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1 Introduction and Main Results

This article deals with Gorenstein homological aspects of Morita rings with zero bimodule
homomorphisms and monomorphism categories. The class of Morita rings is a natural gen-
eralization on the one hand of triangular matrix rings and on the other hand it covers many
trivial extension rings [22]. In what follows, we first give some motivation and present the
main result in the paper.

For an abelian category .27 we denote by Mor .27 the category of morphisms over 7. The
monomorhism category Mon &7 is by definition the full subcategory of Mor .2/ consisting
of all monomorphisms in 7. If R is aring and &7 is the category Mod- R of left R-modules,
then the category of monomorphisms Mon (Mod-R) can be considered as a full subcategory
of the module category Mod-T2(R), where To(R) = (& R)), since it is known that the mor-
phism category Mor (Mod- R) is equivalent to Mod-T2(R). Note that Mon .27 is an extension
closed subcategory of the abelian category Mor <7 and therefore is an exact category in the
sense of Quillen. Monomorphism categories appear quite naturally in various settings and
are omnipresent in representation theory. In fact, there are connections with classification
problems (Ringel, Schmidmeier [40-42], Xiong, Zhang, Zhang [45]), with weighted pro-
jective lines (Kussin, Lenzing, Meltzer [30]), and with aspects of Gorenstein homological
algebra (Beligiannis [10, 11], Zhang [48], Chen [17]). In a series of papers [31, 46, 47], the
Gorenstein-projective modules over the triangular matrix algebra (4 %) were determined
under some conditions on the bimodule 4 Np. In the special case where A = N = B and
A is a Gorenstein Artin algebra, i.e. T2(A) = (4 4), the authors in [31] showed that a
module over To(A), i.e. a triple (X, Y, f), is Gorenstein-projective if and only if (X, Y, f)
belongs to the monomorphism category Mon(mod-A) and the modules X, Y and Coker f
are Gorenstein-projective.

A natural extension of triangular matrix rings is the class of Morita rings. Recall that
Morita rings are 2 x 2 matrix rings associated to Morita contexts ([6, 21]). We refer to [33,
43] for the terminology of Morita rings, and to [25] for a thorough discussion of Morita rings
as well as examples and situations where Morita rings appear. A particular case of interest is
the Morita ring A g 0y with entries the same associative unital ring R and bimodule homo-
morphisms zero. The reason is that there is a full embedding Mod-T>(R) — Mod-A (q,0).
The main problem considered in this paper is:

Problem Construct Gorenstein-projective modules over Morita rings with zero bimodule
homomorphisms.

The solution of this problem provides a link between monomorphism categories and
Morita rings (Section 2.3). This problem and the important role that monomorphism cat-
egories as well as Morita rings play in different contexts, provide a strong motivation for
studying these using homological and representation-theoretic tools. Our aim in this paper
is two-fold and can be summarized as follows:

(i) Solve the above problem and provide sufficient conditions for such rings to be
Gorenstein algebras.

(ii)) Construct Gorenstein abelian categories from exact subcategories of the monomor-
phism category.

The organization and the main results of the paper are as follows. In Section 2 we collect
preliminary notions and results on Morita rings and monomorphism categories that will
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be useful throughout the paper and we fix notation. Moreover we introduce the double
morphism category of an abelian category and we define the monomorphism category in
this general setting. The rest of the paper is divided into two parts.

The first part consists of Sections 3 and 4. For an Artin algebra A, we denote by Gproj A
the category of all finitely generated Gorenstein-projective A-modules. Let A0 =
(BZ@A A%’B ) be a Morita ring which is an Artin algebra and has zero bimodule homomor-
phisms. In order to construct Gorenstein-projective modules over A (g,0), we need to assume
some natural conditions on the bimodules 4 Np and pM 4, similar to the conditions con-
sidered by Zhang [47] in the triangular matrix case. We refer to these conditions as the
compatibility conditions on pM4 and 4 Np (Section 3.1). These conditions have a nice
interpretation via finiteness of the projective dimension of the bimodules N and M (Corol-
lary 3.11). Our first main result is Theorem A (i), which provides a method to construct
Gorenstein-projective modules over Morita rings with zero bimodule homomorphisms. We
refer to Theorem 3.10 for the proof as well as its dual version. Moreover, we give sufficient
conditions for a Morita ring A (g,0) with zero bimodule homomorphisms to be a Gorenstein
Artin algebra. This constitutes our second main result and is Theorem A (ii), see Theo-
rem 4.13. Recall that Gorensteinness of an algebra A is determined by the finiteness of the
dimensions spli A and silp A (Section 4.2). Our second main result is closely related to the
property of the natural embeddings Mod-B —> Mod-A 9,0y and Mod-A —> Mod-A (9,0)
being homological. In this connection, we characterize the Morita rings such that the above
functors are homological embeddings (Proposition 4.1). Our main results in this part are
summarized in the following theorem.

