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1 Introduction and Main Results

This article deals with Gorenstein homological aspects of Morita rings with zero bimodule
homomorphisms and monomorphism categories. The class of Morita rings is a natural gen-
eralization on the one hand of triangular matrix rings and on the other hand it covers many
trivial extension rings [22]. In what follows, we first give some motivation and present the
main result in the paper.

For an abelian category A we denote byMorA the category of morphisms over A . The
monomorhism category MonA is by definition the full subcategory of MorA consisting
of all monomorphisms in A . If R is a ring and A is the category Mod-R of left R-modules,
then the category of monomorphisms Mon (Mod-R) can be considered as a full subcategory
of the module category Mod-T2(R), where T2(R) = (

R R
0 R

)
, since it is known that the mor-

phism category Mor (Mod-R) is equivalent to Mod-T2(R). Note that MonA is an extension
closed subcategory of the abelian category MorA and therefore is an exact category in the
sense of Quillen. Monomorphism categories appear quite naturally in various settings and
are omnipresent in representation theory. In fact, there are connections with classification
problems (Ringel, Schmidmeier [40–42], Xiong, Zhang, Zhang [45]), with weighted pro-
jective lines (Kussin, Lenzing, Meltzer [30]), and with aspects of Gorenstein homological
algebra (Beligiannis [10, 11], Zhang [48], Chen [17]). In a series of papers [31, 46, 47], the
Gorenstein-projective modules over the triangular matrix algebra

(
A N
0 B

)
were determined

under some conditions on the bimodule ANB . In the special case where A = N = B and
A is a Gorenstein Artin algebra, i.e. T2(A) = (

A A
0 A

)
, the authors in [31] showed that a

module over T2(A), i.e. a triple (X, Y, f ), is Gorenstein-projective if and only if (X, Y, f )

belongs to the monomorphism category Mon(mod-A) and the modules X, Y and Coker f
are Gorenstein-projective.

A natural extension of triangular matrix rings is the class of Morita rings. Recall that
Morita rings are 2 × 2 matrix rings associated to Morita contexts ([6, 21]). We refer to [33,
43] for the terminology of Morita rings, and to [25] for a thorough discussion of Morita rings
as well as examples and situations where Morita rings appear. A particular case of interest is
the Morita ring �(0,0) with entries the same associative unital ring R and bimodule homo-
morphisms zero. The reason is that there is a full embedding Mod-T2(R) → Mod-�(0,0).
The main problem considered in this paper is :

Problem Construct Gorenstein-projective modules over Morita rings with zero bimodule
homomorphisms.

The solution of this problem provides a link between monomorphism categories and
Morita rings (Section 2.3). This problem and the important role that monomorphism cat-
egories as well as Morita rings play in different contexts, provide a strong motivation for
studying these using homological and representation-theoretic tools. Our aim in this paper
is two-fold and can be summarized as follows :
(i) Solve the above problem and provide sufficient conditions for such rings to be

Gorenstein algebras.
(ii) Construct Gorenstein abelian categories from exact subcategories of the monomor-

phism category.

The organization and the main results of the paper are as follows. In Section 2 we collect
preliminary notions and results on Morita rings and monomorphism categories that will
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be useful throughout the paper and we fix notation. Moreover we introduce the double
morphism category of an abelian category and we define the monomorphism category in
this general setting. The rest of the paper is divided into two parts.

The first part consists of Sections 3 and 4. For an Artin algebra �, we denote by Gproj�
the category of all finitely generated Gorenstein-projective �-modules. Let �(0,0) =(

A ANB

BMA B

)
be a Morita ring which is an Artin algebra and has zero bimodule homomor-

phisms. In order to construct Gorenstein-projective modules over �(0,0), we need to assume
some natural conditions on the bimodules ANB and BMA, similar to the conditions con-
sidered by Zhang [47] in the triangular matrix case. We refer to these conditions as the
compatibility conditions on BMA and ANB (Section 3.1). These conditions have a nice
interpretation via finiteness of the projective dimension of the bimodules N and M (Corol-
lary 3.11). Our first main result is Theorem A (i), which provides a method to construct
Gorenstein-projective modules over Morita rings with zero bimodule homomorphisms. We
refer to Theorem 3.10 for the proof as well as its dual version. Moreover, we give sufficient
conditions for a Morita ring �(0,0) with zero bimodule homomorphisms to be a Gorenstein
Artin algebra. This constitutes our second main result and is Theorem A (ii), see Theo-
rem 4.13. Recall that Gorensteinness of an algebra � is determined by the finiteness of the
dimensions spli� and silp� (Section 4.2). Our second main result is closely related to the
property of the natural embeddings Mod-B −→ Mod-�(0,0) and Mod-A −→ Mod-�(0,0)
being homological. In this connection, we characterize the Morita rings such that the above
functors are homological embeddings (Proposition 4.1). Our main results in this part are
summarized in the following theorem.

Theorem A Let �(0,0) be a Morita ring which is an Artin algebra and has zero bimodule
homomorphisms.

(i) (Theorem 3.10 : Gorenstein-projectives) Assume that the bimodules BMA and ANB

satisfy the compatibility conditions (see 3.1) Let Z be a Gorenstein-projective B-
module with a monomorphism s : N ⊗B Z −→ X, for some A-module X, such that
Coker s lies in GprojA and there is a monomorphism t : M ⊗A Coker s −→ Y with
Coker t = Z and Y an B-module. We set πX , resp. πY , for the map M ⊗A X −→
Coker s, resp. N ⊗B Y −→ Coker t . Then the tuple :

(
X, Y, (IdM ⊗πX) ◦ t, (IdN ⊗πY ) ◦ s

) ∈ Gproj�(0,0)

(ii) (Theorem 4.13 : Gorenstein algebras) Assume that the following conditions hold :
(a) MA is projective and pd BM < ∞.
(b) NB is projective and pd AN < ∞.
(c) The functors ZA and ZB are homological embeddings.

If silpA < ∞ and silpB < ∞, then silp�(0,0) < ∞.

As an application of Theorem A (i), we construct Gorenstein-projective modules over
the Morita ring �(0,0) that lie in the monomorphism category mono(�) (Corollary 3.6).
Also, from Theorem A (ii) we get examples of Morita rings which are Gorenstein algebras
(Corollary 4.15).

In the second part, which is Section 5, we study the subcategory C ofmono(�), where�

is an Artin algebra, consisting of all monomorphisms f : X −→ Y such that the projective
dimension of X is finite. Our third main result is Theorem B (i) where assuming that � is
Gorenstein we show that C is a Gorenstein subcategory ofmono(�), see Definition 5.2 and
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Theorem 5.3. Moreover, inspired by recent work of Matsui and Takahashi [32] we consider
the category of coherent functors mod-C over the stable category C of C . Also, we define
the subcategory �n(C ) of C consisting of all nth syzygies of objects in C (Section 5.2). In
this context, the fourth main result of this paper is Theorem B (ii), see Corollary 5.8, which
shows that the category of coherent functors over C is a Gorenstein abelian category in the
sense of [12]. Finally, using a result of Beligiannis [8] we realize the singularity category
[32] of mod-C as the stable category of Cohen-Macaulay objects over mod-C .

Theorem B (Gorenstein categories) Let � be an n-Gorenstein Artin algebra.

(i) (Theorem 5.3) The category C = {(X, Y, f, 0) ∈ mono(�) | pd�X < ∞} is an
n-Gorenstein subcategory of mono(�).

(ii) (Corollary 5.8) For the category of coherent functors over C and �n(C ) the following
statements hold :
(a) mod-C is a 3n-Gorenstein abelian category.
(b) mod-�n(C ) is a Frobenius abelian category.

Moreover, there are the following triangle equivalences :

Statement (ii) above is a consequence of Theorem 5.6 which provides sufficient con-
ditions on a subcategory B of an exact category A with enough projectives such that
mod-B is a Gorenstein abelian category. It should be noted that this result generalizes, and
is inspired by, a result of Matsui and Takahashi [32].

Conventions and Notation We compose morphisms in a given category in a diagram-
matic order. Our subcategories are assumed to be closed under isomorphisms and direct
summands. For a ring R we usually work with left R-modules and the corresponding cat-
egory is denoted by Mod-R. By a module over an Artin algebra �, we mean a finitely
generated left �-module and we denote by mod-� the category of finitely generated left
�-modules. In this paper, for simplicity we work over Artin algebras. All Morita rings in
Sections 3, 4 and 5 are Artin algebras. For all unexplained notions and results concerning
the representation theory of Artin algebras we refer to [5].

2 Morita Rings and Monomorphism Categories

In this section we fix notation and we collect several preliminary results on Morita rings
and monomorphism categories that will be used throughout the paper.

2.1 Morita Rings

Let A and B be two rings, ANB an A-B-bimodule, BMA a B-A-bimodule, and φ : M ⊗A

N −→ B a B-B-bimodule homomorphism, and ψ : N ⊗B M −→ A an A-A-bimodule
homomorphism. Then from the Morita context M = (A, N, M, B, φ, ψ) we define the
Morita ring :

�(φ,ψ) =
(

A ANB

BMA B

)
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where the addition of elements of �(φ,ψ) is componentwise and multiplication is given by

(
a n

m b

)
·
(

a′ n′
m′ b′

)
=

(
aa′ + ψ(n ⊗ m′) an′ + nb′

ma′ + bm′ bb′ + φ(m ⊗ n′)

)

We assume that φ(m⊗n)m′ = mψ(n⊗m′) and nφ(m⊗n′) = ψ(n⊗m)n′ for allm, m′ ∈ M

and n, n′ ∈ N . This condition ensures that �(φ,ψ) is an associative ring.
The description of the modules over a Morita ring �(φ,ψ) is well known, see for instance

[24], but for completeness and due to our needs we also include it here. We introduce the
following category.

Let M(�) be the category whose objects are tuples (X, Y, f, g) where X ∈ Mod-A,
Y ∈ Mod-B, f ∈ HomB(M ⊗A X, Y ) and g ∈ HomA(N ⊗B Y,X) such that the following
diagrams are commutative :

(2.1)

We denote by �X and 	Y the following compositions :

Let (X, Y, f, g) and (X′, Y ′, f ′, g′) be objects of M(�). Then a morphism
(X, Y, f, g) −→ (X′, Y ′, f ′, g′) in M(�) is a pair of homomorphisms (a, b), where
a : X −→ X′ is an A-morphism and b : Y −→ Y ′ is a B-morphism, such that the following
diagrams are commutative :

The relationship between Mod-�(φ,ψ) and M(�) is given via the functor F : M(�) −→
Mod-�(φ,ψ) which is defined on objects (X, Y, f, g) ofM(�) as follows : F(X, Y, f, g) =
X ⊕ Y as abelian groups, with a �(φ,ψ)-module structure given by

(
a n
m b

)
(x, y) = (ax +

g(n ⊗ y), by + f (m ⊗ x)), for all a ∈ A, b ∈ B, n ∈ N,m ∈ M,x ∈ X and y ∈
Y . If (a, b) : (X, Y, f, g) −→ (X′, Y ′, f ′, g′) is a morphism in M(�) then F(a, b) =(

a 0
0 b

) : X ⊕Y −→ X′ ⊕Y ′. Then the functor F turns out to be an equivalence of categories,
see [24, Theorem 1.5]. From now on we identify the modules over �(φ,ψ) with the objects
ofM(�).

Throughout the paper we deal mainly with Morita rings which are Artin algebras. Then
it is easy to observe that, see [25, Proposition 2.2], a Morita ring �(φ,ψ) is an Artin algebra
if and only if there is a commutative artin ring R such that A and B are Artin R-algebras
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and M and N are finitely generated over R which acts centrally both on M and N . We
summarize in the next remark some properties of Mod-�(φ,ψ) that we need in the sequel.
We refer to [35, Chapter 3] for a thorough discussion on the abelian structure of Morita
rings in a more general setting.

Remark 2.1 Let �(φ,ψ) = (
A ANB

BMA B

)
be a Morita ring.

(i) A sequence of tuples 0 −→ (X1, Y1, f1, g1) −→ (X2, Y2, f2, g2) −→
(X3, Y3, f3, g3) −→ 0 is exact in Mod-�(φ,ψ) if and only if the sequences 0 −→
X1 −→ X2 −→ X3 −→ 0 and 0 −→ Y1 −→ Y2 −→ Y3 −→ 0 are exact in Mod-A
and Mod-B respectively.

(ii) Let (a, b) : (X, Y, f, g) −→ (X′, Y ′, f ′, g′) be a morphism in Mod-�(φ,ψ) and con-
sider the maps c : Ker a −→ X and d : Ker b −→ Y . Then the kernel of (a, b) is
the object (Ker a,Ker b, h, j) where the maps h and j are induced from the following
commutative diagrams :

(2.2)
Similarly, we derive a description for the cokernel of the morphism (a, b).

As in [25] we define the following functors :
(i) The functor TA : Mod-A −→ Mod-�(φ,ψ) is defined by TA(X) = (X,M ⊗A

X, IdM⊗X,�X) on the objects X ∈ Mod-A and given an A-morphism a : X −→ X′
then TA(a) = (a, IdM ⊗a).

(ii) The functor UA : Mod-�(φ,ψ) −→ Mod-A is defined by UA(X, Y, f, g) = X on the
objects (X, Y, f, g) ∈ Mod-�(φ,ψ) and given a morphism (a, b) : (X, Y, f, g) −→
(X′, Y ′, f ′, g′) in Mod-�(φ,ψ) then UA(a, b) = a.

