u1
d
du

) = u1
d
du

, B2(u1
d
du

, u2
d
du

) = u21
d2

du2
+ u2

d
du

,

B3(u1
d
du

, u2
d
du

, u3
d
du

) = u31
d3

du3
+ 3u1u2 d2

du2
+ u3

d
du

,

B4(u1
d
du

, u2
d
du

, u3
d
du

, u4
d
du

) = u41
d4

du4
+6u21u2

d3

du3
+(4u1u3+3u22)

d2

du2
+u4

d
du

.

One can express Dn(f ) in terms of incomplete Bell polynomials Bn,k(u1, . . . , un−k+1) (see
[2] for references)

Dn(f ) =
n∑

k=1

Bn,k(u1, . . . , un−k+1)
dkf

dxk
.

We recall here only the generating function for incomplete Bell polynomials

exp

(
z

+∞∑

i=1

ui

t i

i!

)
=
∑

n,k≥0

Bn,k(u1, . . . , un−k+1)z
k tn

n! .
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and the relationship between the complete and incomplete polynomials

Bn(u1, . . . , un) =
n∑

k=1

Bn,k(u1, . . . , un−k+1)

We denote by Y1 the commutator

Y1 = [X0, X1] = fu

∂

∂u1
+ D(fu)

∂

∂u2
+ · · · + Dn−1(fu)

∂

∂un

+ . . .

We have also

[X0, Y1] = [X0, [X0, X1]] = fuu

∂

∂u1
+ D(fuu)

∂

∂u2
+ · · · + Dn−1(fuu)

∂

∂un

+ . . .

Example 3 Let f (u) = eu. We have the Liouville equation uxy = eu. It follows that
[X0, X1] = X1 in this case. Hence the characteristic Lie algebra χ(eu) of the Liouville
equation is the non-abelian two-dimensional solvable Lie algebra. It can be defined by its
basis X0, X1 and the unique commutation relation

[X0, X1] = X1.

We have already noted that the implication of the canonical definition of the characteris-
tic Lie algebra is related to its auxiliary, albeit very important, role in the search for integrals
and higher symmetries of corresponding hyperbolic equations.

Definition 3 An analytic functionw(u; u1, . . . , un) is called x-integral of PDE uxy = f (u)

if
∂

∂y
w

(
u, ux, uxx, . . . ,

∂nu

∂xn

)
= 0, (8)

where u(x, y) is a solution of uxy = f (u).

Respectively an analytic function w(u1, . . . , un) is called y-integral of PDE uxy = f (u)

if
∂

∂x
w

(
u, uy, uyy, . . . ,

∂nu

∂yn

)
= 0, uxy = f (u).

Evidently in our symmetric case uxy = f (u) a x-integral w defines a y-integral and vise
versa. The equation (8) can be written as

u1
∂w

∂u
+ X(f )w = 0.

and it is equivalent to the system

∂w

∂u
= 0, X(f )w = 0.

In other words, a x-integral w is annihilated by two generators ∂
∂u

,X(f ) of characteristic
Lie algebra χ(f ) and hence it is annihilated by the whole Lie algebra χ(f ).

Example 4 A second order polynomial w2(u1, u2) = 1
2 (u1)

2 − u2 determines both x-,
y-integrals of the Liouville equation uxy = eu.

X(eu)w2(u1, u2) = eu

(
∂

∂u1
+ u1

∂

∂u2

)(
1

2
(u1)

2 − u2

)
= 0.
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Or one can verify directly that w2(ux, uxx) = 1
2 (ux)

2 − uxx is a x-integral

((ux)
2 − 2uxx)y = 2uxuxy − 2uxyx = 2eu(ux − ux) = 0.

Definition 4 A hyperbolic one-dimensional PDE uxy = f (u) is called Darboux-integrable
if it admits both non-trivial x-, y-integrals.

Obviously the Liouville equation uxy = eu is Darboux-integrable. Moreover there is a
well-known classical formula found by Liouville himself for its general solution in terms of
two arbitrary functions ϕ(t), ψ(t) of one variable t

u(x, y) = log
2ϕ′(x)ψ ′(y)

(1 − ϕ(x)ψ(y))2
.

Technical details of a transition from the formulas for x, y-integrals of the Liouville
equation to this explicit expression for u(x, y) can be found in [4, 8].

Consider the sinh-Gordon equation uxy = sinh u. It is well-known that it is not Darboux-
integrable but it is integrable by the inverse scattering problem method (see [28, 30] for
references). In the framework of inverse scattering method one is looking for higher sym-
metries of the non-linear PDE under the study. We will not discuss details and remark only
that we are looking now for non-trivial solutions of the so-called defining equation

DX(f )φ = f ′(u)φ. (9)

Example 5 A polynomial φ3(u1, u2, u3) = u3 − 1
2u

3
1 is a solution of the defining equa-

tion (9) for the sinh-Gordon equation uxy = sinh u. It is not difficult to verify that for a
function u(x, y) satisfying the sinh-Gordon equation uxy = sinhu we have

(uxxx − 1

2
u3x)xy = cosh u(uxxx − 1

2
u3x).

A method was developed in [27] such that, with the help of operators from the char-
acteristic Lie algebra χ(sinh), one can obtain all higher symmetries of the sinh-Gordon
equation.

We finish this section with one simple technical lemma, which we will need in the sequel.

Lemma 1 ([27]) Let X be a differential operator

X =
+∞∑

i=1

Pi

∂

∂ui

, Pi = Pi(u, u1, . . . , un, . . . ),

such that [X,D] = 0. Then X = 0.

Proof The proof from [27] is quite elementary and we present it here.

[D, X] =
+∞∑

i=1

D(Pi)
∂

∂ui

− P1
∂

∂u
−

+∞∑

i=1

Pi+1
∂

∂ui

.

It follows that if [X, D] = 0 then

P1 ≡ 0,D(Pi) = Pi+1, i = 1, 2, . . . , n, . . .

It means that all polynomials Pi have to vanish, i.e. Pi ≡ 0, ∀i ≥ 1.
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Corollary 1

[D, X1] =
+∞∑

i=1

D(Di−1(f ))
∂

∂ui

− f
∂

∂u
−

+∞∑

i=1

Di(f )
∂

∂ui

= −f X0. (10)

3 Narrow Positively Graded Lie Algebras and Loop Algebras

Definition 5 A Lie algebra g is called N-graded (positively graded) if there is a decompo-
sition of g into a direct sum of linear subspaces

g=
+∞⊕

i=1

gi , [gi , gj ] ⊂ gi+j , for all i, j ∈ N.

Example 6 Let g be a finite-dimensional simple Lie algebra over K. Then the Lie algebra
L+(g) = ⊕+∞

k=1g ⊗ tk with a bracket [, ]L defined by

[g ⊗ P(t), h ⊗ Q(t)]L = [g, h] ⊗ P(t)Q(t),

where [, ] is the Lie bracket in g is N-graded and dimensions of all its homogeneous com-
ponents are equal to dim g. L+(g) can be regarded as the positive part of the corresponding
Z-graded loop algebra L(g) = ⊕k∈Zg ⊗ tk .

Definition 6 ([23]) A N-graded Lie algebra g is called of width d if all its homogeneous
components is uniformly bounded by d ≥ 1.

dim gi ≤ d,∀i ∈ N, (11)

where the constant d is the smallest with the property (11).

Shalev and Zelmanov introduced a notion of narrow Lie algebra, i.e. a N-graded Lie
algebra g = ⊕i∈Ngi of width d = 1 or d = 2.

Example 7 The Lie algebra m0 is defined by its infinite basis e1, e2, . . . , en, . . . with the
commutation relations:

[e1, ei] = ei+1, ∀ i ≥ 2.

The remaining brackets among basis elements vanish: [ei, ej ] = 0 if i, j �= 1.

We will always omit the trivial commutator relations [ei, ej ] = 0 in the definitions of
Lie algebras.

Example 8 The Lie algebra m2 is defined by its infinite basis e1, e2, . . . , en, . . . and the
commutating relations:

[e1, ei] = ei+1, ∀ i ≥ 2; [e2, ej ] = ej+2, ∀ j ≥ 3.

Example 9 The positive part W+ of the Witt algebra. It can be also defined by its infinite
basis and the commutating relations

[ei, ej ] = (j − i)ei+j , ∀ i, j ∈ N.
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These three infinite-dimensional algebras m0,m2,W
+ are the narrowest possible N-

graded Lie algebras. They are all generated by two elements e1, e2 of degrees one and two
respectively.

Example 10 The loop algebra L(sl(2,K)) and its positive part n1.
Consider the loop algebra L(sl(2,K)) = sl(2,K) ⊗ K[t, t−1], where K[t, t−1] is the

ring of Laurent polynomials over K. It has a Lie subalgebra of ”polynomial loops”

L(sl(2,K))≥0 = sl(2,K) ⊗ K[t]
that we will call in the sequel the non-negative part of the loop algebra L(sl(2,K)).
Consider an infinite set of polynomial matrices defined for k ∈ Z by

e3k+1=1

2

(
0 tk

0 0

)
, e3k−1=

(
0 0
tk 0

)
, e3k=1

2

(
tk 0
0 −tk

)
. (12)

Evidently this set of matrices is an infinite basis of the loop algebra L(sl(2,K)).
The linear span of its half 〈e0, e1, e2, e3, . . . , en, . . . 〉 is an infinite basis of the non-

negative part L(sl(2,K))≥0 = sl(2,K) ⊗ K[t]. It is Z≥0-graded with one-dimensional
homogeneous components:

L(sl(2,K))≥0 = ⊕+∞
i=0 〈ei〉 ⊂ sl(2,K) ⊗ K[t],

The structure relations for basic elements ei, ej , i, j ≥ 0, are given by the rule

[ei, ej ] = ci,j ei+j , ci,j =
⎧
⎨

⎩

1, if j−i ≡ 1 mod 3;
0, if j−i ≡ 0 mod 3;

−1, if j−i ≡ −1 mod 3.
(13)

Now consider the positive part n1 of the loop algebra L(sl(2,K)). It is defined as the lin-
ear span 〈e1, e2, e3, . . . , en, . . . 〉 and it is a N-graded Lie algebra with one-dimensional
homogeneous components:

n1 = ⊕+∞
i=1 〈ei〉 ⊂ sl(2,K) ⊗ K[t].