Theorem A Let A (,0) be a Morita ring which is an Artin algebra and has zero bimodule
homomorphisms.

(i) (Theorem 3.10: Gorenstein-projectives) Assume that the bimodules p M4 and 4 Np
satisfy the compatibility conditions (see 3.1) Let Z be a Gorenstein-projective B-
module with a monomorphism s: N ® p Z —> X, for some A-module X, such that
Coker s lies in Gproj A and there is a monomorphism #: M ® 4 Cokers —> Y with
Cokert = Z and Y an B-module. We set wy, resp. my, for the map M ®4 X —
Cokers, resp. N ®p Y —> Cokert. Then the tuple:

(X, Y, (Idy ®mx) ot, (Idy ®my) os) € Gproj A,

(i) (Theorem 4.13: Gorenstein algebras) Assume that the following conditions hold:

(a) My, is projective and pd pM < oo.
(b) Np is projective and pd 4 N < oo.
(¢) The functors Z4 and Zg are homological embeddings.

If silp A < oo and silp B < oo, then silp A(p,0) < 00.

As an application of Theorem A (i), we construct Gorenstein-projective modules over
the Morita ring A o) that lie in the monomorphism category mono(A) (Corollary 3.6).
Also, from Theorem A (ii) we get examples of Morita rings which are Gorenstein algebras
(Corollary 4.15).

In the second part, which is Section 5, we study the subcategory % of mono(A), where A
is an Artin algebra, consisting of all monomorphisms f: X — Y such that the projective
dimension of X is finite. Our third main result is Theorem B (i) where assuming that A is
Gorenstein we show that %" is a Gorenstein subcategory of mono(A), see Definition 5.2 and
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Theorem 5.3. Moreover, inspired by recent work of Matsui and Takahashi [32] we consider
the category of coherent functors mod-% over the stable category & of €. Also, we define
the subcategory Q" (%) of € consisting of all nth syzygies of objects in € (Section 5.2). In
this context, the fourth main result of this paper is Theorem B (ii), see Corollary 5.8, which
shows that the category of coherent functors over € is a Gorenstein abelian category in the
sense of [12]. Finally, using a result of Beligiannis [8] we realize the singularity category
[32] of mod-% as the stable category of Cohen-Macaulay objects over mod-%’.

Theorem B (Gorenstein categories) Let A be an n-Gorenstein Artin algebra.

(1) (Theorem 5.3) The category ¥ = {(X,Y, f,0) € mono(A) | pdpX < oo} is an
n-Gorenstein subcategory of mono(A).

(ii)) (Corollary 5.8) For the category of coherent functors over € and Q2" (%) the following
statements hold :

(a) mod-% is a 3n-Gorenstein abelian category.
(b) mod-Q" (%) is a Frobenius abelian category.

Moreover, there are the following triangle equivalences:

Dsg(mod-%) —— Gproj(mod-%) and Dg(mod-Q" (%)) —— mod-Q™(%)

Statement (ii) above is a consequence of Theorem 5.6 which provides sufficient con-
ditions on a subcategory % of an exact category .«f with enough projectives such that
mod-Z8 is a Gorenstein abelian category. It should be noted that this result generalizes, and
is inspired by, a result of Matsui and Takahashi [32].

Conventions and Notation We compose morphisms in a given category in a diagram-
matic order. Our subcategories are assumed to be closed under isomorphisms and direct
summands. For a ring R we usually work with left R-modules and the corresponding cat-
egory is denoted by Mod-R. By a module over an Artin algebra A, we mean a finitely
generated left A-module and we denote by mod-A the category of finitely generated left
A-modules. In this paper, for simplicity we work over Artin algebras. All Morita rings in
Sections 3, 4 and 5 are Artin algebras. For all unexplained notions and results concerning
the representation theory of Artin algebras we refer to [5].

2 Morita Rings and Monomorphism Categories

In this section we fix notation and we collect several preliminary results on Morita rings
and monomorphism categories that will be used throughout the paper.

2.1 Morita Rings
Let A and B be two rings, 4 Np an A-B-bimodule, pM 4 a B-A-bimodule, and ¢: M ®4

N —> B a B-B-bimodule homomorphism, and ¢: N g M —> A an A-A-bimodule
homomorphism. Then from the Morita context M = (A, N, M, B, ¢, ) we define the

Morita ring:
A ANp
Ay = (BMA B )
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where the addition of elements of Ay y) is componentwise and multiplication is given by

an a n'\ _ fad +ym@m) an’ + nb’
(m b)'(m’ b’>_< ma’ + bm’ bb’+¢(m®n’)>
We assume that ¢ (m@n)m’ = my(n@m’) and ngp (m®n’) = ¥ (n@m)n’ forallm, m’ e M
and n,n’ € N. This condition ensures that A (4 y) is an associative ring.