(iii) The functor TB : Mod-B −→ Mod-�(φ,ψ) is defined by TB(Y ) = (N ⊗B

Y, Y,	Y , IdN⊗Y ) on the objects Y ∈ Mod-B and given a B-morphism b : Y −→ Y ′
then TB(b) = (IdN ⊗b, b).

(iv) The functor UB : Mod-�(φ,ψ) −→ Mod-B is defined by UB(X, Y, f, g) = Y on the
�(φ,ψ)-modules (X, Y, f, g) and given a �(φ,ψ)-morphism (a, b) : (X, Y, f, g) −→
(X′, Y ′, f ′, g′) then UB(a, b) = b.

(v) The functor HA : Mod-A −→ Mod-�(φ,ψ) is defined by HA(X) =
(X,HomA(N,X), δ′

M⊗X ◦HomA(N,�X), ε′
X) on the objects X ∈ Mod-A and given

an A-morphism a : X −→ X′ then HA(a) = (a,HomA(N, a)).
(vi) The functor HB : Mod-B −→ Mod-�(φ,ψ) is defined by HB(Y ) =

(HomB(M, Y ), Y, εY , δN⊗Y ◦ HomB(M,	Y )) on the objects Y ∈ Mod-B and given
a B-morphism b : Y −→ Y ′ then HB(b) = (HomB(M, b), b).

(vii) Suppose that φ = 0 = ψ . Then we define the functor ZA : Mod-A −→ Mod-�(0,0)
by ZA(X) = (X, 0, 0, 0) on the objects X ∈ Mod-A and if a : X −→ X′ is an
A-morphism then ZA(a) = (a, 0). Dually we define the functor ZB : Mod-B −→
Mod-�(0,0).

When a Morita ring is an Artin algebra we have the following description of the
indecomposable projective and injective modules.
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Proposition 2.2 [25, Propositions 3.1 and 3.2] Let �(φ,ψ) be a Morita ring. Then the
indecomposable projective �(φ,ψ)-modules are objects of the form :

⎧
⎨

⎩

TA(P ) = (P,M ⊗A P , IdM⊗AP ,�P )

TB(Q) = (N ⊗B Q,Q,	Q, IdN⊗BQ)

where P is an indecomposable projective A-module and Q is an indecomposable projective
B-module. Also, the indecomposable injective �(φ,ψ)-modules are objects of the form :

⎧
⎨

⎩

HA(I) = (I,HomA(N, I), δ′
M⊗I ◦ HomA(N,�I ), ε

′
I )

HB(J ) = (HomB(M, J ), J, εJ , δN⊗J ◦ HomB(M,	J ))

where I is an indecomposable injective A-module and J is an indecomposable injective
B-module.

We continue now with examples of Morita rings which will be used in the sequel.

Example 2.3 (i) Let R be a ring with an idempotent element e. Then, from the Pierce
decomposition of R with respect to the idempotents e and f = 1R − e, it follows
that R is the Morita ring with A = eRe, B = f Rf , N = eRf , M = f Re and the
bimodule homomorphisms φ, ψ are induced by the multiplication in R.

(ii) Any pair (A, PA), where A is a ring and PA is a right A-module, induces a Morita
ring as follows :

�(φ,ψ) =
(

A HomA(P,A)

P EndA(P )

)

with bimodule homomorphisms φ : P ⊗A HomA(P,A) −→ EndA(P ), p ⊗ f 	→
φ(p ⊗ f )(p′) = pf (p′) and ψ : HomA(P,A)⊗EndA(P ) P −→ A, f ⊗p 	→ ψ(f ⊗
p) = f (p). It is well known that if the A-module P is a progenerator, then the rings
A and EndA(P ) are Morita equivalent.

(iii) Let �(0,0) = (
A ANB

BMA B

)
be a Morita ring with φ and ψ zero. Then we have an

isomorphism of rings between �(0,0) and (A×B)�M ⊕N , where (A×B)�M ⊕N

is the trivial extension ring of A × B by the (A × B)-(A × B)-bimodule M ⊕ N .
For the notion of trivial extension of rings and for the above isomorphism we refer to
[22], see also [25, Proposition 2.5].

(iv) Suppose that we have the following Morita ring :

�(φ,ψ) =
(

A A

A A

)

where every entry is a ring A. Then, it follows from the associativity of the multipli-
cation that φ = ψ , see [25, Corollary 2.13] for more details. A special case is when
φ = 0, that is �(0,0) := (

� �
� �

) ∼= (� × �) � � ⊕ �. In the next subsection we
analyze the module category of �(0,0) via recollements of abelian categories.

We close this subsection with the next result, which shows that always aMorita ring gives
rise to a recollement situation. This provides a way to relate the module category of aMorita
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ring with the module categories of its underlying rings. For the proof see [25, Proposition
2.4] and for more details on recollements of abelian categories we refer to [23, 36].

Proposition 2.4 Let �(φ,ψ) be a Morita ring. Then the following diagrams :

are recollements of abelian categories, that is :

(i) (TA,UA,HA) is an adjoint triple. (i) (TB,UB,HB) is an adjoint triple.

(ii) T he f unctors TA and HA are f ully f aithf ul. (ii) T he f unctors TB and HB are

f ully f aithf ul.

(iii) Ker UA = Mod-B/ Imφ. (iii) Ker UB = Mod-A/ Imψ.

In particular, if φ = 0 = ψ then we have the following recollements of module
categories :

Our aim next is to analyze the recollement of the module category of the Morita ring
�(0,0) = (

R R
R R

)
, where R is a unital associative ring. For this reason, we introduce in the

next subsection the double morphism category of an abelian category. This construction can
be considered as an abstract model for the category of modules over �(0,0).

2.2 The Double Morphism Category

Let A be an abelian category. The double morphism category of A , denoted by DMor(A ),
has as objects diagrams of the form :

where f and g are morphisms in A such that f ◦g = 0 and g◦f = 0. We simply denote the
objects as tuples (X, Y, f, g). A morphism (X, Y, f, g) −→ (X′, Y ′, f ′, g′) in DMor(A )
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is a pair (a, b) of morphisms in A , where a : X −→ X′ and b : Y −→ Y ′, such that the
following diagram commutes :

that is, g ◦ a = b ◦ g′ and f ◦ b = a ◦ f ′. We show that the double morphism category
DMor(A ) is an abelian category and that there is a recollement which relates DMor(A )

and A . In order to give an abelian structure on DMor(A ), we provide another description
of DMor(A ). In particular, we show that there is an equivalence of categories between
DMor(A ) and (A × A )�H , where (A × A )�H is the trivial extension of A × A by
an endofunctor H , see Fossum-Griffith-Reiten [22].

We define the functor H : A × A −→ A × A , H(X, Y ) = (Y,X), and given a
morphism (a, b) : (X, Y ) −→ (X′, Y ′) then H(a, b) = (b, a). Then we can define the
trivial extension (A ×A )�H , where the objects are morphisms α : H(X, Y ) −→ (X, Y )

such that H(α)◦α = 0, and if α : H(X, Y ) −→ (X, Y ) and β : H(X′, Y ′) −→ (X′, Y ′) are
two objects in (A ×A )�H , then a morphism between the objects α and β is a morphism
γ : (X, Y ) −→ (X′, Y ′) such that the diagram

is commutative, where α = (a1, a2), β = (b1, b2) and γ = (c1, c2). Since the endofunctor
H is (right) exact, it follows from [22] that the trivial extension (A ×B)�H is an abelian
category.

Proposition 2.5 Let A be an abelian category.

(i) There is an equivalence of categories between DMor(A ) and (A × A ) � H . In
particular, the double morphism category DMor(A ) is abelian.

(ii) There is a recollement of abelian categories :

(2.3)

Proof (i) Let (X, Y, f, g) be an object of DMor(A ). We define the functor
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and given a morphism (a, b) : (X, Y, f, g) −→ (X′, Y ′, f ′, g′) in DMor(A ) then
F(a, b) = H(a, b). The functor F is well defined since the following composition

is zero, i.e. the object F(X, Y, f, g) lies in (A × A ) � H . It is clear that the functor F is
faithful. Let

be a morphism in (A × A ) � H . Then the following commutative diagram

implies that (a, b) : (X, Y, f, g) −→ (X′, Y ′, f ′, g′) is a morphism in DMor(A ) and
F(a, b) = H(a, b). Thus the functor F is full. Finally, if (a1, a2) : H(X, Y ) −→ (X, Y )

is an object of (A × A ) � H , then since H(a1, a2) ◦ (a1, a2) = 0 we infer that
(X, Y, a2, a1) ∈ DMor(A ) such that F(X, Y, a2, a1) = (a1, a2). This shows that the func-
tor F is essentially surjective. Hence, the categories DMor(A ) and (A × A ) � H are
equivalent and therefore the double morphism category DMor(A ) is abelian.

(ii) The functors appearing in diagram (2.3) were defined in Section 2.1 for the mod-
ule category of a Morita ring. In this case, if A is an object in A then TA (A) =
(A,A, IdA, 0), HA (A) = (A,A, 0, IdA) and for a tuple (X, Y, f, g) in DMor(A ) we
have UA (X, Y, f, g) = X. Similarly with Section 2.1, we get a description of these
functors on morphisms. Then, it is easy to check that (TA ,UA ,HA ) is an adjoint triple
with TA (equivalently, HA ) fully faithful and the kernel of UA is equivalent with A ,
see also Proposition 2.4. We infer that (A ,DMor(A ),A ) is a recollement of abelian
categories.

In the following remark we collect some properties of the recollement diagram (2.3).

Remark 2.6 Let DMor(A ) be the double morphism category of an abelian category A .

(i) The functors TA : A −→ DMor(A ) and HA : A −→ DMor(A ) are exact. Thus,
the recollement (2.3) of DMor(A ) has the property that the left and right adjoint of the
quotient functor UA : DMor(A ) −→ A are exact. In general, this property doesn’t
hold in a recollement situation.

(ii) Let (X, Y, f, g) be an object inDMor(A ). Then the tuple (Y,X, g, f ) is also an object
in DMor(A ) since the composition of morphisms is still zero. This gives a functor
F : DMor(A ) −→ DMor(A ), F(X, Y, f, g) = (Y,X, g, f ), which turns out to be
an auto-equivalence.

(iii) For an object (X, Y, f, g) in DMor(A ) we define the exact functor
U′

A : DMor(A ) −→ A given by U′
A (X, Y, f, g) = Y , and U′

A (a, b) = b for a
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morphism (a, b) in DMor(A ). It is easy to check that U′
A is the middle functor of

the adjoint triple (HA ,U′
A , TA ) and therefore we obtain a recollement of abelian

categories (A ,DMor(A ),A ). Then the following commutative diagram :

shows that there is a natural equivalence of functors between U′
A F and UA . Thus,

from [37, Definition 4.1, Lemma 4.2] we infer that the two recollements of DMor(A ),
i.e. the recollement (2.3) and the recollement (A ,DMor(A ),A ) given by U′

A ,
are equivalent. From now on, we fix the recollement diagram (2.3) for the double
morphism category DMor(A ).

Example 2.7 Let R be a ring and consider the Morita ring �(0,0) = (
R R
R R

)
, see Exam-

ple 2.3 (iv). From Section 2.1, the categoryMod-�(0,0) is equivalent to the double morphism
category DMor (Mod-R) of Mod-R. Then, from Proposition 2.5 (ii) we have the following
recollement :

(2.4)

For later use, we fix the above notation for the functors of the recollement of Mod-�(0,0).
In particular, and relative to Section 2.1 and Proposition 2.5, we have :
(i) The functor T1 : Mod-R −→ Mod-�(0,0) is given by T1(X) = (X,X, IdX, 0) on the

objectsX ∈ Mod-R and for anR-morphism a : X −→ X′ then T1(a) = (a, a). More-
over, the functor T1 is exact. Similarly, the functor T2 : Mod-R −→ Mod-�(0,0) is
given by T2(X) = (X,X, 0, IdX) on the objects X ∈ Mod-R and for an R-morphism
a : X −→ X′ then T2(a) = (a, a). Note that in this case T2 is precisely the functor
H1 appearing in the recollement (2.4).

(ii) The functor UA of Proposition 2.5 is now denoted by U1 : Mod-�(0,0) −→ Mod-R.
(iii) The functor Z2 : Mod-R −→ Mod-�(0,0), given by Z2(X) = (0, X, 0, 0) for X ∈

Mod-R, is the functor ZB defined in Section 2.1.
(vi) The cokernel functor Cok : Mod-�(0,0) −→ Mod-R is given by Cok(X, Y, f, g) =

Coker f on the objects (X, Y, f, g) ∈ Mod-�(0,0) and for a �(0,0)-morphism
(a, b) : (X, Y, f, g) −→ (X′, Y ′, f ′, g′) we have Cok(a, b) = c, where
c : Coker f −→ Coker f ′ is the induced morphism such that b ◦ π ′ = π ◦ c,
where π : Y −→ Coker f and π ′ : Y ′ −→ Coker f ′. This is the functor QA in
Proposition 2.5.

