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Abstract We present the definition of a dedualizing complex of bicomodules over a pair
of cocoherent coassociative coalgebras C and D. Given such a complex B•, we construct an
equivalence between the (bounded or unbounded) conventional, as well as absolute, derived
categories of the abelian categories of left comodules over C and left contramodules over D.
Furthermore, we spell out the definition of a dedualizing complex of bisemimodules over a pair
of semialgebras, and construct the related equivalence between the conventional or abso-
lute derived categories of the abelian categories of semimodules and semicontramodules.
Artinian, co-Noetherian, and cocoherent coalgebras are discussed as a preliminary material.
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1 Introduction

1.1

In the classical homological algebra, one was not supposed to consider unbounded derived
categories; certainly not when working with categories or functors of infinite homologi-
cal dimension. Right derived functors were acting from bounded below derived categories,
while left derived functors were defined on bounded above derived categories. Such derived
functors were constructed using resolutions by complexes of injective or projective objects.
More generally, one would consider resolutions by complexes with the terms adjusted to the
particular functor in question, such as flat modules or flasque sheaves.

Everything changed after the watershed paper of Spaltenstein [34], which explained, fol-
lowing the idea of Bernstein, how to work with unbounded complexes, particularly when
constructing derived functors of infinite homological dimension. The key innovation was to
strengthen the conditions imposed on resolutions and work with what came to be known as
the homotopy injective or homotopy projective complexes. Unlike in the classical homolog-
ical algebra, these are not termwise conditions: whether a complex is homotopy injective
or homotopy projective depends on the differential in the complex and not only on its
terms.

The unbounded derived category of modules over an associative ring turned out to be
particularly well-behaved. In the subsequent work of Keller, Bernstein–Lunts, and Hinich
[2, 9, 15], the theory was extended to DG-modules over DG-rings. The unbounded derived
category of DG-modules D(A–mod) is compactly generated, and it only depends on the
quasi-isomorphism class of a DG-ring A. One can generalize even further and replace an
associative DG-ring A with an A∞-algebra.

The theory that grew out of Spaltenstein’s paper became so hugely popular that nowadays
people use the homotopy injective and homotopy projective resolutions even when they
are not actually relevant. That is what was happening in the case of the MGM (Matlis–
Greenlees–May) duality/equivalence theory [23]. In fact, in the MGM theory one deals with
derived functors of finite homological dimension, and the use of complexes of adjusted
objects, similar to that of (complexes of) flasque or soft sheaves in the computation of sheaf
cohomology/derived direct images, is called for [29].

1.2

The next development, which came about a decade later, was that people started to work
with complexes viewed up to equivalence relations more delicate than the conventional
quasi-isomorphism [10, 16, 18]. In other words, triangulated categories in which some,
though not too many, acyclic complexes survive as nonzero objects attracted a certain inter-
est. In addition to the constructions of compact generators [13, 17], one of manifestations of
the phenomenon which the present author calls the derived co-contra correspondence was
first noticed in the paper [12].

The present author’s own ideas about the subject were published with about a decade-
long delay [24, 25]. Developed originally in the context of derived nonhomogeneous
Koszul duality, they proceed from the observation that replacing the conventional quasi-
isomorphism of complexes with more delicate equivalence relations is a natural alternative
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to strengthening the conditions on resolutions when working with unbounded complexes.
In the terminology going back to the classical paper [11] (where two kinds of differential
derived functors were introduced), this point of view came to be known as the distinction
between two kinds of derived categories.

In the derived categories of the first kind, complexes are considered up to the con-
ventional quasi-isomorphism (which does not depend on the module structure on the
complexes, but only on their underlying complexes of abelian groups), which necessitates
the use of homotopy adjusted complexes as resolutions (meaning the conditions on resolving
complexes depending on the differentials and not only on the underlying graded object
structures). In the derived categories of the second kind, some acyclic complexes survive as
nonzero objects (and the equivalence relation on complexes depends on their module structures
and not only on the underlying complexes of abelian groups), while the conditions on resolutions
do not depend on the differentials on them (but only on their underlying graded objects).

Another advantage of derived categories of the second kind is that they are defined for
curved differential graded (CDG) structures as well as for conventional differential graded
structures [25]. Hence the important role that such derived category constructions play, in
particular, in the theory of matrix factorizations [1, 5, 22].

The conventional derived category is the derived category of the first kind. The two
most important versions of derived categories of the second kind are the coderived and
the contraderived category. In well-behaved situations, the coderived category of (curved)
DG-modules is equivalent to the homotopy category of (curved) DG-modules whose
underlying graded modules are injective, while the contraderived category of (curved)
DG-modules is equivalent to the homotopy category of (curved) DG-modules whose
underlying graded modules are projective.

1.3

It turned out that the conventional derived categories of DG-comodules over DG-coalgebras
(over a field) are not as well-behaved as the derived categories of DG-modules. The derived
category of DG-comodules over a DG-coalgebra can change when the DG-coalgebra is
replaced by a quasi-isomorphic one [14], [25, Remark 2.4]. There are no obvious reasons
why the derived category D(C–comod) of DG-comodules over a DG-coalgebra C (or even
complexes of comodules over a coalgebra C) should be compactly generated, though one
can show that it is well-generated [25, Section 5.5].

Perhaps one is not supposed to consider the conventional derived category of complexes
of comodules (or DG-comodules) at all. The notion that one should work with the derived
categories of modules and the coderived categories of comodules goes back to [16, 18].
The monograph [24] is based on the philosophy that one is supposed to take the derived
category of modules, the coderived category of comodules, and the contraderived category
of contramodules.

In fact, for any curved DG-coalgebra C over a field k, the coderived category
Dco(C–comod) of left curved DG-comodules over C is compactly generated (by the bounded
derived category of k-finite-dimensional CDG-comodules). The coderived category of
CDG-comodules is also equivalent to the homotopy category of CDG-comodules with
injective underlying graded comodules.

Furthermore, there is a natural equivalence between the coderived category of left
CDG-comodules and the contraderived category of left CDG-contramodules over C
[25, Section 5]:

Dco(C–comod) � Dctr(C–contra). (1)
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The contraderived category of CDG-contramodules is equivalent to the homotopy category
of CDG-contramodules with projective underlying graded contramodules. The triangulated
equivalence (1) is a principal example of what is called the derived comodule-contramodule
correspondence phenomenon in [24, 25].

1.4

Several words about the contramodules are due at this point. There are two abelian cat-
egories associated naturally with an associative ring A: the left A-modules and the right
A-modules. In contrast, for a coalgebra C (say, over a field k) there are four such abelian cat-
egories: the left and the right C-comodules, and the left and the right C-contramodules. The
categories of comodules have exact functors of filtered inductive limit and enough injective
objects. The categories of contramodules have exact functors of infinite product and enough
projective objects.

Let C∗ denote the dual k-vector space to C, endowed with its natural structure of a
pro-finite-dimensional topological k-algebra. Then the C-comodules are the same thing
as discrete C∗-modules, while the C-contramodules form an “intermediate” category
between arbitrary C∗-modules and pseudo-compact (pro-finite-dimensional) topological
C∗-modules. The latter form a category equivalent to the opposite category to C-comodules.
More precisely, there are natural forgetful functors

(comod–C)op −−→ C–contra −−→ C∗–mod

from the opposite category to right C-comodules to left C-contramodules and to left
C∗-modules (in addition to the fully faithful functor C–comod −→ C∗–mod identifying left
C-comodules with discrete left C∗-modules).

In other words, C-contramodules can be viewed as a species of “complete” (as opposed to
discrete) C∗-modules. Nevertheless, contramodules carry no underlying topologies on them.
Instead, they are discrete k-vector spaces endowed with infinite summation operations with
the coefficients in C∗ [28].

1.5

As we have already mentioned, the coderived categories of comodules and the contraderived
categories of contramodules are better behaved than the conventional (unbounded) derived
categories of comodules or contramodules. In other words, considering derived categories
of the first kind along the ring variables and derived categories of the second kind along the
coalgebra variables produces the better behaved triangulated categories [24].

Still, there is something to be said about the conventional derived categories of
DG-comodules and DG-contramodules, too. The following results can be found in [25, The-
orem 2.4 and Section 5.5] (for part (d), one has to look into the postpublication arXiv
version of [25]).

Theorem 1.1 Let C be a DG-coalgebra over a field k. Then
(a) the Verdier quotient functor Dctr(C–contra) −→ D(C–contra) has a (fully faithful) left

adjoint functor D(C–contra) −→ Dctr(C–contra);
(b) the essential image of the triangulated functor D(C–contra) −→ Dctr(C–contra)

is the minimal full triangulated subcategory in Dctr(C–contra) containing the left
DG-contramodule Homk(C, k) over C and closed under infinite direct sums;
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(c) the Verdier quotient functor Dco(C–comod) −→ D(C–comod) has a (fully faithful)
right adjoint functor D(C–comod) −→ Dco(C–comod);

(d) assuming Vopěnka’s principle in set theory, the essential image of the triangulated
functor D(C–comod) −→ Dco(C–comod) is the minimal full triangulated subcategory
in Dco(C–comod) containing the left DG-comodule C over C and closed under infinite
products.

It should be added that the triangulated equivalence (1) takes the DG-comodule C over
C to the DG-contramodule Homk(C, k) over C. Thus, assuming Vopěnka’s principle, the
derived categories D(C–comod) and D(C–contra) are related as two full triangulated subcat-
egories in the same triangulated category (1), generated by the same object in this category;
but one of them is generated using shifts, cones, and infinite products, while the other one
is generated using shifts, cones, and infinite direct sums. Both the (set-indexed) direct sums
and products of arbitrary objects exist in the compactly generated triangulated category (1)
(but the object C ←→ Homk(C, k) is not compact in this category).

1.6

The aim of this paper is to demonstrate a set of (admittedly, rather restrictive) assump-
tions and additional data allowing to construct an equivalence between the derived category
of complexes of comodules over a coalgebra C and the derived category of complexes of
contramodules over another coalgebra D,

D�(C–comod) � D�(D–contra). (2)

Here the symbol � means that both the bounded and unbounded conventional derived
categories are allowed, i. e., one can have � = b, +, −, or ∅.

Moreover, the triangulated equivalence (2) also holds for the absolute derived categories
with the symbols � = abs+, abs−, or abs, which are versions of the construction of derived
categories of the second kind introducted in [25] and [27, Appendix A]. Unlike in (1),
though, the derived category symbol must be the same in the left and the right-hand side of
the equivalence (2).

The triangulated equivalence (2), connecting the conventional derived categories of
comodules and contramodules, is a species of what can be called the “naı̈ve derived
co-contra correspondence”. In the present author’s work, it first appeared in the algebro-
geometric setting as an equivalence between the derived categories of quasi-coherent
sheaves and contraherent cosheaves over a quasi-compact semi-separated scheme [27, Sec-
tion 4.6] (or alternatively, over a Noetherian scheme of finite Krull dimension [27, Theorem
5.8.1]). In the subsequent papers [29, 32], the same principle was applied in order to
formulate the MGM duality/equivalence and the triangulated Matlis equivalence.