The Lie algebra n1 is a codimension one ideal in L(sl(2,K))≥0.

Example 11 The twisted loop algebra L(sl(3,K), μ) and its positive part n2.
Consider a diagram automorphism μ of sl(3,K) of the second order μ2 = 1 [9].

μ :
⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠→
⎛

⎝
−a33 a23 −a13
a32 −a22 a12

−a31 a21 −a11

⎞

⎠

The simple Lie algebra sl(3,K) is decomposed into the sum of eigensubspaces g0, g1 of μ

coressponding to eigenvalues 1, −1 respectively

sl(3,K) = g0 ⊕ g1, [g0, g0] ⊂ g0, [g0, g1] ⊂ g1, [g1, g1] ⊂ g0.

One can choose a basis f−1, f0, f1, f2, . . . , f6 of sl(3,K), such that g0 = 〈f−1, f0, f1〉
and g1 = 〈f2, f3, f4, f5, f6〉

f−1=
⎛

⎝
0 0 0
1 0 0
0 1 0

⎞

⎠ , f0=
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ , f1=
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , f2=
⎛

⎝
0 0 0
0 0 0
1 0 0

⎞

⎠ ,

f3=
⎛

⎝
0 0 0
1 0 0
0 −1 0

⎞

⎠ , f4=
⎛

⎝
1 0 0
0 −2 0
0 0 1

⎞

⎠ , f5=
⎛

⎝
0 1 0
0 0 −1
0 0 0

⎞

⎠ , f6=
⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ ,
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We recall (see [9]) that the twisted loop algebra L(sl(3,K), μ) is a Lie subalgebra of the
loop algebra L(sl(3,K)) defined by

L(sl(3,K), μ) =
⊕

j∈Z
gj (mod 2) ⊗ tj .

There is an infinite basis of L(sl(3,K), μ) (see [9], Exercise 8.12).

f8k−1=f−1 ⊗ t2k, f8k=f0 ⊗ t2k, f8k+1=f1 ⊗ t2k,

f8k+2=f2 ⊗ t2k+1, f8k+3=f3 ⊗ t2k+1, f8k+4=f4 ⊗ t2k+1,

f8k+5=f5 ⊗ t2k+1, f8k+6=f6 ⊗ t2k+1, k ∈ Z.

(14)

It’s easy to calculate the commutators [fq, fl] of all these basic elements

[fq, fl] = dq,lfq+l , q, l ∈ N. (15)

where the structure constants dq,l are presented in the Table 1.
The matrix (dq,l) is skew-symmetric, its elements dq,l depend only on the residue gen-

erated by dividing positive integers q and l by 8. Moreover (dq,l) satisfy the following
relations (see [9] for references):

di,j + dq,l = 0, if i+q ≡ 0 mod 8, j+l ≡ 0 mod 8.

We define the non-negative partL(sl(3,K), μ)≥0 of the twisted loop algebraL(sl(3,K), μ)

as

L(sl(3,K), μ)≥0 =
+∞⊕

j=0

gj (mod 2) ⊗ tj .

It coinsides with an infinite-dimensional linear span 〈f0, f1, f2, f3, . . . , fn, . . . 〉.
Now we introduce the positive part n2 of the twisted loop algebra L(sl(3,K), μ) by

setting

n2 = ⊕+∞
i=1 〈fi〉 =

+∞⊕

j=1

gj (mod 2) ⊗ tj ,

Evidently n2 is a N-graded Lie algebra of width one.
Fialowski classified [5] the narrowest N-graded Lie algebras, i.e. N-graded Lie algebras

g = ⊕i∈Ngi with one-dimensional homogeneous components gi that are generated by two
elements from g1 and g2 respectively. Fialowski’s classification list contains the Lie algebras

Table 1 Structure constants for n2

f8j f8j+1 f8j+2 f8j+3 f8j+4 f8j+5 f8j+6 f8j+7

f8i 0 1 −2 −1 0 1 2 −1

f8i+1 −1 0 1 1 −3 −2 0 1

f8i+2 2 −1 0 0 0 1 −1 0

f8i+3 1 −1 0 0 3 −1 1 −2

f8i+4 0 3 0 −3 0 3 0 −3

f8i+5 −1 2 −1 1 −3 0 0 −1

f8i+6 −2 0 1 −1 0 0 0 1

f8i+7 1 −1 0 2 3 1 −1 0
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m0,m2, W+, n1, n2 considered above and a special multiparametric family of pairwise non-
isomorphic Lie algebras. Later a part of Fialowski’s theorem was rediscovered by Shalev
and Zelmanov [23].

4 Naturally Graded Pro-nilpotent Lie Algebras

Definition 7 A Lie algebra g is called pro-nilpotent if for the ideals gi , g = g1, gi =
[g, gi−1], i ≥ 2, of its descending central sequence we have:

∩+∞
i=1 g

i = {0}, dim g/gi < +∞.

It is clear that a finite-dimensional nilpotent Lie algebra g is pro-nilpotent. Moreover, it
follows from the Definition 7 that every quotient g/gi of a pro-nilpotent Lie algebra is finite-
dimensional nilpotent Lie algebra and there is an inverse spectrum of finite-dimensional
nilpotent Lie algebras

· · · pk+2,k+1−→ g/gk+1 pk+1,k−→ g/gk pk,k−1−→ · · · p3,2−→ g/g2
p2,1−→ g/g1,

We denote by ĝ the projective (inverse) limit ĝ = lim←−
k

g/gk . We call g complete if ĝ = g

(g = ĝ is an inverse limit of finite-dimensional nilpotent Lie algebras).
For a given pro-nilpotent Lie algebra g one can consider a sequence of projections of a

pro-nilpotent Lie algebra g to its finite-dimensional quotients:

pm : g → g/gm, m ∈ N.

They determine the topology of the inverse limit of finite-dimensional spaces on g, i.e.,
smallest topology on g for which all these maps pm are continuous.

Example 12 We have considered three infinite-dimensional N-graded Lie algebras

m0, m2, W+.

All of them are pro-nilpotent and not complete. Their completions m̂0, m̂2, Ŵ
+ are the

spaces of formal series
∑+∞

k=1 αkek of corresponding basic vectors ek, k ∈ N.

Definition 8 A Lie algebra g is called pro-solvable if for the ideals g(i), g = g(0), g(i) =
[g(i−1), g(i−1)], i ≥ 1, of its derived sequence of ideals we have:

∩+∞
i=1 g

(i) = {0}, dim g/g(i) < +∞.

The descending central series {gk} of a pro-nilpotent Lie algebra g determines a
decreasing filtration

g = g1 ⊃ g2=[g, g] · · · ⊃ gm ⊃ gm+1 ⊃ . . . , [gm, gn] ⊂ gm+n, m, n ∈ N.

and one can consider the associated graded Lie algebra grCg

grCg = ⊕+∞
i=1

(
grCg

)
i
= ⊕+∞

i=1

(
gi/gi+1

)

with the bracket defined on its homogeneous components
(
grCg

)
i
,
(
grCg

)
j
by

[
x+gi+1, y+gj+1

]
= [x, y]+gi+j+1, x ∈ gi , y ∈ gj .
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Definition 9 A pro-nilpotent Lie algebra g is called naturally graduable if it is isomorphic
to its associated graded grCg.

Definition 10 A N-grading g = ⊕+∞
i=1 gi of a naturally graduable pro-nilpotent Lie algebra

g is called natural grading if there exist a graded isomorphism

ϕ : grCg → g, ϕ((grCg)i) = gi , i ∈ N.

The Lie algebra m0 considered above is naturally graduable. However its grading of
width one considered above is not natural

(
grCm0

)
1 = 〈e1, e2〉,

(
grCm0

)
i
= 〈ei+1〉, i ≥ 2.

The positive part W+ of the Witt algebra and m2 are not naturally graded Lie algebras, one
can easily verify the following isomorphisms:

grCm2 ∼= grCW+ ∼= grCm0 ∼= m0.

Definition 11 A N-graded Lie algebra g = ⊕+∞
i=1 gi is naturally graded if and only if

[g1, gi] = gi+1, i ∈ N.

In particular it means that a naturally graded Lie algebra g = ⊕+∞
i=1 gi is generated by its

first homogeneous component g1. The equivalence of two different definitions of a naturally
graded Lie algebra follows from the basic properties of the descending central series of a
Lie algebra.

The notion of naturally graded Lie algebra is the infinite-dimensional generalization of
so-called Carnot algebra.

Definition 12 ([1]) A finite-dimensional Lie algebra g is called Carnot algebra if it admits
a N-grading g = ⊕n

i=1gi such that

[g1, gi] = gi+1, i = 1, 2, . . . , n − 1, [g1, gn] = 0. (16)

Proposition 1 The Lie algebras n1 and n2 are naturally graded Lie algebras of width two.

Proof For the proof we will introduce new bases for both algebras.
In the case n1 we define new basic vectors a2k+1, b2k+1, c2k by the rule:

a2k+1=e3k+1, b2k+1=e3k+2, c2k=e3k, for all k ∈ Z+.

The structure relations now look as follows

[a2k+1, b2l+1]=c2(k+l+1), [c2k, a2l+1]=a2(k+l)+1, [c2k, b2l+1]=−b2(k+l)+1, (17)

One can easily verify by recursion that

C2m+1n1 = Span(a2m+1, b2m+1, c2m+2, . . . , ), C2mn1 = Span(c2m, a2m+1, b2m+1, . . . , ).