(v) The kernel functor Ker : Mod-�(0,0) −→ Mod-R is given by Ker(X, Y, f, g) =
Ker g on the objects (X, Y, f, g) of Mod-�(0,0) and for a �(0,0)-morphism
(a, b) : (X, Y, f, g) −→ (X′, Y ′, f ′, g′) we have Ker(a, b) = c, where
c is the restriction map of b to Ker g. This is the functor PA in
Proposition 2.5.
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2.3 Monomorphism Categories

LetA be an abelian category. We denote byMorA the category of morphisms ofA . Recall
that the objects of MorA are triples (X, Y, f ), where f : X −→ Y is a morphism in A ,
and given two objects (X, Y, f ) and (X′, Y ′, f ′) then a morphism is a pair (a, b) of maps
in A such that the following diagram commutes :

Since the morphism category MorA is a special case of a trivial extension of abelian cat-
egories [22], it follows that MorA is an abelian category. The monomorphism category
MonA of A , which is the full subcategory of MorA consisting of monomorphisms in A ,
is an extension closed additive subcategory of MorA . This implies that MonA is an exact
category in the sense of Quillen [39]. Given an additive category A , recall that a pair of
composable morphisms called exact, if f is the kernel of g and g is
the cokernel of f . Let E be a class of exact pairs which is closed under isomorphisms. A
pair (f, g) in E is called a conflation, while the map f is called an inflation and the map g is
called a deflation. Then the class E is an exact structure of A and (A ,E ) is called an exact
category, if a series of axioms are satisfied. We refer to [28, Appendix A], see also [16], for
the precise definition and for all the notions/results on exact categories needed in this paper
(Section 5).

We now return to the double morphism category. For an abelian category A ,
define the monomorphism categories of DMor(A ) as follows : Mono1(A ) =
{(X, Y, f, 0) | f : X −→ Y monomorphism in A } and Mono2(�) =
{(X, Y, 0, g) | g : Y −→ X monomorphism in A }. It is straightforward to show that the
monomorphism categories Mon(A ), Mono1(A ) and Mono2(A ) are equivalent as exact
categories.

From now on the monomorphism category of an abelian category A , denoted by
Mono(A ), is the categoryMono1(A ). Note that when A is exact, the monomorphism cate-
gory of A is the inflation category of A , that is, the morphisms of A which are inflations.
We continue to call this category the monomorphism category of A and we denote it by
Mono(A ) as well. The next result provides a description of the projective and injective
objects in Mono(A ). The proof follows similarly to [17, Lemma 2.1], so it is left to the
reader.

Lemma 2.8 Let A be an exact (abelian) category with enough projective and injective
objects. Then the monomorphism category Mono(A ) has enough projective and injective
objects, in particular :
(i) Proj(Mono(A )) = add{T1(P ) ⊕ Z2(Q) | P,Q ∈ ProjA }, and
(ii) Inj(Mono(A )) = add{T1(I ) ⊕ Z2(J ) | I, J ∈ InjA }.

Let � be an Artin algebra and consider the Morita ring �(0,0) as an Artin algebra. In this
case, the monomorphism category of � is the following full subcategory of mod-�(0,0), i.e.
of DMor(mod-�) :

mono(�) = {(X, Y, f, 0) | f : X −→ Y is a monomorphism} (2.5)
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In the next result we collect some useful properties of mono(�) that we need in the
sequel.

Lemma 2.9 Let � be an Artin algebra. Then the following statements hold.

(i) The monomorphism category mono(�) is an exact category which is closed under
kernels.

(ii) We have the adjoint triples (Cok, Z2,U2) and (U2, T1,U1) :

The above functors are exact and preserve projective objects, and Z2 and T1 are fully
faithful.

Proof (i) The monomorphism category mono(�) is exact, since it is an extension closed
subcategory of mod-�(0,0). Let (a, b) : (X, Y, f, 0) −→ (X′, Y ′, f ′, 0) be a morphism in
mod-�(0,0) with (X, Y, f, 0) and (X′, Y ′, f ′, 0) in mono(�). Consider the following exact
commutative diagram :

Since the composition f ◦ i is a monomorphism, it follows that the map h is a monomor-
phism. Then Ker(a, b) = (Ker a,Ker b, h, 0) lies in mono(�). We infer that mono(�) is
closed under kernels.

(ii) It is easy to check that the above functors form adjoint pairs, see Proposition 2.4 and
Example 2.7. Since Cok, Z2, U2 and T1 are left adjoint functors of exact functors it follows
that they preserve projective objects. The functor U1 preserves projectives by the descrip-
tion of proj(mono(�)) given in Lemma 2.8, see also Example 2.7. Moreover, it follows
easily from the definition that the functors Z2, U2, T1 and U1 are exact, and moreover that
Z2 and T1 are fully faithful, see again Example 2.7. It remains to show that the cokernel
functor Cok : mono(�) −→ mod-� is exact. Let (X1, Y1, f1, 0) −→ (X2, Y2, f2, 0) −→
(X3, Y3, f3, 0) be a conflation in mono(�). Then we have the following exact commutative
diagram :

where the maps f1, f2 and f3 are monomorphisms. From the Snake Lemma in the above
diagram, it follows that the functor Cok1 : mono(�) −→ mod-� is exact.
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3 Gorenstein-Projective Modules over Morita Rings

In this section we provide a method for constructing Gorenstein-projective modules over
Morita rings, which are Artin algebras and satisfy certain conditions, from Gorenstein-
projective modules of the underlying algebras. This section is divided into two subsections
and the main result is stated in the second subsection. We start by recalling the notion of
Gorenstein-projective modules and we also fix notation.

Let � be an Artin algebra. An acyclic complex of projective �-modules P• : · · · −→
P i−1 −→ P i −→ P i+1 −→ · · · is called totally acyclic, if the complex
Hom�(P•,�) is acyclic. Then, a �-module X is called Gorenstein-projective, if it is
of the form X = Coker (P −1 −→ P 0) for some totally acyclic complex P• of pro-
jective �-modules. We denote by Gproj� the full subcategory of mod-� consisting
of the finitely generated Gorenstein-projective �-modules. Moreover, we denote {X ∈
mod-� | Ext1�(Gproj�, X) = 0} by (Gproj�)⊥. Recall also from [10, 11], that an Artin
algebra � is said to be of finite Cohen-Macaulay type, if the category Gproj� is of finite
representation type, i.e. the set of isomorphism classes of indecomposable finitely generated
Gorenstein-projective modules is finite. Finally, for a �-module X we denote by addX the
full subcategory of mod-� consisting of all direct summands of finite direct sums of X.

3.1 Lifting Gorenstein-Projective Modules

From Proposition 2.4 it follows that the functors TA : mod-A −→ mod-�(φ,ψ) and
TB : mod-B −→ mod-�(φ,ψ) preserve projective modules. In this subsection we inves-
tigate when the functors TA and TB preserve Gorenstein-projective modules. The first
step towards this problem, is to examine when the above functors preserve totally acyclic
complexes. Under some conditions, this is achieved in the next result.

Proposition 3.1 Let �(φ,ψ) = (
A ANB

BMA B

)
be a Morita ring.

(i) Assume that the functor M ⊗A −: mod-A −→ mod-B sends acyclic complexes of
projective A-modules to acyclic complexes of B-modules and add AN ⊆ (GprojA)⊥.
Then a complex P• in mod-A is totally acyclic if and only if the complex TA(P•) is
totally acyclic in mod-�(φ,ψ).

(ii) Assume that the functor N ⊗B −: mod-B −→ mod-A sends acyclic complexes of
projective B-modules to acyclic complexes of A-modules and add BM ⊆ (GprojB)⊥.
Then a complex P• in mod-B is totally acyclic if and only if the complex TB(P•) is
totally acyclic in mod-�(φ,ψ).

Proof We prove only (i), the statement (ii) is dual. Assume that

is a totally acyclic complex of projectives inmod-A. Then, by the assumption on the functor
M ⊗A − and Remark 2.1 (ii), we obtain that the following complex :

is exact, where each TA(P i) lies in proj�(φ,ψ) by Proposition 2.4. We show now
that the complex Hom�(φ,ψ)

(TA(P•), (X, Y, f, g)) is acyclic for all (X, Y, f, g) in
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proj�(φ,ψ). In fact, from Proposition 2.2 (i) it is enough to consider only the complexes
Hom�(φ,ψ)

(TA(P•), TA(P )) and Hom�(φ,ψ)
(TA(P•), TB(Q)), where P lies in projA and Q

lies in projB. In the first case, the complex Hom�(φ,ψ)
(TA(P•), TA(P )) is acyclic since the

complex HomA(P•, P ) is acyclic and from Proposition 2.4 the functor TA is fully faithful.
Let Q be a projective B-module. Then, by using the adjoint pair (TA,UA), we have the
following commutative diagram :

Since N ⊗B Q is a direct sum of summands of N and add AN ⊆ (GprojA)⊥, it
follows that the complex HomA(P•, N ⊗B Q) is acyclic and therefore the complex
Hom�(φ,ψ)

(TA(P•), TB(Q)) is also acyclic. We infer that the complex TA(P•) is totally
acyclic.

Conversely, assume that P• is a complex ofA-modules such that TA(P•) is totally acyclic.
If we apply the functor UA to the complex TA(P•), we get that the complex P• : · · · −→
P −1 −→ P 0 −→ P 1 −→ · · · is acyclic. Note that since the functor TA is right exact
and fully faithful it follows that each P i lies in projA, see Proposition 2.4. Then, for every
projective A-module P , we derive as above that the complex HomA(P•, P ) is acyclic. We
remark that in this direction we did not make use of our assumptions.

We refer to the above conditions as the compatibility conditions on the bimodules ANB

and BMA.

Example 3.2 Let �(φ,ψ) = (
A ANB

BMA B

)
be a Morita ring.

(i) Assume that MA is projective as a right A-module and AN is projective as a left A-
module. Then the functor M ⊗A −: mod-A −→ mod-B is exact and the subcategory
add AN lies in (GprojA)⊥. Hence, from Proposition 3.1 (i) it follows that a complex
P• is totally acyclic in mod-A if and only if the complex TA(P•) is totally acyclic in
mod-�(φ,ψ). Similarly, if NB is projective as a right B-module and BM is projective
as a left B-module, then the statement of Proposition 3.1 (ii) holds. In particular, con-
sider the case of the Morita ring �(φ,φ) = (

� �
� �

)
, see Example 2.7. Then it follows

that a complex P• in mod-� is totally acyclic if and only if the complex T1(P•) is
totally acyclic in mod-�(φ,φ) if and only if the complex T2(P•) is totally acyclic in
mod-�(φ,φ).

(ii) Assume that pdMA < ∞ and pd AN < ∞ (or id AN < ∞). Then from [47, Propo-
sition 1.3], it follows that the functor M ⊗A −: mod-A −→ mod-B sends acyclic
complexes of projectiveA-modules to acyclic complexes ofB-modules and add AN ⊆
(GprojA)⊥. Hence, if �(φ,ψ) is a Morita ring which is an Artin algebra such that
pdMA < ∞ and pd AN < ∞ (or id AN < ∞), then from Proposition 3.1 (i) we
get that the functor TA preserves totally acyclic complexes. Dually, if we assume that
pdNB < ∞ and pd BM < ∞ (or id BM < ∞), then the conditions of Proposition 3.1
(ii) are satisfied and therefore the functor TB preserves totally acyclic complexes. Note
that this example generalizes the situation mentioned in (i).

As a consequence of Proposition 3.1 we have the following result, which provides suf-
ficient conditions such that the functors TA and TB lift Gorenstein-projective modules. In
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particular, we derive that Cohen-Macaulay finiteness of the Morita ring is inherited to the
underlying algebras as well.

Corollary 3.3 Let �(φ,ψ) be a Morita ring.

(i) Assume that the functor M ⊗A −: mod-A −→ mod-B sends acyclic complexes of
projective A-modules to acyclic complexes of B-modules and add AN ⊆ (GprojA)⊥.

(a) If X ∈ GprojA then TA(X) ∈ Gproj�(φ,ψ).
(b) If �(φ,ψ) is of finite Cohen-Macaulay type, then A is also of finite Cohen-

Macaulay type.

(ii) Assume that the functor N ⊗B −: mod-B −→ mod-A sends acyclic complexes of
projective B-modules to acyclic complexes of A-modules and add BM ⊆ (GprojB)⊥.

(a) If Y ∈ GprojB then TB(Y ) ∈ Gproj�(φ,ψ).
(b) If �(φ,ψ) is of finite Cohen-Macaulay type, then B is also of finite Cohen-

Macaulay type.

Now we turn our attention to the algebra �(φ,φ) = (
� �
� �

)
. We recall the following.

Proposition 3.4 Let � be an Artin algebra and let n ≥ 0 be a natural number.

(i) [25, Corollary 6.4] � is n-Gorenstein if and only if the Morita ring �(φ,φ) is
n-Gorenstein algebra.

(ii) [25, Corollary 6.6] Assume that � is Gorenstein. Then a �(φ,φ)-module (X, Y, f, g)

is Gorenstein-projective if and only if X and Y are Gorenstein-projective �-modules.

In the next result we show the one direction of Proposition 3.4 (ii) without assuming �

to be Gorenstein.

Lemma 3.5 Let � be an Artin algebra and let �(φ,φ) = (
� �
� �

)
. If (X, Y, f, g) is an object

in Gproj�(φ,φ) then the �-modules X and Y lie in Gproj�.

Proof Let (X, Y, f, g) be a Gorenstein-projective �(φ,φ)-module. Then from Proposi-
tion 2.2, there exists a totally acyclic complex of the following form :

where P i and Qi are projective �-modules. Then, if we apply the exact functor
U1 : mod-�(φ,φ) −→ mod-�, we get the exact sequence of projective �-modules :
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We claim that the above complex is totally acyclic. Let P be a projective �-module. Then
from Example 2.7, we have the following isomorphisms :

Hom�(P i ⊕ (� ⊗� Qi), P ) ∼= Hom�(φ,φ)

(
T1(P

i) ⊕ T2(Q
i),H1(P )

)

∼= Hom�(φ,φ)

(
T1(P

i) ⊕ T2(Q
i), T2(P )

)

Since the complex Hom�(φ,φ)
(T•, T2(P )) is acyclic, it follows from the above isomorphisms

that the complex Hom�(P•, P ) is also acyclic. We infer that the complex P• is totally
acyclic and therefore the �-module X is Gorenstein-projective. Similarly we show that Y

is a Gorenstein-projective �-module.