1.7

The equivalence of categories (2) can be called the “MGM duality for coalgebras”. A bit of
history of the MGM duality is worth recalling in this connection. The three-letter abbrevi-
ation stands for Matlis–Greenlees–May [7, 20]. The related chain of results can be further
traced to the seminal paper of Harrison [8], where certain equivalences of additive sub-
categories in the category of abelian groups were constructed. Matlis extended these to
equivalences between additive subcategories in the category of modules over an arbitrary
commutative domain [19].
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In the paper [20], which came more than a decade later, Matlis constructs an equivalence
between certain additive subcategories in the category of modules over a commutative ring
R related to an ideal I ⊂ R generated by a regular sequence. Greenlees and May [7]
initiated the study of the derived functors of I -adic completion for an arbitrary finitely
generated ideal I in a commutative ring R. Dwyer and Greenlees [4] formulated the theory
in the form of a triangulated equivalence between two full subcategories (of what we would
now call the “I -torsion” and “I -complete” complexes) in the derived category D(R–mod)
of modules over a commutative ring R with a finitely generated ideal I ⊂ R. Porta, Shaul,
and Yekutieli [23] studied the case of a weakly proregular finitely generated ideal I .

The present author’s paper [29], which formulated the theory in its state-of-the-art form,
emphasized and discussed the role of what it called a dedualizing complex of I -torsion
R-modules in the MGM duality theory. It also demonstrated the central role of the abelian
category of I -contramoduleR-modules, on par with the much more familiar dual-analogous
abelian category of I -torsion R-modules, in the MGM duality.

1.8

The main results of the MGM duality theory, as formulated in [29], are the following
ones. Given a finitely generated ideal I in a commutative ring R, denote by R–modI -tors
and R–modI -ctra ⊂ R–mod the abelian subcategories of I -torsion and I -contramodule
R-modules. (See [31] for an introductory discussion of these subcategories.) Then for every
conventional derived category symbol � = b, +, −, or ∅ there is a natural triangulated
equivalence

D�
I -tors(R–mod) � D�

I -ctra(R–mod) (3)

between the full subcategory of complexes of R-modules with I -torsion cohomology mod-
ules and the full subcategory of complexes of R-modules with I -contramodule cohomology
modules in D�(R–mod).

Furthermore, assuming that the ideal I ⊂ R is weakly proregular (which always holds,
e. g., when the ring R is Noetherian), for every derived category symbol � = b, +, −, ∅,
abs+, abs−, or abs, there is a natural equivalence between the derived categories of the
abelian categories R–modI -tors and R–modI -ctra,

D�(R–modI -tors) � D�(R–modI -ctra). (4)

The triangulated equivalence (2) is a noncocommutative coalgebra version of the triangu-
lated equivalence (4).

When R is a finitely generated algebra over an algebraically closed field k and I is a
maximal ideal in R, the equivalence (4) becomes a particular case of the equivalence (2).
(See the discussion in [29, Section 0.10] and generally in the introduction to [29], where
the conceptual importance of coalgebra-related considerations in the MGM duality theory
is also emphasized.)

1.9

The triangulated equivalence (2) depends on an additional piece of data called a dedualizing
complex of C-D-bicomodules B•. The definition of a dedualizing complex of bicomodules
is dual to that of a dualizing complex of bimodules for a pair of associative rings [3, 21, 30,
38, 39].

A detailed discussion of the related philosophy can be found in the introduction to [29].
To recall it very briefly here, let us mention that an associative ring A is itself a dedualizing
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complex of A-A-bimodules. Given a dualizing complex of A-B-bimodules D• for a pair of
associative rings A and B, one constructs a triangulated equivalence between the coderived
and the contraderived category of modules

Dco(A–mod) � Dctr(B–mod), (5)

which can be called the covariant Serre–Grothendieck duality [30].
Conversely, a coalgebra C over a field k is itself a dualizing complex of C-C-bico-

modules; hence the triangulated equivalence (1). The datum of a dedualizing complex of
C-D-bicomodules allows to construct a triangulated equivalence (2).

1.10

Furthermore, a (semiassociative and semiunital) semialgebra S over a coalgebra C over a
field k is an algebra object in the (noncommutative, but associative and unital) tensor cat-
egory of bicomodules over C with respect to the operation of cotensor product �C . Just as
for a coalgebra C, there are four module categories naturally assigned to a semialgebra S:
the left and right S-semimodules, and the left and right S-semicontramodules. The cate-
gory of left S-semimodules S–simod is abelian and the forgetful functor S–simod −→
C–comod is exact if and only if S is an injective right C-comodule. The category of left
S-semicontramodules S–sicntr is abelian and the forgetful functor S–sicntr −→ C–contra
is exact if and only if S is an injective left C-comodule.

For any semialgebra S over a coalgebra C such that S is an injective left C-comodule
and an injective right C-comodule, there is a natural equivalence between the semiderived
categories of left S-semimodules and left S-semicontramodules [24, Sections 0.3.7 and
6.3]:

Dsi(S–simod) � Dsi(S–sicntr). (6)

The words “semiderived category” actually mean two dual constructions rather than one:
the semiderived category of semimodules is what could be more precisely called their semi-
coderived category, while the semiderived category of semicontramodules could be called
the semicontraderived category. These are certain mixtures of the constructions of co- or
contraderived categories (taken “along C”) and the conventional derived category (taken “in
the direction of S relative to C”).

1.11

Now let S be a semialgebra over a coalgebra C and T be a semialgebra over a coalgebra
D, both over the same field k. Let B• be a dedualizing complex of C-D-bicomodules. In
this paper we show that, given a certain further piece of data called a dedualizing complex
of S-T -bisemimodules B•, one can construct a triangulated equivalence between the con-
ventional derived category of left S-semimodules and the conventional derived category of
left T -semicontramodules,

D(S–simod) � D(T –sicntr). (7)

Moreover, there are triangulated equivalences

D�(S–simod) � D�(T –sicntr) (8)

for all the conventional or absolute, bounded or unbounded derived category symbols � = b,
+, −, ∅, abs+, abs−, or abs. These results can be called the MGM duality/equivalence for
semialgebras.
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The definition of a dedualizing complex of bisemimodules is dual to that of a dualizing
complex of bicomodules for a pair of corings over associative rings [27, Section B.4].

1.12

The situation simplifies when the coalgebra C has finite homological dimension (i. e., the
abelian category C–comod has finite homological dimension or, which is equivalent, the
abelian category C–contra has finite homological dimension).

In this case, there is no difference between the semiderived category Dsi(S–simod)
and the conventional derived category D(S–simod), and also no difference between the
semiderived category Dsi(S–sicntr) and the conventional derived category D(S–sicntr),

Dsi(S–simod) = D(S–simod) and Dsi(S–sicntr) = D(S–sicntr).

The semialgebra S itself can be used as a dedualizing complex of S-S-bisemimodules in
this case, so (6) becomes an instance of (7) for C = D and S = T .

In particular, one finds oneself in this situation in the theory of smooth duality for a
p-adic Lie group with coefficients in a field of characteristic p [33].

1.13

Finally, let us say a few words about the finiteness conditions on coalgebras, comodules,
and contramodules. One of the peculiarities of coalgebras is the difference between the
classes of Artinian and co-Noetherian coalgebras or comodules. Any Artinian comodule
is co-Noetherian, but the converse is not generally true. For a counterexample, one can
consider the cosemisimple coalgebra C that is the direct sum of an infinite number of copies
of the coalgebra k over k. Then C is a co-Noetherian C-comodule (i. e., all its quotient
comodules are finitely cogenerated), but it is not an Artinian object of the abelian category
C–comod.

The finiteness conditions on coalgebras were, of course, traditionally discussed in the
language of comodules [6, 37]. Some of the dual-analogous contramodule conditions lead
to equivalent conditions on the coalgebra. In particular, any co-Artinian contramodule is
Noetherian, but the converse is not necessarily true. A coalgebra is called right Artinian if
any finitely cogenerated right comodule over it is Artinian; this is equivalent to any finitely
generated left contramodule over it being co-Artinian. A coalgebra is right cocoherent if
any finitely cogenerated quotient comodule of a finitely copresented right comodule over
it is finitely copresented; this is equivalent to any finitely generated subcontramodule of a
finitely presented left contramodule being finitely presented.

1.14

The finiteness conditions on coalgebras, comodules, and contramodules are discussed in
Section 2 of the present paper. The definition of a dedualizing complex for a pair of
coalgebras is presented and the triangulated equivalence (2) is constructed in Section 3.
The definition of a dedualizing complex for a pair of semialgebras is spelled out and the
triangulated equivalence (8) is constructed in Section 4.

We refer to the overview paper [28] and the references therein for detailed discusions
of various kinds of contramodules, including first of all contramodules over coassociative
coalgebras over a field. Semialgebras, semimodules, and semicontramodules are discussed
in [28, Sections 2.6 and 3.5]. The structure theory of contramodules over a coalgebra over a
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field was studied in [24, Appendix A]. The definitions of exotic derived categories used in
this paper are introduced in [27, Appendix A]; they are also briefly recalled in [29, Appendix
A]. Further discussions can be found in the introductions to [29] and [30], and in the
references therein.

2 Coalgebras with Finiteness Conditions

This section contains a discussion of Artinian, co-Noetherian, and cocoherent coalgebras.
Many of the results below are certainly not new; we present them here for the sake of
completeness of the exposition.

We refer to the book [35] and the survey paper [28] for the definitions of coassocia-
tive coalgebras over fields, comodules and contramodules over them, and the related basic
concepts. A discussion of cosemisimple and conilpotent coalgebras can be found in [35, Sec-
tions 9.0–1] and (with a view toward contramodules and the terminology similar to the one
in this paper) in [24, Appendix A].

Let C be a coassociative coalgebra (with counit) over a field k. For any k-vector space V

the left C-comodule C ⊗k V is called the cofree left C-comodule cogenerated by V . For any
left C-comodule L, there is a natural isomorphism

HomC(L, C ⊗k V ) � Homk(L, V ),

where for any two left C-comodules L and M we denote by HomC(L,M) the k-vector
space of all morphisms L −→ M in the abelian category of left C-comodules C–comod.
Hence cofree C-comodules are injective objects in C–comod. Cofree C-comodules are suffi-
ciently many, so any injective C-comodule is a direct summand of a cofree one. In particular,
the left C-comodule C is called the cofree C-comodule with one cogenerator, and finite
direct sums of copies of C are the finitely cogenerated cofree C-comodules.

A coassociative coalgebra is called cosimple if it has no nonzero proper subcoalgebras.
The cosimple k-coalgebras are precisely the dual coalgebras to simple finite-dimensional
k-algebras. A coassociative coalgebra E is called cosemisimple if it is a direct sum of cosim-
ple coalgebras, or equivalently, if the category of left E-comodules is semisimple, or if the
category of right E-comodules is semisimple.

A coassociative coalgebra without counit C ′ is called conilpotent if for any element
c′ ∈ C ′ there exists an integer n � 1 such that c′ is annihilated by the iterated coaction
map C ′ −→ C ′⊗n+1. Any coassociative coalgebra C has a unique maximal cosemisimple
subcoalgebra Css ⊂ C, which can be also defined as the (direct) sum of all cosimple sub-
coalgebras in C, or as the minimal subcoalgebra E ⊂ C for which the quotient coalgebra
without counit C/E is conilpotent [35, Sections 9.0–1].

For any subcoalgebra E ⊂ C and any left C-comodule M, we denote by EM the
maximal C-subcomodule in M whose C-comodule structure comes from an E-comodule
structure. In other words, EM ⊂ M is the full preimage of the subspace E⊗kM ⊂ C⊗kM
under the left coaction map M −→ C ⊗k M. The following assertion is a dual version of
Nakayama’s lemma for comodules.

Lemma 2.1 Let E ⊂ C be a subcoalgebra such that the quotient coalgebra without counit
C/E is conilpotent (i. e., E contains the subcoalgebra Css ⊂ C). Then the subcomodule EM
is nonzero for any nonzero left C-comoduleM.
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Proof It follows from the conilpotency condition that for every element x ∈ M there
exists an integer n � 1 such that x is annihilated by the iterated coaction map M −→
(C/E)⊗n ⊗k M. Hence the coaction map M −→ C/E ⊗k M cannot be injective for a
nonzero left C-comodule M.