Hence the natural grading is defined by

n1 = ⊕+∞
i=1 n1,i , where n1,2m+1 = 〈a2m+1, b2m+1〉, n1,2m = 〈c2m〉

i.e. with one-dimensional even and two-dimensional odd homogeneous components.
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In the case n2 we define new basic vectors ai, b6q+1, b6q+5 by

a6q+1=e8k+1,

a6q+2=e8k+3,

a6q+3=e8k+4,

a6q+4=e8k+5,

a6q+5=e8k+6,

a6q+6=e8k+8,

b6q+1=e8k+2,

b6q+5=e8k+7,

Then

n2 = ⊕+∞
i=1 n2,i , n2,i = 〈ai, bi〉, if i = 6q+2 or i = 6q+5, n2,i = 〈ai〉 in other cases.

The proof is completely analogous to the previous case and is reduced to the direct
calculation of ideals Ckn2.

We define the set of polynomial matrices for positive integers k = 1, 2, . . . :

u2k−1=
⎛

⎝
0 t2k−1 0

−t2k−1 0 0
0 0 0

⎞

⎠ , v±
2k−1=

⎛

⎝
0 0 0
0 0 t2k−1

0 ∓t2k−1 0

⎞

⎠ , w±
2k=

⎛

⎝
0 0 t2k

0 0
∓t2k 0 0

⎞

⎠ .

One can easily verify the commutation relations between them

[u2k−1, v
±
2l−1] = w±

2(k+l)−2, [v±
2k−1, w

±
2l] = ±u2(k+l)−1, [w±

2k, u2l+1] = v±
2(k+l)−1.

The linear span n
+
1 =〈u1, v+

1 , w+
2 , . . . , u2k+1, v

+
2k+1, w

+
2k+2, . . . 〉 is a naturally graded

subalgebra in so(3,K) ⊗ K[t] and n
−
1 =〈u1, v−

1 , w−
2 , . . . , u2k+1, v

−
2k+1, w

−
2k+2, . . . 〉 is a

naturally graded subalgebra in so(2, 1) ⊗ K[t] respectively.

Proposition 2 ([20]) n
±
1 are isomorphic over C and non-isomorphic over R.

The latter fact is not surprising, given the fact that so(3,R) and sl(2,R) are the different
real forms of sl(2,C).

Let us introduce more examples of naturally graded Lie algebras.
1) Define a Lie algebra n32 as an one-dimensional central extension of n2:

n32 = n2 ⊕ 〈c〉, [f2, f3]=c, [c, fi]=0, i ∈ N.

2) Let S be a subset (finite or infinite) of the set of positive odd integers

S = (3 ≤ 2s1+1 ≤ 2s2+1 ≤ 2s3+1 ≤ · · · ≤ 2sn+1 ≤ . . . , )

Define a central extension mS
0 = m0 ⊕ 〈c2s1+1, c2s2+1, . . . , c2sn+1, . . . 〉 of m0

[e1, el] = el+1, l ≥ 2, [ei, ej ] = 0, i + j �= 2sj+1 ∈ S;
[ek, e2sj +1−k] = (−1)kc2sj +1, k = 2, . . . , sj , 2sj+1 ∈ S,

[c2sj +1, el] = 0, ∀l ∈ N, ∀2sj+1 ∈ S.

Theorem 1 ([20]) Let g = ⊕+∞
i=1 gi be an infinite-dimensional naturally graded Lie

algebra over R such that

dim gi + dim gi+1 ≤ 3, i ∈ N. (18)

Then g is isomorphic to the one and only one Lie algebra from the following list:

n
±
1 , n2, n

3
2,m0, {mS

0 , S ⊂ {3, 5, 7, . . . , 2m+1, . . . }.
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5 Kac-Moody Algebras A
(1)
1 and A

(2)
2

Let A be a generalized Cartan (n × n)-matrix and g(A) be the corresponding Kac-Moody
affine algebra (see [9] for necessary definitions and details). By the definition g(A) is
generated by 3n elements ei, hi, fi, i = 1, . . . , n satisfying the following relations

[hi, hj ] = 0, [ei, fj ] = δij hi,

[hi, ej ] = aij ej , [hi, fj ] = −aij hj ,

ad1−aij ei(ej ) = 0, ad1−aij fi(fj ) = 0,
i, j = 1, . . . , n,

(19)

where aij are entries of our generalized Cartan matrix A.
The Kac-Moody affine algebra g(A) has the maximal nilpotent subalgebraN(A) ⊂ g(A)

and it can be defined by its generators e1, e2, . . . , en and the relations

ade
−aij +1
i (ej ) = 0, 1 ≤ i �= j ≤ n.

The Lie algebra N(A) is Z≥0 ⊕ · · · ⊕ Z≥-graded

N(A) = ⊕+∞
k1≥0,k2≥0,...,kn≥0N(A)(k1,k2,...,kn), (20)

where a homogeneous subspace N(A)(k1,k2,...,kn) is spanned by all commutator monomials
involving precisely ki generators ei, i = 1, . . . , n.

Proposition 3 N(A) is naturally graded. Natural grading is just the sum of the components
of canonical grading (20)

N(A) =
+∞⊕

N=1

N(A)(K), N(A)(K) =
⊕

k1+...+kn=K

N(A)(k1,...,kn)

Proof It follows from the fact that all structure relations of N(A) are defined by homoge-
neous monomials.

Definition 13 We call the Lie algebraN(A) the positive part of a Kac-Moody algebra g(A),
where A is the corresponding generalized Cartan matrix.

It is a classical fact that all Kac-Moody algebras can be realized as affine Lie algebras
L̂(g) = L(g)⊕Cc ⊕Cd or twisted affine Lie algebras L̂(g, μ) = L(g)⊕Cc ⊕Cd, double
extensions of loop L(g) and twisted loop algebras L(g, μ) respectively (see [9]) of complex
simple Lie algebras.

We briefly recall the definitions of two affine algebras A
(1)
1 and A

(2)
2 .

The affine algebra A
(1)
1 corresponds to 2 by 2 generalized Cartan matrix

(
2 −2

−2 2

)
. It

can be realized as a double extension of of the loop algebra of sl(2,C).

A
(1)
1 = L̂(sl(2,C)) = L(sl(2,C)) ⊕ Cc ⊕ Cd.

Its maximal nilpotent subalgebra N(A
(1)
1 ) is isomorphic to the positive part n1 of the loop

algebra L(sl(2,C)) and it is generated by two elements e1, e2 related by

ad3e2(e1) = [e2, [e2, [e2, e1]]]=0, ad3e1(e2)= [e1, [e1, [e1, e2]]] = 0.
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The twisted affine algebra A
(2)
2 in its turn corresponds to another generalized 2 by 2 Cartan

matrix

(
2 −4

−1 2

)
. Its maximal nilpotent subalgebra N(A

(2)
2 ) is isomorphic to the positive

part n2 of the twisted loop algebra L(sl(3,C), μ) and it is generated by two elements e1, e2
related by

ad2e2(e1) = [e2, [e2, e1]]=0, ad5e1(e2)= [e1, [e1, [e1, [e1, [e1, e2]]]]] = 0.

Both Lie algebras A
(1)
1 and A

(2)
2 are canonically Z⊕Z-graded as Kac-Moody algebras, their

maximal nilpotent subalgebras n1 = N(A
(1)
1 ) and n2 = N(A

(2)
2 ) are Z≥0 ⊕ Z≥-graded.

N(A
(i)
i ) = ni = ⊕+∞

p+q=1(N(A
(i)
i ))(p,q), i = 1, 2,

where (N(A
(i)
i ))p,q , i=1, 2, is the linear span of all commutator monomials involving pre-

cisely p generators e1 and q generators e2. Generators e1, e2 have degrees (1, 0) and (0, 1)
respectively.

How are the gradings of the Lie algebras n1 and n2, as defined in previous sections,
related to the gradings of N(A

(1)
1 ) and N(A

(2)
2 ) just considered? The connection between

the natural grading of ni and the canonical one of N(A
(i)
i ) is already established in the

Proposition 3. What about the narrow N-gradings of n1 and n2?
One can verify that the canonical degree deg(f8m+s) of a basic element f8m+s in n2 is

defined for −1 ≤ s ≤ 6, by

deg(f8m+s) =
{

(4m+s, 2m), if s ≤ 1;
(4m+s−2, 2m+1), if s ≥ 2.

(21)

For instance f8m+7 has the canonical bidegree equal to (4m+3, 2m+2). In its turn the
bidegree of f8m+6 equals (4m+4, 2m+1). Hence both of them has the natural degree 6m+5.

For canonical bidegrees of basic elements ei of n1 we have

deg(e3k+1) = (k + 1, k), deg(e3k+2) = (k, k + 1), deg(e3k) = (k, k).

6 Two-dimensional Integrable Hyperbolic Systems

Consider an exponential hyperbolic system

u
j
xy = eρj , ρj = aj1u

1 + · · · + ajnu
n, j = 1, . . . , n. (22)

where u(x, y)j , j = 1, . . . , n are analytic functions on variables x, y. For an arbitrary n by
n matrix A define vector fields

Xα = e−ρα

+∞∑

k=1

Dk−1(eρα )
∂

∂uα
k

=
+∞∑

k=1

Bk−1(ρ
1
α, . . . , ρk−1

α )
∂

∂uα
k

, α = 1, . . . , n, (23)

where ρα = aα1u
1 + · · · + aαnu

n and we introduced linear functions ρi
α, i ≥ 1, defined by

ρi
α = aα1u

1
i + · · · + aαnu

n
i ,D(ρi

α) = ρi+1
α , i ≥ 1.

It pas proved in [15] that ifA is the Cartan matrix of a semisimple Lie algebra g of the rank n

then the exponential hyperbolic system (2) is integrable. The proof consisted in the explicit
construction of a complete solution of the equation which depends on 2n arbitrary functions,
thus generalizing the one-dimensional case of the classical Liouville equation uxy = eu. An
essential condition in the proof was the nondegeneracy of the Cartan matrix A.
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Later it was claimed in the preprint [24] that the main result in [15] can be generalzed
for an arbitrary generalized Cartan matrix A (possibly degenerate) if we apply the inverse
scattering problem method. In the proof [24], however, there are unclear points.