As a consequence of Corollary 3.3 and Lemma 3.5 we obtain the following. Note that if
� is Gorenstein, Proposition 3.4 (ii) gives a direct proof of the next result.

Corollary 3.6 Let � be an Artin algebra and let �(φ,φ) = (
� �
� �

)
. Then for a �-module X

the following statements are equivalent :
(i) X ∈ GprojA.
(i) T1(X) ∈ Gproj�(φ,φ).

(iii) T2(X) ∈ Gproj�(φ,φ).

In the special case where φ = 0, the Gorenstein-projective modules T1(X) lie in the
monomorphism category mono(�) as defined in Section 2.3. We close this subsection with
the next example.

Example 3.7 Let K be a field and R = K[[X1, X2]]/(X1X2). Consider the Morita ring
�(0,0) = (

R R
R R

)
. By [19, Example 4.1.5] the R-modules X1 and X2 are Gorenstein-

projective, where Xi is the residue class in R of Xi for i = 1, 2. Thus, from Corollary 3.6
and for i = 1, 2 it follows that the objects T1(Xi) = (Xi, Xi, IdXi

, 0) and T2(Xi) =
(Xi,Xi, 0, IdXi

) are Gorenstein-projective �(0,0)-modules.

3.2 Constructing Gorenstein-Projective Modules

Before we proceed to the main result of this subsection (Theorem 3.10), we need some
preparations.

Lemma 3.8 Let �(0,0) = (
A ANB

BMA B

)
be a Morita ring. Then for every A-module X and

B-module Y we have the following exact sequences in Mod-�(0,0) :



504 N. Gao, C. Psaroudakis

Proof Let X be an A-module. Then the map (IdX, 0) : TA(X) −→ ZA(X) is an epimor-
phism in the category Mod-�(0,0), where TA(X) = (X,M ⊗A X, IdM⊗AX, 0), ZA(X) =
(X, 0, 0, 0), and the kernel of the morphism (IdX, 0) is the object ZB(M ⊗AX) = (0,M ⊗A

X, 0, 0). We infer that the sequence 0 −→ ZB(M ⊗A X) −→ TA(X) −→ ZA(X) −→ 0 is
exact. In the same way we derive that the rest sequences are exact, the details are left to the
reader.

Lemma 3.9 Let �(0,0) be a Morita ring. Then for every X,X′ ∈ Mod-A and Y, Y ′ ∈
Mod-B, we have the following isomorphisms :

Hom�(0,0)

(
TA(X) ⊕ TB(Y ), ZA(X′)

) ∼= HomA(X,X′)

and

Hom�(0,0)

(
TA(X) ⊕ TB(Y ), ZB(Y ′)

) ∼= HomB(Y, Y ′)

Proof We show the first isomorphism. From Proposition 2.4, we have the adjoint pair
(QA, ZA) and from the recollement (Mod-A,Mod-�(0,0),Mod-B) it follows thatQATB = 0.
Then, we have the isomorphism

Hom�(0,0)

(
TA(X) ⊕ TB(Y ), ZA(X′)

) ∼= HomA

(
QATA(X),X′)

and it remains to compute the objectQATA(X). From the counit of the adjoint pair (TB,UB)

we have the following exact sequence in Mod-�(0,0) :

see Proposition 2.4, where TBUB(TA(X)) = (N ⊗B M ⊗A X, M ⊗A X, 0, IdN⊗M⊗X)

and ZAQA(TA(X)) ∼= Coker (0, IdM⊗X) ∼= ZA(X). This implies that QATA(X) ∼= X and
therefore we have the isomorphism Hom�(0,0) (TA(X) ⊕ TB(Y ), ZA(X′)) ∼= HomA(X,X′).
The second isomorphism follows similarly by using the adjoint pair (QB, ZB).

We are ready to prove the main result of this section which constructs Gorenstein-
projective modules over Morita rings �(0,0). This result constitutes the first part of Theorem
A presented in the Introduction.

Theorem 3.10 Let �(0,0) be a Morita ring such that the bimodules ANB and BMA satisfy
the compatibility conditions, that is, the following conditions hold :
(i) The functor M ⊗A −: mod-A −→ mod-B sends acyclic complexes of projective

A-modules to acyclic complexes of B-modules.
(ii) add AN ⊆ (GprojA)⊥.
(iii) The functor N ⊗B −: mod-B −→ mod-A sends acyclic complexes of projective

B-modules to acyclic complexes of A-modules.
(iv) add BM ⊆ (GprojB)⊥.

(α) Assume that there exists a Gorenstein-projective B-module Z with a monomorphism
s : N ⊗B Z −→ X, for some A-module X, such that Coker s lies in GprojA and there is a



Gorenstein Homological Aspects of Monomorphism 505

monomorphism t : M ⊗A Coker s −→ Y with Coker t = Z and for some B-module Y . Then
the tuple

(
X, Y, (IdM ⊗πX) ◦ t, (IdN ⊗πY ) ◦ s

)
(3.1)

is a Gorenstein-projective �(0,0)-module, where πX : X −→ Coker s and πY : Y −→
Coker t .
(β) Assume that there exists a Gorenstein-projective A-module Z with a monomorphism
t : M ⊗A Z −→ Y , for some B-module Y , such that Coker t lies in GprojB and there is a
monomorphism s : N ⊗B Coker t −→ X with Coker s = Z and for some A-module X. Then
the tuple

(
X, Y, (IdM ⊗πX) ◦ t, (IdN ⊗πY ) ◦ s

)
(3.2)

is a Gorenstein-projective �(0,0)-module, where πX : X −→ Coker s and πY : Y −→
Coker t .

Proof We prove (α), the statement (β) is dual. The proof for (α) is divided into four steps.
In the first two steps we construct (co)resolutions of X and Y by objects coming from the
totally acyclic complexes of Coker s and Z. Then in the third step we lift this (co)resolutions
to mod-�(0,0) and in the final step we show that this construction is indeed a totally acyclic
complex of the object (X, Y, (IdM ⊗πX) ◦ t, (IdN ⊗πY ) ◦ s).

Step 1 : Since the A-module Coker s is Gorenstein-projective, there exists a totally
acyclic complex of projective A-modules :

such that Ker d0
P = Coker s and let d−1

P = λ−1
P ◦ κ−1

P be the canonical factorization through
Coker s. Also, since the B-module Z is Gorenstein-projective there exists a totally acyclic
complex of projective B-modules :

such that Ker d0
Q = Z and let d−1

Q = λ−1
Q ◦ κ−1

Q be the canonical factorization through
Z. Then from the assumption (iii), it follows that the complex of A-modules N ⊗B Q• is
acyclic. Applying to the exact sequence :

the functor HomA(−, N ⊗B Q0), we get the exact sequence :

since Coker s ∈ GprojA and N ⊗B Q0 ∈ (GprojA)⊥ from the assumption (ii). This implies
that there is a map γ 0 : X −→ N ⊗B Q0 such that s ◦ γ 0 = IdN ⊗κ−1

Q and therefore we
obtain the map

α0 := (
πX◦κ−1

P γ 0
) : X −→ P 0 ⊕ (N ⊗B Q0)
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Then from the Horseshoe Lemma, see also [47, Lemma 1.6], we obtain the exact
commutative diagram :

where for all i ≥ 1 we have αi = ( di−1
P 0

γ i IdN ⊗di−1
Q

) : P i−1 ⊕ (N ⊗B Qi−1) −→ P i ⊕ (N ⊗B

Qi) and γ i : P i−1 −→ N ⊗B Qi . Note that the existence of the maps γ i follow by using the
assumption (ii). In the same way, we can construct a resolution of X by objects of the form
P i ⊕ (N ⊗B Qi) but now we use that the modules P −i , i ≥ 1, are projective. In particular,
we get the map

α−1 = ( γ −1

(IdN ⊗λ−1
Q )◦s

) : P −1 ⊕ (N ⊗B Q−1) −→ X

where γ −1 : P −1 −→ X such that γ −1◦πX = λ−1
P , and for every i ≥ 2 we have the maps :

α−i = ( d−i
P 0

γ −i IdN ⊗d−i
Q

) : P −i ⊕ (N ⊗B Q−i ) −→ P −i+1 ⊕ (N ⊗B Q−i+1)

similarly as described above. Thus, summarizing the construction so far, we have con-
structed the following exact sequence :
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Step 2 : We construct an exact sequence similar to (∗) for the B-module Y . Since
add BM ⊆ (GprojB)⊥ (assumption (iv)) we have as in Step 1 the following exact
commutative diagram :

where β0 := (
δ0 πY ◦κ−1

Q

) : Y −→ (M ⊗A P 0) ⊕ Q0 and for all i ≥ 1 we have :

βi = ( IdM ⊗di−1
P δi

0 di−1
Q

) : (M ⊗A P i−1) ⊕ Qi−1 −→ (M ⊗A P i) ⊕ Qi

for some δi : Qi−1 −→ M ⊗A P i . Then, as in Step 1 we construct a resolution of Y by
objects of the form (M ⊗A P i) ⊕ Qi and putting together these, we obtain the following
exact sequence :

Step 3 : We glue together the exact sequences (∗) and (∗∗) and we derive the following
sequence :
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We claim that the sequence T• is exact in mod-�(0,0). First, since the following diagrams
are commutative

it follows that the maps

(αi, βi) : TA(P i) ⊕ TB(Qi) −→ TA(P i+1) ⊕ TB(Qi+1)

are morphisms in mod-�(0,0). Since the complexes (∗) and (∗∗) are acyclic, it follows from
Remark 2.1 (i) that T• is an exact sequence in mod-�(0,0). Moreover, the object (X, Y, f, g)

arises as the kernel of the morphism (α1, β1) and by Remark 2.1 (ii) we observe that f =
(IdM ⊗πX) ◦ t and g = (IdN ⊗πY ) ◦ s.

Step 4 : The final step of the proof is devoted to show that the acyclic complex
T• is totally acyclic. From Proposition 2.2, it is enough to show that the complexes
Hom�(0,0) (T

•, TA(P )) and Hom�(0,0) (T
•, TB(Q)) are acyclic, where P is a projective A-

module and Q is a projective B-module. From Lemma 3.8 we have the exact sequence
0 −→ ZB(M ⊗A P ) −→ TA(P ) −→ ZA(P ) −→ 0 and since each term of the complex T•
is a projective �(0,0)-module, it follows that the following sequence :

(3.3)
is an exact sequence of complexes. Then, from Lemma 3.9 we have the isomorphism
Hom�(0,0) (T

•, ZA(P )) ∼= HomA(P•, P ) and since P• is totally acyclic we infer that
Hom�(0,0) (T

•, ZA(P )) is acyclic. Also, from Lemma 3.9 we have Hom�(0,0) (T
•, ZB(M ⊗A

P )) ∼= HomB(Q•,M ⊗A P ) and since M ⊗A P lies in (GprojB)⊥ by assumption
(iv), it follows that the complex HomB(Q•,M ⊗A P ) is acyclic. Then, the complex
Hom�(0,0) (T

•, ZB(M ⊗A P )) is acyclic and therefore from the exact sequence (3.3), we
infer that the complex Hom�(0,0) (T

•, TA(P )) is acyclic. Similarly, using the exact sequence
0 −→ ZA(N ⊗B Q) −→ TB(Q) −→ ZB(Q) −→ 0 we derive that the complex
Hom�(0,0) (T

•, TB(Q)) is acyclic.
In conclusion, the �(0,0)-module (X, Y, (IdM ⊗πX) ◦ t, (IdN ⊗πY ) ◦ s) is Gorenstein-

projective.

Corollary 3.11 Let �(0,0) be a Morita ring such that the conditions (1) or (3), and (2) or
(4) hold :

(1) pdMA < ∞ and pd AN < ∞.
(2) pdNB < ∞ and pd BM < ∞.

(3) pdMA < ∞ and id AN < ∞.
(4) pdNB < ∞ and id BM < ∞.

(α) Assume that for an A-module X there exists an exact sequence
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with Z ∈ GprojB and Coker s ∈ GprojA, such that there is an exact sequence

for someB-module Y . Then the objects : (X, Y, (IdM ⊗πX)◦t, (IdN ⊗πY )◦s), TA(Coker s),
TB(Z) are Gorenstein-projective �(0,0)-modules.

(β) Assume that for a B-module Y there exists an exact sequence

with Z ∈ GprojA and Coker t ∈ GprojB, such that there is an exact sequence

for some A-module X. Then the objects : (X, Y, (IdM ⊗πX) ◦ t, (IdN ⊗πY ) ◦ s), TA(Z),
TB(Coker t) are Gorenstein-projective �(0,0)-modules.

Proof From Example 3.2 the conditions (i) – (iv) of Theorem 3.10 are satisfied. Then the
result follows from Corollary 3.3 and Theorem 3.10.

The next result is a consequence of Theorem 3.10 for the Morita ring �(0,0). Recall that
mod-�(0,0) is the double morphism category DMor(mod-�) that we studied in Section 2.2.

Corollary 3.12 Let � be an Artin algebra and consider the algebra �(0,0) = (
� �
� �

)
. Let

(X, Y, f, g) be a �(0,0)-module such that there exist exact sequences

with Z,W ∈ Gproj� and set f := πX ◦ t , g := πY ◦ s. Then the objects (X, Y, f, g) and
(Y, X, g, f ) are Gorenstein-projective �(0,0)-modules.

