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Abstract In this paper, we introduce the notion of generalized representation of a 3-Lie
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ized semidirect product 3-Lie algebra. Furthermore, we describe general abelian extensions
of 3-Lie algebras using Maurer-Cartan elements.
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1 Introduction

The notion of a Filippov algebra, or a n-Lie algebra was introduced in [11]. Ternary Lie
algebras are related to Nambu mechanics [18], generalizing Hamiltonian mechanics by
using more than one hamiltonian. The algebraic formulation of this theory is due to Takhta-
jan [22], see also [13]. Moreover, 3-Lie algebras appeared in String Theory. Fuzzy sphere
(noncommutative space) arises naturally in the description of D1-branes ending on D3-
branes in Type IIB superstring theory and the effective dynamics of this system is described
by the Nahm equations. In order to find an appropriate description of the lift of this config-
uration to M-theory, one can study supergravity solutions describing M2-branes ending on
M5-branes. In [6], Basu and Harvey suggested to replace the Lie algebra appearing in the
Nahm equation by a 3-Lie algebra for the lifted Nahm equations. Furthermore, in the context
of Bagger-Lambert-Gustavsson model of multiple M2-branes, Bagger-Lambert managed
to construct, using a ternary bracket, an N = 2 supersymmetric version of the worldvol-
ume theory of the M-theory membrane, see [2]. An extensive literatures are related to this
pioneering work, see [3, 14, 15, 20].

In mathematics, the first appearance of ternary operation went back to 19th century,
where Cayley considered cubic matrices. In these last decades, several algebraic aspects
of 3-Lie algebras, or more generally, of n-Lie algebras were studied. See [1, 4, 5] for the
construction, realization and classifications of 3-Lie algebras and n-Lie algebras. In partic-
ular, representation theory of n-Lie algebras was first introduced by Kasymov in [16]. The
adjoint representation is defined by the ternary bracket in which two elements are fixed.
Through fundamental objects one may also represent a 3-Lie algebra and more generally
an n-Lie algebra by a Leibniz algebra [7]. Following this approach, deformations of 3-Lie
algebras and n-Lie algebras are studied in [10, 23], see [17] for a review. In [21], the author
defined a graded Lie algebra structure on the cochain complex of a n-Leibniz algebra and
describe a n-Leibniz structure as a canonical structure. See the review article [8] for more
details.

In this paper, we provide a new approach to representation theory of 3-Lie algebras. We
define generalized representations of a 3-Lie algebra g on a vector space V via canonical
structures in the differential graded Lie algebra associated to g⊕ V given in [7]. A general-
ized representation leads also to a new 3-Lie algebra, which we call a generalized semidirect
product. We also develop the corresponding cohomology theory. As applications, we study
abelian extensions of 3-Lie algebras and provide several examples. We show that a split
abelian extension is isomorphic to a generalized semidirect product. Note that even split
abelian extensions cannot be studied via the usual representations (in the sense of Kasy-
mov [16]). This justifies the usage of our approach. Furthermore, we use Maurer-Cartan
elements to describe non-split abelian extensions.

The paper is organized as follows. In Section 2, we give a review of representations of 3-
Lie algebras, the differential graded Lie algebras associated to 3-Lie algebras and canonical
structures. In Section 3, we first explain the usual representations of a 3-Lie algebra using
canonical structures, then we introduce the notion of generalized representation of a 3-Lie
algebra. We show that a generalized representation of a 3-Lie algebra gives rise to a gen-
eralized semidirect product 3-Lie algebra. Various examples of generalized representations
are given. In Section 4, we provide the corresponding cohomology theory associated to gen-
eralized representations. Moreover, we study in detail 1-cocycles, 2-cocycles and provide
examples. Section 5 deals with abelian extensions of 3-Lie algebras. First, we show that a
split abelian extension is isomorphic to a generalized semidirect product. Unlike the case
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of Lie algebras, one cannot use cocycles to describe general abelian extensions of 3-Lie
algebras. Alternatively, we can use Maurer-Cartan elements to describe them.

2 3-Lie Algebras and Their Representations

In this paper, we work over an algebraically closed field K of characteristic 0 and all the
vector spaces are over K.

Definition 2.1 [11] A 3-Lie algebra is a vector space g together with a skew-symmetric
linear map [·, ·, ·] : ⊗3g → g such that the following Fundamental Identity (FI) holds:

Fx1,x2,x3,x4,x5

� [x1, x2, [x3, x4, x5]]−[[x1, x2, x3], x4, x5]−[x3, [x1, x2, x4], x5]−[x3, x4, [x1, x2, x5]]
= 0. (1)

Elements in ∧2g are called fundamental objects of the 3-Lie algebra (g, [·, ·, ·]). There
is a bilinear operation [·, ·]F on ∧2g, which is given by

[X,Y]F = [x1, x2, y1] ∧ y2 + y1 ∧ [x1, x2, y2], ∀X = x1 ∧ x2,Y = y1 ∧ y2. (2)

It is well-known that (∧2g, [·, ·]F) is a Leibniz algebra [7], which plays an important role in
the theory of 3-Lie algebras.

Definition 2.2 [16] A representation ρ of a 3-Lie algebra g on a vector space V is a linear
map ρ : ∧2g −→ End(V ),such that

ρ(x1, x2)ρ(x3, x4) = ρ([x1, x2, x3], x4) + ρ(x3, [x1, x2, x4]) + ρ(x3, x4)ρ(x1, x2),

ρ(x1, [x2, x3, x4]) = ρ(x3, x4)ρ(x1, x2) − ρ(x2, x4)ρ(x1, x3) + ρ(x2, x3)ρ(x1, x4).

It is straightforward to obtain

Lemma 2.3 Let g be a 3-Lie algebra, V a vector space and ρ : ∧2g → gl(V ) a skew-
symmetric linear map. Then (V ; ρ) is a representation of g if and only if there is a 3-Lie
algebra structure (called the semidirect product) on the direct sum of vector spaces g ⊕ V ,
defined by

[x1 +v1, x2 +v2, x3 +v3]ρ = [x1, x2, x3]+ρ(x1, x2)v3 +ρ(x3, x1)v2 +ρ(x2, x3)v1, (3)

for xi ∈ g, vi ∈ V, 1 ≤ i ≤ 3. We denote this semidirect product 3-Lie algebra by g�ρ V .