We consider two-dimensional case n = 2 that was studied explicitly in [18, 24].

{
u1xy = e(a11u

1+a12u
2),

u2xy = e(a21u
1+a22u

2),
, A =

(
a11 a12
a21 a22

)

Characteristic equation ∂
∂x

w(u1, u2, . . . , ) = 0 is equivalent to the system

X1w = X2w = 0.

where for the basic fields Xα, α = 1, 2, we have the following expansions

Xα = ∂

∂uα
1

+ (aα1u
1
1+aα2u

2
1)

∂

∂uα
2

+
(
(aα1u

1
1+aα2u

2
1)

2+(aα1u
1
2+aα2u

2
2)
) ∂

∂uα
3

+ . . .

For instance this system is consistent and it is easy to verify that it has an integral of the
second order for arbitrary matrix A

w ≡ w(2)(u1, u2) = 2a21u
1
2 + 2a12u

2
2 − a11a21(u

1
1)

2 − 2a12a21u
1
1u

2
1 − a22a12(u

2
1)

2

In the text of papers [18, 24] we encounter another definition of the characteristic Lie
algebra χ(A) of an exponential hyperbolic system.

Definition 14 ([18, 24]) A Lie algebra χ(A) of vector fields generated by n operators
Xα, α = 1, . . . , n, that are defined by Eq. 23 is called characteristic Lie algebra of the
hyperbolic exponential system (2) defined by a matrix A.

Remark 2 We do not see operators ∂
∂uj among the generators of our algebra. And hence

χ(A) is pro-nilpotent.

It was proved in [18, 24] that

1) for the generalized degenerate Cartan matrix A =
(

2 −2
−2 2

)
the corresponding char-

acteristic Lie algebra χ(A) = LieC(X1, X2) is isomorphic to the positive part n1 of the
affine Kac-Moody algebra A

(1)
1 . The corresponding exponential system is integrable in

the framework of the inverse scattering method;

2) for the generalized degenerate Cartan matrix A =
(

2 −4
−1 2

)
the corresponding char-

acteristic Lie algebra χ(A) = LieC(X1, X2) is isomorphic to the positive part n2 of
the affine Kac-Moody algebra A

(2)
2 . Like in the previous case the hyperbolic system is

integrable if we apply the inverse scattering problem method.

Remark 3 Hyperbolic exponential systems corresponding to nondegenerate Cartan 2 × 2-
matrices of semisimple Lie algebras (A1⊕A1, A2, C2,G2) are Darboux-integrable.
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7 Growth of Lie Algebras

In the late sixties Victor Kac studied simple Z-graded Lie algebras g = ⊕k∈Zgk of finite
growth in the following sense

dim gk ≤ P(|k|), k ∈ Z,

for some polynomial P(t). We recall that a Z-graded Lie algebra g = ⊕k∈Zgk is called
simple graded if it does not contain non-trivial homogeneous ideal I = ⊕k∈ZIk where
Ik = I∩gk . Kac [10] proved that an infinite-dimensional simple Z-graded Lie algebra g of
finite growth that satisfies the following two technical conditions

1) g is generated by its ”local part” g−1⊕g0⊕g1;
2) the g0−module g−1 is irreducible.

(24)

is isomorphic to one Lie algebra of the following types:

– loop algebras L(g) = g ⊗ C[t, t−1], where g is finite-dimensional simple Lie algebra
and C[t, t−1] is the ring of Laurent polynomials over complex numbers. Namely there
are four infinite series and five exceptional so-called centerless affine Lie algebras [9]

A(1)
n , B(1)

n , C(1)
n , D(1)

n , E
(1)
6 , E

(1)
7 , E

(1)
8 , F

(1)
4 , G

(1)
2 .

– twisted loop algebras

L(g, μ) =
⊕

i∈Z, i≡j mod n,
j=0, 1, . . . , n−1

gj⊗t i ⊂ g ⊗ C[t, t−1],

where a simple finite-dimensional Lie algebra g = ⊕n−1
i=0 gi is graded by the cyclic

group Zn (eigensubspaces of an automorphism μ of g). Here we have two infinite series
and two exceptional centerless twisted affine Lie algebras [9]

A(2)
n , D(2)

n , E
(2)
6 ,D

(3)
4 .

– the Lie algebras Wn, Sn, Kn,Hn of Cartan type, for instance Wn is the Lie algebra of
derivations of the ring of polynomials C[x1, . . . , xn];

Moreover, Kac conjectured that dropping the condition (24) would add only theWitt algebra
W to the classification list.

Remark 4 The Witt algebra W and W1 (with no grading) do not satisfy the first condition
from Eq. 24.

Kac’s conjecture was proved in 1990 by Mathieu [19].
Suppose that an infinite-dimensional Lie algebra g is generated by its finite-dimensional

subspace V1(g). For n > 1 we denote by Vn(g) theK-linear span of all products in elements
of V1(g) of length at most n with arbitrary arrangements of brackets. We have an ascending
chain of finite-dimensional subspaces of g:

V1(g) ⊂ V2(g) ⊂ · · · ⊂ Vn(g) ⊂ . . . , ∪+∞
i=1Vi(g) = g.

The Gelfand-Kirillov dimension of g [6] is

GKdimg = lim sup
n→+∞

log dimVn(g)

log n
.
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A finite Gelfand-Kirillov dimension means that there exists a polynomial P(x) such that
dimVn(g) < P (n) for all n > 1. In particular if g is finite-dimensional then GKdimg = 0.

The growth function Fg(n) = dimVn(g) depends on the choice of the generating sub-
space V1(g) (see [12] for details). For instance if we choose another generating subspace
Ṽ1(g) such that Ṽ1(g) ⊂ Vm(g) for some positive integer m, then we have an obvious
estimate

F̃g(n) = dim Ṽn(g) ≤ dimVmn(g) = Fg(mn).

In fact, the growth of a Lie algebra g is called the equivalence class of some of its growth
functions Fg(n) [12]. Two monotone increasing functions f, g : N → N are called
equivalent if there exist c,m, c̃, m̃ ∈ N such that

f (n) ≤ cg(mn), g(n) ≤ c̃f (m̃n),

for almost all n ∈ N.
For a naturally graded pro-nilpotent Lie algebra g = ⊕+∞

i=1 gi one can define its nat-
ural growth function F

gr
g (n), choosing as the generating subspace its first homogeneous

component g1 of the Lie algebra g = ⊕+∞
i=1 gi . Obviously we have

F
gr
g (n) = dimVn(g) =

n∑

i=1

dim gi = dim(g/gn+1),

where gn+1 denotes the (n + 1)-th ideal of the lower central series of g.
For the Lie algebra m0 considered above we have the slowest possible growth

F
gr
m0(n) = n+1.

For an arbitrary naturally graded Lie algebra g = ⊕+∞
i=1 gi of width d the function F

gr
g (n)

grows not faster than dn:
F

gr
g (n) ≤ dn.

All Lie algebras of finite width have GKdimg = 1.
Consider natural growth functions of the Lie algebras n1 and n2.

3n

2
≤ F

gr
n1 (n) ≤ 3n+1

2
,
4n

3
≤ F

gr
n2 (n) ≤ 4n+2

3
, ∀n ∈ N.

Hence the piecewise linear functions F
gr
n1 (n) and F

gr
n2 (n) grow on average at rates of 3

2 and
4
3 respectively.

Remark 5 The next remark is that there is an continuum family of pairwise nonisomorphic
linearly growing Lie algebras mS

0 indexed by subsets S ⊂ {3, 5, 7, . . . }, while according
to the Mathieu theorem [19] there is only a countable number of pairwise nonisomorphic
simple Z-graded Lie algebras of finite growth.

Lemma 2 Suppose an infinite-dimensional Lie algebra g̃ is generated by its finite-
dimensional subspace

V1(g̃) = g0 ⊕ g1,

where g0 is an abelian Lie subalgebra in g̃ and g1 is an invariant subspace of g0-action on
g̃. Assume also that the g0-module g1 is diagonalizable and corresponding weights (roots)
α1, . . . , αq ∈ g∗

0 are non-zero. Define a subalgebra g ⊂ g̃ generated by the subspace
V1(g) = g1.

Then the corresponding growth functions Fg(n), Fg̃(n) are related

Fg̃(n) = Fg(n) + dim g0.
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Hence g and g̃ have equal Gelfand-Kirillov dimensions

GKdimg̃ = GKdimg.

Proof For simplicity we consider the case dim g0 = 1. In addition to everything else, this is
the case we will need for applications. However the general case is proved in a completely
analogous way. First of all we fix a non-trivial X0 in one-dimensional g0. Choose a basis
X1, . . . , Xq of g1 consisting of eigen-vectors of adX0 corresponding to eigenvalues λ1 =
α1(X0), . . . , λq = αq(X0) respectively

adX0(Xj ) = [X0, Xj ] = λjXj , j = 1, . . . , q.

Let Xi1,...,im = Xi1 . . . Xim be an element of g represented by a m-word, where Xis ∈
{X1, . . . , Xq}, s = 1, . . . , m, with an arbitrary (but fixed) arrangement of brackets. Then

adX0(Xi1,...,im) = (λi1 + · · · + λim)Xi1,...,im , q = 1, . . . , m, (25)

We will prove (25) by recursion. We start by m = 2:

adX0([Xi1 , Xi2 ]) = [λi1Xi1 , Xi2 ] + [Xi1 , λi2Xi2 ] = (λi1 + λi2)[Xi1 , Xi2 ].
Assume that Eq. 25 is valid for commutators of orders less than m. We take a m-

word Xi1,...,iq ,iq+1,...,im that can be written as a bracket [Xi1,...,iq , Xiq+1,...,im ] of its subwords
Xi1,...,iq and Xiq+1,...,im .

adX0(Xi1,...,iq ,iq+1,...,im) = adX0([Xi1,...,iq , Xiq+1,...,im ]) =
= [(λi1+. . .+λiq )Xi1,...,iq , Xiq+1,...,im ]+[Xi1,...,iq , (λiq+1+. . .+λim)Xiq+1,...,im ] =

= (λi1+. . .+λim)Xi1,...,iq ,iq+1,...,im .