Remark 3.13 Let (X, Y, f, g) be a �(0,0)-module. Assume that for X and Y the conditions
of Theorem 3.10 (α) are satisfied. Then, we cannot infer in general from Theorem 3.10
that (X, Y, f, g) lies in Gproj�(0,0). In other words, Theorem 3.10 does not provide us with
sufficient conditions for a tuple (X, Y, f, g) to be Gorenstein-projective. We explain now
where is the problem. Following the construction of Theorem 3.10, we conclude that the
object (X, Y, (IdM ⊗πX)◦ t, (IdN ⊗πY )◦ s) is Gorenstein-projective. From Remark 2.1 (ii)
we know that the maps (IdM ⊗πX)◦t and (IdN ⊗πY )◦s are uniquely determined and satisfy
the corresponding commutative diagrams (2.2). But since f and g are arbitrary maps, we
don’t know in general if they satisfy the diagrams (2.2). If f and g satisfy these diagrams,
then from uniqueness it follows that f = (IdM ⊗πX) ◦ t , g = (IdN ⊗πY ) ◦ s and therefore
(X, Y, f, g) is Gorenstein-projective. Hence, we cannot conclude from Theorem 3.10 that
(X, Y, f, g) is Gorenstein-projective.

The next example shows how we can apply Corollary 3.12 to construct Gorenstein-
projective modules over �(0,0) from Gorenstein-projective modules over the underlying
triangular matrix algebras.
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Example 3.14 Let � be an Artin algebra and consider the Morita ring �(0,0) = (
� �
� �

)
.

(i) Consider the lower triangular matrix algebra T2(�) = (
� 0
� �

)
. From [47, Theorem

1.4], a triple (X, Y, f ) is a Gorenstein-projective �-module if and only if there is an
exact sequence

(3.4)

such that the �-modules X and Coker f are Gorenstein-projective. Let (X, Y, f ) be a
Gorenstein-projective �-module. Thus, we have the sequence (3.4) and we also form
the split exact sequence :

Then, Corollary 3.12 yields that the objects
(
Y,Coker f ⊕ X,π ◦ (

1 0
)
,
(
0
1

) ◦ f
)

and
(
Coker f ⊕ X, Y,

(
0
1

) ◦ f, π ◦ (
1 0

))

are Gorenstein-projective �(0,0)-modules. Consider now the upper triangular matrix
algebra � = (

� �
0 �

)
and let (Z,W, g) ∈ Gproj�. Then, from [47, Theorem 1.4] there

is an exact sequence :

such that the �-modules W and Coker g lie in Gproj�, and we also have the split
exact sequence :

Hence, by Corollary 3.12 it follows that the following objects :
(
Z,Coker g ⊕ W,ρ ◦ (

1 0
)
,
(
0
1

) ◦ g
)

and
(
Coker g ⊕ W,Z,

(
0
1

) ◦ g, ρ ◦ (
1 0

))

are Gorenstein-projective �(0,0)-modules.
(ii) Let X be a Gorenstein-projective �-module. From (i) the objects (X,X, 0, IdX)

and (X,X, IdX, 0) are Gorenstein-projective �(0,0)-modules. Note that this was also
observed in Corollary 3.6.

The above example shows that using Theorem 3.10, we obtain non-trivial examples of
Gorenstein-projective modules over the Morita ring �(0,0) from Gorenstein-projective mod-
ules of the triangular matrix algebras � and �. It should be noted that we don’t know if all
Gorenstein-projective modules over �(0,0) arises in this way, as well as how many objects
from Gproj�(0,0) we finally obtain.

We close this subsection with the following consequence of Corollary 3.12 and an exam-
ple. We mention that Example 3.16 provides an interesting connection between our main
result (Theorem 3.10) and the class of strongly Gorenstein-projective modules.

Corollary 3.15 Let � be an Artin algebra and consider the algebra �(0,0) = (
� �
� �

)
. Let

(X, Y, f, g) be a �(0,0)-module such that Im f = Ker g, Im g = Ker f and assume that Im f
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lies in Gproj�. Then (X, Y, f, g) ∈ Gproj�(0,0) if and only if X, Y ∈ Gproj� if and only if
(Y, X, g, f ) ∈ Gproj�(0,0).

Proof Suppose first that X and Y are Gorenstein-projective �-modules. Then, from our
assumptions the following complex :

is acyclic. Thus, we have the short exact sequences 0 −→ Im g −→ X −→ Im f −→
0 and 0 −→ Im f −→ Y −→ Im g −→ 0. Since Gproj� is closed under kernels of
epimorphisms, it follows that Im f ∈ Gproj� if and only if Im g ∈ Gproj�. Then, for
Z = Im g in Corollary 3.12, we get that the module (X, Y, f, g) is Gorenstein-projective.
Note that, in this case, the maps of the tuple that we obtain from Corollary 3.12 are precisely
f and g. Similarly, if Z = Im f then the tuple (Y, X, g, f ) is Gorenstein-projective. The
converse directions follow from Lemma 3.5.

Example 3.16 Let � be an Artin algebra and consider the matrix algebra �(0,0) = (
� �
� �

)
.

Let

be a totally acyclic complex of projective �-modules. Then, from Corollary 3.15 it follows
that (P, P, f, f ) is a Gorenstein-projective �(0,0)-module. In this case, the �-module Im f

is called strongly Gorenstein-projective. We refer to [13] for more details on this class of
modules.

As a particular example, let K be a field, � = K[X]/(X2) and consider the matrix
algebra �(0,0). Denote by X the residue class of X in �. Then by [13, Example 2.5] the
following sequence

is a totally acyclic complex of projective �-modules and X = Im x = Ker x is a strongly
Gorenstein-projective �-module. We infer that (�, �, x, x) is a Gorenstein-projective
�(0,0)-module.

Remark 3.17 By Corollary 3.15 we can instantly derive Example 3.14 (i). Indeed,
let f : X −→ Y be a monomorphism with Coker f in Gproj�. Consider the maps(
1 0

) : Coker f −→ Coker f ⊕ X and
(
0
1

) : Coker f ⊕ X −→ X. Then by Corollary 3.15
we get that (Y,Coker f ⊕ X,π ◦ (

1 0
)
,
(
0
1

) ◦ f ) is a Gorenstein projective �(0,0)-module
if and only if Y and Coker f ⊕ X are Gorenstein-projectives if and only if Y and X are
Gorenstein-projectives.

4 Homological Embeddings and Gorenstein Artin Algebras

Our purpose in this section is to provide a method for constructing Morita rings �(0,0) =(
A ANB

BMA B

)
which are Gorenstein Artin algebras. It turns out that our construction is

strongly connected with the property of the functors ZB : Mod-B −→ Mod-�(0,0) and
ZA : Mod-A −→ Mod-�(0,0) being homological embeddings. This section is divided into
two subsections and the main result is stated in the second one.
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4.1 Homological Embeddings

Let �(φ,ψ) = (
A ANB

BMA B

)
be a Morita ring. Associated with the Morita ring �(φ,ψ) are the

following recollements of abelian categories (see Proposition 2.4) :

Using the idempotent elements e = ( 1A 0
0 0

)
and f = ( 0 0

0 1B

)
of �(φ,ψ), we obtain easily that

Mod-�/�e� � Mod-B/ Imφ, Mod-e�e � Mod-A, Mod-�/�f � � Mod-A/ Imψ and
Mod-f �f � Mod-B. Note that for simplicity we denote the Morita ring �(φ,ψ) by �.

In this subsection we investigate when the ideals 〈e〉 = �e� and 〈f 〉 = �f � are
stratifying. We recall first the notion of stratifying ideals due to Cline-Parshall-Scott [20].

Let R be a ring and e an idempotent element of R. Then we have the exact sequence

where ImμR = ReR and KerμR lies in Mod-R/ReR. The ideal 〈e〉 = ReR is called
stratifying, if the following two conditions hold :
(i) The multiplication map Re ⊗eRe eR −→ ReR is an isomorphism.
(ii) TorieRe(Re, eR) = 0, for all i > 0.

The surjective ring homomorphism R −→ R/ReR induces a fully faithful functor
IR : Mod-R/ReR −→ Mod-R. Then it is known from [20] that the ideal 〈e〉 is stratify-
ing if and only if the functor IR is a homological embedding [36], i.e. the exact functor
IR induces an isomorphism ExtnR/ReR(X, Y ) ∼= ExtnR(X, Y ) for all X, Y in Mod-R/ReR

and n ≥ 0. For more on homological embeddings between abelian categories we refer to
[36].

We now characterize when the ideals 〈e〉 and 〈f 〉 are stratifying, or equivalently when
the functors IB : Mod-B/ Imφ −→ Mod-�(φ,ψ) and IA : Mod-A/ Imψ −→ Mod-�(φ,ψ)

are homological embeddings.

Proposition 4.1 Let �(φ,ψ) be a Morita ring.

(i) The ideal 〈e〉 is stratifying if and only if the map φ : M ⊗A N −→ B is a
monomorphism and TorAi (M,N) = 0 for all i > 0.

(ii) The ideal 〈f 〉 is stratifying if and only if the map ψ : N ⊗B M −→ A is a
monomorphism and TorBi (N,M) = 0 for all i > 0.

Proof We only prove (i) since part (ii) is dual. For simplicity we write � for the Morita
ring �(φ,ψ). An easy computation shows that f �e = M and e�f = N . Then, since
�e = e�e ⊕ f �e and e� = e�e ⊕ e�f , we have the following isomorphisms :
Torie�e(�e, e�) ∼= Torie�e(e�e ⊕ f �e, e�e ⊕ e�f ) ∼= Torie�e(f �e, e�f ) ∼= ToriA(M,N)

Also, the canonical map μ� : �e⊗e�e e� −→ � is a monomorphism if and only if the map
f �e⊗e�ee� −→ f � is a monomorphism if and only if the map f �e⊗e�ee�f −→ f �f

is a monomorphism, i.e. the map φ : M ⊗A N −→ B is a monomorphism. Hence, we infer
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that the ideal 〈e〉 is stratifying if and only if TorAi (M,N) = 0 for all i > 0 and the map
φ : M ⊗A N −→ B is a monomorphism.

We provide examples of Morita rings where the conditions of Proposition 4.1 are
satisfied.

Example 4.2 Let �(φ,ψ) be a Morita ring. If M = 0 we have the upper trian-
gular matrix ring � = (

A ANB

0 B

)
and the recollements (Mod-B,Mod-�,Mod-A) and

(Mod-A,Mod-�,Mod-B), see [36, Example 2.12]. Then we obtain immediately from
Proposition 4.1, that the functors ZB : Mod-B −→ Mod-� and ZA : Mod-A −→ Mod-�
are homological embeddings. The same considerations hold when N = 0.

Example 4.3 Let �(0,0) be a Morita ring such that ANB has an A-tight projective �(0,0)-
resolution and BMA has a B-tight projective �(0,0)-resolution, in the sense of [25]. This
means that we have projective resolutions · · · −→ AP1 −→ AP0 −→ AN −→ 0 and
· · · −→ BQ1 −→ BQ0 −→ BM −→ 0, such that M ⊗A Pi = 0 and N ⊗B Qi = 0. Then,
if we apply the functorM⊗A− to the projective resolution ofN we obtain thatM⊗AN = 0
and TorAi (M,N) = 0 for all i > 0. Similarly, by applying the functor N ⊗B − to the
projective resolution of M , it follows that N ⊗B M = 0 and TorBi (N,M) = 0 for all i > 0.
Hence, from Propositions 4.1 we infer that the functors ZA : Mod-A −→ Mod-�(0,0) and
ZB : Mod-B −→ Mod-�(0,0) are homological embeddings. We refer to [25] for examples
of Morita rings with tight resolutions.

Example 4.4 Let � be an Artin algebra with primitive idempotents {e1, . . . , en}. Let
{S1, . . . , Sn} be the corresponding simple �-modules. Assume that S := S1 is local-
izable, i.e. pd�S ≤ 1 and Ext1�(S, S) = 0. If we consider the idempotent element
α = e2 + · · · + en, then it is easy to see that α(S1) = 0. This shows that add S is the
kernel of the exact functor α� ⊗� −: mod-� −→ mod-α�α, in particular the category
mod-�/�α� is precisely the additive closure add S of S. From the short exact sequence
0 −→ �α� −→ � −→ �/�α� −→ 0 and since pd��/�α� ≤ 1, it follows that �α�

is a projective �-module. Then by [29, Remark 3.2] we get that α� is a projective left α�α-
module and the map �α ⊗α�α α� −→ �α� is an isomorphism. This implies that the map
e1�α ⊗α�α α�e1 −→ e1�e1 is a monomorphism and Toriα�α(e1�α, α�e1) = 0 for all
i > 0. Note that we view � as the Morita ring with A = α�α, B = e1�e1, N = α�e1 and
M = e1�α, see Example 2.3 (i). Hence, from Proposition 4.1 we infer that the ideal �α�

is stratifying. The above claim, that �α� being projective implies that �α� is a stratifying
ideal, can be proved in a different way. We refer to [36, Example 3.14] for more details.

We restrict now to the case where the bimodule homomorphisms φ and ψ are zero,
that is �(0,0) is the trivial extension (A × B) � M ⊕ N and we have the recollements
(Mod-A,Mod-�(0,0),Mod-B) and (Mod-B,Mod-�(0,0),Mod-A), see Proposition 2.4 and
Example 2.3 (iii). The following result, which is due to Beligiannis [9, Corollary 4.4], shows
that under some conditions we can compute the extension groups induced by the functors
ZA : Mod-A −→ Mod-�(0,0) and ZB : Mod-B −→ Mod-�(0,0).

Lemma 4.5 Let �(0,0) be a Morita ring. Assume that the right modules MA and NB are
projective.