The description of the modules over a Morita ring A (4, y) is well known, see for instance
[24], but for completeness and due to our needs we also include it here. We introduce the
following category.

Let M(A) be the category whose objects are tuples (X, Y, f, g) where X € Mod-A,

Y € Mod-B, f € Homp(M ®4 X,Y) and g € Hom4 (N ®p Y, X) such that the following
diagrams are commutative :

Idy ®f Idm ®g

NRpM@s X —= NRpY MR@A NQpRY —=M®4 X
w®1dxl lg ¢>®1le lf
Ao X —= o X BopY —————=Y (1)

We denote by Wy and ®y the following compositions:

W x Py

mm

NpM@s X — A4 X X M®aN®pY B®pY

Y

Let (X,Y, f,g) and (X',Y’, f,g) be objects of M(A). Then a morphism
(X,Y, f,g) — X,Y', f',g) in M(A) is a pair of homomorphisms (a, b), where
a: X — X’isan A-morphismand b: Y —> Y’ is a B-morphism, such that the following
diagrams are commutative :

MosaX L vy Nopy -2 =X
Id ®al lb Id N ®bl l/a
Moy, X L~y NepY -~ =X’

The relationship between Mod-A (¢ ) and M(A) is given via the functor F: M(A) —
Mod-A (4,4 Which is defined on objects (X, Y, f, g) of M(A) as follows: F(X, Y, f, g)
X ® Y as abelian groups, with a Ay y)-module structure given by ( mp)(x,y) = (ax
gn®y),by + f(m @ x)), foralla € A,b € B.n € Nym € M,x € X and y
Y. If (a,b): (X,Y, f,g) — (X',Y', f/,¢g') is a morphism in M(A) then F(a, b)
(‘0‘ 2) : X®Y — X' @Y . Then the functor F turns out to be an equivalence of categories,
see [24, Theorem 1.5]. From now on we identify the modules over Ay ) with the objects
of M(A).

Throughout the paper we deal mainly with Morita rings which are Artin algebras. Then
it is easy to observe that, see [25, Proposition 2.2], a Morita ring A (4, v is an Artin algebra
if and only if there is a commutative artin ring R such that A and B are Artin R-algebras

I m+ 1
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and M and N are finitely generated over R which acts centrally both on M and N. We
summarize in the next remark some properties of Mod-A (4 y) that we need in the sequel.
We refer to [35, Chapter 3] for a thorough discussion on the abelian structure of Morita
rings in a more general setting.

Remark 2.1 Let A(p.y) = (, 3, *3" ) be a Morita ring.

(i) A sequence of tuples 0 — (X1,71, f1,81) — (X2, Y2, fo,80) —>
(X3, Y3, f3,83) —> 0 is exact in Mod-A 4 y) if and only if the sequences 0 —
X —> X, — X3 —0and0 — Y; — Yo —> Y3 —> 0 are exact in Mod-A
and Mod- B respectively.

(i) Let(a,b): (X.,Y, f.g) — (X', Y, f/, g') be a morphism in Mod-A (4 ) and con-
sider the maps ¢c: Kera —> X and d: Kerb —> Y. Then the kernel of (a, b) is
the object (Kera, Kerb, h, j) where the maps & and j are induced from the following
commutative diagrams:

M@aKera M Mo, X Lo, X! NopKerb YU Noyv L Ney vy

I I
hl fl lf’ Jl gl lg’
v v _
Kerb Y’ Kera ° X = X’
2.2)

Similarly, we derive a description for the cokernel of the morphism (a, b).
As in [25] we define the following functors:

(i) The functor T4: Mod-A — Mod-A g, y) is defined by TAa(X) = (X, M ®4
X, Idyex, Ux) on the objects X € Mod-A and given an A-morphisma: X — X’
then T4 (a) = (a, Idy ®a).

(it) The functor U4 : Mod-Ag,y) —> Mod-A is defined by Us (X, Y, f, g) = X on the
objects (X, Y, f, g) € Mod-A (¢, y) and given a morphism (a, b): (X,Y, f,g) —>
(X", Y', f', &) in Mod-A (g ) then Ua(a, b) = a.

(iii) The functor Tg: Mod-B — Mod-A y) is defined by Tp(Y) = (N ®p
Y, Y, @y, ldygy) on the objects Y € Mod-B and given a B-morphism b: ¥ —> Y’
then Tp(b) = (Idy ®b, b).