A p-cochain on g with coefficients in a representation (V ; ρ) is a linear map

α : ∧2g⊗ (p−1)· · · ⊗ ∧2 g ∧ g −→ V.
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Denote the space of p-cochains by Cp−1(g, V ). The coboundary operator δρ : Cp−1(g, V )

−→ Cp(g, V ) is given by

(δρα)(X1, · · · ,Xp, z)

=
∑

1≤j<k

(−1)jα(X1, · · · , X̂j , · · · ,Xk−1, [Xj ,Xk]F,Xk+1, · · · ,Xp, z)

+
p∑

j=1

(−1)jα(X1, · · · , X̂j , · · · ,Xp, [Xj , z])

+
p∑

j=1

(−1)j+1ρ(Xj )α(X1, · · · , X̂j , · · · ,Xp, z)

+(−1)p+1
(
ρ(yp, z)α(X1, · · · ,Xp−1, xp) + ρ(z, xp)α(X1, · · · ,Xp−1, yp)

)
, (4)

for all Xi = (xi, yi) ∈ ∧2g and z ∈ g. An element α ∈ Cp−1(g, V ) is called a p-cocycle
if δρα = 0; It is called a p-coboundary if there exists some β ∈ Cp−2(g, V ) such that α =
δρβ. Denote by Zp(g;V ) and Bp(g;V ) the set of p-cocycles and the set of p-coboundaries
respectively. Then the p-th cohomology group is

Hp(g; V ) = Zp(g;V )/Bp(g; V ). (5)

See [9] for more details about cohomology of n-Lie algebras.
In [21], the author constructed a graded Lie algebra structure by which one can describe

a n-Leibniz algebra structure as a canonical structure. Here, we give the precise formulas
for the 3-Lie algebra case.

Set Lp = Cp(g, g) = Hom(∧2g⊗ (p)· · · ⊗ ∧2 g ∧ g, g) and L = ⊕p≥0Lp . Let α ∈
Cp(g, g), β ∈ Cq(g, g), p, q ≥ 0. Let Xi = xi ∧ yi ∈ ∧2g for i = 1, 2, · · · , p + q and
x ∈ g. For each subset J = {j1, · · · , jq+1}j1<···<jq+1 ⊂ N � {1, 2, · · · , p + q + 1}, let
I = {i1, · · · , ip}i1<···<ip = N/J . Then we have

Theorem 2.4 [21] The graded vector spaceL equipped with the graded commutator bracket

[α, β]3Lie = (−1)pqα ◦ β − β ◦ α, (6)

is a graded Lie algebra and α ◦ β ∈ Lp+q is defined by

α ◦ β(X1, · · · ,Xp+q, x) =
∑

J,jq+1<p+q+1

(−1)(J,I )(−1)k

(
α(Xi1 , · · · ,Xik , β(Xj1 , · · · ,Xjq , xjq+1) ∧ yjq+1 ,Xik+1 , · · · , Xip−1 , x)

+α(Xi1 , · · · ,Xik , xjq+1 ∧ β(Xj1 , · · · ,Xjq , yjq+1),Xik+1 , · · · , Xip−1 , x)
)

+
∑

J,jq+1=p+q+1

(−1)(J,I )(−1)pα(Xi1 , · · · ,Xip , β(Xj1 , · · · ,Xjq , x)),

where k is uniquely determined by the condition ik < jq+1 < ik+1 and if jq+1 < i1, i.e.
jq+1 = q + 1, i1 = q + 2 then k = 0; if jq+1 > ip−1, i.e. jq+1 = p + q then k = p − 1.

We can use the graded Lie algebra structure (L, [·, ·]3Lie) to describe 3-Lie algebra
structures as well as coboundary operators.
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Lemma 2.5 The map π : ∧3g −→ g defines a 3-Lie bracket if and only if [π, π ]3Lie = 0,
i.e. π is a canonical structure.

Let g be a 3-Lie algebra. Given x1, x2 ∈ g, define ad : ∧2g −→ gl(g) by

adx1,x2y = [x1, x2, y].
Then, the map ad defines a representation of the 3-Lie algebra g on itself, which we call
adjoint representation of g. The coboundary operator associated to this representation is
denoted by δg.

Lemma 2.6 If π : ∧3g −→ g is a 3-Lie bracket, then we have

[π, α]3Lie = δg(α), ∀α ∈ Cp(g, g), p ≥ 0. (7)

3 Generalized Representations of 3-Lie Algebras

In this section, we introduce a concept of generalized representation of a 3-Lie algebra using
canonical structures. First, we show that a representation of a 3-Lie algebra will give rise to
a canonical structure.

Let ρ : ∧2g −→ gl(V ) be a linear map. Then, it induces a linear map ρ̄ : ∧3(g⊕V ) −→
g ⊕ V defined by

ρ̄(x+u, y+v, z+w) = ρ(x, y)(w)+ρ(y, z)(u)+ρ(z, x)(v), ∀x, y, z ∈ g, u, v, w ∈ V.

(8)
Consider the graded Lie algebra given in Theorem 2.4 associated to the vector space g⊕V .

Proposition 3.1 A linear map ρ : ∧2g −→ gl(V ) is a representation of the 3-Lie algebra
g on V if and only if π + ρ̄ is a canonical structure in the graded Lie algebra associated to
g ⊕ V , i.e.

[π + ρ̄, π + ρ̄]3Lie = 0.

Proof By Lemma 2.3, ρ : ∧2g −→ gl(V ) is a representation of g if and only if g ⊕ V is a
3-Lie algebra, where the 3-Lie bracket is exactly given by

[x + u, y + v, z + w]ρ = [x, y, z] + ρ(x, y)(w) + ρ(y, z)(u) + ρ(z, x)(v)

= (π + ρ̄)(x + u, y + v, z + w).

Thus, by Lemma 2.5, ρ : ∧2g −→ gl(V ) is a representation of g if and only if π + ρ̄ is a
canonical structure.

Now, we define a new concept of representation of a 3-Lie algebra, generalizing the usual
one. A so called generalized representation of a 3-Lie algebra involves two linear maps.

Definition 3.2 A generalized representation of a 3-Lie algebra g on a vector space V

consists of linear maps ρ : ∧2g −→ gl(V ) and ν : g −→ Hom(∧2V, V ) such that

[π + ρ̄ + ν̄, π + ρ̄ + ν̄]3Lie = 0, (9)

where ν̄ : ∧3(g ⊕ V ) −→ g ⊕ V is induced by ν via

ν̄(x+u, y+v, z+w) = ν(x)(v∧w)+ν(y)(w∧u)+ν(z)(u∧v), ∀x, y, z ∈ g, u, v, w ∈ V.
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We will refer to a generalized representation by a triple (V ; ρ, ν).