Now we consider an arbitrary element of g̃ represented by a n-th order commutator Xi1,...,in

where some lower indices can equal zero, in other words, Xi1,...,in may contain X0 in a
certain number among its own letters. Let s be a total number of occurences of the letter X0
in the word Xi1,...,in , then it follows from Eq. 25 that

Xi1,...,in ∈ Vn−s(g).

Hence we have
Vn(g̃) = 〈X0〉 ⊕ Vn(g), Fg̃(n) = Fg(n) + 1.

8 The Bigraded Lie Subalgebra Diff(F)

We introduce a non-positive grading in the ring K[u1, . . . , un, . . . ] of polynomials over
infinite number of variables u1, . . . , un, . . . . We define it by recursion with respect to the
power of polynomials.

1) We define the degrees (weights) wt(un) of generators un, n ≥ 1, and unit 1 by the rule

wt(1) = 0,wt(un) = −n, n ∈ N.

2) Let P1, P2 be two homogeneous polynomials of weights wt(P1)=−p1 and wt(P2)=−
p2 respectively. Then their product P1P2 is a homogeneous polynomial of weight
−p1 − p2.

3) Let P1, P2 be two homogeneous polynomials of weight wt(P1)=wt(P2)=−p. Then
their sum P1 + P2 is a homogeneous polynomial of weight −p.
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For instance wt(u31u3) = −6 and a Bell polynomial Bn(u1, . . . , un) is a homogeneous
polynomial of weight −n:

wt(B2(u1, u2)) = wt(u21 + u2) = −2,wt(B3(u1, u2, u3)) = wt(u31 + 3u1u2 + u3) = −3.

Now we consider a subalgebra F ⊂ Cω(�)[u1, u2, . . . ] of quasipolynomials

Q(u, u1, . . . , un, . . . ) =
M∑

i=−m

eαiuPi(u1, . . . , uni
),

where αi ∈ Z and Pi(u1, . . . , uni
) stands for a polynomial of variables u1, . . . , uni

taken
from the ring K[u1, . . . , un, . . . ].

The K-algebra F admits a Z≤0×Z-grading

F =
⊕

k∈Z≤0,q∈Z
Fk,q , Fk,q = {equP (u1, . . . , un),wt(P ) = k}.

This bigrading is compatible with the product structure in the ring F
Fk,q · Fl,r ⊂ Fk+l,q+r .

We consider the Lie algebra Diff(Cω(�)[u1, u2, . . . ]) of all derivations of the algebra
Cω(�)[u1, u2, . . . ] and a Lie subalgebra Diff(F) ⊂ Diff(Cω(�)[u1, u2, . . . ]) of first order
differential operators

X =
+∞∑

j=1

Qj(u, u1, . . . , un, . . . )
∂

∂uj

,

where Qj(u, u1, . . . , un, . . . ) ∈ F are quasipolynomials.
The Lie subalgebra Diff(F) is Z×Z-graded

Diff(F) =
⊕

m∈Z,r∈Z
Diffm,r (F), [Diffm,r (F),Diffn,q(F)] ⊂ Diffm+n,r+q(F),

where a homogeneous subspace Diffm,r (F) is a linear subspace of first order differential
operators

Diffm,r (F) =
⎧
⎨

⎩eru

+∞∑

j=1

Pj (u1, . . ., usj )
∂

∂uj

,wt(Pj ) + j = m

⎫
⎬

⎭ , (m, r) ∈ Z×Z. (26)

Definition 15 The grading of Diffm,r (F) defined by Eq. 26 we will call the operator
bigrading of Diff(F).

Example 13

X1 = X(epu) = epu
+∞∑

n=1

Bn−1(u1, . . . , un−1)
∂

∂un

∈ Diffp,1(F).

Remark 6 Although X0 = ∂
∂u

/∈ DiffF its adjoint adX0 defines a derivation of DiffF

adX0(X) = [X0, X] =
+∞∑

j=1

∂Qj

∂u

∂

∂uj

, X =
+∞∑

j=1

Qj

∂

∂uj

. (27)
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One can see that a subspace Vp = ⊕n∈ZDiffp,n(F) is an eigensubspace of adX0 which
corresponds to the eigenvalue λ = p. We have the decomposition of the Lie algebra DiffF
into a direct sum of eigensubspaces of the operator adX0.

DiffF =
⊕

p∈Z
Vp =

⊕

p∈Z

(⊕n∈ZDiffp,n(F)
)
.

Definition 16 Define a Lie algebra

ˆDiffF = Cω(�)X0 ⊕� DiffF
as a semidirect sum of the Lie algebra Cω(�)X0 = {g(u)X0, g(u) ∈ Cω(�)} acting on
DiffF by the formula (27). It is possible to extend the operator bigrading to the whole
algebra ˆDiffF by setting its value on the element X0 equal to (0, 0).

9 The Sinh-Gordon Equation

Theorem 2 The characteristic Lie algebra χ(sinhu) of the sinh-Gordon equation

uxy = sinhu

is isomorphic to the non-negative part

L(sl(2,K))≥0 = sl(2,K)⊗K[t],
of the loop algebra L(sl(2,K)) = sl(2,K)⊗K[t, t−1].

It is generated by three elements X′
0, X

′
1, X

′
2 that satisfy the following relations

[X′
0, X

′
1] = X′

1, [X0, X
′
2] = −X′

2, (28)
[
X′
1, [X′

1, [X′
1, X

′
2]]
] = 0,

[
X′
2, [X′

2, [X′
2, X

′
1]]
] = 0. (29)

It particular it means that the subalgebra χ(sinhu)+ generated by X′
1 and X′

2 is a codi-

mension one ideal in χ(sinhu) and it is isomorphic to the (nilpotent) positive part N(A
(1)
1 )

of the Kac-Moody algebra A
(1)
1 = L̂(sl(2,K)) = L(sl(2,K)) ⊕ Kc ⊕ Kd.

Proof We denote

X0 = ∂

∂u
, X1 =

+∞∑

n=1

Dn−1(sinh u)
∂

∂un

.

The construction of the characteristic Lie algebra has an inductive nature. We start with the
first order differential operators X0, X1 and then consider the commutators of higher orders
with the participation of generators X0, X1.

Consider a linear span 〈X0, X1, Y1〉, where Y1 = [X0, X1]. Choose a new basis in
〈X0, X1, Y1〉

X′
0 = X0, X

′
1 = X1 + Y1, X

′
2 = X1 − Y1.

It means that

X′
1 =

+∞∑

n=1

Dn−1(eu)
∂

∂un

, X′
2 = −

+∞∑

n=1

Dn−1(e−u)
∂

∂un

.

We have
X′
1 = eu

∑+∞
n=1 Bn−1(u1, . . . , un−1)

∂
∂un

,

X′
2 = −e−u

∑+∞
n=1 Bn−1(−u1, . . . , −un−1)

∂
∂un

.
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The elements X′
1, X

′
2 are of operator bidegrees (1, 1), (1, −1) respectively. Obviously

[X′
0, X

′
1] = X′

1, [X′
0, X

′
2] = −X′

2.

It’s easy to calculate the first terms of the commutator [X′
1, X

′
2]

X′
3 = [X′

1, X
′
2] = 2

(
∂

∂u2
+ u21

∂

∂u4
+ 5u1u2

∂

∂u5
+ . . .

)

The operator X′
3 has operator bidegree (2, 0) (it means in particular that all its coefficients

do not depend on variable u) and hence

[X′
0, X

′
3] =

[
∂

∂u
, X′

3

]
= 0.

Now we consider X′
4 = −[X′

1, X
′
3] of operator bidegree (3, 1) and we also can write out

some of its first terms

X′
4 = −[X′

1, X
′
3] = 2eu

(
∂

∂u3
+ u1

∂

∂u4
+ (2u21 + u2)

∂

∂u5
+ . . .

)

Evidently [X′
0, X

′
4] = X′

4.
We define an operator X′

5 of operator bidegree (3, −1) as

X′
5 = [X′

2, X
′
3] = −2e−u

(
∂

∂u3
− u1

∂

∂u4
+ (2u21 − u2)

∂

∂u5
+ . . .

)
.

Obviously
[X′

0, X
′
5] = −X′

5.

Now we need to involve the operator D in our play. It has operator bidegree (−1, 0). We
start with an obvious remark that [D, X′

0] = 0. It follows from Eq. 10 that

[D, X′
1] = −euX′

0, [D, X′
2] = e−uX′

0. (30)

Hence we have

[D, X′
3] = [D, [X′

1, X
′
2]
] = [[D, X′

1], X′
2

]+ [X′
1, [D, X′

2]
] =

= − [euX′
0, X

′
2

]+ [X′
1, e

−uX′
0

] = euX′
2 − e−uX′

1;[D, X′
4] = − [D, [X′

1, X
′
3]
] = − [[D, X′

1], X′
3

]− [X′
1, [D, X′

3]
] =

= [euX′
0, X

′
3

]− [X′
1, e

uX′
2 + e−uX′

1

] = −euX′
3.

(31)

Proposition 4 [X′
1, X

′
4] = [X′

2, X
′
5] = 0.

Proof [
D, [X′

1, X
′
4]
] = [[D, X′

1], X′
4

]+ [X′
1, [D, X′

4]
] =

= − [euX′
0, X

′
4

]− [X′
1, e

uX′
3

] = −euX′
4 + euX′

4 = 0.