(iv) The functor Ug: Mod-A s, y) —> Mod-B is defined by Ugp(X, Y, f, g) = Y on the
A p,y)-modules (X, Y, f, g) and given a Ay y)-morphism (a, b): (X,Y, f, g) —>
(X', Y’, f',¢") thenUg(a, b) = b.

(v) The functor Hs: Mod-A —  Mod-A,y) is defined by Ha(X) =
(X, Hom (N, X), 8}, 0 Homa (N, Wx), €y) on the objects X € Mod-A and given
an A-morphisma: X —> X' then Hs(a) = (a, Hom4 (N, a)).

(vi) The functor Hp: Mod-B —  Mod-Ay,y) is defined by Hp(Y) =
(Homp(M,Y),Y, ey, Sngy o Homp (M, ®y)) on the objects ¥ € Mod-B and given
a B-morphism b: Y — Y’ then Hg(b) = (Homg (M, b), b).

(vii) Suppose that ¢ = 0 = . Then we define the functor Z, : Mod-A — Mod-Aq,0)
by Zo(X) = (X,0,0,0) on the objects X € Mod-A and if a: X —> X' is an
A-morphism then Z4(a) = (a, 0). Dually we define the functor Zg: Mod-B —
Mod-A (0,0)-

When a Morita ring is an Artin algebra we have the following description of the
indecomposable projective and injective modules.
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Proposition 2.2 [25, Propositions 3.1 and 3.2] Let Ay y) be a Morita ring. Then the
indecomposable projective Ay y-modules are objects of the form:

Ta(P)=(P,M ®4 P,ldyg,pr, ¥p)

TB(Q) = (N ®B Qv Q7 ¢Q71dN®BQ)

where P is an indecomposable projective A-module and Q is an indecomposable projective
B-module. Also, the indecomposable injective A g y)-modules are objects of the form:

Ha(I) = (I, Homa (N, I), 8};5; o Homa (N, ¥y), €})
HB(.]) = (HomB(M, J), J, 6],31\/@] o HomB(M, CD]))

where I is an indecomposable injective A-module and J is an indecomposable injective
B-module.

We continue now with examples of Morita rings which will be used in the sequel.

Example 2.3 (i) Let R be a ring with an idempotent element e. Then, from the Pierce
decomposition of R with respect to the idempotents e and f = 1g — e, it follows
that R is the Morita ring with A = eRe, B = fRf, N = eRf, M = fRe and the
bimodule homomorphisms ¢, ¥ are induced by the multiplication in R.

(i) Any pair (A, P4), where A is a ring and P4 is a right A-module, induces a Morita
ring as follows:

A (A Homu(P, A)
@)=\ P Enda(P)

with bimodule homomorphisms ¢: P ® 4 Homy (P, A) — Ends(P), p ® f +—
d(p® fH(p) =pf(p)and ¥: Homy(P, A) ®endyp) P — A, fOp = ¥ (f®
p) = f(p). Itis well known that if the A-module P is a progenerator, then the rings
A and Endy4 (P) are Morita equivalent.

(iii) Let A, = (3 1/\{/1/4 AgB) be a Morita ring with ¢ and v zero. Then we have an
isomorphism of rings between A g,0) and (A x B) x M ® N, where (A x B) x M @ N
is the trivial extension ring of A x B by the (A x B)-(A x B)-bimodule M & N.
For the notion of trivial extension of rings and for the above isomorphism we refer to
[22], see also [25, Proposition 2.5].

(iv) Suppose that we have the following Morita ring:

AA
Mgy = (A A)

where every entry is a ring A. Then, it follows from the associativity of the multipli-
cation that ¢ = , see [25, Corollary 2.13] for more details. A special case is when
¢ = 0, that is A,0) = (ﬁ ﬁ) = (A x A) X A & A. In the next subsection we
analyze the module category of A o) via recollements of abelian categories.

We close this subsection with the next result, which shows that always a Morita ring gives
rise to a recollement situation. This provides a way to relate the module category of a Morita
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494 N. Gao, C. Psaroudakis

ring with the module categories of its underlying rings. For the proof see [25, Proposition
2.4] and for more details on recollements of abelian categories we refer to [23, 36].

Proposition 2.4 Let Ay y) be a Morita ring. Then the following diagrams:

/\/\

Mod-B/ Im ¢ Mod-A (y.) —=—> Mod-A

T~ Pz Ha

and

Mod-4/ Im ) ——"—> Mod-A ;) —2——> Mod-B

are recollements of abelian categories, that is:
(i) (Ta,Ua,Hp) is an adjoint triple. (i) (Tp,Up,Hp) is an adjoint triple.

(i) The functors Ty and Ha are fully faithful. (ii) The functors Tp and Hp are
fully faithful.