Remark 3.3 If ν = 0, then we recover the usual definition of a representation of a 3-Lie
algebra on a vector space (in the sense of Kasymov [16]). If the dimension of the vector
space V is 1, then ν must be zero. In this case, we only have the usual representation.

Given linear maps ρ : ∧2g −→ End(V ) and ν : g −→ Hom(∧2V, V ), define a trilinear
bracket operation on g ⊕ V by

[x + u, y + v, z + w](ρ,ν) = [x, y, z] + ρ(x, y)(w) + ρ(y, z)(u) + ρ(z, x)(v)

+ν(x)(v ∧ w) + ν(y)(w ∧ u) + ν(z)(u ∧ v). (10)

Theorem 3.4 Let (g, [·, ·, ·]) be a 3-Lie algebra and (V ; ρ, ν) a generalized representation
of g. Then (g ⊕ V, [·, ·, ·](ρ,ν)) is a 3-Lie algebra, where [·, ·, ·](ρ,ν) is given by Eq. 10.

We call the 3-Lie algebra (g ⊕ V, [·, ·, ·](ρ,ν)) the generalized semidirect product of g
and V .

Proof It follows from

[x + u, y + v, z + w](ρ,ν) = (π + ρ̄ + ν̄)(x + u, y + v, z + w)

and Lemma 2.5.

In the following, we give a characterization of a generalized representation of a 3-Lie
algebra.

Proposition 3.5 Linear maps ρ : ∧2g −→ End(V ) and ν : g −→ Hom(∧2V, V ) give rise
to a generalized representation of a 3-Lie algebra g on a vector space V if and only if for
all xi ∈ g, vj ∈ V , the following equalities hold:

ρ(x1, x2)ρ(x3, x4) = ρ([x1, x2, x3], x4)+ρ(x3, [x1, x2, x4]) + ρ(x3, x4)ρ(x1, x2),

(11)

ρ(x1, [x2, x3, x4]) = ρ(x3, x4)ρ(x1, x2)−ρ(x2, x4)ρ(x1, x3)+ρ(x2, x3)ρ(x1, x4),

(12)

ρ(x1, x2)(ν(x3)(v1, v2)) = ν([x1, x2, x3])(v1, v2) + ν(x3)(ρ(x1, x2)(v1), v2)

+ν(x3)(v1, ρ(x1, x2)(v2)), (13)

ν(x1)(v1, ρ(x2, x3)(v2)) = ν(x3)(v2, ρ(x2, x1)(v1)) + ν(x2)(ρ(x3, x1)(v1), v2)

+ρ(x2, x3)(ν(x1)(v1, v2)), (14)

ν(x1)(v1, ν(x2)(v2, v3)) = ν(x2)(ν(x1)(v1, v2), v3) + ν(x2)(v2, ν(x1)(v1, v3)), (15)

ν(x1)(ν(x2)(v1, v2), v3) = ν(x2)(ν(x1)(v1, v2), v3). (16)

Proof The triple (V ; ρ, ν) is a generalized representation if and only if [π + ρ̄ + ν̄, π +
ρ̄ + ν̄]3Lie = 0. By straightforward computations,

[π + ρ̄ + ν̄, π + ρ̄ + ν̄]3Lie(x1, x2, x3, x4, v) = 0

is equivalent to Eq. 11; And

[π + ρ̄ + ν̄, π + ρ̄ + ν̄]3Lie(x1, v, x2, x3, x4) = 0
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is equivalent to Eq. 12. Other identities can be proved similarly. The details are omited.

Remark 3.6 By Eqs. 11 and 12, the map ρ in a generalized representation (V ; ρ, ν)

gives rise to a usual representation in the sense of Definition 2.2. Conversely, for any
representation ρ, (V ; ρ, ν = 0) is a generalized representation.

Remark 3.7 Equation 13 may be written as ν([x1, x2, x3]) = [ρ(x1, x2), ν(x3)]NR, where
[·, ·]NR is the Nijenhuis-Richardson bracket on the graded vector space ⊕kHom(∧kV , V );
see [19] for more details about Nijenhuis-Richardson bracket.

Remark 3.8 One may obtain from previous conditions the following identity

ν([x1, x2, x3])(v1, v2) = ρ(x2, x3)(ν(x1)(v1, v2)) + ρ(x3, x1)(ν(x2)(v1, v2))

+ρ(x1, x2)(ν(x3)(v1, v2)). (17)

In the following, we provide a series of examples to illustrate the new concept of
generalized representation.

Example 3.9 Let g be an abelian 3-Lie algebra. Define ρ = 0, and ν = ξ ⊗π , where ξ ∈ g∗
and π ∈ Hom(∧2V ⊗ V ) is a Lie algebra structure on V . Then (V ; ρ, ν) is a generalized
representation. In fact, since g is abelian and ρ = 0, Eqs. 11–14 hold naturally. Since π

satisfies the Jacobi identity, Eqs. 15 and 16 also hold.

Example 3.10 Let g be the 3-dimensional 3-Lie algebra defined with respect to a basis
{x1, x2, x3} by the skew-symmetric bracket [x1, x2, x3] = x1.

Let V be a 2-dimensional vector space and {v1, v2} its basis. The following map ρ, given
with respect to bases by

ρ(x1, x2)(v1) = 0, ρ(x1, x2)(v2) = r1v1, ρ(x1, x3)(v1) = 0,

ρ(x1, x3)(v2) = r2v1, ρ(x2, x3)(v1) = r3v1, ρ(x2, x3)(v2) = r4v1 + (r3 − 1)v2,

where r1, · · · , r4 are parameters in K, defines a representation of g on V (in the usual sense,
Eqs. 11 and 12 are satisfied).

It defines together with a map ν a generalized representation of g on V in the following
cases.