A left C-comodule is said to be finitely cogenerated [36, Example 1.2] if it can be embed-
ded as a subcomodule into a finitely cogenerated cofree left C-comodule. Obviously, any
subcomodule of a finitely cogenerated cofree C-comodule is finitely cogenerated. One eas-
ily checks that the class of finitely cogenerated left C-comodules is closed under extensions
in C–comod.

Lemma 2.2 (a) For any finitely cogenerated left C-comodule L and any subcoalgebra E ⊂
C, the left E-comodule EL is finitely cogenerated.

(b) The cofree left C-comodule C ⊗k V with an infinite-dimensional vector space of
cogenerators V over a nonzero coalgebra C is not finitely cogenerated.

(c) For any subcoalgebra E ⊂ C, a left E-comodule L is finitely cogenerated if and only
if it is finitely cogenerated as a left C-comodule.

(d) Let E ⊂ C be a subcoalgebra such that the quotient coalgebra without counit C/E
is conilpotent. Then a left C-comodule L is finitely cogenerated if and only if the left
E-comodule EL is finitely cogenerated.

(e) A left C-comodule L is finitely cogenerated if and only if the left E-comodule EL for
every cosimple subcoalgebra E ⊂ C is a finite direct sum of copies of the irreducible left
E-comodule with the multiplicity of the irreducible left E-comodule in EL divided by its
multiplicity in the left E-comodule E bounded by a single constant uniformly over all the
cosimple subcoalgebras E ⊂ C.

Proof Part (a): obviously, for any injective morphism of left C-comodules L −→ M,
the induced morphism EL −→ EM is also injective, so it remains to notice the nat-
ural isomorphism of E-comodules E (C ⊗k V ) � E ⊗k V for any k-vector space V .
Now it suffices to pick any nonzero finite-dimensional subcoalgebra E ⊂ C in order to
deduce part (b) from the latter isomorphism and part (a). Part (c) follows from the same
isomorphism.

Part (d): a morphism of C-comodules L −→ C ⊗k V is uniquely determined by its
composition with the map C ⊗k V −→ V induced by the counit map C −→ k of the
coalgebra C; and this composition can be an arbitrary k-linear map L −→ V . Suppose
that we are given an injective morphism of E-comodules EL −→ E ⊗k V , where V is a
finite-dimensional vector space. Consider the composition EL −→ E ⊗k V −→ V and
extend it arbitrarily to a k-linear map L −→ V . The corresponding C-comodule morphism
L −→ C ⊗k V forms a commutative diagram with the injective morphism EL −→ E ⊗k V

and the embeddings EL −→ L and E ⊗k V −→ C ⊗k V . Denote by K the kernel of the
morphism L −→ C ⊗k V ; then the submodule K ⊂ L does not intersect the submodule
EL ⊂ L, so one has EK = 0. By Lemma 2.1, it follows that K = 0. To prove part (e), one
applies part (d) to the subcoalgebra Css ⊂ C and then decomposes Css into a direct sum of
its cosimple subcoalgebras E .

A C-comodule is called co-Noetherian if all its quotient C-comodules are finitely cogen-
erated [37]. The class of co-Noetherian left C-comodules is closed under subobjects,
quotient objects, and extensions in the abelian category C–comod [37, Proposition 4], so
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co-Noetherian left C-comodules form an abelian category. Given a subcoalgebra E ⊂ C, an
E-comodule is co-Noetherian if and only if it is co-Noetherian as a C-comodule.

A C-comodule is called Artinian if every descending chain of its subcomodules termi-
nates. As the class of Artinian objects in any abelian category, the class of Artinian left
C-comodules is closed under subobjects, quotient objects, and extensions in the abelian
category C–comod, so Artinian left C-comodules form an abelian category. Given a
subcoalgebra E ⊂ C, an E-comodule is Artinian if and only if it is Artinian as a C-comodule.

Lemma 2.3 (a) Any Artinian C-comodule is co-Noetherian.
(b) If the subcoalgebra Css ⊂ C is finite-dimensional, then any co-Noetherian

C-comodule is Artinian.

Proof This is a subset of results of [6, Proposition 2.5]. Part (a): it suffices to show that
any Artinian left C-comodule L is finitely cogenerated. Pick a nonzero linear function
φ1 : L −→ k and consider the related morphism of left C-comodules f1 : L −→ C. Let
L1 ⊂ L denote the kernel of the morphism f1. Pick a nonzero linear function L1 −→ k

and extend it to a linear function φ2 : L −→ k. Consider the related morphism of left
C-comodules f2 : L −→ C; let L2 ⊂ L1 denote the intersection of the kernels of the
morphisms f1 and f2, etc. According to the descending chain condition, this process must
terminate, which can only happen if the intersection of the kernels of the morphisms f1,
. . . , fn is zero for some integer n. We have constructed an injective morphism of left
C-comodules L −→ C⊕n.

Part (b): it suffices to show that any descending chain of subcomodules L ⊃ L1 ⊃ L2 ⊃
· · · with zero intersection

⋂
n Ln = 0 terminates in a finitely cogenerated left C-comodule

L. Indeed, by Lemma 2.2(a) together with the assumption of part (b) the subcomodule
CssL ⊂ L is finite-dimensional. Hence the chain of intersections CssL ∩ Li stabilizes, and
consequently, eventually vanishes, i. e., there exists n for which CssL ∩ Ln = 0. Then it
follows from Lemma 2.1 that Ln = 0.

A left contramodule P over a coassociative coalgebra D over a field k is a k-vector
space endowed with a left D-contraaction map Homk(D,P) −→ P satisfying the
appropriate contraassociativity and contraunitality equations. Specifically, the two maps
Homk(D, Homk(D,P) � Homk(D⊗k D, P) ⇒ Homk(D,P) induced by the comultipli-
cation map D −→ D ⊗k D and the contraaction map should have equal compositions with
the contraaction map Homk(D,P) −→ P,

Homk(D, Homk(D,P)) � Homk(D ⊗k D,P) ⇒ Homk(D,P) −→ P,

while the composition of the map P −→ Homk(D,P) induced by the counit map D −→ k

with the contraaction map should be equal to the identity map on the contramodule P,

P −→ Homk(D,P) −→ P.

The natural isomorphism Homk(U, Homk(V ,W)) � Homk(V ⊗k U, W) connecting the
tensor product and Hom functors on the category of k-vector spaces is presumed in the first
equation.

Left D-contramodules form an abelian category D–contra with an exact forgetful functor
to the category of k-vector spaces D–contra −→ k–vect, preserving infinite products but
not infinite direct sums (see [28, Sections 1.1–1.2] and the references therein). For any right
D-comodule N and k-vector space V , the vector space Homk(N , V ) has a natural left
D-contramodule structure. In particular, the left D-contramodule Homk(D, V ) is called the



748 L. Positselski

free left D-contramodule generated by V . For any left D-contramodule Q, there is a natural
isomorphism

HomD(Homk(D, V ),Q) � Homk(V ,Q),

where for any two left D-contramodules P and Q we denote by HomD(P,Q) the
k-vector space of all morphisms P −→ Q in the abelian category D–contra. Hence
free D-contramodules are projective objects in D–contra. There are enough of them,
so any projective left D-contramodule is a direct summand of a free one. The left
D-contramodule Homk(D, k) is called the freeD-contramodule with one generator, and the
D-contramodules Homk(D, V ) with finite-dimensional k-vector spaces V are the finitely
generated free D-contramodules.

For any subcoalgebra E ⊂ D and any left D-contramodule P, we denote by EP
the maximal quotient D-contramodule of P whose D-contramodule structure comes from
an E-contramodule structure. In other words, EP is the cokernel of the composition
Homk(D/E,P) −→ P of the embedding Homk(D/E,P) −→ Homk(D,P) with the con-
traaction map Homk(D,P) −→ P. The following assertion is called the Nakayama lemma
for contramodules over coalgebras over fields.

Lemma 2.4 Let E ⊂ D be a subcoalgebra such that the quotient coalgebra without counit
D/E is conilpotent. Then the quotient contramodule EP is nonzero for any nonzero left
D-contramodule P.

Proof This is [24, Lemma A.2.1]; see also [26, Lemma 1.3.1] and [28, Lemma 2.1].

A left D-contramodule is said to be finitely generated if it is a quotient contramod-
ule of a finitely generated free left D-contramodule. The class of finitely generated left
D-contramodules is closed under extensions and the passages to quotient objects.

Lemma 2.5 (a) For any finitely generated left D-contramodule Q and any subcoalgebra
E ⊂ D, the left E-contramodule EQ is finitely generated.

(b) The free D-contramodule Homk(D, V ) with an infinite-dimensional vector space of
generators V over a nonzero coalgebra D is not finitely generated.

(c) For any subcoalgebra E ⊂ D, a left E-contramodule is finitely generated if and only
if it is finitely generated as a left D-contramodule.

(d) Let E ⊂ D be a subcoalgebra such that the quotient coalgebra without counit D/E
is conilpotent. Then a left D-contramodule Q is finitely generated if and only if the left
E-contramodule EQ is finitely generated.

(e) A left D-contramodule Q is finitely generated if and only if the left E-contramodule
EQ for every simple subcoalgebra E ⊂ D is a finite direct sum of copies of the irreduc-
tive left E-contramodule with the multiplicity of the irreductible left E-contramodule in EQ
divided by its multiplicity in the left E-contramodule E∗ = Homk(E, k) bounded by a single
constant uniforly over all the simple subcoalgebras E ⊂ D.

Proof The proof is dual-analogous to that of Lemma 2.2. To prove parts (a-c), one
notices the natural isomorphism E Homk(D, V ) � Homk(E, V ) for any subcoalgebra
E ⊂ D and k-vector space V . Part (d): given a surjective morphism of E-contramodules
Homk(E, V ) −−→ EQ with a finite-dimensional vector space V , one considers the
composition V −→ Homk(E, V ) −→ EQ and lifts it to a k-linear map V −→ Q.
The corresponding morphism of D-contramodules Homk(D, V ) −→ Q is surjective by
Lemma 2.4, since one has EK = 0 for its cokernel K. To prove part (e), one applies part
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(d) to the subcoalgebra Dss ⊂ D and applies [24, Lemma A.2.2] in order to decompose
the Dss-contramodule Dss

Q into a product of contramodules over the simple subcoalgebras
E ⊂ Dss.

A left D-contramodule is called Noetherian if all its subcontramodules are finitely
generated. The class of Noetherian left D-contramodules is closed under subobjects,
quotient objects, and extensions in the abelian category D–contra, so Noetherian
left D-contramodules form an abelian category. Given a subcoalgebra E ⊂ D, an
E-contramodule is Noetherian if and only if it is Noetherian as a D-contramodule.

A D-contramodule is called co-Artinian if every ascending chain of its subcontramodules
terminates. As the similar class of objects in any abelian category, the class of co-Artinian
left D-contramodules is closed under subobjects, quotient objects, and extensions in the
abelian category D–contra, so co-Artinian left D-contramodules form an abelian category.
Given a subcoalgebra E ⊂ D, an E-contramodule is co-Artinian if and only if it is co-
Artinian as a D-contramodule.

Lemma 2.6 (a) Any co-Artinian D-contramodule is Noetherian.
(b) If the subcoalgebra Dss ⊂ D is finite-dimensional, then any Noetherian

D-contramodule is co-Artinian.