(iii)y KerUy = Mod-B/Im¢. (iiiy KerUp = Mod-A/Imyr.
In particular, if ¢ = 0 =  then we have the following recollements of module
categories::
QB Ta Qa Ts
Mod-B —=2—> Mod-A g g) — > Mod-A  Mod-A —2*—> Mod-A g g ——2—> Mod-B

P St TSP~ H

Our aim next is to analyze the recollement of the module category of the Morita ring
Aw,0) = (R R), where R is a unital associative ring. For this reason, we introduce in the
next subsection the double morphism category of an abelian category. This construction can
be considered as an abstract model for the category of modules over A (g o).

2.2 The Double Morphism Category

Let .7 be an abelian category. The double morphism category of .<7, denoted by DMor(.<7),
has as objects diagrams of the form:

X =——_Y

f

where f and g are morphisms in <7 such that fog = 0 and go f = 0. We simply denote the
objects as tuples (X, Y, f, ). A morphism (X, Y, f,g) — (X', Y’, f/, ¢’) in DMor(/)
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is a pair (a, b) of morphisms in o7, where a: X —> X' and b: ¥ —> Y/, such that the
following diagram commutes :

thatis, goa = bo g’ and f o b = a o f'. We show that the double morphism category
DMor(&7) is an abelian category and that there is a recollement which relates DMor(.<7)
and .«7. In order to give an abelian structure on DMor(.27), we provide another description
of DMor(«?). In particular, we show that there is an equivalence of categories between
DMor(«7) and (&7 x &) x H, where (& x /) X H is the trivial extension of ./ x &/ by
an endofunctor H, see Fossum-Griffith-Reiten [22].

We define the functor H: &/ x &/ — & x &/, H(X,Y) = (Y, X), and given a
morphism (a, b): (X,Y) —> (X', Y’) then H(a,b) = (b, a). Then we can define the
trivial extension (& x /) x H, where the objects are morphisms a: H(X,Y) — (X, Y)
such that H(a)oa = 0,andifa: H(X,Y) — (X,Y)and B: H(X',Y') — (X', Y’) are
two objects in (& x &7) X H, then a morphism between the objects « and 8 is a morphism
y: (X,Y) — (X', Y’) such that the diagram

H(v)
—_

H(X,Y) H(X',Y")
| |
(X,Y) —— (XY

is commutative, where o = (ay, az), f = (b1, b2) and y = (c1, ¢2). Since the endofunctor
H is (right) exact, it follows from [22] that the trivial extension (& x %) X H is an abelian
category.

Proposition 2.5 Let o7 be an abelian category.

(1) There is an equivalence of categories between DMor(<?) and (&f x &/) x H. In
particular, the double morphism category DMor () is abelian.
(i) There is a recollement of abelian categories

Qer T
o DMor(et) — 2 Dy

SN Po 7 S He T 2.3)

Proof (i) Let (X, Y, f, g) be an object of DMor(<7). We define the functor

F: DMor(«/) —— (o x o) x H , F(X,Y, f,9) = HX, V)L (x,v)
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and given a morphism (a,b): (X,Y, f,g) — X, Y, f',g) in DMor(</) then
F(a,b) = H(a, b). The functor F is well defined since the following composition

(ﬁy) (g 1)

H?(X,Y) —= H(X,Y) —= (X,Y)
is zero, i.e. the object F (X, Y, f, g) liesin (& x &/) x H.Itis clear that the functor F is

faithful. Let

(g f) (a,b) (¢’ )

[(V, X) == (X, V)] = [(V", X) —— (X", Y]]

be a morphism in (&7 x ) x H. Then the following commutative diagram

(v, x) —2 (v x)

(g,f)l l(g’,f')
X, v)— 2 (x7 v

implies that (a,b): (X,Y, f,g) — (X',Y’, f’,¢') is a morphism in DMor(«/) and
F(a,b) = H(a,b). Thus the functor F is full. Finally, if (a1, a2): H(X,Y) — (X, Y)
is an object of (& x &) x H, then since H(aj,az) o (aj,a;) = 0 we infer that
(X,Y,az,a;) € DMor(/) such that (X, Y, ay, a;) = (ai, az). This shows that the func-
tor F is essentially surjective. Hence, the categories DMor(&7) and (& x /) x H are
equivalent and therefore the double morphism category DMor(.27) is abelian.