Also we have

[D, X′
5] = [D, [X′

2, X
′
3]
] = [[D, X′

2], X′
3

]+ [X′
2, [D, X′

3]
] =

= −e−u
[
X′
0, X

′
3

]+ [X′
2, e

uX′
2 + e−uX′

1

] = −e−uX′
3.

This implies
[D, [X′

2, X
′
5]] = [[D, X′

2], X′
5

]+ [X′
2, [D, X′

5]
] =

= −e−u
[
X′
0, X

′
5

]− e−u
[
X′
2, X

′
3

] = 0.

It follows from Lemma 1 that both brackets [X′
1, X

′
4] and [X′

2, X
′
5] vanish.
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Now we define recursively

X′
3k+1 = −[X′

1, X
′
3k], X′

3k+2 = [X′
2, X

′
3k], X′

3k+3 = [X′
1, X

′
3k+2], k ≥ 1.

X′
3k+1, X

′
3k+2, X

′
3k+3 have bidegrees (2k+1, 1), (2k+1,−1), (2k+2, 0) respectively.

[X′
0, X

′
3k+1] = X′

3k+1, [X′
0, X

′
3k+2] = −X′

3k+2, [X′
0, X

′
3k] = 0. (32)

Lemma 3 First order differential operators X′
3k+1, X

′
3k+2, X

′
3k+3, k ≥ 0, are all non-

trivial and satisfy the following relations

[D, X′
3k+1] = −euX′

3k, [D, X′
3k+2] = e−uX′

3k,[D, X′
3k+3] = −e−uX′

3k+1 + euX′
3k+2; (33)

Proof

[D, X′
3k+1] = − [D, [X′

1, X
′
3k]
] = − [[D, X′

1], X′
3k

]− [X′
1, [D, X′

3k]
] =

= [euX′
0, X

′
3k

]−
[
X′
1,−e−uX′

3(k−1)+1 + euX′
3(k−1)+2

]
= −euX′

3k,

Second relation from Eq. 33 can be proved completely analogously. The third assertion is
verified below

[D, X′
3k+3] = [D, [X′

1, X
′
3k+2]

] = [[D, X′
1], X′

3k+2

]+ [X′
1, [D, X′

3k+2]
] =

= − [euX′
0, X

′
3k+2

]+ [X′
1, e

−uX′
3k

] = euX′
3k+2 − e−uX′

3k+1,

Non-triviality of X′
3k+1, X

′
3k+2, X

′
3k+3, k ≥ 0, follows from Lemma 1 and Eq. 33.

Lemma 4 Differential operators X′
0, X

′
1, X

′
2, . . . satisfy the following commutation rela-

tions
[X3l+1, X3k+1] = 0, [X3l+2, X3k+2] = 0, [X3l , X3k] = 0,
[X3l+1, X3k+2] = X3(k+l)+3, [X3l , X3k+1] = X3(k+l)+1,

[X3l , X3k+2] = −X3(k+l)+2, k, l ≥ 0;
(34)

Proof We prove (34) by recursion on N = k + l. The basis of recursion is k + l = 1.

[X′
1, X

′
4] = 0, [X′

2, X
′
5] = 0, [X′

0, X
′
3] = 0,

[X′
1, X

′
2] = X′

3, [X′
0, X

′
1] = X′

1, [X′
0, X

′
2] = −X′

2,[X′
1, X

′
5] = X′

6, [X′
0, X

′
4] = X′

4, [X′
0, X

′
5] = −X′

5,[X′
4, X

′
2] = X′

6, [X′
3, X

′
1] = X′

4, [X′
3, X

′
2] = −X′

5,

We have already checked out almost all of these formulas. It only remains to verify the
equality [X′

4, X
′
2] = X′

6. Indeed
[
D, [X′

4, X
′
2] − X′

6

] = [[D, X′
4], X′

2

]+ [X′
4, [D, X′

2]
]− [D, X′

6

] =
= [−euX′

3, X
′
2

]+ [X′
4, e

−uX′
0

]+ e−uX′
4 − euX′

5 = 0.

Suppose that relations (34) have already been established for k + l = N , we now prove
them for k + l = N + 1.

[
D, [X′

3l+1, X
′
3k+1]

] = [[D, X′
3l+1], X′

3k+1

]+ [X′
3l+1, [D, X′

3k+1]
] =

= −eu
[
X′
3l , X

′
3k+1

]− eu
[
X′
3l+1, X

′
3k

] = 0.

Thereby it follows from Lemma 1 that [X′
3l+1, X

′
3k+1]=0. The relations [X3l+2, X3k+2]=0

and [X3l , X3k]=0 can be verified absolutely analogously to the previous case.
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Now we turn to the second group of relations (34)
[
D, [X′

3l+1, X
′
3k+2] − X′

3(k+l)+3

]
=

= [[D, X′
3l+1], X′

3k+2

]+ [X′
3l+1, [D, X′

3k+2]
]−
[
D, X′

3(k+l)+3

]
=

= [−euX′
3l , X

′
3k+2

]+ [X′
3l+1, e

−uX′
3k

]+ e−uX′
3(k+l)+1 − euX′

3(k+l)+2 = 0.

We leave to the reader in the form of an exercise the proof of the relation [X3l , X3k+1] =
X3(k+l)+1. We finish the proof of our Lemma by verifying the last equality in Eq. 34.

[
D, [X′

3l , X
′
3k+2] + X′

3(k+l)+2

]
=

= [[D, X′
3l], X′

3k+2

]+ [X′
3l , [D, X′

3k+2]
]+

[
D, X′

3(k+l)+2

]
=

=
[
euX′

3(l−1)+2 − e−uX′
3l−2, X

′
3k+2

]
+ e−u

[
X′
3l , X

′
3k

]+ e−uX′
3(k+l) = 0.

Corollary 2 1) The characteristic Lie algebra χ(sin u) of the sin-Gordon equation uxy =
sin u is isomorphic to the non-negative part

L(so(2, 1),K)≥0 = so(2, 1) ⊗ K[t]
of the loop algebra L(so(2, 1),K) = so(2, 1) ⊗ K[t, t−1].

2) the loop algebras L(so(2, 1),K) and L(sl(2,K)) are non-isomorphic overK=R and
are isomorphic over K=C.

Corollary 3 It follows now from Theorem 2 and from Lemma 2 that the characteristic Lie
algebra χ(sinu) of the sin-Gordon equation has the same growth as the Lie algebra n1.

10 The Tzitzeica Equation

Theorem 3 The characteristic Lie algebra χ(eu+e−2u) of the Tzitzeica equation

uxy = eu + e−2u

is isomorphic to the non-negative part

L(sl(3,K), μ)≥0 =
+∞⊕

j=0

gj (mod 2) ⊗ tj , sl(3,K) = g0 ⊕ g1, [gα, gβ ] ⊂ gα+β(mod 2),

of the twisted loop algebra L(sl(3,K), μ) = ⊕
j∈Z gj (mod 2) ⊗ tj , where μ is a diagram

automorphism of sl(3,K), μ2 = Id, and g0, g1 are eigen-spaces of μ corresponding to
eigen-values 1, −1 respectively. In particular g0 is a subalgebra in sl(3,K) isomorphic to
so(3,K) [9].

The Lie algebra χ(eu+e−2u) is generated by three elements Y ′
0, Y

′
1, Y

′
2 that satisfy the

following relations

[Y ′
0, Y

′
1] = Y ′

1, [Y0, Y ′
2] = −2Y ′

2, (35)
[
Y ′
1, [Y ′

1, [Y ′
1, [Y ′

1, [Y ′
1, Y

′
2]]...

] = 0,
[
Y ′
2, [Y ′

2, Y
′
1]
] = 0. (36)

It is a pro-solvable infinite-dimensional Lie algebra. Its subalgebra χ(eu+e−2u)+ gener-
ated by two elements Y ′

1, Y
′
2 is isomorphic to the (nilpotent) positive part N(A

(2)
2 ) of the

Kac-Moody algebra A
(2)
2 = L̂(sl(3,K), μ) = L(sl(3,K), μ) ⊕ Kc ⊕ Kd.



Lie Algebras of Slow Growth and Klein-Gordon PDE 1063

Proof Our proof will consist in constructing an infinite basis Y ′
1, Y

′
2, Y

′
3, Y

′
4, . . . of

χ(eu+e−2u) and verifying that basic fields Yn, n ≥ 1, satisfy the commutation relations
(15) of L(sl(3,K), μ)≥0.

We recall that by definition the characteristic Lie algebra χ(eu+e−2u) is the Lie algebra
generated by two operators

X0 = ∂

∂u
, X1 =

+∞∑

n=1

Dn−1(eu+e−2u)
∂

∂un

.

Consider a linear span 〈X0, X1, Y1〉, where Y1 = [X0, X1]. Let introduce a new basis
Y ′
0, Y

′
1, Y

′
2 in 〈X0, X1, Y1〉, where

Y ′
0 = X0, Y

′
1 = 2

3
X1 + 1

3
Y1, Y

′
2 = 1

3
X1 − 1

3
Y1.

We recall explicit expressions for Y ′
1 and Y ′

2 in terms of Bell polynomials

Y ′
1 =∑+∞

n=1 Dn−1(eu) ∂
∂un

= eu
+∞∑
n=1

Bn−1(u1, . . . , un−1)
∂

∂un
,

Y ′′
2 =∑+∞

n=1 Dn−1(e−2u) ∂
∂un

= e−2u
+∞∑
n=1

Bn−1(−2u1, . . . , −2un−1)
∂

∂un
.

(37)

Obviously we have
[Y ′

0, Y
′
1] = Y ′

1, [Y ′
0, Y

′
2] = −2Y ′

2.

It’s easy to calculate the first terms of the expansion for [Y ′
1, Y

′
2]

Y ′
3 = [Y ′

1, Y
′
2] = −3e−u

(
∂

∂u2
− 2u1

∂

∂u3
+ (5u21 − 3u2)

∂

∂u4
+ . . .