Proof Part (a): it suffices to show that any co-Artinian left D-contramodule Q is
finitely generated. Pick an element q1 ∈ Q and consider the related morphism of left
D-contramodules f1 : D∗ = Homk(D, k) −→ Q. Pick an element q2 ∈ Q outside of the
image of f1, consider the related morphism f2 : D∗ −→ Q, pick an element q3 ∈ Q out-
side of the sum of the images of f1 and f2, etc. According to the ascending chain condition,
this process must terminate, which means that the sum of the images of the morphisms f1,
. . . , fn is the whole of Q for some integer n. We have constructed as surjective morphism
of left D-contramodules D∗⊕n −→ Q.

Part (b): it suffices to show that an ascending chain of subcontramodules Q1 ⊂ Q2 ⊂
· · · ⊂ Q terminates in a finitely generated left D-contramodule Q provided that there is no
proper subcontramodule in Q containing all the subcontramodules Qn. Indeed, by Lemma
2.5(a) together with the assumption of part (b) the maximal quotient Dss-contramodule
Dss

Q of the D-contramodule Q is finite-dimensional. Hence the chain of the images of the
subcontramodules Qn ⊂ Q in Dss

Q stabilizes, and consequently, eventually reaches the
whole of Dss

Q, i. e., there exists n for which the composition Qn −→ Q −→ Dss
Q is

surjective. Then one has Dss
(Q/Qn) = 0, and it follows from Lemma 2.4 that Qn = Q.

Example 2.7 Let C be an infinite-dimensional cosemisimple coalgebra. Then the left
C-comodule C is co-Noetherian, but not Artinian. Similarly, the left C-contramodule C∗ is
Noetherian, but not co-Artinian. It follows that the classes of Artinian and co-Noetherian
left comodules over a coalgebra D coincide if and only if the classes of co-Artinian and
Noetherian left contramodules over D coincide and if and only if the subcoalgebra Dss ⊂ D
is finite-dimensional.

A left D-contramodule is said to be finitely presented if it is the cokernel of a morphism
of finitely generated free left D-contramodules. Clearly, the cokernel of a morphism from
a finitely generated left D-contramodule to a finitely presented one is finitely presented.
It is easy to check that an extension of finitely presented left D-contramodules is finitely
presented.
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A left C-comodule is said to be finitely copresented if it is the kernel of a morphism
of finitely cogenerated cofree C-comodules. Clearly, the kernel of a morphism from a
finitely copresented left C-comodule to a finitely cogenerated one is finitely copresented;
an extension of finitely copresented left C-comodules is finitely copresented.

Part (a) of the next lemma can be found in [37, Theorem 6].

Lemma 2.8 (a) The cokernel of an injective morphism from a finitely copresented
C-comodule to a finitely cogenerated one is finitely cogenerated.

(b) The kernel of a surjective morphism from a finitely generated D-contramodule to a
finitely presented one is finitely generated.

Proof Part (a): let L be the kernel of a morphism of finitely cogenerated cofree
C-comodules I −→ J , let M be a finitely cogenerated C-comodule, and let L −→
M be an injective morphism with the cokernel K. Denote by N the fibered coprod-
uct of C-comodules I and M over the C-comodule L; then there are exact sequences of
C-comodules 0 −→ M −→ N −→ J and 0 −→ I −→ N −→ K −→ 0. Now the
C-comodule N is finitely cogenerated as an extension of finitely cogenerated C-comodules;
and the C-comodule K is a direct summand of N , because the C-comodule I is injective.
The proof of part (b) is analogous.

The dual vector space D∗ to a coassociative coalgebra D has a natural structure of topo-
logical associative algebra. There is but a slight ambiguity in its definition in that one has to
make a decision about the order of the factors in the multiplication operation, i. e., which one
of the two opposite algebras is to be denoted by D∗ and which one by D∗op. We prefer the
convention according to which right D-comodules N become discrete right D∗-modules;
then the dual vector space N ∗ is a left D∗-module (see [28, Sections 1.3–4] for a further
discussion). Any left D-contramodule has an underlying structure of left D∗-module (see
[28, Section 2.3] and [24, Section A.1.2]).

One observes that a left D-contramodule is finitely generated if and only if its under-
lying left D∗-module is finitely generated. It follows that a left D-contramodule is finitely
presented if and only if its underlying left D∗-module is.

Proposition 2.9 (a) The restrictions of the functor L �−→ L∗ = Homk(L, k) and the
forgetful functor D–contra −→ D∗–mod provide an anti-equivalence between the additive
category of finitely copresented right D-comodules and the additive category of finitely
presented left D-contramodules, and an isomorphism between the latter category and the
additive category of finitely presented left D∗-modules.

(b) For any right D-comodule N and any finitely copresented right D-comodule L, the
functor N �−→ N ∗ = Homk(N , k) and the forgetful functor D–contra −→ D∗–mod
induce isomorphisms of the Hom spaces

HomDop(N ,L) � HomD(L∗,N ∗) � HomD∗(L∗,N ∗)
in the categories of right D-comodules, left D-contramodules, and left D∗-modules.

Proof Since the functor Hom preserves kernels in its second argument and transforms
cokernels in its first argument into kernels, it suffices to prove part (b) for finitely
generated cofree right D-comodules L = V ⊗k D, where V is a finite-dimensional
k-vector space. Then L∗ � Homk(D, V ∗) � D∗ ⊗k V ∗ is a finitely generated free
left D-contramodule and a finitely generated free left D∗-module. One easily computes
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HomDop(N , V ⊗k D) � Homk(N , V ), HomD(Homk(D, V ∗),N ∗) � Homk(V
∗,N ∗),

and HomD∗(D∗ ⊗k V ∗, N ∗) � Homk(V
∗,N ∗), implying part (b). Part (a) immediately

follows from the same computation of Hom spaces.

Lemma 2.10 (a) A left D-contramodule is co-Artinian if and only if it is a Noetherian left
D∗-module.

(b) A right D-comodule L is Artinian if and only if dual vector space L∗ is a Noetherian
left D∗-module.

(c) A right D-comodule L is co-Noetherian provided that its dual vector space L∗ is a
Noetherian left D-contramodule.

Proof Part (a): one notices that a D∗-module is Noetherian if and only if any ascend-
ing chain of its finitely generated submodules terminates. Similarly, a D-contramodule is
co-Artinian if and only if any ascending chain of its finitely generated subcontramodules
terminates. Finally, the classes of finitely generated D∗-submodules and finitely generated
D-subcontramodules in any given D-contramodule coincide.

Part (b) is again a subset of [6, Proposition 2.5]. To any descending chain of D-sub-
comodules in L one can assign the ascending chain of their orthogonal complements, which
are D∗-submodules in L∗. Conversely, in view of Proposition 2.9(b), any finitely generated
D∗-submodule in L∗ is the orthogonal complement to a certain D∗-subcomodule in L. Part
(c): for any quotient comodule of L, there is its dual subcontramodule in L∗. It remains
to notice that a right D-comodule N is finitely cogenerated if and only if its dual left
D-contramodule N ∗ is finitely generated.

A finitely cogenerated left C-comodule is called cocoherent if every its finitely cogen-
erated quotient comodule is finitely copresented. Using Lemma 2.8(a), one can show that
the class of cocoherent left C-comodules is closed under the operations of the passage to
the kernels, cokernels, and extensions in the abelian category C–comod; so cocoherent left
C-comodules form an abelian category.

Analogously, a finitely presented left D-contramodule is called coherent if every its
finitely generated subcontramodule is finitely presented. Using Lemma 2.8(b), one shows
that the class of coherent left D-contramodules is closed under the passages to the
kernels, cokernels, and extensions in the abelian category D–comod; so coherent left
D-contramodules form an abelian category.

Lemma 2.11 (a) A left D-contramodule is coherent if and only if its underlying left
D∗-module is coherent. The abelian categories of coherent left D-contramodules and
coherent left D∗-modules are isomorphic.

(b) A right D-comodule L is cocoherent if and only if its dual left D∗-module L∗
is coherent. The abelian categories of cocoherent right D∗-comodules and coherent left
D∗-modules are anti-equivalent.

Proof In view of Proposition 2.9(a), it suffices to check the first assertion in each of
the parts (a) and (b). In part (a), one uses the bijection between finitely generated
D-subcontramodules and finitely generated D∗-submodules of a given D-contramodule,
together with the fact that a D-contramodule is finitely presented if and only if it is finitely
presented as a D∗-module. In part (b), one uses the bijection between finitely cogenerated
quotient D-modules of L and finitely generated D∗-submodules of L∗, together with the
fact that a D-comodule is finitely copresented if and only if its dual D∗-module is finitely
presented.
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A coalgebra C is called left co-Noetherian if any quotient comodule of a finitely cogen-
erated left C-comodule is finitely cogenerated, or equivalently, if the left C-comodule C is
co-Noetherian [37, Theorem 3]. Over a left co-Noetherian coalgebra C, finitely cogenerated
left comodules form an abelian category. By Lemma 2.2(c), any subcoalgebra of a left co-
Noetherian coalgebra is left co-Noetherian. Any cosemisimple coalgebra is left and right
co-Noetherian.

A coalgebra D is called right Artinian if any finitely cogenerated right D-comodule is
Artinian, or equivalently, if the right D-comodule D is Artinian, or if any finitely generated
left D-contramodule is co-Artinian, or if the left D-contramodule D∗ = Homk(D, k) is co-
Artinian (see Lemma 2.10(a-b) for a proof of the equivalence between the second and the
fourth of these conditions). A coalgebra D is right Artinian if and only if its dual algebra
D∗ is left Noetherian. Any subcoalgebra of a right Artinian coalgebra is right Artinian.

According to Lemma 2.3 and Example 2.7, any left Artinian coalgebra C is left co-
Noetherian, but the converse is not generally true. More precisely, a coalgebra C is left
Artinian if and only if it is left co-Noetherian and its maximal cosemisimple subcoalgebra
Css ⊂ C is finite-dimensional.

Examples 2.12 The functor C �−→ C∗ is an anti-equivalence between the category of
coassociative coalgebras and the category of pro-finite-dimensional topological associa-
tive algebras, so one can describe coalgebras in terms of their dual topological algebras.
In particular, the topological algebra of formal Taylor power series in commuting vari-
ables k[[z1, . . . , zm]] corresponds to a certain cocommutative coalgebra C. The algebra
k[[z1, . . . , zm]] is Noetherian, so the coalgebra C is Artinian. Hence all the subcoalgebras
of C are Artinian (and consequently, co-Noetherian), too. These are precisely the coalgebras
dual to the topological algebras of functions on the formal completions of algebraic vari-
eties over k at their closed points defined over k. Given a field extension k ⊂ �, a coalgebra
C over the field k is Artinian or co-Noetherian whenever the coalgebra � ⊗k C over the field
� is. Hence it follows that all the coalgebras dual to the topological algebras of functions on
the formal completions of varieties over k at their closed points are Artinian.

Moreover, there are many noncocommutative Artinian coalgebras, like, e. g., the coalge-
bra dual to the algebra of quantum formal power series k{{z1, · · · , zm}} with the relations
zizj = qi,j zj zi for all i < j , with any constants qi,j ∈ k∗.

A coalgebra D is called right cocoherent if any finitely cogenerated quotient comodule of
a finitely copresented right D-comodule is finitely copresented, or equivalently, if the right
D-comodule D is cocoherent. Equivalently, a coalgebra D is right cocoherent if any finitely
generated subcontramodule of a finitely presented left D-contramodule is finitely presented,
or if the left D-contramodule D∗ is coherent. Over a right cocoherent coalgebra D, both
the finitely copresented right D-comodules and the finitely presented left D-contramodules
form abelian categories. A coalgebra D is right cocoherent if and only if its dual algebra D∗
is left coherent (see Lemma 2.11). Any left co-Noetherian coalgebra C is left cocoherent,
and any finitely cogenerated left C-comodule is finitely copresented.