(ii) The functors appearing in diagram (2.3) were defined in Section 2.1 for the mod-
ule category of a Morita ring. In this case, if A is an object in o/ then T (A) =
(A, A,1dy,0), Hyy(A) = (A, A,0,1ds) and for a tuple (X, 7, f, g) in DMor(</) we
have Uy (X, 7Y, f,g) = X. Similarly with Section 2.1, we get a description of these
functors on morphisms. Then, it is easy to check that (T, Ug/, Hey) is an adjoint triple
with T (equivalently, Hoy) fully faithful and the kernel of Ug, is equivalent with 7,
see also Proposition 2.4. We infer that (<7, DMor(&7), &7) is a recollement of abelian
categories. O

In the following remark we collect some properties of the recollement diagram (2.3).

Remark 2.6 Let DMor(27) be the double morphism category of an abelian category .27

(1) The functors Ty : &/ —> DMor(&’) and Hy : &/ — DMor(«?) are exact. Thus,
the recollement (2.3) of DMor(%7) has the property that the left and right adjoint of the
quotient functor Ug : DMor(27) —> o7 are exact. In general, this property doesn’t
hold in a recollement situation.

(i) Let (X, Y, f, g) be an objectin DMor(.27). Then the tuple (Y, X, g, f) is also an object
in DMor(.7) since the composition of morphisms is still zero. This gives a functor
F: DMor(«/) — DMor(«), F(X,Y, f,g) = (Y, X, g, f), which turns out to be
an auto-equivalence.

(iii) For an object (X,Y, f,g) in DMor(«/) we define the exact functor
U, : DMor(%/) — < given by U (X,Y, f,g) = Y, and U (a,b) = b for a
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morphism (a, b) in DMor(.27). It is easy to check that U’ , is the middle functor of
the adjoint triple (Hy, U;{, T.s) and therefore we obtain a recollement of abelian
categories (<, DMor(«/), 7). Then the following commutative diagram:

DMor (&) Ry

?\L: lldﬁy
U/

DMor (&) —Z of

shows that there is a natural equivalence of functors between U;{]: and U . Thus,
from [37, Definition 4.1, Lemma 4.2] we infer that the two recollements of DMor(.27),
i.e. the recollement (2.3) and the recollement (<, DMor(<7), o7) given by U,
are equivalent. From now on, we fix the recollement diagram (2.3) for the double
morphism category DMor(7).

Example 2.7 Let R be a ring and consider the Morita ring A,0) = (§ g), see Exam-
ple 2.3 (iv). From Section 2.1, the category Mod-A (g o) is equivalent to the double morphism
category DMor (Mod-R) of Mod-R. Then, from Proposition 2.5 (ii) we have the following
recollement:

Cok T
R T
Mod-R MOd-A(O’O) Mod-R
TS ke S~ (24)

For later use, we fix the above notation for the functors of the recollement of Mod-A ).
In particular, and relative to Section 2.1 and Proposition 2.5, we have:

(i) The functor T1: Mod-R — Mod-A g0 is given by T1(X) = (X, X, Idx, 0) on the
objects X € Mod-R and for an R-morphisma: X —> X’ thenT|(a) = (a, a). More-
over, the functor Ty is exact. Similarly, the functor T,: Mod-R — Mod-A g,g) is
given by To(X) = (X, X, 0, Idx) on the objects X € Mod-R and for an R-morphism
a: X —> X' then Ta(a) = (a, a). Note that in this case T, is precisely the functor
H; appearing in the recollement (2.4).

(i1) The functor U of Proposition 2.5 is now denoted by U; : Mod-A g o) —> Mod-R.

(iii) The functor Z,: Mod-R — Mod-A g ), given by Z>(X) = (0, X, 0,0) for X €
Mod-R, is the functor Zg defined in Section 2.1.

(vi) The cokernel functor Cok: Mod-A,0) —> Mod-R is given by Cok(X, Y, f,g) =
Coker f on the objects (X,Y, f,g) € Mod-A,0 and for a A g)-morphism
(a,b): (X,Y, f,g) — (XY, f',¢g) we have Cok(a,b) = ¢, where
c: Coker f —> Coker f’ is the induced morphism such that b o 7’ = 7 o c,
where m: Y —> Coker f and 7’: Y/ —> Coker f’. This is the functor Qg in
Proposition 2.5.

(v) The kernel functor Ker: Mod-A@,0) —> Mod-R is given by Ker(X,Y, f,g) =
Kerg on the objects (X,Y, f,g) of Mod-Aq, and for a A(,g)-morphism
(a,b): (X,Y, f,g) — (XY, f,g) we have Ker(a,b) = ¢, where
¢ is the restricion map of b to Kerg. This is the functor Py in
Proposition 2.5.
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2.3 Monomorphism Categories

Let <7 be an abelian category. We denote by Mor.o/ the category of morphisms of .<7. Recall
that the objects of Mor.e? are triples (X, Y, f), where f: X —> Y is a morphism in 7,
and given two objects (X, Y, f) and (X', Y’, f’) then a morphism is a pair (a, b) of maps
in .o such that the following diagram commutes :