(i) For every A-modules X, X′ and n ≥ 0 there are the following isomorphisms :
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(a) For n = 0, 1 : Extn�(0,0)
(ZA(X), ZA(X′)) ∼= ExtnA(X,X′).

(b) For n = 2k : Extn�(0,0)
(ZA(X), ZA(X′)) ∼= Ext2kA (X,X′)⊕Ext2(k−1)

A (N ⊗B M ⊗A

X,X′)⊕Ext2(k−2)
A ((N⊗B M)⊗2⊗AX,X′)⊕· · ·⊕HomA((N⊗BM)⊗k⊗AX,X′).

(c) For n = 2k + 1 : Extn�(0,0)
(ZA(X), ZA(X′)) ∼= Ext2k+1

A (X,X′) ⊕ Ext2k−1
A (N ⊗B

M ⊗A X,X′) ⊕ Ext2k−3
A ((N ⊗B M)⊗2⊗AX, X′) ⊕ · · · ⊕ Ext1A((N ⊗B

M)⊗k⊗AX,X′).

(ii) For every B-modules Y, Y ′ and n ≥ 0 there are the following isomorphisms :
(a) For n = 0, 1 : Extn�(0,0)

(ZB(Y ), ZB(Y ′)) ∼= ExtnB(Y, Y ′).
(b) For n = 2k : Extn�(0,0)

(ZB(Y ), ZB(Y ′)) ∼= Ext2kB (Y, Y ′) ⊕Ext2(k−1)
B (M ⊗A N ⊗B

Y, Y ′)⊕Ext2(k−2)
B ((M ⊗A N)⊗2⊗BY, Y ′)⊕· · ·⊕HomB((M ⊗A N)⊗k⊗BY, Y ′).

(c) For n = 2k + 1 : Extn�(0,0)
(ZB(Y ), ZB(Y ′)) ∼= Ext2k+1

B (Y, Y ′) ⊕ Ext2k−1
B (M ⊗A

N⊗BY, Y ′)⊕Ext2k−3
B ((M⊗AN)⊗2⊗BY, Y ′)⊕· · ·⊕Ext1B((M⊗AN)⊗k⊗BY, Y ′).

Proof We only sketch the proof of (ii), statement (i) follows similarly. From Proposi-
tion 2.4 the functor ZB : Mod-B −→ Mod-�(0,0) is fully faithful and from [36, Remark
3.7] we always have the isomorphism Ext1B(Y, Y ′) ∼= Ext1�(0,0)

(ZB(Y ), ZB(Y ′)) for all B-

modules Y and Y ′. We explain now how we obtain the rest isomorphisms from [9, Corollary
4.4]. First, from Example 2.3 (iii) or Proposition 2.5 (i), the module category Mod-�(0,0)
is equivalent to the trivial extension (Mod-A × Mod-B) � H , where H is the endofunc-
tor H : Mod-A × Mod-B −→ Mod-A × Mod-B, H(X, Y ) = (N ⊗B Y,M ⊗A X). We
refer to [22] for more details on trivial extensions of abelian categories. We compute
only Ext2�(0,0)

(ZB(Y ), ZB(Y ′)). Using the description of Mod-�(0,0) as a trivial exten-

sion and [9, Corollary 4.4], it follows that Ext2�(0,0)
(ZB(Y ), ZB(Y ′)) is isomorphic with

the direct sum ⊕2
i=0 Ext

i
A×B(H 2−i (0, Y ), (0, Y ′)). The latter extension group is isomor-

phic with Ext2B(Y, Y ′) ⊕ HomB(M ⊗A N ⊗B Y, Y ′), since Ext1A×B(H(0, Y ), (0, Y ′)) =
Ext1A×B((N ⊗B Y, 0), (0, Y ′)) = 0. Hence, Ext2�(0,0)

(ZB(Y ), ZB(Y ′)) ∼= Ext2B(Y, Y ′) ⊕
HomB(M ⊗A N ⊗B Y, Y ′). The rest isomorphisms follow in the same way, the details are
left to the reader.

As a consequence of Lemma 4.5 we have the next result. Note that it also follows from
Proposition 4.1.

Corollary 4.6 Let �(0,0) be a Morita ring such that the modules MA and NB are projective
modules.

(i) The following are equivalent :
(a) The functor ZA : Mod-A −→ Mod-�(0,0) is a homological embedding.
(b) N ⊗B M = 0.

(ii) The following are equivalent :
(a) The functor ZB : Mod-B −→ Mod-�(0,0) is a homological embedding.
(b) M ⊗A N = 0.
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Proof (i) (a) =⇒ (b) If the functor ZA is a homological embedding, then from Lemma 4.5
(i) we get that HomA(N⊗BM⊗AX,X′) = 0 for every A-module X and X′. We infer that
N⊗BM = 0.

(b) =⇒ (a) If N⊗BM = 0, then from Lemma 4.5 (i) it follows that ExtnA(X,X′) ∼=
Extn�(0,0)

(ZA(X), ZA(X′)) for every A-module X, X′ and n ≥ 0.
(ii) This follows as in (i) using Lemma 4.5 (ii).

The next result provides another reason for investigating stratifying ideals. It is a con-
sequence of Proposition 4.1 and the well known result of Cline-Parshal-Scott [20] which
relates stratifying ideals and recollements of derived module categories. For the notion of
recollement of triangulated categories see [7], and for more details on deriving recollements
of abelian categories we refer to [38].

Corollary 4.7 Let �(φ,ψ) be a Morita ring.

(i) If the map φ : M ⊗A N −→ B is a monomorphism and TorAi (M,N) = 0 for all i > 0,
then we have the following recollement of derived categories :

(ii) If the map ψ : N ⊗B M −→ A is a monomorphism and TorBi (N,M) = 0 for all i > 0,
then we have the following recollement of derived categories :

4.2 Gorenstein Algebras

Recall from [4, 27] that an Artin algebra � is called Gorenstein if id�� < ∞ and id�� <

∞. Equivalently, � is Gorenstein if and only if spli� = sup{pd�I | I ∈ inj�} < ∞ and
silp� = sup{id�P | P ∈ proj�} < ∞, i.e. mod-� is a Gorenstein abelian category in the
sense of [12].

We start with the next result which, under some conditions, gives isomorphisms between
the extension groups induced from the adjoint pairs (TA,UA) and (TB,UB). It follows from
[36, Theorem 3.10], but for completeness we give a direct proof.

Lemma 4.8 Let �(φ,ψ) be a Morita ring. Let X be an A-module and let Y be a B-module.

(i) Assume that the module MA is projective. Then for every �(φ,ψ)-module
(X′, Y ′, f ′, g′) and n ≥ 0 we have an isomorphism :
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(ii) Assume that the module NB is projective. Then for every �(φ,ψ)-module
(X′, Y ′, f ′, g′) and n ≥ 0 we have an isomorphism :

Proof (i) Let X be an A-module and let · · · −→ P1 −→ P0 −→ X −→ 0 be a projective
resolution of X. Since the functor M ⊗A − is exact, it follows from Proposition 2.2 and
Remark 2.1 that the sequence · · · −→ TA(P1) −→ TA(P0) −→ TA(X) −→ 0 is a projec-
tive resolution of TA(X). Let (X′, Y ′, f ′, g′) be a �(φ,ψ)-module. Then, using the adjoint
pair (TA,UA) we have the following commutative diagram :

This implies that Extn�(φ,ψ)(TA(X), (X′, Y ′, f ′, g′)) ∼= ExtnA(X,X′) for every n ≥ 0.
(ii) This follows similarly as in (i).

Lemma 4.9 Let �(φ,ψ) be a Morita ring.

(i) Assume that MA and NB are projective modules. If id�(φ,ψ)
�(φ,ψ) < ∞, then :

⎧
⎨

⎩

id AA < ∞, id BB < ∞.

id AN < ∞, id BM < ∞.

(ii) Assume that BM and AN are projective modules. If id�(φ,ψ)�(φ,ψ)
< ∞, then :

⎧
⎨

⎩

idAA < ∞, idBB < ∞.

idNB < ∞, idMA < ∞.

Proof (i) From Proposition 2.2 we have id�(φ,ψ)
TA(A) < ∞ and id�(φ,ψ)

TB(B) < ∞.
Then, from Lemma 4.8 (i) we have the following isomorphisms for every A-module X and
n ≥ 0 :
Extn�(φ,ψ)

(TA(X), TA(A)) ∼= ExtnA(X,A) and Extn�(φ,ψ)
(TA(X), TB(B)) ∼= ExtnA(X,N)

These isomorphisms imply that id AA ≤ id�(φ,ψ)
TA(A) < ∞ and id AN ≤

id�(φ,ψ)
TB(B) < ∞. Similarly, for every B-module Y and n ≥ 0 we have from Lemma 4.8

(ii) the following isomorphisms :
Extn�(φ,ψ)

(TB(Y ), TA(A)) ∼= ExtnB(Y,M) and Extn�(φ,ψ)
(TB(Y ), TB(B)) ∼= ExtnB(Y, B)

Hence, id BM < ∞ and id BB < ∞.
(ii) In this part we use right modules. If X is a right A-module, then TA(X) = (X,X ⊗A

N, IdX⊗N,�X) and since AN is projective it follows that the functor −⊗A N : mod-A −→
mod-B is exact and therefore TA is exact. Similarly, since BM is projective we obtain that
the functor TB is exact. Then using the isomorphisms of Lemma 4.8, but for right modules
now, the result follows as in case (i).
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It should be clear from the proof of the above result, that the assumption of MA, resp.
NB , being projective, implies that id AA < ∞ and id AN < ∞, resp. id BB < ∞ and
id BM < ∞. The same separation property also holds for part (ii). We continue with the
next consequence of Lemma 4.9.

Corollary 4.10 Let �(φ,ψ) be a Morita ring which is a Gorenstein Artin algebra.

(i) If MA is a projective right A-module and AN is a projective left A-module, then the
algebra A is Gorenstein.

(ii) If NB is a projective right B-module and BM is a projective left B-module, then the
algebra B is Gorenstein.

Let � be an Artin algebra and consider the Morita ring �(φ,φ) = (
� �
� �

)
. If �(φ,φ) is

Gorenstein, then by Corollary 4.10 the algebra � is also Gorenstein. We mention that this
was observed in Proposition 3.4 (i), where the the converse also holds in this case. Hence,
Corollary 4.10 generalizes the one direction of Proposition 3.4 (i). We give an example to
show that the conditions in Corollary 4.10 are only sufficient.

Example 4.11 Let � be a bimodule d-Calabi-Yau noetherian algebra over a field k, where
d ≥ 2 is an integer. Let e be a non-trivial idempotent element of � such that �/�e�

is a finite dimensional k-algebra. By [1, Theorem 2.2] and it’s proof, the algebra e�e is
Gorenstein and the e�e-module e� is a non-projective Gorenstein-projective. Note that
from [1, Proposition 2.4] the algebra � has finite global dimension and therefore � is
Gorenstein.

In the rest of the subsection our aim is to consider the converse of Corollary 4.10, that is
how the Gorensteinness of A and B should be inherited to the whole Morita ring. We first
need the following preliminary result. As usual we denote by D : mod-� −→ mod-�op the
duality for Artin algebras, see [5].

Lemma 4.12 Let �(0,0) = (
A ANB

BMA B

)
be a Morita ring.

(i) Assume that pd AN < ∞. If id�(0,0)ZA(A) < ∞ then id�(0,0)ZA(N) < ∞.
(ii) Assume that pd BM < ∞. If id�(0,0)ZB(B) < ∞ then id�(0,0)ZB(M) < ∞.
(iii) Assume that pdMA < ∞. If pd�(0,0)ZA(D(A)) < ∞ then

pd�(0,0)ZA

(
HomB(M,D(B))

)
< ∞.

(iv) Assume that pdNB < ∞. If pd�(0,0)ZB(D(B)) < ∞ then
pd�(0,0)ZB

(
HomA(N,D(A))

)
< ∞.

Proof (i) Let 0 −→ Pn −→ · · · −→ P0 −→ AN −→ 0 be a finite projective resolution of
N . Then, since the functor ZA : mod-A −→ mod-�(0,0) is exact (see Proposition 2.4) and
id�(0,0)ZA(A) < ∞, it follows that id�(0,0)ZA(N) < ∞. The proof of part (ii) is dual.

(iii) Since the projective dimension of MA is finite if and only if the injective dimension
of A D(M) is finite and we have an isomorphism AHomB(BMA,B D(B)) ∼= AD(M), then the
result follows by applying the exact functor ZA to a finite injective coresolution of A D(M).
The proof of part (iv) is dual.

The following is the main result of this section which provides sufficient conditions for
Morita rings �(0,0) with zero bimodule homomorphisms such that silp�(0,0) < ∞ and
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spli�(0,0) < ∞. This result constitutes the second part of Theorem A presented in the
Introduction.

Theorem 4.13 Let �(0,0) = (
A ANB

BMA B

)
be a Morita ring.

(i) Assume the following conditions :
(a) MA is projective and pd BM < ∞.
(b) NB is projective and pd AN < ∞.
(c) The functors ZA, ZB are homological embeddings.

If silpA < ∞ and silpB < ∞, then silp�(0,0) < ∞.
(ii) Assume the following conditions :

(a) BM is projective and pdMA < ∞.
(b) AN is projective and pdNB < ∞.
(c) The functors ZA, ZB are homological embeddings.

If spliA < ∞ and spliB < ∞, then spli�(0,0) < ∞.