The contratensor productN �DP of a right D-comodule N and a left D-contramodule
P [28, Section 3.1] is a k-vector space constructed as the cokernel of (the difference of) the
pair of maps

N ⊗k Homk(D,P) ⇒ N ⊗k P,

one which is induced by the D-contraaction in P, while the other one is the composition
N ⊗k Homk(D,P) −→ N ⊗k D ⊗k Homk(D,P) −→ N ⊗k P of the map induced
by the right D-coaction map N −→ N ⊗k D and the map induced by the evaluation
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map D ⊗k Homk(D,P) −→ P. The functor of contratensor product of comodules and
contramodules over a coalgebra D is right exact.

For any right D-comodule N and a k-vector space V there is a natural isomorphism of
k-vector spaces

N �D Homk(D, V ) � N ⊗k V ,

while for any right D-comodule N , any left D-contramodule P, and a k-vector space V

there is a natural isomorphism of k-vector spaces

Homk(N �D P, V ) � HomD(P, Homk(N , V )).

The cotensor product N �C M of a right C-comodule N and a left C-comodule M
[28, Sections 2.5–6] is a k-vector space constructed as the kernel of the pair of maps

N ⊗k M ⇒ N ⊗k C ⊗k M,

one of which is induced by the right C-coaction in N and the other one by the left C-coaction
in M. The functor of cotensor product of comodules over a coalgebra C is left exact.

For any right C-comodule N , left C-comodule M, and k-vector space V there are natural
isomorphisms of k-vector spaces

N �C (C ⊗k V ) � N ⊗k V and (V ⊗k C) �C M � V ⊗k M.

For any left C-comodule M and any subcoalgebra E ⊂ C there is a natural isomorphism of
left E-comodules

EM � E �C M,

where the left E-comodule structure on the cotensor product is induced by the left
E-comodule structure on E .

The k-vector space of cohomomorphisms CohomD(M,P) from a left C-comodule M
to a left D-contramodule P is a k-vector space constructed as the cokernel of the pair of
maps

Homk(D ⊗k M, P) � Homk(M, Homk(D,P)) ⇒ Homk(M,P),

one of which is induced by the left D-coaction in M and the other one by the left
D-contraaction in P. The functor of cohomomorphisms from left comodules to left
contramodules over a coalgebra D is right exact.

For any left D-comodule M, left D-contramodule P, and k-vector space V there are
natural isomorphisms of k-vector spaces

CohomD(D ⊗k V , P) � Homk(V ,P)

and
CohomD(M, Homk(D, V )) � Homk(M, V ).

For any left D-contramodule P and any subcoalgebra E ⊂ D there is a natural isomorphism
of left E-contramodules

EP � CohomD(E,P),

where the left E-contramodule structure on the Cohom space is induced by the right
E-comodule structure on E .

Lemma 2.13 For any right D-comodule N and any left D-contramodule P there is a
natural surjective map of k-vector spaces from the tensor product over the algebra D∗ to
the contratensor product over the coalgebra D

N ⊗D∗ P −−→ N �D P.
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This map is an isomorphism, at least, whenever either
(a) the left D-contramodule P is finitely presented, or
(b) the coalgebra D is left co-Noetherian.

Proof To construct the surjective k-linear map in question, one notices that the tensor prod-
uct N ⊗D∗ P is the cokernel of a natural map N ⊗k D∗ ⊗k P −→ N ⊗k P, while the
contratensor product N �D P is the cokernel of a map N ⊗k Homk(D,P) −→ N ⊗k P.
These two maps form a commutative diagram with the natural embedding

N ⊗k D∗ ⊗k P −−→ N ⊗k Homk(D,P).

To prove part (a), one considers the induced map of the dual vector spaces

(N �D P)∗ � HomD(P,N ∗) −−→ HomD∗(P,N ∗) � (N ⊗D∗ P)∗

and applies Proposition 2.9.
To prove part (b), notice that any right D-comodule N is the union of its maximal

E-subcomodules NE over all the finite-dimensional subcoalgebras E ⊂ D. Since both the
tensor and the contratensor products preserve inductive limits in their first arguments, it
suffices to consider the case of a right E-comodule N = NE . Then one has N ⊗D∗ P �
N ⊗E∗ (E∗ ⊗D∗ P) and N �D P � N ⊗E∗ EP, so it remains to show that the natural map

E∗ ⊗D∗ P −−→ EP � E∗ �D P � CohomD(E,P)

is an isomorphism. For this purpose, one presents the left D-comodule E as the kernel of
a morphism of finitely cogenerated cofree left D-comodules and uses the right exactness
property of the functor CohomD together with the natural isomorphism

J ∗ ⊗D∗ P = (V ∗ ⊗k D∗) ⊗D∗ P � CohomD(D ⊗k V , P) = CohomD(J ,P)

for a finitely cogenerated cofree left D-comoduleJ = D⊗kV and any left D-contramodule
P.

3 MGM Duality for Coalgebras

We start with several constructions and lemmas related to complexes of comodules and
contramodules. These are purported to clear way to our key definition of a dedualizing
complex of bicomodules over a pair of cocoherent coalgebras.

Let C and D be two coassociative coalgebras (with counits) over the same field k. Given
a derived category symbol � = b, +, −, ∅, abs+, abs−, or abs, we denote by D�(C–comod)
and D�(D–contra) the corresponding (conventional or absolute) derived categories of the
abelian categories C–comod and D–contra of left C-comodules and left D-contramodules
(see [27, Appendix A] or [29, Appendix A] for the definitions).

For any subcoalgebra E in a coalgebra C, the maximal E-subcomodule functor M �−→
EM acting from the category of left C-comodules to the category of left E-comodules
is left exact. The abelian category C–comod has enough injective objects, which are pre-
cisely the direct summands of cofree C-comodules. So one can identify the bounded below
derived category D+(C–comod) with the homotopy category of injective C-comodules
Hot+(C–comodinj) and, applying the functor M �−→ EM to complexes of injective
C-comodules termwise, obtain the right derived functor

M• �−→ R

EM• : D+(C–comod) −−→ D+(E–comod).
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Lemma 3.1 Let C be a left co-Noetherian coalgebra and E ⊂ C be a subcoalge-
bra such that the quotient coalgebra without counit C/E is conilpotent. Then a complex
L• ∈ D+(C–comod) has finitely cogenerated C-comodules of cohomology if and only if the
complex R

EL• ∈ D+(E–comod) has finitely cogenerated E-comodules of cohomology.

Proof Notice that the cohomology E-comodules of the complex R

EL are finitely cogener-
ated for any finitely cogenerated left C-comodule L (viewed as a one-term complex of left
C-comodules). Indeed, one can compute the derived category object R

EL using a right reso-
lution of the C-comodule L by finitely cogenerated cofree left C-comodules (which exists
since the class of finitely cogenerated left comodules over a left co-Noetherian coalgebra C
is closed under the passages to the cokernels of morphisms) and apply Lemma 2.2(a). Since
the class of finitely cogenerated left E-comodules is also closed under the kernels, coker-
nels, and extensions, the desired assertion now follows by induction in the cohomological
degree from Lemma 2.2(d).

We recall from Section 2 that finitely copresented left comodules over a left cocoher-
ent coalgebra C form an abelian category. Notice that this abelian category has enough
injective objects, which are precisely the direct summands of finitely cogenerated cofree
C-comodules.

Lemma 3.2 Let C be a left cocoherent coalgebra, and let L• be a bounded below com-
plex of left C-comodules with finitely copresented cohomology modules. Then there exists a
bounded below complex of finitely cogenerated cofree left C-comodules J • together with a
quasi-isomorphism of complexes of left C-comodules L• −→ J •.

Proof This is a standard step-by-step construction (cf. [30, Lemma 1.2] or the proof of
[29, Lemma B.1(c)]).

A finite complex of left C-comodules L• is said to have projective dimension � d if one
has HomDb(C–comod)(L•,M[n]) = 0 for all left C-comodules M and all the integers n > d .
Similarly, a finite complex of left D-contramodules Q• is said to have injective dimension
� d if one has HomDb(D–contra)(P,Q•[n]) = 0 for all left D-contramodules P and all
n > d .

The bounded above derived category D−(D–contra) is equivalent to the homotopy cate-
gory Hot−(D–contraproj) of bounded above complexes of projective left D-contramodules.
Given a complex of right D-comodules N • and a bounded above complex of left
D-contramodules P•, we denote by CtrtorD∗ (N •,P•) the homology vector spaces

CtrtorDn (N •,P•) = H−n(N • �D F•)

of the contratensor product of the complex N • with a bounded above complex of projective
left D-contramodules F• quasi-isomorphic to the complex P•.

Here the bicomplex N • �D F• is presumed to be totalized by taking infinite direct sums
along the diagonals. For any complex of right D-comodules N •, any bounded above com-
plex of left D-contramodules P•, and any k-vector space V there are natural isomorphisms
of k-vector spaces

Homk(CtrtorDn (N •,P•), V ) � HomD(D–contra)(P
•, Homk(N •, V )[n]).

A finite complex of right D-comodules N • is said to have contraflat dimension � d if
one has CtrtorDn (N •,P) = 0 for all left D-contramodules P and all the integers n > d . The
contraflat dimension of a finite complex of right D-comodules N • is equal to the injective
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dimension of the finite complex of left D-contramodules Q• = Homk(N •, V ) for any
k-vector space V �= 0.

Lemma 3.3 If the coalgebra D is right cocoherent and left co-Noetherian, then the con-
traflat dimension of any finite complex of right D-comodules N • does not exceed its
projective dimension.

Proof Let d be the projective dimension of the complex of right D-comodules N •. For any
finitely copresented right D-comodule L there are natural isomorphisms of complexes of
vector spaces

HomD(N •,L) � HomD(L∗,N •∗) � (N • �D L∗)∗

(see Proposition 2.9), implying natural isomorphisms of cohomology spaces

HomDb(D–comod)(N •,L[n]) � HomDb(D–contra)(L∗,N •∗[n]) � CtrtorDn (N •,L∗)∗.

Since any finitely presented left D-contramodule P has the form L∗ for a certain finitely
copresented right D-contramodule L, it follows that the supremum of all integers n for
which there exists a finitely presented left D-contramodule P with CtrtorDn (N •,P) �= 0
does not exceed d.

Furthermore, by Lemma 2.13(b) the functor of contratensor product �D is isomorphic
to the tensor product functor ⊗D∗ over the algebra D∗ on the whole categories of arbi-
trary right D-comodules and left D-contramodules. Besides, the free D-contramodules are
the direct summands of infinite products of copies of the D-contramodule D∗. Since the
coalgebra D is left (co-Noetherian and consequently) cocoherent, the algebra D∗ is right
coherent, so infinite products of flat left D∗-modules are flat. In particular, projective left
D-contramodules are flat as left modules over D∗. It follows that the functor CtrtorD is iso-
morphic to the derived functor TorD

∗
of tensor product of (complexes of) D∗-modules on

the whole domain of definition of the former derived functor.
Finally, since the coalgebra D is left cocoherent, the algebra D∗ is right coherent and the

abelian category of finitely presented left D∗-modules is isomorphic to the abelian category
of finitely presented left D-contramodules. Any left D∗-module is a filtered inductive limit
of finitely presented ones, and the functor of tensor product over D∗ preserves filtered
inductive limits. The homological dimension of the functor TorD∗ (N •,−) on the abelian
category of finitely presented left D∗-modules does not exceed d, hence the homological
dimension of this derived functor on the abelian category of arbitrary left D∗-modules does
not exceed d, either.