X—f>Y

o

Xy

Since the morphism category Mor.</ is a special case of a trivial extension of abelian cat-
egories [22], it follows that Mor</ is an abelian category. The monomorphism category
Mon.ef of <7, which is the full subcategory of Mor.e? consisting of monomorphisms in .7,
is an extension closed additive subcategory of Mor.?. This implies that Mon.<? is an exact
category in the sense of Quillen [39]. Given an additive category <7, recall that a pair of
composable morphisms X —/f—Y —¢— Z called exact, if f is the kernel of g and g is
the cokernel of f. Let & be a class of exact pairs which is closed under isomorphisms. A
pair (f, g) in & is called a conflation, while the map f is called an inflation and the map g is
called a deflation. Then the class & is an exact structure of &7 and (<7, &) is called an exact
category, if a series of axioms are satisfied. We refer to [28, Appendix A], see also [16], for
the precise definition and for all the notions/results on exact categories needed in this paper
(Section 5).

We now return to the double morphism category. For an abelian category <7,
define the monomorphism categories of DMor(/) as follows: Monoj(&/) =
{(xX,Y, £,00 | f: X — Y monomorphismin &/} and Monoy(A) =
{(X,Y,0,2) | g: Y — X monomorphism in &7}. It is straightforward to show that the
monomorphism categories Mon(.2?), Mono (<) and Mono, (/) are equivalent as exact
categories.

From now on the monomorphism category of an abelian category .7, denoted by
Mono(7), is the category Mono; (<7). Note that when 7 is exact, the monomorphism cate-
gory of &7 is the inflation category of <7, that is, the morphisms of .7 which are inflations.
We continue to call this category the monomorphism category of .« and we denote it by
Mono(&7) as well. The next result provides a description of the projective and injective
objects in Mono(7). The proof follows similarly to [17, Lemma 2.1], so it is left to the
reader.

Lemma 2.8 Let o7 be an exact (abelian) category with enough projective and injective
objects. Then the monomorphism category Mono(<?) has enough projective and injective
objects, in particular:

(1) Proj(Mono(%)) = add{T{(P) ® Z,(Q) | P, Q € Proj.7}, and

(i) Inj(Mono(«)) = add{T\(I) ® Zo(J) | 1, J € Inj </}.

Let A be an Artin algebra and consider the Morita ring Ao,y as an Artin algebra. In this
case, the monomorphism category of A is the following full subcategory of mod-A (,¢), i.e.
of DMor(mod-A):

mono(A) = {(X,Y, f,0) | f: X —> Y is a monomorphism} 2.5)
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In the next result we collect some useful properties of mono(A) that we need in the
sequel.

Lemma 2.9 Let A be an Artin algebra. Then the following statements hold.

(i) The monomorphism category mono(A) is an exact category which is closed under
kernels.
(i) We have the adjoint triples (Cok, Z, U) and (U, Ty, Uy):

Cok Uz
/\ /\
mod-A — 22~ mono(A) ' mod-A
U2 Ul

The above functors are exact and preserve projective objects, and Zp and Ty are fully

faithful.

Proof (i) The monomorphism category mono(A) is exact, since it is an extension closed
subcategory of mod-A (). Let (a,b): (X, 7, f,0) — (X', Y’, f,0) be a morphism in
mod-Ao,0) with (X, Y, f,0) and (X', Y’, f’, 0) in mono(A). Consider the following exact
commutative diagram:

0 Kera ——> X — %= X'
T
0 Kerb—L >y oy’

Since the composition f o i is a monomorphism, it follows that the map % is a monomor-
phism. Then Ker(a, b) = (Kera, Kerb, h, 0) lies in mono(A). We infer that mono(A) is
closed under kernels.

(i1) It is easy to check that the above functors form adjoint pairs, see Proposition 2.4 and
Example 2.7. Since Cok, Z;, U, and Ty are left adjoint functors of exact functors it follows
that they preserve projective objects. The functor U; preserves projectives by the descrip-
tion of proj(mono(A)) given in Lemma 2.8, see also Example 2.7. Moreover, it follows
easily from the definition that the functors Z, U, T1 and U; are exact, and moreover that
Z, and T are fully faithful, see again Example 2.7. It remains to show that the cokernel
functor Cok: mono(A) —> mod-A is exact. Let (X1, Y1, f1,0) — (X2, Y2, f2,0) —
(X3, Y3, f3,0) be a conflation in mono(A). Then we have the following exact commutative
diagram:

0 X1 X9 X3 0
lfl lf’z lfa
0 Y; Y, Y3 0

where the maps fi, f> and f3 are monomorphisms. From the Snake Lemma in the above
diagram, it follows that the functor Cok; : mono(A) —> mod-A is exact. O
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3 Gorenstein-Projective Modules over Morita Rings

In this section we provide a method for constructing Gorenstein-projective modules over
Morita rings, which are Artin algebras and satisfy certain conditions, from Gorenstein-
projective modules of the underlying algebras. This section is divided into two subsections
and the main result is stated in the second subsection. We start by recalling the notion of
Gorenstein-projective modules and we also fix notation.