Proof (i) From Proposition 2.2, it is enough to consider the projective �(0,0)-modules
TA(A) and TB(B). Assume that pd BM = κ < ∞ and pd AN = λ < ∞. From Lemma 3.8,
we have the following exact sequences in mod-�(0,0) :

(4.1)

and

(4.2)

Thus, from Lemma 4.12 we have to show that id�(0,0)ZA(A) < ∞ and id�(0,0)ZB(B) < ∞.
We first prove that id�(0,0)ZB(B) < ∞. Let (X, Y, f, g) be a �(0,0)-module. Then, from the
morphism (IdX, f ) : TA(X) −→ (X, Y, f, g), we derive the following exact sequences in
mod-�(0,0) :

(4.3)

and

(4.4)

Applying the functor Hom�(0,0) (−, ZB(B)) to the exact sequence (4.3), we obtain the
following long exact Ext-sequence :

From Lemma 4.8 (i) it follows that Extn�(0,0)
(TA(X), ZB(B)) = 0 for every n ≥ 0. Let

silpB = μ < ∞. Since the functor ZB : mod-B −→ mod-�(0,0) is a homological embed-
ding, we have Extn�(0,0)

(ZB(Ker f ), ZB(B)) = 0 for every n ≥ μ + 1. We infer that

Extn�(0,0)
((X, Im f, k′, 0), ZB(B)) = 0 for every n ≥ μ + 2. Then from the following long

exact sequence :
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obtained from Eq. 4.4, it follows that Extn�(0,0)
((X, Y, f, g), ZB(B)) = 0 for every n ≥

μ + 2. Hence we have id�(0,0)ZB(B) ≤ μ + 1 and therefore from Lemma 4.12 we infer that
id�(0,0)ZB(M) ≤ κ + μ + 1. Next, for the injective dimension of ZA(A), we consider the
following exact sequence :

(4.5)
where Im (g, IdY ) = (Im g, Y, 0, l′). Let silpA = ν < ∞. Then, applying the functor
Hom�(0,0) (−, ZA(A)) to the two short exact sequences obtained from Eq. 4.5, we derive as
above that id�(0,0)ZA(A) ≤ ν +1. Note that now we use Lemma 4.8 (ii) and that the functor
ZA : mod-A −→ mod-�(0,0) is a homological embedding. Since pd AN = λ < ∞, it
follows from Lemma 4.12 that id�(0,0)ZA(N) ≤ λ+ν +1. Hence, from the exact sequences
(4.1) and (4.2) we have id�(0,0)TA(A) ≤ max{κ + μ, ν} + 1 and id�(0,0)TB(B) ≤ max{λ +
ν, μ} + 1. We infer that silp�(0,0) < ∞.

(ii) This part follows by dual arguments but for completeness we sketch the proof. First,
from Proposition 2.2 it is enough to consider the injective �(0,0)-modules HA(D(A)) and
HB(D(B)). Then, from Lemma 3.8 we have the exact sequences in mod-�(0,0) : 0 −→
ZA(D(A)) −→ HA(D(A)) −→ ZB(HomA(N,D(A))) −→ 0 and 0 −→ ZB(D(B)) −→
HB(D(B)) −→ ZA(HomB(M,D(B))) −→ 0. Thus, from Lemma 4.12 we have to show
that pd�(0,0)ZA(D(A)) < ∞ and pd�(0,0)ZB(D(B)) < ∞. Also, for any �(0,0)-module
(X, Y, f, g) we obtain, from the units of the adjoint pairs (UA,HA) and (UB,HB), the exact
sequences : 0 −→ ZA(Kerπ(f )) −→ (X, Y, f, g) −→ HB(Y ) −→ ZA(Cokerπ(f )) −→
0 and 0 −→ ZB(Ker ρ(g)) −→ (X, Y, f, g) −→ HA(X) −→ ZB(Coker ρ(g)) −→ 0.
Then, similarly with part (i) we show that spli�(0,0) < ∞. The details are left to the reader.

As a consequence we have the next result on the finiteness of the global dimension of
�(0,0).

Corollary 4.14 Let �(0,0) = (
A ANB

BMA B

)
be a Morita ring such that the modules MA, NB

are projective and the functors ZA, ZB are homological embeddings. If gl. dimA < ∞ and
gl. dimB < ∞, then gl. dim�(0,0) < ∞.

Proof By the proof of Theorem 4.13 we have that id�(0,0)ZA(N) < ∞ and id�(0,0)ZB(M) <

∞. Since spli�(0,0) < ∞ it follows that pd�(0,0)ZA(N) < ∞ and pd�(0,0)ZB(M) < ∞.
Using that �(0,0) is the trivial extension ring (A × B) � M ⊕ N (Example 2.3 (iii)) and
[25, Proposition 5.19], we infer that the global dimension of �(0,0) is finite.

We continue with the following result which gives us a class of Morita rings, in particular
a class of trivial extension rings (Example 2.3 (iii)), where Theorem 4.13 can be applied.

Corollary 4.15 Let �(0,0) = (
A ANA

ANA A

)
be a Morita ring. Assume the following

conditions :
(a) NA and AN are projective.
(b) N ⊗A N = 0.

If A is Gorenstein, then the ring �(0,0) is Gorenstein.
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Proof The condition N ⊗A N = 0 implies that the functor ZA : mod-A −→ mod-�(0,0) is
a homological embedding, see Corollary 4.16. The second functor we have to check that is
a homological embedding is Z′

A : mod-A −→ mod-�(0,0) given by Z′
A(X) = (0, X, 0, 0).

Note that this is the functor Z2 in the notation of Section 2.2. Exactly in the same way
with Remark 2.6 (iii), we show that the two recollements of mod-�(0,0) are equivalent.
Both of them are of the form (mod-A,mod-�(0,0),mod-A), see Proposition 2.4. Using this
equivalence it follows that ZA is a homological embedding if and only if Z′

A is a homological
embedding. Then the result follows from Theorem 4.13.

The above method for constructing Gorenstein algebras is illustrated in the next example.

Example 4.16 Let A be a finite dimensional Gorenstein k-algebra, where k is a field, and
let e and f be two idempotents elements of A such that f Ae = 0. Consider the A-A-
bimodule N := Ae ⊗k f A. Then it follows easily that N ⊗A N = 0 and therefore from
Corollary 4.15 we get the Gorenstein algebra :

�(0,0) =
(

A ANA

ANA A

)

Note that �(0,0) is the trivial extension algebra (A × A) � N ⊕ N , see Example 2.3 (iii).

We close this section with an example of a Morita ring which is a Gorenstein algebra and
the conditions of Theorem 4.13 are not satisfied.

Example 4.17 Let A be a ring and M be a right A-module. Then from Example 2.3 (ii) we
have the Morita ring

�(φ,ψ) =
(

B BMA

M∗ A

)

where B = EndA(M) and M∗ = AHomA(M,A)B . Note that this Morita ring is the
Auslander context, in the sense of Buchweitz [15], defined by the pair (A,M). If MA is
a finitely generated projective right A-module, then from [15, Proposition 2.6, Corollary
1.10] it follows that the rings A and �(φ,ψ) are Morita equivalent, and therefore A is Goren-
stein if and only if �(φ,ψ) is Gorenstein. Hence, if A is a Gorenstein algebra and MA is a
finitely generated projective module, then the Morita ring �(φ,ψ) is Gorenstein. By Exam-
ple 2.3 (ii), the bimodule homomorphisms of this Morita ring are not zero, and also the rest
assumptions of Theorem 4.13 are not satisfied in general.

5 Gorenstein Subcategories and Coherent Functors

In this section we study the monomorphism category mono(�), see Eq. 2.5 in Section 2.3.
In particular, we investigate the full subcategory C of mono(�) consisting of all monomor-
phisms f : X −→ Y such that the projective dimension ofX is finite. In the first subsection,
we show that it is a Gorenstein subcategory ofmono(�) when � is a Gorenstein Artin alge-
bra. In the second subsection, we prove that the category of coherent functors over the stable
category of C is a Gorenstein abelian category.

5.1 The Gorenstein Subcategory of mono(�)

Let A be an abelian category with enough projective and injective objects and let n be a
non-negative integer. Recall from [12, Theorem 2.2, Chapter VII] that A is n-Gorenstein
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if and only if every object has Gorenstein-projective dimension at most n. For our purpose,
we need the notion of a Gorenstein subcategory but now in the context of exact categories
(see Section 2.3). Before that, we define Gorenstein-projective objects for exact categories.

Definition 5.1 Let A = (A ,E ) be an exact category with enough projective objects.
An object X in A is called Gorenstein-projective if there is an E -acyclic complex of
projective objects in A :

such that HomA (P•, P ) is acyclic for every object P in ProjA and d0 = λ ◦ κ , where
κ : P 0 −→ X is a deflation and λ : X −→ P 1 is an inflation. We denote by GProjA the
full subcategory of Gorenstein-projective objects of A .

For a complex being acyclic in an exact category we refer to [16, Definition 10.1]. From
now on, when we write A for an exact category we fix a class E of exact pairs.

Definition 5.2 Let A be an exact category with enough projective objects. Then A is
n-Gorenstein for some non-negative integer n if every object has Gorenstein-projective
dimension at most n. Let B be an exact subcategory of A . We call B an n-Gorenstein
subcategory of A , if for all X in B there exists an exact sequence 0 −→ Gn −→ · · · −→
G0 −→ X −→ 0 in B such that Gj ∈ GProjA for all 0 ≤ j ≤ n.

Consider now the following subcategory of mono(�) :
C := {

(X, Y, f, 0) ∈ mono(�) | pd�X < ∞}
. (5.1)

We denote by P<∞(�) the full subcategory of mod-� consisting of all �-modules of
finite projective dimension. Then P<∞(�) is an exact subcategory of mod-�, since it is
extension closed, and this implies that C is also an exact subcategory of mono(�). The
first main result on the structure of C is as follows. This result constitutes the first part of
Theorem B presented in the Introduction.

Theorem 5.3 Let � be an n-Gorenstein algebra for some non-negative integer n. Then C
is an n-Gorenstein subcategory of mono(�).

Proof Let (X, Y, f, 0) be an object in C and consider the following exact sequence in
mono(�) :

(5.2)

Since (U2, T1) is an adjoint pair of exact functors and both functors preserve projec-
tive objects (Lemma 2.9), we have the isomorpism Extimono(�)((G1, G2, f, 0), T1(X)) ∼=
Exti�(U2(G1,G2, f, 0),X) = Exti�(G2, X) for all i ≥ 1 and (G1,G2, f, 0) in
Gproj(mono(�)). Since mono(�) has the same projectives as mod-T2(�), it follows that
it has the same Gorenstein-projective objects as mod-T2(�). Thus, [31, Theorem 1.1]
yields that the �-module G2 is Gorenstein-projective. Since pd�X < ∞, it follows that
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Exti�(G2, X) = 0 for all i ≥ 1 (recall that (Gproj�,P<∞(�)) is a cotorsion pair in
mod-�, see [12]). Hence, we have Extimono(�)((G1,G2, f, 0), T1(X)) = 0 for all i ≥ 1
and (G1,G2, f, 0) in Gproj(mono(�)). This implies that Eq. 5.2 remains exact after apply-
ing Hommono(�)((G1,G2, f, 0),−), for every (G1, G2, f, 0) in Gproj(mono(�)). Since the
algebra� is n-Gorenstein, there exist the following two exact sequences of left�-modules :

and

where Pj and Gj are Gorenstein-projective �-modules for all 0 ≤ j ≤ n. Applying the
exact functors T1 and Z2, respectively, we get the exact sequences in C :

where T1(Pj ) and Z2(Gj ) belong to Gproj(mono(�)), for all 0 ≤ j ≤ n, by [31, Theorem
1.1] again. Since the map Hom(mono(�))(Z2(G0), (0, p)) is surjective, we obtain from the
Horseshoe Lemma the following exact commutative diagram :

Now taking the exact sequence of the kernels and applying the functor
Hom(mono(�))(Z2(G1), −), we obtain that the map Hom(mono(�))(Z2(G1),Ker a0) −→
Hommono(�)(Z2(G1), Z2(Ker b0)) is surjective. This follows since
Ext1mono(�)(Z2(G1), T1(Ker a0)) ∼= Ext1�(G1,Ker a0) = 0. Then continuing in the same way
we construct an exact sequence of (X, Y, f, 0) by objects in Gproj(mono(�)) of length at
most n. We infer that C is an n-Gorenstein subcategory of mono(�).

5.2 Categories of Coherent Functors and Gorensteinness

It is known by [14, 34] that the singularity category Dsg(�) of an algebra � is defined as
the Verdier quotient Db(mod-�)/Kb(proj�). When we deal with an additive category A ,
the notion of singularity category can be extended using the category of coherent functors
over A . This approach was recently investigated by Matsui and Takahashi [32]. We now
recall this. Let A be an additive category with weak kernels, that is, for each morphism
f : X −→ Y in A there exists a morphism g : Z −→ X in A such that the sequence
HomA (−, Z) −→ HomA (−, X) −→ HomA (−, Y ) is exact. We denote by mod-A the
category of coherent functors over A , i.e. functors F : A op −→ Ab such that there is an
exact sequence HomA (−, X) −→ HomA (−, Y ) −→ F −→ 0 with X and Y in A . It
is known that mod-A is an abelian category with enough projective objects. We refer to
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[2, 3] for more details on coherent functors. Then, Matsui and Takahashi [32] considered
the Verdier quotient

Dsg(mod-A ) := Db(mod-A )/Kb(proj(mod-A ))

and call it the singularity category of mod-A . We remark that this triangulated category
is included in the general framework of the stabilization of an abelian or exact category
studied by Beligiannis [8].

In what follows, we show that the singularity category of mono(�) is trivial. We write
mod-mono(�) for the category of coherent functors over the monomorphism category
mono(�).