Now we finally come to the main definition of this section. Assume that the coalge-
bra C is left cocoherent and the coalgebra D is right cocoherent. A finite complex of
C-D-bicomodules B• is called a dedualizing complex for the pair of coalgebras C and D if
the following conditions hold:

i the complex B• has finite projective dimension as a complex of left C-comodules and
finite contraflat dimension a complex of right D-comodules;

ii the homothety maps C∗ −→ HomDb(comod–D)(B•,B•[∗]) and D∗op −→
HomDb(C–comod)(B•,B•[∗]) are isomorphisms of graded rings; and

iii the bicomodules of cohomology of the complex B• are finitely copresented left
C-comodules and finitely copresented right D-comodules.
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Here the notation comod–D stands for the abelian category of right D-comodules, and
Db(comod–D) is its bounded derived category. The dedualizing complex B• itself is viewed
as an object of the bounded derived category Db(C–comod–D) of the abelian category
C–comod–D of C-D-bicomodules.

The homothety maps are induced by the left action of the algebra C∗ by right
D-comodule endomorphisms of (every term of) the complex B• and the right action of the
algebra D∗ by left C-comodule endomorphisms of B•.

We refer to the paper [30] and the references therein for a discussion of the classical
notion of a dualizing complex over a pair of noncommutative rings, after which the above
definition is largely modeled. A discussion of bicomodules can be found in [28, Section 2.6]
and the references therein.

Example 3.4 For any coassociative coalgebra C, the homological dimensions of the abelian
categories of left C-comodules, right C-comodules, and left C-contramodules coincide (see
[25, Section 4.5], cf. [26, Corollary 1.9.4]). The common value of these three numbers (or
infinity) is called the homological dimension of a coalgebra C.

Let C be a left and right cocoherent coalgebra of finite homological dimension. For exam-
ple, the coalgebra dual to the algebra of quantum formal power series from Example 2.12
satisfies these assumptions. Then the one-term complex B• = C is a dedualizing complex
for the pair of coalgebras (C,C), as the conditions (i-iii) are obviously true for B•.

More generally, a coalgebra C is called left Gorenstein if it has finite projective dimension
as a left C-comodule and finite contraflat dimension as a right C-comodule. (The second
condition can be rephrased by saying that the injective dimension of the left C-contramodule
C∗ is finite.) For any left and right cocoherent, left Gorenstein coalgebra C, the one-term
complex B• = C is a dedualizing complex for the pair of coalgebras (C,C).

Example 3.5 Let R be a finitely generated commutative algebra over a field k and
I ⊂ R be a maximal ideal. Then the quotient algebras R/In are finite-dimensional, so
their dual vector spaces are cocommutative coalgebras over k, as is their inductive limit
C = lim−→n

(R/In)∗. According to Examples 2.12 or Lemma 2.10(b), this coalgebra is
Artinian, and consequently, by Lemma 2.3(a), co-Noetherian and cocoherent. The cate-
gory of C-comodules is isomorphic to the category of I -torsion R-modules in the sense
of [29, Section 1], C–comod � R–modI -tors. Moreover, the category of C-contramodules
is isomorphic to the category of I -contramodule R-modules as defined in [29, Section 2],
C–contra � R–modI -ctra (see [28, Sections 2.1–2.3]).

Of course, the coalgebra C is cocommutative. A complex of C-comodules B• is a ded-
ualizing complex for the pair of coalgebras (C,C) in the sense of the above definition if
and only if it is a dedualizing complex of I -torsion R-modules in the sense of the defini-
tion in [29, Section 4]. Indeed, the two conditions (i) are equivalent by Lemma 3.3; the two
conditions (ii) are equivalent because R = C∗, and the two conditions (iii) are equivalent
since, the coalgebra C being Artinian, a C-comodule is finitely copresented if and only if
it is Artinian. In particular, the dedualizing complex of I -torsion R-modules constructed in
[29, Example 4.8] provides an example of a dedualizing complex of C-C-bicomodules.

For any C-D-bicomodule K and any left C-comodule M, the k-vector space
HomC(K,M) is endowed with the left D-contramodule structure of a subcontramodule
of the D-contramodule Homk(K,M). Similarly, for any C-D-bicomodule K and any left
D-contramodule P, the contratensor product K�D P is endowed with the left C-comodule
structure of a quotient comodule of the left C-comodule K ⊗k P. For any C-D-bicomodule
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K, any left C-comodule M, and any left D-contramodule P, there is a natural adjunction
isomorphism of k-vector spaces [28, Section 3.1]

HomC(K �D P, M) � HomD(P, HomC(K,M)).

The following theorem is the main result of this paper.

Theorem 3.6 Given a dedualizing complex B• for a left cocoherent coalgebra C and a right
cocoherent coalgebraD over a field k, for any symbol � = b, +, −,∅, abs+, abs−, or abs
there is an equivalence of derived categories (2)

D�(C–comod) � D�(D–contra)

provided by mutually inverse functors RHomC(B•,−) and B• �L

D −.

Proof (Cf. the proofs of [29, Theorems 4.9 and 5.10].) Assume for simplicity of notation
that the complex B• is concentrated in nonpositive cohomological degrees. Let d be an
integer greater or equal to both the projective dimension of the complex B• viewed as a
complex of left C-comodules and the contraflat dimension of B• as a complex of right
D-comodules.

To construct the image of a complex of left C-comodules M• under the functor
RHomC(B•,−), one has to choose an exact sequence of complexes of left C-comodules
0 −→ M• −→ J 0,• −→ J 1,• −→ · · · with injective left C-comodules J j,i . Then
one applies the functor HomC(B•,−) to every complex 0 −→ J 0,i −→ J 1,i −→
J 2,i −→ · · · , obtaining a nonnegatively graded complex of left D-contramodules 0 −→
P0,i −→ P1,i −→ P2,i −→ · · · . According to the projective dimension condition on the
dedualizing complex B•, the complex P•,i has zero cohomology contramodules at the coho-
mological degrees above d; so it is quasi-isomorphic to its canonical truncation complex
τ�dP

•,i . By the definition, one sets the object RHomC(B•,M•) in the derived category
D�(D–contra) to be represented by the total complex of the bicomplex τ�dP

•,• concentrated
in the cohomological degrees 0 � j � d and i ∈ Z.

Similarly, to construct the image of a complex of left D-contramodules P• under the
functor B•�L

D−, one has to choose an exact sequence of complexes of left D-contramodules
· · · −→ F−1,• −→ F0,• −→ P• −→ 0 with projective left D-contramodules Fj,i . Then
one applies the functor B• �D − to every complex · · · −→ F−2,i −→ F−1,i −→ F0,i −→
0, obtaining a nonpositively graded complex of left C-comodules · · · −→ M−2,i −→
M−1,i −→ M0,i −→ 0. According to the contraflat dimension condition on the complex
B•, the complex M•,i has zero cohomology comodules at the cohomological degrees below
−d; so it is quasi-isomorphic to its canonical truncation complex τ�−dM•,i . One sets the
object B• �L

D P• in the derived category D�(C–comod) to be represented by the total com-
plex of the bicomplex τ�−d(M•,•) concentrated in the cohomological degrees −d � j � 0
and i ∈ Z.

These constructions of two derived functors are but particular cases of the construc-
tion of a derived functor of finite homological dimension spelled out in [29, Appendix
B]. According to the results of that appendix, the above constructions produce well-
defined triangulated functors RHomC(B•,−) : D�(C–comod) −→ D�(D–contra) and
B• �L

D −: D�(D–contra) −→ D�(C–comod) for any derived category symbol � = b, +,
−, ∅, abs+, abs−, or abs. Moreover, the former functor is right adjoint to the latter one.
All these assertions only depend on the first condition (i) in the definition of a dedualizing
complex.
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It remains to prove that the adjunction morphisms are isomorphisms. Since the total com-
plexes of finite acyclic complexes of complexes are absolutely acyclic, in order to check
that the morphism P• −→ RHomC(B•, B• �L

D P•) is an isomorphism in the derived
category D�(D–contra) for all the �-bounded complexes of left D-contramodules P• it
suffices to consider the case of a one-term complex P• = P corresponding to a single
D-contramodule P. Furthermore, since a morphism in Db(D–contra) is an isomorphism
whenever it is an isomorphism in D−(D–contra), one can view the one-term complex P

as an object of the bounded above derived category D−(D–contra) and replace it with a
free D-contramodule resolution F• of the contramodule P. Applying the same totalization
argument to the complex F•, the question reduces to proving that the adjunction mor-
phism F −→ RHomC(B•, B• �L

D F) is an isomorphism in Db(D–contra) for any free left
D-contramodule F.

So let V be a k-vector space and F = Homk(D, V ) be the free left D-contramodule gen-
erated by V ; then one has B• �L

D F = B• �D F = B• ⊗k V . By the condition (iii) together
with Lemma 3.2, there exists a bounded below complex of finitely cogenerated cofree left
C-comodules J • together with a quasi-isomorphism of complexes of left C-comodules
B• −→ J •. We have to check that the natural map

Homk(D, V ) −−→ HomC(B•, J • ⊗k V )

is a quasi-isomorphism of complexes of left D-contramodules.
The left-hand side is the projective limit of the vector spaces Homk(E, V ) over all

the finite-dimensional subcoalgebras E ⊂ D, while the right-hand side is the projective
limit of the complexes of vector spaces HomE (EB•, EJ • ⊗k V ). In particular, the map
D∗ −→ HomC(B•,J •) is a morphism of complexes of profinite-dimensional topological
vector spaces. Being a quasi-isomorphism of complexes of discrete/nontopological vector
spaces (with the topologies forgotten) by the condition (ii), it is consequently also a quasi-
isomorphism of complexes in the abelian category of profinite-dimensional topological
vector spaces.

For any profinite-dimensional topological k-vector space K and any discrete k-vector
space V one denotes by K ⊗̂V the projective limit

K ⊗̂V = lim←−U
K/U ⊗k V

taken over all the open subspaces U ⊂ K [28, Sections 2.3-4]. Equivalently, one can set
W ∗ ⊗̂V = Homk(W, V ) for any discrete k-vector spaces W and V . Both the abelian cat-
egories of discrete and profinite-dimensional vector spaces being semisimple, the additive
functor ⊗̂ is exact. Now one has

lim←−E HomE (EB•, EJ • ⊗k V ) � lim←−E HomE (EB•, EJ •) ⊗̂V,

since the complex of E-comodules EB• is finite, while the terms of the complex EJ • are
finite-dimensional cofree E-comodules. Finally, the morphism of complexes in question is
obtained by applying the exact functor − ⊗̂V to the quasi-isomorphism of complexes
D∗ −→ HomC(B•,J •).

Similarly, in order to prove that the adjunction morphism B• �L

D RHomC(B•,M•) −→
M• is an isomorphism in the derived category D�(C–comod) for any �-bounded com-
plex of left C-comodules M•, it suffices to check that this morphism is an isomorphism
in Db(C–comod) for any cofree left C-comodule I viewed as a one-term complex in
Db(C–comod). Let I = C ⊗k V be a cofree left C-comodule generated by a k-vector space
V ; then one has RHomC(B•,I) = HomC(B•,I) = Homk(B•, V ). Let J • be a bounded
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below complex of finitely cogenerated cofree right D-comodules endowed with a quasi-
isomorphism of complexes of right D-comodules B• −→ J •. Then Homk(J •, V ) is a
bounded above complex of free left D-contramodules quasi-isomorphic to Homk(B•, V ).
We have to show that the map

B• �D Homk(J •, V ) −−→ C ⊗k V

induced by the left C-coaction in B• is a quasi-isomorphism (of complexes of left
C-comodules).