1. ρ(x1, x2)(v1) = 0, ρ(x1, x2)(v2) = r1v1, ρ(x1, x3)(v1) = 0,

ρ(x1, x3)(v2) = r2v1, ρ(x2, x3)(v1) = v1, ρ(x2, x3)(v2) = r4v1,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1v1, ν(x3)(v1, v2) = s1r2
r1

v1,

2. ρ(x1, x2)(v1) = 0, ρ(x1, x2)(v2) = 0, ρ(x1, x3)(v1) = 0,

ρ(x1, x3)(v2) = r2v1, ρ(x2, x3)(v1) = v1, ρ(x2, x3)(v2) = r4v2,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = 0, ν(x3)(v1, v2) = s1v1,

3. ρ(x1, x2)(v1) = 0, ρ(x1, x2)(v2) = 0, ρ(x1, x3)(v1) = 0,

ρ(x1, x3)(v2) = 0, ρ(x2, x3)(v1) = 0, ρ(x2, x3)(v2) = r4v1 − v2,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = −s1r4v1 + s1v2, ν(x3)(v1, v2) = −s2r4v1 + s2v2,

4. ρ(x1, x2)(v1) = 0, ρ(x1, x2)(v2) = 0, ρ(x1, x3)(v1) = 0,

ρ(x1, x3)(v2) = 0, ρ(x2, x3)(v1) = v1, ρ(x2, x3)(v2) = r4v1,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1v1, ν(x3)(v1, v2) = s2v1,

where ri and sj are parameters in K.
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Example 3.11 We may also consider, for the previous 3-dimensional 3-Lie algebra, the
following map ρ which defines a representation of g on V (in the usual sense).

ρ(x1, x2)(v1) = r1r4v1 + r1v2, ρ(x1, x2)(v2) = −r1r
2
4 v1 − r1r4v2,

ρ(x1, x3)(v1) = r2r4v1 + r2v2,

ρ(x1, x3)(v2) = −r2r
2
4 v1 − r2r4v2, ρ(x2, x3)(v1) = r3v1,

ρ(x2, x3)(v2) = r4v1 + (1 + r3)v2.

It defines together with a map ν a generalized representation of g on V in the following cases.

1. ρ(x1, x2)(v1) = r1r4v1 + r1v2, ρ(x1, x2)(v2) = −r1r
2
4 v1 − r1r4v2,

ρ(x1, x3)(v1) = r2r4v1 + r2v2,

ρ(x1, x3)(v2) = −r2r
2
4 v1 − r2r4v2, ρ(x2, x3)(v1) = 0, ρ(x2, x3)(v2) = r4v1 + v2,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1r4v1 + s1v2, ν(x3)(v1, v2) = s1r2r4
r1

v1 + s1r2
r1

v2,

2. ρ(x1, x2)(v1) = 0, ρ(x1, x2)(v2) = 0, ρ(x1, x3)(v1) = r2r4v1 + r2v2,

ρ(x1, x3)(v2) = −r2r
2
4 v1 − r2r4v2, ρ(x2, x3)(v1) = 0, ρ(x2, x3)(v2) = r4v1 + v2,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = 0, ν(x3)(v1, v2) = r4s1v1 + s1v2,

3. ρ(x1, x2)(v1) = 0 ρ(x1, x2)(v2) = 0, ρ(x1, x3)(v1) = 0,

ρ(x1, x3)(v2) = 0, ρ(x2, x3)(v1) = 0, ρ(x2, x3)(v2) = r4v1 + v2,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1r4v1 + s1v2, ν(x3)(v1, v2) = s2r4v1 + s2v2,

4. ρ(x1, x2)(v1) = 0, ρ(x1, x2)(v2) = 0, ρ(x1, x3)(v1) = 0,

ρ(x1, x3)(v2) = 0, ρ(x2, x3)(v1) = −v1, ρ(x2, x3)(v2) = r4v1,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1v1, ν(x3)(v1, v2) = s2v1,

5. ρ(x1, x2)(v1) = 0, ρ(x1, x2)(v2) = 0, ρ(x1, x3)(v1) = r2v2,

ρ(x1, x3)(v2) = 0, ρ(x2, x3)(v1) = 0, ρ(x2, x3)(v2) = v2,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = 0, ν(x3)(v1, v2) = s1v2,

6. ρ(x1, x2)(v1) = r1v2, ρ(x1, x2)(v2) = 0, ρ(x1, x3)(v1) = 0,

ρ(x1, x3)(v2) = 0, ρ(x2, x3)(v1) = 0, ρ(x2, x3)(v2) = v2,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1v2, ν(x3)(v1, v2) = 0,

where ri and sj are parameters in K.

In the following, we consider generalized representations where the usual representation
vanishes.

Proposition 3.12 Let g be an n-dimensional 3-Lie algebra such that [g, g, g] = g (g is said
to be perfect). If the generalized representation (V ; ρ, ν) is such that ρ = 0 then ν = 0.

Proof It follows from condition (13).

Corollary 3.13 Let g be the 4-dimensional simple 3-Lie algebra defined with respect to a
basis {x1, x2, x3, x4} by the skew-symmetric brackets

[x1, x2, x3] = x4, [x1, x2, x4] = x3, [x1, x3, x4] = x2, [x2, x3, x4] = x1.

If a n-dimensional generalized representation (V ; ρ, ν) of g satisfies ρ = 0, then ν = 0.

Now, we show some examples where [g, g, g] 
= g.

Example 3.14 We provide for the 3-dimensional 3-Lie algebra, defined with respect to a
basis {x1, x2, x3} by the skew-symmetric bracket [x1, x2, x3] = x1, all the 2-dimensional
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generalized representations (V ; ρ, ν) with ρ = 0. Every generalized representation on a 2-
dimensional vector space V with a trivial ρ is given by one of the following maps ν defined,
with respect to a basis {v1, v2} of V , by

1. ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1v1 + s2v2, ν(x3)(v1, v2) = s3v1 + s2s3
s1

v2,

2. ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1v2, ν(x3)(v1, v2) = s2v2,

3. ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = 0, ν(x3)(v1, v2) = s1v1 + s2v2,

where s1, s2 are parameters in K.

Example 3.15 Let g be the 4-dimensional 3-Lie algebra defined, with respect to a basis
{x1, x2, x3, x4}, by the skew-symmetric brackets

[x1, x2, x4] = x3, [x1, x3, x4] = x2, [x2, x3, x4] = x1.

Every generalized representation (V ; ρ, ν), on a 2-dimensional vector space V with a trivial
ρ, of g is given by one of the following maps ν, defined with respect to a basis {v1, v2} of
V , by

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = 0, ν(x3)(v1, v2) = 0, ν(x4)(v1, v2) = s1v1 + s2v2,

where s1, s2 are parameters in K.