Proposition 5.4 Let � be an Artin algebra. Then the following hold

(i) The category mod-mono(�) is abelian.
(ii) We have : gl. dim(mod-(mod-�)) ≤ gl. dim(mod-mono(�)) ≤ 2.
(iii) The singularity category Dsg(mod-mono(�)) is trivial.

Proof (i) Since mono(�) is closed under kernels by Lemma 2.9, it follows that mono(�)

has weak kernels. Hence, the category of coherent functors mod-(mono(�)) is abelian.
(ii) Let F be a functor in mod-mono(�), that is, there is an exact sequence :

where (X1, Y1, f1, 0) and (X0, Y0, f0, 0) are objects in mono(�). Since we have the exact
sequence

and Ker (a, b) = (Ker a,Ker b, k, 0) lies in mono(�), we obtain the following exact
sequence :

This implies that gl. dim(mod-mono(�)) ≤ 2. From Lemma 2.9 we know that (T1,U1) is
an adjoint pair between mod-� and mono(�) and the functor T1 is fully faithful. Then [44,
Theorem 3.1] yields that gl. dim(mod-(mod-�)) ≤ gl. dim(mod-mono(�)). This completes
the proof of (ii).

(iii) This statement follows immediately from (ii).

Although that the singularity category Dsg(mod-mono(�)) is trivial, we show in Corol-
lary 5.8 that if we restrict to the subcategory C of mono(�), then this singularity category
is not at all trivial.

Before we get there we need some more definitions.

Definition 5.5 An additive subcategory B of A is called quasi-resolving if it contains
ProjA and given a conflation X −→ Y −→ Z with Y and Z in B then the object X

lies in B. A quasi-resolving subcategory B is called resolving if it is closed under direct
summands and extensions, i.e. given a conflation X −→ Y −→ Z with X and Z in B then
the object Y lies in B.
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Note that a resolving subcategory B of A is an exact subcategory of A since it is
closed under extensions. Let X be an object in A . Since A has enough projective objects
there exists a deflation g : P −→ X with P ∈ ProjA (or a right ProjA -approximation).
This means that there is an exact pair K −→ P −→ X, where the map f : K −→ P

is an inflation. The object K is called the first syzygy of X and is denoted by �(X). The
nth syzygy �n(X) of X is defined inductively as �(�n−1(X)). We denote by �n(A ) the
subcategory of A consisting of all nth syzygies of objects in A . Assume that there is
a left ProjA -approximation f : X −→ P , i.e. f is an inflation with P ∈ ProjA such
that the map HomA (f, P ′) : HomA (P, P ′) −→ HomA (X, P ′) is surjective for all P ′ ∈
ProjA . Then we have the exact pair X −→ P −→ L, where the map g : P −→ L

is a deflation. The object L is called the first cosyzygy of X and is denoted by �−1(X).
The nth cosyzygy �−n(X) of X is defined inductively as �−1(�−(n−1)(X)). We denote by
�−n(A ) the subcategory of A consisting of all nth cosyzygies of objects in A .

We are now ready to prove the second main result of this section which generalizes
[32, Theorem 3.11] to the setting of exact categories.

Theorem 5.6 LetA be an exact category with enough projective objects. LetB be a quasi-
resolving subcategory of A such that �n(B) ⊆ GProjA for some non-negative integer n

and is closed under �−1. Then the following statements hold.

(i) mod-�n(B) is a Frobenius abelian category.
(ii) mod-B is a 3n-Gorenstein abelian category.

Moreover, there are the following triangle equivalences :

Proof We divide the proof into four steps.
Step 1 : We show that mod-B is an abelian category with enough projective objects. It

suffices to show that B has weak kernels. Let m : M −→ N be a morphism in B. Since
A has enough projective objects and ProjA ⊆ B, there is a deflation p : P −→ N with
P ∈ ProjA . Then, we have the pullback diagram

such that the map p′ is also a deflation. From [28, Proposition A.1] and since B is a quasi-
resolving subcategory of A we obtain the following conflation in B :

where f = (
p′

−u′
)
and g = (

u p
)
. Thus, for an object X in B we have the exact sequence :

Let u : X −→ M ⊕ P be a morphism in A such that u is in the kernel of
HomA (X, g) : HomA (X,M ⊕ P) −→ HomA (X,N). Then u ◦ g is the composition of
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some morphisms a : X −→ Q and b : Q −→ N in A , where Q ∈ ProjA . There is a mor-
phism c : Q −→ M ⊕ P with c ◦ g = b. So (a ◦ c − u) ◦ g = 0. This implies that there is
a morphism d : X −→ L such that a ◦ c − u = d ◦ f . We have u = d ◦ f , which is in the
image of HomA (X, f ) : HomA (X,L) −→ HomA (X,M). Thus the next sequence is exact
in mod-B :

Step 2 : We show that for any object F in mod-B there is a conflation A −→ B −→ C

in B which induces a projective resolution as follows :

(5.3)

Let F be a functor in mod-B. Then there is an exact sequence HomA (−, B)|B φ−→
HomA (−, C)|B −→ F −→ 0 with B, C ∈ B and by Yoneda’s Lemma the map φ is of the
form HomA (−, u)|B for some morphism u : B −→ C. As in Step 1, we obtain a confla-
tion A −→ B ⊕ Q −→ C in B with Q in ProjA . Since A has enough projective objects,
there is a deflation P −→ C with P projective in A . Note that any deflation ending at the
object P splits. Then we can form the following pullback diagram

where every row or column is a conflation. In particular, we get the conflation �(C) −→
A ⊕ P −→ B ⊕ Q. Consider now a deflation Q′ −→ B with Q′ in ProjA . From the
following commutative diagram

we obtain the conflation �(B) ⊕ Q −→ �(C) ⊕ P ′ −→ A ⊕ P where P ′ = Q′ ⊕ Q.
Iterating this procedure yields the conflations : �(B) ⊕ Q −→ �(C) ⊕ P ′ −→ A ⊕ P ,
�(A)⊕P −→ �(B)⊕P ′′ −→ �(C)⊕P ′, �2(C)⊕P ′ −→ �(A)⊕P ′′′ −→ �(B)⊕P ′′
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and so on, where P ′, P ′′, P ′′′ belong to ProjA . Putting these conflations together and using
Step 1, the desired projective resolution of F follows immediately.

Step 3 : We show that for any object F in mod-B we have
Extimod-B(F,Proj(mod-B)) = 0 for i > 3n. Firstly, given a conflation A −→ B −→ C

in B such that Ext1A (C,ProjA ) = 0, it follows as in [32, Lemma 2.2 (2)] that the
sequence HomA (C,X) −→ HomA (B,X) −→ HomA (A,X) is exact for every
X ∈ A . Since �j(C) lies in GprojA for all j ≥ n, we know that Ext1A (�j (C),

ProjA ) = 0 for all j ≥ n. Thus by the above fact and Step 2 we obtain that
HomA (�jC, Y ) −→ HomA (�jB, Y ) −→ HomA (�jA, Y ) is exact for any Y ∈ B and
all j ≥ n. Then, applying the functor (−,HomA (−, Y )|B) to Eq. 5.3 and using Yoneda’s
Lemma, we infer that Extimod-B(F,Proj(mod-B)) = 0 for i > 3n.

Step 4 : Let F be an object in mod-B. By Step 2 there is a conflation A −→ B −→ C

in B which induces a projective resolution of F as indicated in diagram (5.3). Set G :=
Coker(HomA (−, �n(B))|B −→ HomA (−, �n(C))|B). We show that G is a Gorenstein-
projective object in mod-B. For simplicity, we write L := �n(A), M := �n(B) and
N := �n(C). Then from Step 2 we get a conflation L −→ M −→ N . Since �n(B) is
closed under �−1, there is a left ProjA -approximation L −→ Q with Q ∈ ProjA . We
make the following pushout diagram :

Note that the middle vertical conflation splits, i.e. Ext1A (N,Q) = 0 since N ∈ GProjA
and Q ∈ ProjA . Thus we obtain the conflation M −→ N ⊕ Q −→ �−1(L). Iterating this
procedure gives rise to the conflations : N ⊕Q −→ �−1(L)⊕Q′ −→ �−1M , �−1(L)⊕
Q′ −→ �−1(M) ⊕ Q′′ −→ �−1(N) ⊕ Q, �−1(M) ⊕ Q′′ −→ �−1(N) ⊕ Q′′′ −→
�−2(L) ⊕ Q′ and so on, where Q′, Q′′, Q′′′ are in ProjA . Thus by Step 1 we obtain
an exact sequence : HomA (−, L)|B −→ HomA (−, M)|B −→ HomA (−, N)|B −→
HomA (−, �−1(L))|B −→ HomA )(−, �−1(M))|B −→ HomA (−, �−1(N))|B −→
· · · . Combining this with Eq. 5.3 we obtain an exact sequence of projective objects in
mod-B as follows :

(5.4)
where Imα = G. By the construction of the above pushout diagrams using left ProjA -
approximations and since�n(B) ⊆ GProjA , we get that Ext1A (�i(�n(B)),ProjA )) = 0
for any i ∈ Z. Let Y be an object in B. Then applying the functor (−,HomA (−, Y )|B)

to Eq. 5.4 and using [32, Lemma 2.2 (2)] as explained in Step 3, we obtain an acyclic
complex : · · · −→ HomA (�−1(L), Y ) −→ HomA (N, Y ) −→ HomA (M, Y ) −→
HomA (L, Y ) −→ HomA (�(N), Y ) −→ · · · . This implies that Eq. 5.4 is a totally
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acyclic complex, equivalently, G is a Gorenstein-projective object in mod-B. Hence, we
have shown that for every object F in mod-B there is a projective resolution as in
Eq. 5.3 such that the nth syzygy G is Gorenstein-projective. We infer that mod-B is a
3n-Gorenstein abelian category. Moreover, from [8, Corollary 4.13] we obtain the desired
triangle equivalence between Dsg(mod-B) and GProj(mod-B).

It remains to show that mod-�n(B) is a Frobenius abelian category, i.e mod-�n(B) is
of Gorenstein dimension at most zero. From [32, Proposition 3.6] it suffices to show that
the stable category �n(B) is triangulated. Recall that GProjA is an exact Frobenius cat-
egory and as in the abelian case it follows easily that GProjA is extension closed. We
claim that �n(B) is an admissible subcategory of GProjA (see [18]), that is, �n(B) is
an extension closed subcategory of GProjA such that for each object B in �n(B) there
are conflations B −→ P −→ �−1(B) and �(B) −→ Q −→ B with P , Q in ProjA .
Note that �n(B) being admissible implies that it is an exact Frobenius category and there-
fore from [26] it follows that �n(B) is triangulated. Since we have ProjA ⊆ �n(B) ⊆
GProjA we only have to show that �n(B) is extension closed. For this, we first show that
�n(B) = B ∩ GProjA . Since B is quasi-resolving we have �n(B) ⊆ B. This implies
that �n(B) ⊆ B ∩ GProjA . Let X be an object in B ∩ GProjA . Then X is Gorenstein-
projective, so X ∼= �−n(�n(X)). Since X ∈ B and �n(B) is closed under �−1, we have
that �n(X) ∈ �n(B) and �−n(�n(X)) ∈ �n(B). This shows that X ∈ �n(B), i.e.
B ∩ GProjA ⊆ �n(B). We now show that �n(B) = B ∩ GProjA is extension closed.
Consider a conflation X −→ Y −→ Z with X and Z in B ∩GProjA . Then there is a left-
ProjA approximation X −→ P −→ �−1(X). Taking the pushout diagram of these two
conflations and since Ext1(Z, P ) = 0, we obtain the conflation Y −→ P ⊕Z −→ �−1(X).
The object P ⊕ Z lies in B and the object �−1(X) lies also in B since we assume that
�n(B) = B ∩ GProjA is closed under �−1. Since B is quasi-resolving, it follows that
the object Y lies in B. Since GProjA is closed under extensions, we conclude that the
object Y lies in B ∩ GProj(A ). This completes the proof that mod-�n(B) is a Frobe-
nius abelian category. Finally, from [8, Corollary 4.13] we get that a triangle equivalence
between Dsg(mod-�n(B)) and mod-�n(B).

Remark 5.7 The first part of the proof of Theorem 5.6 is devoted to show that the category
of coherent functorsmod-B is abelian. This is similar to [32, Proposition 2.11(i)]. However,
in the setting of exact categories we need to show how we obtain from the axioms the
conflation which gives us the correct Hom-exact sequence in order to conclude that B
has weak kernels. Part two of our proof is proved in the same way as [32, Proposition
2.11(ii)], but again we need to make clear that this construction works in our setting. Similar
comments hold for the rest of the proof. Moreover, as in [32, Theorem 5.4], we can deduce
a triangle equivalence between Dsg(mod-B) and Dsg(mod-�n(B)).

We return to the subcategoryC ofmono(�), see Eq. 5.1. Assuming that � is Gorenstein,
it can be shown that : (i) C is a resolving subcategory of mono(�) (but not of mod-�(0,0)),
(ii) the category �n(C ) is a Frobenius subcategory of Gproj(mono(�)) and �n(C ) is a
triangulated subcategory of Gproj(mono(�)), and (iii) �n(C ) is closed under �−1. We
close this section with the following consequence of Theorem 5.6, which is the second part
of Theorem B presented in the Introduction.

Corollary 5.8 Let � be an n-Gorenstein Artin algebra for some integer n ≥ 0. Then for
the category of coherent functors over C and �n(C ), respectively, the following hold :
(i) mod-C is a 3n-Gorenstein abelian category.
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(ii) mod-�n(C ) is a Frobenius abelian category.

Moreover, there are the following triangle equivalences :
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