The functors on both sides of our map preserve infinite direct sums and inductive limits in
the argument V , so it suffices to consider the case V = k. Passing to the dual vector spaces,
we have to check that the map C∗ −→ HomD(J •∗, B•∗) is a quasi-isomorphism. The latter
map is the composition C∗ −→ HomDop(B•,J •) −→ HomD(J •∗, B•∗) of the homothety
map of the condition (ii) and the map induced by the dualization functor N �−→ N ∗. It
remains to apply Proposition 2.9(b).

4 MGM Duality for Semialgebras

Let C be a coassociative coalgebra over a field k. Then the operation of cotensor prod-
uct �C (as defined in the end of Section 2) provides the category of C-C-bicomodules
C–comod–C with an associative and unital tensor category structure. The C-C-bicomodule
C is the unit object. A (semiassociative and semiunital) semialgebra over C is an (associa-
tive and unital) algebra object in this tensor category. In other words, a semialgebra S over
C is a C-C-bicomodule endowed with C-C-bicomodule morphisms of semiunit C −→ S
and semimultiplication S �C S −→ S satisfying the conventional associativity and unital-
ity axioms. We refer to [24, Sections 0.3.1–2 and 1.3.1] and [28, Sections 2.5–6] for further
details.

The cotensor product operation also provides the category of left C-comodules C–comod
with the structure of left module category over the tensor category C–comod–C and the
category of right C-comodules comod–C with the structure of right module category over
C–comod–C. Furthermore, the functor of cohomomorphisms CohomC (see Section 2)
defined the structure of a right module category over C–comod–C on the category opposite
to the category of left C-contramodules C–contraop. Given a semialgebra S over C, one can
consider module objects over the algebra object S ∈ C–comod–C in the module categories
C–comod, comod–C, and C–contraop over the tensor category C–comod–C. This leads to
the following definitions.

A left semimodule M over S is a left C-comodule endowed with a left C-comodule
morphism of left semiaction S �C M −→ M satisfying the associativity and unitality
equations. A right semimodule N over S is a right C-comodule endowed with a right
C-comodule morphism of right semiactionN�CS −→ N satisfying the similar equations.
Finally, a left semicontramodule P over S is a left C-contramodule endowed with a left
C-contramodule morphism of left semicontraaction P −→ CohomC(S,P) satisfying the
dual versions of the same equations. The details concerning semimodules can be found in
the above references; and we refer to [24, Sections 0.3.4–5 and 3.3.1] and [28, Sections
2.5–6] for further details about semicontramodules.

The k-vector space of all morphisms L −→ M in the category of left S-semimodules
S–simod is denoted by HomS(L,M). Given a left C-comodule L, the left S-semimodule
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S �C L is called the left S-semimodule induced from the left C-comodule L. For any left
S-semimodule M, there is a natural isomorphism of k-vector spaces

HomS(S �C L, M) � HomC(L,M).

The k-vector space of all morphisms P −→ Q in the category of left S-semi-
contramodules S–sicntr is denoted by HomS(P,Q). For any right S-semimodule
N and k-vector space V , the left C-contramodule Homk(N , V ) has a natural left
S-semicontramodule structure. Given a left C-contramodule Q, the left C-contra-
module CohomC(S,Q) is endowed with a left S-semicontramodule structure as a
quotient semicontramodule of the left S-semicontramodule Homk(S,Q). The left
S-semicontramodule CohomC(S,Q) is called the left S-semicontramodule coinduced
from the left C-contramodule Q. For any left S-semicontramodule P, there is a natural
isomorphism of k-vector spaces

HomS(P, CohomC(S,Q)) � HomC(P,Q).

Our next aim is to define the operation of contratensor product N �S P of a right
S-semimodule N and a left S-semicontramodule P [24, Sections 0.3.7 and 6.1.1–2]. The
idea is that N �S P is a k-vector space for which the natural isomorphism

Homk(N �S P, V ) � HomS(P, Homk(N , V )) (9)

holds for any k-vector space V . This condition determines the k-vector space N �S P

uniquely up to a natural isomorphism. The following explicit construction shows that such
a vector space exists.

The contratensor product N �S P is the cokernel of (the difference of) the pair of
natural k-linear maps

(N �C S) �C P ⇒ N �C P.

Here the first map is induced by the right S-semiaction morphism N �C S −→ N ,
while the second map is the composition of the left S-semicontraaction morphism P −→
CohomC(S,P) and the natural “evaluation” map

ηS : (N �C S) �C CohomC(S,P) −−→ N �C P.

The “evaluation” map is defined for any two coalgebras C and D over k, a
C-D-bicomodule K, a right C-comodule N , and a left C-contramodule P,

ηK : (N �C K) �D CohomC(K,P) −−→ N �C P,

and can be characterized by the condition that the dual map η∗
K = Homk(ηK, k) is equal to

the map

HomC(P,N ∗) −−→ HomD(CohomC(K,P), CohomC(K,N ∗))

provided by the functor CohomC(K, −) : C–contra −→ D–contra. Even more explicitly,
the k-linear map ηK is constructed as the unique map forming a commutative square with
the composition of maps

(N �C K) ⊗k Homk(K,P) −−→ N ⊗k K ⊗k Homk(K,P) −−→ N ⊗k P

and the natural surjections. We refer to [24, Section 6.1.1] for further details.
For any right C-comodule N and left S-semicontramodule P, there is a natural

isomorphism of k-vector spaces [24, Section 6.1.2]

(N �C S) �S P � N �C P.
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The category S–simod of left S-semimodules is abelian provided that S is an injective
right C-comodule. In fact, S is an injective right C-comodule if and only if the category
S–simod is abelian and the forgetful functorS–simod −→ C–comod is exact. Similarly, the
category S–sicntr of left S-semicontramodules is abelian provided that S is an injective left
C-comodule. In fact, S is an injective left C-comodule if and only if the category S–sicntr
is abelian and the forgetful functor S–sicntr −→ C–contra is exact. (See [28, Proposition
2.5] for a proof of the dual versions of these results.)

Let S be a semialgebra over a coalgebra C over k and T be a semialgebra over a
coalgebra D over k. An S-T -bisemimodule K is a C-D-bicomodule endowed with a
left S-semimodule and a right T -semimodule structures such that the semiaction maps
S �C K −→ K and K �D T −→ K are morphisms of C-D-bicomodules which
commute with each other in the sense that the two compositions S �C K �D T −→
K �D T −→ K and S �C K �D T −→ S �C K −→ K coincide. Alternatively, one
can define an S-T -bisemimodule as a C-D-bicomodule endowed with a bisemiaction map
S �C K �D T −→ K, which must be a morphism of C-D-bicomodules satisfying the
associativity and unitality axioms.

Let K be an S-T -bisemimodule and P be a left T -semicontramodule. Assuming that
S is an injective right C-comodule, the contratensor product K �T P then has a natural
left S-semimodule structure. Similarly, let K be an S-T -bisemimodule and M be a left
S-semimodule. Assuming that T is an injective left D-comodule, the k-vector space of left
S-semimodule morphisms HomS(K,M) has a natural left T -semicontramodule structure
[24, Section 6.1.3].

Whenever S is an injective right C-comodule and T is an injective left D-comodule,
for any S-T -bisemimodule K, any left S-semimodule M, and any right T -semicontra-
module P, there is a natural adjunction isomorphism of k-vector spaces [24, Section 6.1.4]

HomS(K�T P, M) � HomT (P, HomS(K,M)).

There are also some other situations in which there is a natural left S-semimodule struc-
ture on the contratensor product K�T P and a natural left T -semicontramodule structure
on the space of homomorphisms HomS(K,M). The case of S = K = T is of particu-
lar interest. For any semialgebra S over a coalgebra C, the functors �S : P �−→ S �S P

and �S : M �−→ HomS(S,M) establish an equivalence between the exact categories
of C-injective left S-semimodules and C-projective left S-semicontramodules [24, Sec-
tion 6.2]. This equivalence forms a commutative square with the forgetful functors and the
equivalence between the additive categories of injective left C-comodules and projective left
C-contramodules C–comodinj � C–contraproj provided by the functors �C = C �C − and
�C = HomC(C,−).

Let S be a semialgebra over a coalgebra C over k and T be a semialgebra over a coal-
gebra D over k. Assume that S is an injective right C-comodule and T is an injective left
D-comodule. So the categories S–simod and T –sicntr are abelian.

Proposition 4.1 (a) There are enough injective objects in the abelian category S–simod. A
left S-semimodule is injective if and only if it is a direct summand of a left S-semimodule of
the form�S(Homk(S, V )), where V is a k-vector space. Furthermore, the forgetful functor
S–simod −→ C–comod preserves injectives.

(b) There are enough projective objects in the abelian category T –sicntr. A left
T -semicontramodule is projective if and only if it is a direct summand of a left
T -semicontramodule of the form �T (T ⊗k V ), where V is a k-vector space. Furthermore,
the forgetful functor T –sicntr −→ D–contra preserves projectives.
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Proof A proof of this result under slightly more restrictive assumptions (of a semialgebra
injective over its coalgebra on both sides) can be found in [28, Proposition 3.5]. In the
general case, there is an argument based on the results of [24, Section 6.2], proceeding as
follows.

Part (a): the forgetful functor S–simod −→ C–comod preserves injectives, since it
has an exact left adjoint functor S �C − assigning to a left C-comodule the induced left
S-semimodule. To prove that the left S-semimodule M = S �S Homk(S, V ) is injec-
tive, one first notices that Homk(S, V ) is a projective left C-contramodule, hence M is
an injective left C-comodule and HomS(S,M) = �S(M) � Homk(S, V ). Applying
[24, Proposition 6.2.2(a)] for T = K = S , one computes that

HomS(L,M) � Homk(L, V )

for any left S-semimodule L. This proves that M is injective; and in order to show that
L can be embedded into a left S-semimodule of the form �S(Homk(S, V )), it suffices to
take V = L.

Part (b): the forgetful functor T –sicntr −→ D–contra preserves projectives, since it
has an exact right adjoint functor CohomD(T ,−) assigning to a left D-contramodule the
coinduced left T -semicontramodule. To prove that the left T -semicontramodule P =
HomT (T , T ⊗k V ) is projective, one first notices that T ⊗k V is an injective left
D-comodule, hence P is a projective left D-contramodule and T �T P = �T (P) �
T ⊗k V . Applying [24, Proposition 6.2.3(a)] for S = K = T , one computes that

HomT (P,Q) � Homk(V ,Q)

for any left T -semicontramodule Q. This proves that P is projective; and in order to show
that Q is a quotient object of a left T -semicontramodule of the form �T (T ⊗k V ), it
suffices to take V = Q.

A finite complex of left S-semimodules L• is said to have projective dimension � d

if one has HomDb(S–simod)(L•,M[n]) = 0 for all left S-semimodules M and all the
integers n > d . The projective dimension of the complex of left S-semimodules L• = S�C
L• induced from a finite complex of left C-comodules L• does not exceed the projective
dimension of the complex of left C-comodules L•.

Similarly, a finite complex of left T -semicontramodules Q• is said to have injective
dimension� d if one has HomDb(T –sicntr)(P,Q•[n]) = 0 for all left T -semicontramodules
P and all n > d . The injective dimension of the complex of left T -semicontramodules
Q• = CohomD(T ,Q•) induced from a finite complex of left D-contramodules Q• does
not exceed the injective dimension of the complex of left D-contramodules Q•.

The bounded above derived category D−(T –sicntr) is equivalent to the homo-
topy category Hot−(T –sicntrproj) of bounded above complexes of projective left
T -semicontramodules. Given a complex of right T -semimodules N • and a bounded above
complex of left T -semicontramodules P•, we denote by CtrTorT∗ (N •,P•) the homology
vector spaces

CtrTorTn (N •,P•) = H−n(N • �T F•)

of the contratensor product of the complex of right T -semimodules N • with a bounded
above complex of projective left T -semicontramodules F• quasi-isomorphic to P•.