Example 3.16 Let g be the 4-dimensional 3-Lie algebra defined, with respect to a basis
{x1, x2, x3, x4}, by [x2, x3, x4] = x1. Every generalized representation (V ; ρ, ν), on a 2-
dimensional vector space V with trivial ρ, of g is given by one of the following maps ν

defined, with respect to a basis {v1, v2} of V , by

1. ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1v1 + s2v2,

ν(x3)(v1, v2) = s3v1 + s2s3
s1

v2, ν(x4)(v1, v2) = s4v1 + s2s4
s1

v2,

2. ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = 0,

ν(x3)(v1, v2) = s1v1 + s2v2, ν(x4)(v1, v2) = s3v1 + s2s4
s1

v2,

where s1, s2, s3, s4 are parameters in K.

Now, we characterize the notion of equivalent generalized representations of 3-Lie
algebras.

Definition 3.17 Let (V1; ρ1, ν1) and (V2; ρ2, ν2) be two generalized representations of a
3-Lie algebra (g, [·, ·, ·]). They are said to be equivalent if there exists an isomorphism of
vector spaces T : V1 −→ V2 such that

Tρ1(x, y)(u) = ρ2(x, y)(T u), T ν1(x)(u, v) = ν2(x)(T u, T v), ∀x, y ∈ g, u, v ∈ V1.

In terms of diagrams, we have

∧2g × V1

id×T

��

ρ1 �� V1

T

��
∧2g × V2

ρ2 �� V2

, g × ∧2V1

id×∧2T

��

ν1 �� V1

T

��
g × ∧2V2

ν2 �� V2.
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4 New Cohomology Complex of 3-Lie Algebras

Based on the generalized representations defined in the previous section, we introduce a
new type of cohomology for 3-Lie algebras.

Let (g, [·, ·, ·]) be a 3-Lie algebra and (V ; ρ, ν) a generalized representation of g. We set
C

p
>(g⊕V, V ) to be the set of (p+1)-cochains, which is defined as a subset of Cp(g⊕V, V )

such that

Cp(g ⊕ V, V ) = C
p
>(g ⊕ V, V ) ⊕ Cp(V, V ). (18)

Recall that Cp(g ⊕ V, V ) = {α : ∧2(g ⊕ V )⊗ (p times)· · · ⊗ ∧2 (g ⊕ V ) ∧ (g ⊕ V ) −→ V }.
By direct calculation, we have

[π + ρ̄ + ν̄, C•
>(g ⊕ V, V )]3Lie ⊆ C•+1

> (g ⊕ V, V ).

Define d : C
p
>(g ⊕ V, V ) −→ C

p+1
> (g ⊕ V, V ) by

d(α) := [π + ρ̄ + ν̄, α]3Lie, α ∈ C
p
>(g ⊕ V, V ). (19)

Theorem 4.1 Let (V ; ρ, ν) be a generalized representation of a 3-Lie algebra g. Then
d ◦ d = 0. Thus, we obtain a new cohomology complex, where the space of p-cochains is
given by C

p−1
> (g ⊕ V, V ).

Proof By the graded Jacobi identity, for any α ∈ C
p−1
> (g ⊕ V, V ), we have

d◦d(α) := [π + ρ̄ + ν̄, [π + ρ̄ + ν̄, α]3Lie]3Lie = 1

2
[[π + ρ̄ + ν̄, π + ρ̄ + ν̄]3Lie, α]3Lie = 0,

which finishes the proof.

An element α ∈ C
p−1
> (g ⊕ V, V ) is called a p-cocycle if d(α) = 0; It is called a p-

coboundary if there exists β ∈ C
p−2
> (g ⊕ V, V ) such that α = d(β). Denote by Zp(g;V )

and Bp(g;V ) the sets of p-cocycles and p-coboundaries respectively. By Theorem 4.1,
we have Bp(g; V ) ⊂ Zp(g;V ). We define the p-th cohomolgy group Hp(g;V ) to be
Zp(g;V )/Bp(g; V ).

A relationship between this new cohomology and the one given by Eq. 5, is stated in the
following result.

Proposition 4.2 There is a forgetful map fromHp(g;V ) to Hp(g; V ).

Proof It is obvious that Cp(g, V ) ⊆ C
p
>(g⊕V, V ). By direct calculation, for Xi ∈ ∧2g, z ∈

g, we have

d(α)(X1, · · · ,Xp+1, z) = δρ(α)(X1, · · · ,Xp+1, z), α ∈ Cp(g, V ),

where δρ is the coboundary operator given by Eq. 4. Thus, the natural projection from
C

p
>(g ⊕ V, V ) to Cp(g, V ) induces a forgetful map from Hp(g;V ) to Hp(g;V ).

In the sequel, we give some characterization of low dimensional cocycles.
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Proposition 4.3 A linear map α ∈ Hom(g, V ) is a 1-cocycle if only if for all x1, x2, x3 ∈
g, v ∈ V , the following identities hold:

ν(x1)(α(x2), v) − ν(x2)(α(x1), v) = 0,

α([x1, x2, x3]) − ρ(x1, x2)(α(x3)) − ρ(x2, x3)(α(x1)) − ρ(x3, x1)(α(x2)) = 0.

Proof For α ∈ Hom(g, V ), we have

d(α)(x1, x2, v) = ν(x1)(α(x2), v) − ν(x2)(α(x1), v),

and

d(α)(x1, x2, x3) = δρ(α)(x1, x2, x3)

= ρ(x1, x2)(α(x3))+ρ(x2, x3)(α(x1))+ρ(x3, x1)(α(x2))−α([x1, x2, x3]),
which finishes the proof.