)

The operator Y ′
3 has operator bidegree (2, −1) and

[Y ′
0, Y

′
3] =

[
∂

∂u
, Y ′

3

]
= −Y ′

3.

Now we consider Y ′
4 = [Y ′

1, Y
′
3] (it has operator bidegree (3, 0)) and we can write down the

first terms of the expansion of Y ′
4

Y ′
4 = [Y ′

1, Y
′
3] = 9

(
∂

∂u3
− 2u1

∂

∂u4
+ (5u21 − 5u2)

∂

∂u5
+ . . .

)

All the coefficients of the differential operator Y ′
4 do not depend on the variable u and hence

[Y ′
0, Y

′
4] = 0. We define an operator Y ′

5 of bidegree (4, 1) by

Y ′
5 = −1

3
[Y ′

1, Y
′
4] = 9eu

(
∂

∂u4
− u1

∂

∂u5
+ (4u21 − 6u2)

∂

∂u6
+ . . .

)
.

Obviously [Y ′
0, Y

′
5] = Y ′

5. We recall that [D, Y ′
0] = 0. Then we deduce that

[D, Y ′
1] =

+∞∑

i=1

D(Di−1(eu))
∂

∂ui

− eu ∂

∂u
−

+∞∑

i=1

Di(eu)
∂

∂ui

= −eu ∂

∂u
= −euY ′

0.

Similarly, we conclude that [D, Y ′
2] = −e−2uY ′

0. It holds that

[D, Y ′
3] = [D, [Y ′

1, Y
′
2]
] = [[D, Y ′

1], Y ′
2

]+ [Y ′
1, [D, Y ′

2]
] =

= − [euY ′
0, Y

′
2

]− [Y ′
1, e

−2uY ′
0

] = 2euY ′
2 + e−2uY ′

1.
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Proof

Proposition 5 [Y ′
2, Y

′
3] = [Y ′

2, Y
′
4] = 0.

[
D, [Y ′

2, Y
′
3]
] = [[D, Y ′

2], Y ′
3

]+ [Y ′
2, [D, Y ′

3]
] =

= − [e−2uY ′
0, X

′
3

]+ [Y ′
2, 2e

uY ′
2 + e−2uY ′

1

] = e−2uY ′
3 + e−2u

[
Y ′
2, Y

′
1

] = 0.

Consider the second commutator [Y ′
2, Y

′
4]

[D, Y ′
4] = [D, [Y ′

1, Y
′
3]
] = [[D, Y ′

1], Y ′
3

]+ [Y ′
1, [D, Y ′

3]
] =

= −eu
[
Y ′
0, Y

′
3

]+ [Y ′
1, 2e

uY ′
2 + e−2uY ′

1

] = euY ′
3 + 2e2uY ′

3 = 3euY ′
3.

Hence it implies that

[D, [Y ′
2, Y

′
4]] = [[D, Y ′

2], Y ′
4

]+ [Y ′
2, [D, Y ′

4]
] = −e−2u

[
Y ′
0, Y

′
4

]+ 3e2u
[
Y ′
2, Y

′
3

] = 0.

It follows from Lemma 1 that both brackets [Y ′
2, Y

′
4] and [Y ′

2, Y
′
3] vanish.

Now it’s the turn of [D, Y ′
5].

−3[D, Y ′
5] = [[D, Y ′

1], Y ′
4

]+ [Y ′
1, [D, Y ′

4]
] = −eu

[
Y ′
0, Y

′
4

]+ [Y ′
1, 3e

uY ′
3

] = 3euY ′
4.

We define the sixth element Y ′
6 of our basis with operator bidegree (5, 2)

Y ′
6 = −1

2
[Y ′

1, Y
′
5] = −9e2u

(
∂

∂u5
+ u1

∂

∂u6
+ . . .

)
.

Obviously [Y ′
0, Y

′
6] = 2Y ′

6.

Proposition 6 [Y ′
1, Y

′
6] = 0.

Proof
−2[D, Y ′

6] = [D, [Y ′
1, Y

′
5]
] = [[D, Y ′

1], Y ′
5

]+ [Y ′
1, [D, Y ′

5]
] =

= −eu
[
Y ′
0, Y

′
5

]− eu
[
Y ′
1, Y

′
4

] = 2euY ′
5.

After that we can calculate the commutator [D, [Y ′
1, Y

′
6]]

[D, [Y ′
1, Y

′
6]] = [[D, Y ′

1], Y ′
6

]+ [Y ′
1, [D, Y ′

6]
] =

= −eu
[
Y ′
0, Y

′
6

]− [Y ′
1, e

uY ′
5

] = −2euY ′
6 − eu

[
Y ′
1, Y

′
5

] = 0.

Hence [Y ′
1, Y

′
6] vanishes.

We define Y ′
7 = [Y ′

2, Y
′
5]. The operator Y ′

7 has operator bidegree (5,−1). One can verify
that

[Y ′
0, Y

′
7] = −Y ′

7, [D, Y ′
7] = −e−2uY ′

5.

Indeed
[D, Y ′

7] = [D, [Y ′
2, Y

′
5]
] = [[D, Y ′

2], Y ′
5

]+ [Y ′
2, [D, Y ′

5]
] =

= −e−2u
[
Y ′
0, Y

′
5

]− [Y ′
2, e

uY ′
4

] = −e−2uY ′
5.

Remark that [
D, [Y ′

3, Y
′
4]
] = [[D, Y ′

3], Y ′
4

]+ [Y ′
3, [D, Y ′

4]
] =

= [e−2uY ′
1 + 2euY ′

2, Y
′
4

]− [Y ′
2, 3e

uY ′
3

] = e−2u
[
Y ′
1, Y

′
4

] = −3e−2uY ′
5.

It follows from Lemma 1 that [Y ′
3, Y

′
4] = 3Y ′

7. We set

Y ′
8 = [Y ′

1, Y
′
7].
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The operator Y ′
8 has bidegree (6, 0). We need also the following two relations

[Y ′
0, Y

′
8] = 0, [D, Y ′

8] = 2e−2uY ′
6 + euY ′

7.

Let prove them

[D, Y ′
8] = [D, [Y ′

1, Y
′
7]
] = [[D, Y ′

1], Y ′
7

]+ [Y ′
1, [D, Y ′

7]
] =

= −eu
[
Y ′
0, Y

′
7

]− [Y ′
1, e

−2uY ′
5

] = 2e−2uY ′
6 + euY ′

7.

Besides this
[
D, [Y ′

2, Y
′
7]
] = [[D, Y ′

2], Y ′
7

]+ [Y ′
2, [D, Y ′

7]
] = −e−2u

[
Y ′
0, Y

′
7

]+ [Y ′
2,−e−2uY ′

5

] = 0.

We sum up the first results of our calculations and collect the obtained relations

[D, Y ′
0] = 0, [D, Y ′

1] = −euY ′
0, [D, Y ′

2] = −e−2uY ′
0,[D, Y ′

3] = 2euY ′
2 + e−2uY ′

1, [D, Y ′
4] = 3euY ′

3, [D, Y ′
5] = −euY ′

4,[D, Y ′
6] = −euY ′

5, [D, Y ′
7] = −e−2uY ′

5, [D, Y ′
8] = 2e−2uY ′

6 + euY ′
7;[Y ′

2, Y
′
3] = [Y ′

2, Y
′
4] = [Y ′

2, Y
′
7] = 0.

(38)

It is time to define all the vectors of our infinite basis. We do this with the help of recursive
formulas (we recall that Y ′

1, Y
′
2 are defined by Eq. 37)

Y ′
8k+3 = [Y ′

1, Y
′
8k+2], Y ′

8k+4 = [Y ′
1, Y

′
8k+3], Y ′

8k+5 = − 1
3 [Y ′

1, Y
′
8k+4],

Y ′
8k+6 = − 1

2 [Y ′
1, Y

′
8k+5], Y ′

8k+7 = [Y ′
2, Y

′
8k+5], Y ′

8k+8 = [Y ′
1, Y

′
8k+7],

Y ′
8k+9 = −[Y ′

1, Y
′
8k+8], Y ′

8k+10 = 1
2 [Y ′

2, Y
′
8k+8], k ≥ 0.

(39)

By induction, it is easy to establish that they are eigenvectors of the operator adY ′
0

[Y ′
0, Y

′
8k+1]=Y ′

8k+1, [Y ′
0, Y

′
8k+2]=−2Y ′

8k+2, [Y ′
0, Y

′
8k+3]=−Y ′

8k+3,[Y ′
0, Y

′
8k+4]=0, [Y ′

0, Y
′
8k+5]=Y ′

8k+5, [Y ′
0, Y

′
8k+6]=2Y ′

8k+6,[Y ′
0, Y

′
8k+7]=−Y ′

8k+7, [Y ′
0, Y

′
8k+8]=0.

(40)

Lemma 5 Operators Y ′
n, n ≥ 1, defined by Eq. 39 are all non-trivial. More precisely they

satisfy the following relations

[D, Y ′
8k+1]=−euY ′

8k, [D, Y ′
8k+2]=−e−2uY ′

8k,

[D, Y ′
8k+3]=e−2uY ′

8k+1+2euY ′
8k+2, [D, Y ′

8k+4]=3euY ′
8k+3,[D, Y ′

8k+5]=−euY ′
8k+4, [D, Y ′

8k+6]=−euY ′
8k+5,

[D, Y ′
8k+7]=−e−2uY ′

8k+5, [D, Y ′
8k+8]=euY ′

8k+7+2e−2uY ′
8k+6;[Y ′

2, Y
′
8k+2] = [Y ′

2, Y
′
8k+3] = [Y ′

2, Y
′
8k+4] = [Y ′

2, Y
′
8k+7] = 0, k ≥ 0.

(41)

Proof We prove the lemma and Eq. 41 by induction on k. We have allready verified the
case k = 0 (see Eq. 38). Suppose that the formulas (41) are true for all l ≤ k − 1, we prove
them for k.