Here one totalizes the bicomplex N • �T F• by taking infinite direct sums along the
diagonals. For any complex of right T -semimodules N •, any bounded above complex of
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left T -semicontramodules P•, and a k-vector space V there are natural isomorphisms of
k-vector spaces

Homk(CtrTorTn (N •,P•), V ) � HomD(T –sicntr)(P
•, Homk(N •, V )[n]).

Alternatively, the derived functor CtrTorT can be computed using T /D-projective (or
T /D-contraflat) resolutions of the first argument and D-projective resolutions of the
second argument [24, Sections 6.4–5].

A finite complex of right T -semimodules N • is said to have contraflat dimension � d

if one has CtrTorTn (N •,P) = 0 for all left T -semicontramodules P and all the integers
n > d . The contraflat dimension of the complex of right T -semimodules N • = N • �D T
induced from a finite complex of right D-comodules N • does not exceed the contraflat
dimension of the complex of right D-comodules N •. The contraflat dimension of a finite
complex of right T -semimodules N • is equal to the injective dimension of the finite
complex of left T -semicontramodules Q• = Homk(N •, V ) for any k-vector space V �= 0.

Now we come to the main definition of this section. Let S be a semialgebra over a
coalgebra C over k and T be a semialgebra over a coalgebra D over k. Assume that S
is an injective right C-comodule, T is an injective left D-comodule, the coalgebra C is
left cocoherent, and the coalgebra D is right cocoherent. A dedualizing complex for S
and T is defined as a triple consisting of a finite complex of S-T -bisemimodules B•, a
finite complex of C-D-bicomodules B•, and a morphism of complexes of C-D-bicomodules
B• −→ B• with the following properties:

iv B• is a dedualizing complex for the pair of coalgebras C and D, that is the conditions
(i-iii) of Section 3 are satisfied;

v the morphism of complexes of left S-semimodules S �C B• −→ B• induced by the
morphism of complexes of left C-comodules B• −→ B• is a quasi-isomorphism;

vi the morphism of complexes of right T -semimodules B• �D T −→ B• induced by the
morphism of complexes of right D-comodules B• −→ B• is a quasi-isomorphism.

It follows from the conditions (i) and (v) that the complex B• has finite projective
dimension as a complex of left S-semimodules. Similarly, it follows from the conditions
(i) and (vi) that the complex B• has finite contraflat dimension as a complex of right
T -semimodules.

Abusing the terminology, we will sometimes say that the complex of S-T -bi-
semimodules B• is a dedualizing complex (for the semialgebras S and T ).

Examples 4.2 Let S be a semialgebra over a coalgebra C over k such that the coalgebra C
is left and right cocoherent and left Gorenstein (see Example 3.4), while the semialgebra S
is an injective left C-comodule and an injective right C-comodule. Then the triple consist-
ing of the S-S-bisemimodule S (viewed as a one-term complex of S-S-bisemimodules),
the C-C-bicomodule C (also viewed as a one-term complex of C-C-bicomodules), and the
semiunit morphism C −→ S is a dedualizing complex for the pair of semialgebras (S,S).

In particular, any semialgebra S over a cosemisimple coalgebra C satisfies the above
conditions (as cosemisimple coalgebras are co-Noetherian and of homological dimension
0), so S is a dedualizing complex of S-S-bisemimodules. This situation is a rather trivial
case for the following theorem, though, as in this case the abelian categories S–simod and
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S–sicntr are already equivalent (the underived functors �S = HomS(S, −) and �S =
S�S− providing the equivalence).

For example, let G be a locally compact totally disconnected (locally profinite) group
and H ⊂ G be a compact open subgroup. Let k be a field. Then the k-vector space
C = k(H) of locally constant k-valued functions on H has a natural structure of coalgebra
over k. Moreover, the k-vector space S = k(G) of compactly supported locally constant
k-valued functions on G has a natural structure of semialgebra over C. The semialgebra S is
always an injective left and right C-comodule. The category of (left or right) S-semimodules
is isomorphic to the abelian category G–smoothk of smooth G-modules over k, while
the category of (left or right) S-semicontramodules is isomorphic to the abelian category
G–contrak of G-contramodules over k (see the introduction to [33] and the references
therein).

Assume that the proorder of the profinite group H is not divisible by the characteris-
tic of the field k. In particular, G can be an arbitrary locally profinite group and k a field
of characteristic 0, or G can be a p-adic Lie group, H ⊂ G an open pro-p-subgroup, and
k a field of characteristic different from p. Then the coalgebra C = k(H) is cosemisim-
ple. So the semialgebra S = k(G) is a dedualizing complex of bisemimodules over itself.
Moreover, the abelian categories G–smoothk and G–contrak of left S-semimodules and left
S-semicontramodules are equivalent.

The situation in the natural characteristic p is more interesting. Let G be a p-adic Lie
group and H ⊂ G be a compact open subgroup such that H has no elements of order p. Let
k be a field of characteristic p. Then the coalgebra C = k(H) is left and right Artinian, since
its dual algebra C∗ = k[[H ]] is left and right Noetherian. Furthermore, the coalgebra C has
finite homological dimension (equal to the dimension of the group G). Thus the semialgebra
S = k(G) is a dedualizing complex of S-S-bisemimodules. Hence the following theorem
applies (cf. [33]).

Theorem 4.3 Let S be a semialgebra over a coalgebra C and T be a semialgebra over a
coalgebra D over a field k. Assume that the coalgebra C is left cocoherent, the coalgebra
D is right cocoherent, the semialgebra S is an injective right C-comodule, and the semial-
gebra T is an injective left D-comodule. Let B• −→ B• be a dedualizing complex for the
semialgebras S and T . Then for any symbol � = b, +, −, ∅, abs+, abs−, or abs there is
an equivalence of triangulated categories (8)

D�(S–simod) � D�(T –sicntr)

provided by mutually inverse functors RHomS(B•,−) and B• �L

T −.

Proof The constructions of the derived functors RHomS(B•,−) and B• �L

T − proceed
exactly in the same way as in the proof of Theorem 3.6 (with C replaced by S , left
C-comodules by left S-semimodules, D replaced by T , left D-contramodules by left
T -semicontramodules, and the complex of bicomodules B• replaced by the complex of
bisemimodules B•). The only property of a finite complex of S-T -bisemimodules B• that
is used in these constructions is the finiteness of the projective and contraflat dimensions.
The result of [29, Appendix B] tells that the two derived functors so obtained are adjoint to
each other.
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Next it is noticed that the two pairs of adjoint derived functors corresponding to
the complex of C-D-bicomodules B• and the complex of S-T -bisemimodules B• form
commutative diagrams with the forgetful functors (cf. the proof of [30, Theorem 5.6])

D�(S–simod) D�(T –sicntr)

D�(C–comod) D�(D–contra)

�RHomS (B•,−)

� �
�RHomC(B•,−)

D�(S–simod) D�(T –sicntr)

D�(C–comod) D�(D–contra)
� �

�B•�L

T −

�B•�L

D−

This follows from the conditions (v-vi); the argument is that the total complex of a finite
acyclic complex of complexes is absolutely acyclic. The observation that the functor of
contratensor product − �T F with a projective left T -semicontramodule F is exact on
the abelian category of right T -semimodules simod–T plays a role here (see the natural
isomorphism (9)).

Finally, just as in the proof of Theorem 3.6, checking that the adjunction morphisms
for the derived functors RHomS(B•, −) and B• �L

T − are isomorphisms reduces to the
case of the bounded derived categories, � = b. This is a conventional derived category;
and for all the conventional derived categories (� = b, +, −, or ∅) the forgetful functors
D�(S–simod) −→ D�(C–comod) and D�(T –sicntr) −→ D�(D–contra) are conservative.
So it suffices to show that the images of the adjunction morphisms under the forgetful func-
tors are isomorphisms. Similarly to the proof of [30, Theorem 5.6], one observes that these
images are nothing but the adjunction morphisms for the derived functors RHomC(B•, −)

and B• �L

D −. According to the result of Theorem 3.6, we already know that the latter are
isomorphisms.
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xxiv+349 pp. arXiv:0708.3398 [math.CT] (2010)

25. Positselski, L.: Two kinds of derived categories, Koszul duality, and comodule-contramodule correspon-
dence. Memoirs Am. Math. Soc. 212, 996 (2011). vi+133 pp. arXiv:0905.2621 [math.CT]

26. Positselski, L.: Weakly curved A∞-algebras over a topological local ring. Electronic preprint.
arXiv:1202.2697 [math.CT]

27. Positselski, L.: Contraherent cosheaves. Electronic preprint. arXiv:1209.2995 [math.CT]
28. Positselski, L.: Contramodules. Electronic preprint. arXiv:1503.00991 [math.CT]
29. Positselski, L.: Dedualizing complexes and MGM duality. J. Pure Appl. Algebra 220(12), 3866–3909

(2016). arXiv:1503.05523 [math.CT]
30. Positselski, L.: Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre–

Grothendieck duality. Selecta Math. (New Ser.) 23(2), 1279–1307 (2017). arXiv:1504.00700 [math.CT]
31. Positselski, L.: Contraadjusted modules, contramodules, and reduced cotorsion modules. Moscow Math.

J. 17(3), 385–455 (2017). arXiv:1605.03934 [math.CT]
32. Positselski, L.: Triangulated Matlis equivalence. Electronic preprint. arXiv:1605.08018 [math.CT], to

appear in Journ. of Algebra and its Appl.
33. Positselski, L.: Smooth duality and co-contra correspondence. Electronic preprint arXiv:1609.04597

[math.CT]
34. Spaltenstein, N.: Resolutions of unbounded complexes. Compositio Math. 65(2), 121–154 (1988)
35. Sweedler, M.E.: Hopf algebras. Mathematics Lecture Note Series. W. A. Benjamin Inc., New York

(1969)
36. Takeuchi, M.: Morita theorems for categories of comodules. J Faculty Scie. Univ. Tokyo Section IA,

Math. 24(3), 629–644 (1977)
37. Wang, M., Wu, Z.: Conoetherian coalgebras. Algebra Colloquium 5(1), 117–120 (1998)
38. Yekutieli, A.: Dualizing complexes over noncommutative graded algebras. J. Algebra 153(1), 41–84

(1992)
39. Yekutieli, A., Zhang, J.J.: Rings with Auslander dualizing complexes. J. Algebra 213(1), 1–51 (1999).

arXiv:9804005

http://arxiv.org/abs/0312088
http://arxiv.org/abs/0812.2519
http://www.math.jussieu.fr/~keller/publ/index.html
http://arxiv.org/abs/0403526
http://arxiv.org/abs/0310337
http://people.math.jussieu.fr/~keller/lefevre/publ.html
http://people.math.jussieu.fr/~keller/lefevre/publ.html
http://arxiv.org/abs/1101.4051
http://arxiv.org/abs/1010.4386
http://arxiv.org/abs/1506.07765
http://arxiv.org/abs/0708.3398
http://arxiv.org/abs/0905.2621
http://arxiv.org/abs/1202.2697
http://arxiv.org/abs/1209.2995
http://arxiv.org/abs/1503.00991
http://arxiv.org/abs/1503.05523
http://arxiv.org/abs/1504.00700
http://arxiv.org/abs/1605.03934
http://arxiv.org/abs/1605.08018
http://arxiv.org/abs/1609.04597
http://arxiv.org/abs/9804005

	Dedualizing Complexes of Bicomodules and MGM Duality Over...
	Abstract
	Introduction
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Coalgebras with Finiteness Conditions
	MGM Duality for Coalgebras
	MGM Duality for Semialgebras
	References