Proposition 4.4 A 2-cochain α1 + α2 + α3 ∈ C1
>(g ⊕ V, V ), where α1 ∈ Hom(∧2V ∧

g, V ), α2 ∈ Hom(∧2g ∧ V, V ), α3 ∈ Hom(∧3g, V ), is a 2-cocycle if and only if for all
xi ∈ g, vj ∈ V and v ∈ V , the following identities hold:

0 = −ρ(x1, x2)(α3(x3, x4, x5)) − α3(x1, x2, [x3, x4, x5]) + ρ(x4, x5)(α3(x1, x2, x3))

+α3([x1, x2, x3], x4, x5) + ρ(x5, x3)(α3(x1, x2, x4)) + α3(x3, [x1, x2, x4], x5)

+ρ(x3, x4)(α3(x1, x2, x5)) + α3(x3, x4, [x1, x2, x5]), (20)

0 = ν(x4)(α3(x1, x2, x3), v) + ν(x3)(v, α3(x1, x2, x4)) + ρ(x1, x2)(α2(x3, x4, v))

−ρ(x3, x4)(α2(x1, x2, v)) − α2([x1, x2, x3], x4, v) − α2(x3, [x1, x2, x4], v), (21)

0 = ν(x1)(v, α3(x2, x3, x4)) + ρ(x3, x4)(α2(x1, x2, v)) − ρ(x2, x4)(α2(x1, x3, v))

+ρ(x2, x3)(α2(x1, x4, v)) + α2(x3, x4, ρ(x1, x2)(v)) − α2(x2, x4, ρ(x1, x3)(v))

+α2(x2, x3, ρ(x1, x4)(v)) − α2(x1, [x2, x3, x4], v), (22)

0 = ν(x3)(v2, α2(x1, x2, v1)) + ν(x3)(α2(x1, x2, v2), v1) + α2(x1, x2, ν(x3)(v1, v2))

+ρ(x1, x2)(α1(v1, v2, x3)) − α1(ρ(x1, x2)(v1), v2, x3) − α1(v1, ρ(x1, x2)(v2), x3)

−α1(v1, v2, [x1, x2, x3]), (23)

0 = ν(x3)(v2, α2(x2, x1, v1)) + ν(x2)(α2(x3, x1, v1), v2) − ν(x1)(v1, α2(x2, x3, v2))

+α2(x2, x3, ν(x1)(v1, v2)) + ρ(x2, x3)(α1(v1, v2, x1)) + α1(ρ(x1, x2)(v1), v2, x3)

−α1(v1, ρ(x2, x3)(v2), x1) + α1(v2, ρ(x1, x3)(v1), x2), (24)

0 = α2(x1, x3, ν(x2)(v1, v2)) − α2(x2, x3, ν(x1)(v1, v2)) − α2(x1, x2, ν(x3)(v1, v2))

+ρ(x1, x3)(α1(v1, v2, x2)) − ρ(x1, x2)(α1(v1, v2, x3)) − ρ(x2, x3)(α1(v1, v2, x1))

+α1(v1, v2, [x1, x2, x3]), (25)

0 = −ν(x2)(α1(v1, v2, x1), v3)−ν(x2)(v2, α1(v1, v3, x1)) + ν(x1)(v1, α1(v2, v3, x2))

−α1(ν(x1)(v1, v2), v3, x2)−α1(v2,ν(x1)(v1, v3), x2)+α1(v1, ν(x2)(v2,v3), x1),(26)

0 = ν(x2)(α1(v1, v2, x1), v3) − ν(x1)(v3, α1(v1, v2, x2)) + α1(ν(x1)(v1, v2), v3, x2)

−α1(ν(x2)(v1, v2), v3, x1). (27)



1426 J. Liu et al.

Proof For α3 ∈ Hom(∧3g, V ), we have

d(α3)(x1, x2, x3, x4, x5) = ρ(x1, x2)(ω(x3, x4, x5)) + ω(x1, x2, [x3, x4, x5])
−ρ(x4, x5)(ω(x1, x2, x3)) − ω([x1, x2, x3], x4, x5)

−ρ(x5, x3)(ω(x1, x2, x4)) − ω(x3, [x1, x2, x4], x5)

−ρ(x3, x4)(ω(x1, x2, x5)) − ω(x3, x4, [x1, x2, x5]),
d(α3)(x1, x2, x3, x4, v) = ν(x4)(α3(x1, x2, x3), v) + ν(x3)(v, α3(x1, x2, x4)),

d(α3)(x1, v, x2, x3, x4) = ν(x1)(v, α3(x2, x3, x4)).

For α2 ∈ Hom(∧2g ∧ V, V ), we have

d(α2)(x1, x2, x3, x4, v) = ρ(x1, x2)(α2(x3, x4, v)) − ρ(x3, x4)(α2(x1, x2, v))

−α2([x1, x2, x3], x4, v) − α2(x3, [x1, x2, x4], v),

d(α2)(x1, v, x2, x3, x4) = ρ(x3, x4)(α2(x1, x2, v)) − ρ(x2, x4)(α2(x1, x3, v))

+ρ(x2, x3)(α2(x1, x4, v)) + α2(x3, x4, ρ(x1, x2)(v))

−α2(x2, x4, ρ(x1, x3)(v)) + α2(x2, x3, ρ(x1, x4)(v))

−α2(x1, [x2, x3, x4], v),

d(α2)(x1, x2, v1, v2, x3) = ν(x3)(v2, α2(x1, x2, v1)) + ν(x3)(α2(x1, x2, v2), v1)

+α2(x1, x2, ν(x3)(v1, v2)),

d(α2)(x1, v1, x2, v2, x3) = ν(x3)(v2, α2(x2, x1, v1)) + ν(x2)(α2(x3, x1, v1), v2)

−ν(x1)(v1, α2(x2, x3, v2)) + α2(x2, x3, ν(x1)(v1, v2)),

d(α2)(v1, v2, x1, x2, x3) = α2(x1, x3, ν(x2)(v1, v2)) − α2(x2, x3, ν(x1)(v1, v2))

−α2(x1, x2, ν(x3)(v1, v2)).

For α1 ∈ Hom(∧2V ∧ g, V ), we have

d(α1)(x1, x2, v1, v2, x3) = ρ(x1, x2)(α1(v1, v2, x3)) − α1(ρ(x1, x2)(v1), v2, x3)

−α1(v1, ρ(x1, x2)(v2), x3) − α1(v1, v2, [x1, x2, x3]),
d(α1)(x1, v1, x2, v2, x3) = ρ(x2, x3)(α1(v1, v2, x1)) + α1(ρ(x1, x2)(v1), v2, x3)

−α1(v1, ρ(x2, x3)(v2), x1) + α1(v2, ρ(x1, x3)(v1), x2),

d(α1)(v1, v2, x1, x2, x3) = ρ(x1, x3)(α1(v1, v2, x2)) − ρ(x1, x2)(α1(v1, v2, x3))

−ρ(x2, x3)(α1(v1, v2, x1)) + α1(v1, v2, [x1, x2, x3]),
d(α1)(x1, v1, v2, v3, x2) = −ν(x2)(α1(v1, v2, x1), v3) − ν(x2)(v2, α1(v1, v3, x1))

+ν(x1)(v1, α1(v2, v3, x2)) − α1(ν(x1)(v1, v2), v3, x2)

−α1(v2, ν(x1)(v1, v3), x2) + α1(v1, ν(x2)(v2, v3), x1),

d(α1)(v1, v2, x1, x2, v3) = ν(x2)(α1(v1, v2, x1), v3) − ν(x1)(v3, α1(v1, v2, x2))

+α1(ν(x1)(v1, v2), v3, x2) − α1(ν(x2)(v1, v2), v3, x1).