[D, Y ′
8k+1]=− [D, [Y ′

1, Y
′
8k]
]=− [[D, Y ′

1], Y ′
8k

]− [Y ′
1, [D, Y ′

8k]
]=

=[euY ′
0, Y

′
8k]−[Y ′

1, e
uY ′

8k−1 + 2e−2uY ′
8k−2]=−euY ′

8k;[D, Y ′
8k+2]=

[
D, [Y ′

2, Y
′
8k]
]= [[D, Y ′

2], Y ′
8k

]+ [Y ′
2, [D, Y ′

8k]
]=

=[−euY ′
0, Y

′
8k]+[Y ′

2, e
uY ′

8k−1 + 2e−2uY ′
8k−2]=[Y ′

2, 2e
−2uY ′

8k−2] = −e−2uY ′
8k.

We skip some evident steps in our calculations and continue

[D, Y ′
8k+3]=[−euX′

0, Y
′
8k+2]+[Y ′

1, −e−2uY ′
8k]=2euY ′

8k+2+e−2uY ′
8k+1;[

D, [Y ′
2, Y

′
8k+2]

]=[−e−2uY ′
0, Y

′
8k+2]+[Y ′

2,−e−2uY ′
8k]=0;

[D, Y ′
8k+4]=[−euY ′

0, Y
′
8k+3]+[Y ′

1, 2e
uY ′

8k+2+e−2uY ′
8k+1]=3euY ′

8k+3.
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The relations
[
D, [Y ′

2, Y
′
8k+3]

] = [
D, [Y ′

2, Y
′
8k+4]

] = 0. are verified completely analo-
gously. Next two steps are

−3[D, Y ′
8k+5]=

[
D, [Y ′

1, X
′
8k+4]

]= [[D, Y ′
1], Y ′

8k+4

]+ [X′
1, [D, Y ′

8k+4]
]=

=[−euY ′
0, Y

′
8k+4]+[X′

1, 3e
uY ′

8k+3]=3euY ′
8k+4,−2[D, Y ′

8k+6]=
[
D, [Y ′

1, Y
′
8k+5]

]= [[D, Y ′
1], X′

8k+5

]+ [X′
1, [D, Y ′

8k+5]
]=

=[−euY ′
0, Y

′
8k+5]+[Y ′

1,−euY ′
8k+4]= − euY ′

8k+5 + 3euY ′
8k+5 = 2euY ′

8k+5.

We leave the verifying of the following two relations as an exercise to a reader.

[D, Y ′
8k+7]= − e−2uY ′

8k+5, [D, Y ′
8k+8]=euY ′

8k+7+2e−2uY ′
8k+6.

We finish the proof of the lemma by
[
D, [Y ′

2, Y
′
8k+7]

] = [[D, Y ′
2], X′

8k+7]
]+ [Y ′

2, [D, X′
8k+7]

] =
=[−e−2uY ′

0, Y
′
8k+7]+[Y ′

2, −e−2uY ′
8k+5]=e−2uY ′

8k+7 − e−2uY ′
8k+7=0.

Lemma 6 The operators Y ′
n, n ≥ 1, satisfy the relations (15)

[Y ′
q , Y ′

l ] = dqlY
′
q+l , q, l ∈ N,

where structure constants dql=−dlq are taken from the Table 1.

Proof We are going to apply the formulas (41) obtained in the previous Lemma.
[
D, [Y ′

8q, Y ′
8l]
]
=
[
[D, Y ′

8q ], Y ′
8l

]
+
[
Y ′
8q, [D, Y ′

8l]
]
=

=[euY ′
8q−1 + 2e−2uY8q−2, Y

′
8l]+[Y ′

8q, euY ′
8l−1 + 2e−2uY8l−2]=0.

Hence [Y ′
8q, Y ′

8l] = 0. Next relation is
[
D, [Y ′

8q, Y ′
8l+1]

]
=
[
[D, Y ′

8q ], Y ′
8l+1

]
+
[
Y ′
8q, [D, Y ′

8l+1]
]
=

=[euY ′
8q−1 + 2e−2uY8q−2, Y

′
8l+1]+[Y ′

8q, −euY ′
8l]=−euY ′

8(q+l).

It follows that [Y ′
8q, Y ′

8l+1] = Y8(q+l)+1 because [D, Y8(q+l)+1] = −euY ′
8(q+l). Then

[
D, [Y ′

8q, Y ′
8l+2]

]
=
[
[D, Y ′

8q ], Y ′
8l+2

]
+
[
Y ′
8q, [D, Y ′

8l+2]
]
=

=[euY ′
8q−1 + 2e−2uY8q−2, Y

′
8l+2]+[Y ′

8q, −e−2uY ′
8l]=2e−2uY ′

8(q+l).

Recall that [D, Y ′
8(q+l)+1] = −e−2uY ′

8(q+l). Hence [Y ′
8q, Y ′

8l+2] = −2Y ′
8(q+l)+2. We leave

the reader, as an exercise, to prove the relations from the first row of Table 1.

[Y ′
8q, Y ′

8l+3] = −Y8(q+l)+3, [Y ′
8q, Y ′

8l+4]=0, [Y ′
8q, Y ′

8l+5] = Y8(q+l)+5,

[Y ′
8q, Y ′

8l+6] = 2Y8(q+l)+6, [Y ′
8q, Y ′

8l+7] = −Y8(q+l)+7.

Now we switch to the second row of the Table 1. We start with
[
D, [Y ′

8q+1, X
′
8l+1]

]
=
[
[D, Y ′

8q+1], Y ′
8l+1

]
+
[
Y ′
8q+1, [D, Y ′

8l+1]
]
=

=[−euY ′
8q, Y ′

8l+1]+[Y ′
8q+1,−euY ′

8l]=0,[
D, [Y ′

8q+1, Y
′
8l+2]

]
=
[
[D, Y ′

8q+1], Y ′
8l+2

]
+
[
X′
8q+1, [D, Y ′

8l+2]
]
=

=[−euY ′
8q, Y ′

8l+2]+[Y ′
8q+1,−e−2uY ′

8l]=2euY ′
8(q+l)+2+e−2uY ′

8(q+l)+1.
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Hence [Y ′
8q+1, Y

′
8l+2] = Y ′

8(q+l)+3 as [D, Y ′
8(q+l)+3]=2euY ′

8(q+l)+2+e−2uY ′
8(q+l)+1.

[
D, [Y ′

8q+1, Y
′
8l+3]

]
=
[
[D, Y ′

8q+1], Y ′
8l+3

]
+
[
Y ′
8q+1, [D, Y ′

8l+3]
]
=

=[−euY ′
8q, Y ′

8l+3]+[Y ′
8q+1, e

−2uY ′
8q+1+2euY ′

8l+2]=3euY ′
8(q+l)+3=[D, Y8(q+l)+4].

We conclude that [Y ′
8q+1, Y

′
8l+3] = Y ′

8(q+l)+4. Continuing in the same way and calculating
step by step commutators [Y ′

8q+r , Y
′
8l+s] with 1 ≤ r ≤ s ≤ 7 we obtain all structure

relations (15).

We define a Lie algebra isomorphism ϕ : χ(eu + e−2u) → ñ2 by setting

ϕ(Y ′
n) = fn, n ≥ 0.

Corollary 4 It follows now from Theorem 3 and from Lemma 2 that χ(eu+e−2u) has the
same growth as the Lie algebra n2.

11 Final Remarks

The characteristic Lie algebra χ(sinhu) of sinh-Gordon equation uxy = sinh u was studied
by Murtazina and Zhiber in [26]. An infinite basis of χ(sinhu) was constructed there and
commutation relations were found. But the very important Lie algebras isomorphism

χ(sinhu) ∼= L(sl(2,K))≥0,K = R,C,

was missed there as well as different gradings of χ(sinhu).
Sakieva examined the characteristic Lie algebra χ(eu+e−2u) of Tzitzeica equation in

[22]. An infinite basis and commutation relations were found it this case also. But again the
very important Lie algebras isomorphism

χ(eu+e−2u) ∼= L(sl(3,K), μ)≥0,K = R,C,

was missed.

Acknowledgements The author is very grateful to Sergey Smirnov and Victor Buchstaber for valuable
comments and remarks.

Appendix: The correspondence tables of different gradings for n1 and n2

It follows from the proof of Theorem 2 that the weighted bigrading of DiffF induces the
Z≥0×Z3-grading on the Lie algebra ñ1. The corresponding bidegrees of its basic elements
X′

n are presented in the Table 2.

Table 2 The correspondence table of different gradings of n1

width one X′
0 X′

1 X′
2 X′

3k X′
3k+1 X′

3k+2

natural 1 1 2k 2k+1 2k+1

canonical (0, 0) (1, 0) (0, 1) (k, k) (k+1, k) (k, k+1)

Z≥0×Z3 (0, 0) (1, 1) (1,−1) (k, 0) (k, 1) (k,−1)
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Table 3 The correspondence table of different gradings of n2

basis Y ′
8k Y ′

8k+1 Y ′
8k+2 Y ′

8k+3 Y ′
8k+4 Y ′

8k+5 Y ′
8k+6 Y ′

8k+7

natural 6k 6k+1 6k+1 6k+2 6k+3 6k+4 6k+5 6k+5

canon.

(
4k

2k

) (
4k+1

2k

) (
4k

2k+1

) (
4k+1

2k+1

) (
4k+2

2k+1

) (
4k+3

2k+1

) (
4k+4

2k+1

) (
4k+3

2k+2

)

Z≥0×Z5

(
6k

0

) (
6k+1

1

) (
6k+1

−2

) (
6k+2

−1

) (
6k+3

0

) (
6k+4

1

) (
6k+5

2

) (
6k+5

−1

)

The Lie algebra ñ2 is Z≥0×Z5-graded (see the proof of Theorem 3). We list the
corresponding bidegrees of its basic elements Y ′

n in the Table 3.
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