Thus, d(α1 + α2 + α3) = 0 if and only if Eqs. 20–27 hold.

In the following we provide two examples of computation of 2-cocycles of the 3-
dimensional ternary algebra defined with respect to a basis {x1, x2, x3} by the bracket
[x1, x2, x3] = x1. We consider two different generalized representations on a 2-dimensional
vector space V , with basis {v1, v2}.
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Example 4.5 (Example 1) We consider the generalized representation (V , ρ, ν), where ρ

and ν are defined with respect to the basis by

ρ(x1, x2)(v1) = 0, ρ(x1, x2)(v2) = 0, ρ(x1, x3)(v1) = s1s2v1 + s1v2,

ρ(x1, x3)(v2) = −s1s
2
2v1 − s1s2v2, ρ(x2, x3)(v1) = 0, ρ(x2, x3)(v2) = s2v1 + v2,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = 0, ν(x3)(v1, v2) = s3s2v1 + s3v2,

with s1, s2, s3 parameters in K.
The 2-cocycles are given by α1 = 0, α3 = 0 and α2 defined as

α2(x1, x2, v1) = 0, α2(x1, x2, v2) = 0,

α2(x1, x3, v1) = s2p1v1 + p1v2, α2(x1, x3, v2) = −s2
2p1v1 − s2p1v2,

α2(x2, x3, v1) = s2p2v1 + p2v2, α2(x2, x3, v2) = −s2
2p2v1 − s2p2v2,

where p1, p2 are parameters in K.

Example 4.6 (Example 2) Now, we consider the generalized representation (V , ρ, ν), where
ρ is trivial and ν is given with respect to the basis by

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1v1 + s2v2, ν(x3)(v1, v2) = s3v1 + s2s3

s1
v2,

with s1, s2, s3 parameters in K.
The 2-cocycles are given by α1 = 0 and α2, α3 defined as

α2(x1, x2, v1) = −s1p2v1 − s2p2v2, α2(x1, x2, v2) = s1p1v1 + s2p1v2,

α2(x1, x3, v1) = −s3p2v1 − s2s3p2
s1

v2, α2(x1, x3, v2) = s3p1v1 + s2s3p1

s1
v2,

α2(x2, x3, v1) = p3v1 + s2p3
s1

v2, α2(x2, x3, v2) = p4v1 + s2p4

s1
v2,

α3(x1, x2, x3) = p1v1 + p2v2,

where p1, p2, p3, p4 are parameters in K.

5 Abelian Extensions of 3-Lie Algebras

In this section, first we study the split abelian extension of 3-Lie algebras, which is iso-
morphic to a generalized semidirect product 3-Lie algebra. This provides a good motivation
for the introduction of the generalized representation. Then, we study non-split abelian
extensions of 3-Lie algebras. Unlike the case of Lie algebras, they cannot be described by
2-cocycles. Finally, we describe non-split abelian extensions via Maurer-Cartan elements.

Consider an exact sequence of 3-Lie algebras:

0 �� V
i �� ĝ

p �� g �� 0 , (28)

then ĝ is said to be an abelian extension of the 3-Lie algebra g by V if V is abelian. A linear
map σ : g −→ ĝ is called a splitting of ĝ if it satisfies p ◦σ = idg. If there exists a splitting
which is also a homomorphism between 3-Lie algebras, we say that the abelian extension is
split.
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Let ĝ be a split abelian extension and σ : g −→ ĝ the corresponding splitting. Define
ρ : ∧2g −→ gl(V ) and ν : g −→ Hom(∧2V, V ) by

ρ(x, y)(u) = [σ(x), σ (y), u]ĝ,

ν(x)(u, v) = [σ(x), u, v]ĝ.

Then, we can transfer the 3-Lie algebra structure on ĝ to that on g⊕ V in terms of ρ and ν:

[x + u, y + v, z + w](ρ,ν) = [x, y, z] + ρ(x, y)(w) + ρ(y, z)(u) + ρ(z, x)(v)

+ν(x)(v ∧ w) + ν(y)(w ∧ u) + ν(z)(u ∧ v).

Note that the Fundamental Identity gives the character of ρ and ν. However, by Theorem 3.4,
it is straightforward to obtain the following proposition.

Proposition 5.1 Any split abelian extension of 3-Lie algebras is isomorphic to a general-
ized semidirect product 3-Lie algebra.

Now, for non-split abelian extensions, we can further define ω : ∧3g −→ V by

ω(x, y, z) = [σ(x), σ (y), σ (z)]ĝ − σ [x, y, z]g.

Then, we also transfer the 3-Lie algebra structure on ĝ to that on g⊕V in terms of ρ, ν and ω :

[x1+v1, x2+v2, x3+v3](ρ,ν,ω) = [x1, x2, x3]g+ρ(x1, x2)(v3)+ρ(x3, x1)(v2)+ρ(x2, x3)(v1)

+ν(x1)(v2, v3)+ν(x2)(v3, v1)+ν(x3)(v1, v2)+ω(x1, x2, x3).

The Fundamental Identity gives the character of ρ, ν and ω.

Theorem 5.2 With above notations, (g ⊕ V, [·, ·, ·](ρ,ν,ω)) is a 3-Lie algebra if and only if
for all x1, x2, x3, x4, x5 ∈ g and v, v1, v2, v3 ∈ V , Eqs. 13–16 and the following identities
hold:

0 = −ρ(x1, x2)(ω(x3, x4, x5)) − ω(x1, x2, [x3, x4, x5]) + ρ(x4, x5)(ω(x1, x2, x3))

+ω([x1, x2, x3], x4, x5) + ρ(x5, x3)(ω(x1, x2, x4)) + ω(x3, [x1, x2, x4], x5)

+ρ(x3, x4)(ω(x1, x2, x5)) + ω(x3, x4, [x1, x2, x5]), (29)

0 = ν(x1)(v, ω(x2, x3, x4)) + ρ([x2, x3, x4], x1)(v) + ρ(x3, x4)ρ(x1, x2)(v)

−ρ(x2, x4)ρ(x1, x3)(v) + ρ(x2, x3)ρ(x1, x4)(v), (30)

0 = ρ(x1, x2)ρ(x3, x4)(v) − ρ(x3, x4)ρ(x1, x2)(v) − ρ([x1, x2, x3], x4)(v)

−ν(x4)(v, ω(x1, x2, x3)) − ρ(x3, [x1, x2, x4])(v) + ν(x3)(v, ω(x1, x2, x4)). (31)

Proof The pair (g ⊕ V, [·, ·, ·](ρ,ν,ω)) defines a 3-Lie algebra if and only if for all e1, · · · ,

e5 ∈ g ⊕ V ,
Fe1,e2,e3,e4,e5 = 0.

By Fx1,x2,x3,x4,x5 = 0, we have

[x1, x2, [x3, x4, x5](ρ,ν,ω)](ρ,ν,ω) − [[x1, x2, x3](ρ,ν,ω), x4, x5](ρ,ν,ω)−[x3, [x1, x2, x4](ρ,ν,ω), x5](ρ,ν,ω)

−[x3, x4, [x1, x2, x5](ρ,ν,ω)](ρ,ν,ω) = 0,

which gives Eq. 29.
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Similarly, Fx1,v,x2,x3,x4 = 0 gives Eq. 30. Fx1,x2,v,x3,x4 = 0 gives Eq. 31. Fx1,x2,v1,v2,x3 =
0 gives Eq. 13. Fv1,x1,v2,x2,x3 = 0 gives Eq. 14. Fv1,x1,v2,v3,x2 = 0 gives Eq. 15.
Fv1,v2,v3,x1,x2 = 0 gives Eq. 16.

Conversely, if Eqs. 13–16 and Eqs. 29–31 hold, it is straightforward to see that for all
e1, · · · , e5 ∈ g ⊕ V , Fe1,e2,e3,e4,e5 = 0. Thus, (g ⊕ V, [·, ·, ·](ρ,ν,ω)) is a 3-Lie algebra.

Remark 5.3 For an abelian extension of 3-Lie algebras, we have seen that (V ; ρ, ν) is not a
generalized representation, but the failure is controlled by ω. This is totally different from
the case of Lie algebras. For Lie algebras, abelian extension will give us a representation and
a 2-cocycle. Only when we consider nonabelian extensions of Lie algebras [12], the phe-
nomenon that ρ is not a representation will occur. But now, even for abelian extension of
3-Lie algebras, this phenomenon has already occurred.

Example 5.4 Let g be the 3-dimensional 3-Lie algebra defined, with respect to a basis
{x1, x2, x3}, by the skew-symmetric bracket [x1, x2, x3] = x1.

Let V be a 2-dimensional vector space and {v1, v2} its basis. The following maps ρ, ν

and ω define an abelian extension of the 3-Lie algebra g on V (according to Theorem 5.2).

ρ(x1, x2)(v1) = r1v1 + s2r1

s1
v2, ρ(x1, x2)(v2) = s1r2

s2
v1 + r2v2,

ρ(x1, x3)(v1) = s3r1

s1
v1 + s2s3r1

s2
1

v2, ρ(x1, x3)(v2) = s3r2

s2
v1 + s3r2

s1
v2,

ρ(x2, x3)(v1) = s2r1r3

s1r2
v1 + s2

2r1r3

s2
1r2

v2, ρ(x2, x3)(v2) = r3v1 + s2r3

s1
v2,

ν(x1)(v1, v2) = 0, ν(x2)(v1, v2) = s1v1 + s2v2, ν(x3)(v1, v2) = s3v1 + s2s3

s1
v2,

ω(x1, x2, x3) = r2

s2
v1 − r1

s1
v2,

where ri and sj are parameters in K.
Notice that the map ρ is not a representation in the usual sense (identities Eqs. 11 and 12

are not satisfied). It becomes a generalized representation if and only if r1 = r2 = 0.

Now, we describe non-split abelian extensions using Maurer-Cartan elements. The set
MC(L) of Maurer-Cartan elements of a DGLA (L, [·, ·], d) is defined by

MC(L) �
{
P ∈ L1 | dP + 1

2
[P, P ] = 0

}
.

Let (g, [·, ·, ·]g) be a 3-Lie algebra and V a vector space. Let g⊕ V be the 3-Lie algebra
direct sum of g and V , where the bracket is defined by [x+u, y+v, z+w] = [x, y, z]g. Then
there is a DGLA (C(g⊕V, g⊕V ), [·, ·, ·]3Lie, δ), where C(g⊕V, g⊕V ) = ⊕p≥0C

p(g⊕
V, g⊕V ) and δ is the coboundary operator for the 3-Lie algebra g⊕V with the coefficients
in the adjoint representation. It is not difficult to see that (C>(g ⊕ V, V ), [·, ·, ·]3Lie, δ) is a
sub-DGLA of (C(g⊕V, g⊕V ), [·, ·, ·]3Lie, δ), where C>(g⊕V, V ) = ⊕p≥0C

p
>(g⊕V, V )

is defined by Eq. 18.

Proposition 5.5 The following two statements are equivalent:

(a) (g ⊕ V, [·, ·, ·](ρ,ν,ω)) is a 3-Lie algebra, which is a non-split abelian extension of g
by V ;
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(b) ρ̄ + ν̄ + ω is a Maurer-Cartan element of the DGLA (C>(g ⊕ V, V ), [·, ·, ·]3Lie, δ).

Proof By Lemma 2.5, (g ⊕ V, [·, ·, ·](ρ,ν,ω)) is a 3-Lie algebra if and only if

[π + ρ̄ + ν̄ + ω, π + ρ̄ + ν̄ + ω]3Lie = 0,

which can be rewritten as

[π, ρ̄ + ν̄ + ω]3Lie + 1

2
[ρ̄ + ν̄ + ω, ρ̄ + ν̄ + ω]3Lie = 0.

Since [π, ρ̄ + ν̄ + ω]3Lie = δ(ρ̄ + ν̄ + ω), we have

δ(ρ̄ + ν̄ + ω) + 1

2
[ρ̄ + ν̄ + ω, ρ̄ + ν̄ + ω]3Lie = 0,

which means that ρ̄ + ν̄ + ω is a Maurer-Cartan element.
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