Let A be an Artin algebra. An acyclic complex of projective A-modules P®: .- —>
pi-l — pi _—» pitl 5 ... s called totally acyclic, if the complex
Homp (P®, A) is acyclic. Then, a A-module X is called Gorenstein-projective, if it is
of the form X = Coker (P~! — P9) for some totally acyclic complex P* of pro-
jective A-modules. We denote by Gproj A the full subcategory of mod-A consisting
of the finitely generated Gorenstein-projective A-modules. Moreover, we denote {X €
mod-A | Extl (Gproj A, X) = 0} by (Gproj A)*. Recall also from [10, 11], that an Artin
algebra A is said to be of finite Cohen-Macaulay type, if the category Gproj A is of finite
representation type, i.e. the set of isomorphism classes of indecomposable finitely generated
Gorenstein-projective modules is finite. Finally, for a A-module X we denote by add X the
full subcategory of mod-A consisting of all direct summands of finite direct sums of X.

3.1 Lifting Gorenstein-Projective Modules

From Proposition 2.4 it follows that the functors T4: mod-A — mod-A g, y) and
Tp: mod-B — mod-A g, y) preserve projective modules. In this subsection we inves-
tigate when the functors T4 and Tp preserve Gorenstein-projective modules. The first
step towards this problem, is to examine when the above functors preserve totally acyclic
complexes. Under some conditions, this is achieved in the next result.

A ANgp

Proposition 3.1 Let A.yy = (3, *5

) be a Morita ring.

(i) Assume that the functor M ® 4 —: mod-A — mod-B sends acyclic complexes of
projective A-modules to acyclic complexes of B-modules and add 4N C (Gproj A)*.
Then a complex P® in mod-A is totally acyclic if and only if the complex T 4(P®) is
totally acyclic in mod-A (¢ ).

(ii)) Assume that the functor N @ p —: mod-B —> mod-A sends acyclic complexes of
projective B-modules to acyclic complexes of A-modules and add gM C (Gproj B)™.
Then a complex P® in mod-B is totally acyclic if and only if the complex Tg(P®) is
totally acyclic in mod-A (¢ y).

Proof We prove only (i), the statement (ii) is dual. Assume that

d—! d°

Pe. .- p-! PO p!
is a totally acyclic complex of projectives in mod-A. Then, by the assumption on the functor
M ®4 — and Remark 2.1 (ii), we obtain that the following complex :

Ta(d™) Ta(d”)

Ta(P®): - ——=Tu(P™) Ta(PY) Ta(PY) ——---

is exact, where each T4(P’) lies in proj Ay y) by Proposition 2.4. We show now
that the complex HomAw‘w(TA(P'),(X, Y, f,g)) is acyclic for all (X,Y, f,g) in
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proj Ap,y). In fact, from Proposition 2.2 (i) it is enough to consider only the complexes
HomA@_w(TA(P’), TA(P)) and Homa, 4, (TA(P®), Tp(Q)), where P lies in proj A and Q
lies in proj B. In the first case, the complex HomA@,w) (T4(P®), T4(P)) is acyclic since the
complex Homy4 (P®, P) is acyclic and from Proposition 2.4 the functor T4 is fully faithful.
Let Q be a projective B-module. Then, by using the adjoint pair (T4, U4), we have the
following commutative diagram :

e HomA(o_M(TA (Pl) TB<Q)) — HomAM_w (TA<P()), TB(Q>) — Homvaw) (TA(Pil)A,TB (Q)) —

] ] 4

.- —>HomA(Pl,N®B Q) _— HomA(P“,N®B Q) HOmA(Pil,N‘@B Q) —_—

follows that the complex Hom4(P®*, N ®p Q) is acyclic and therefore the complex
Homa .4 (Ta(P*), Tp(Q)) is also acyclic. We infer that the complex T4(P®) is totally
acyclic.

Conversely, assume that P*® is a complex of A-modules such that T 4 (P*) is totally acyclic.
If we apply the functor U4 to the complex T4 (P®), we get that the complex P*: -.. —
P! — PO — Pl — ... is acyclic. Note that since the functor T, is right exact
and fully faithful it follows that each P’ lies in proj A, see Proposition 2.4. Then, for every
projective A-module P, we derive as above that the complex Hom4 (P®, P) is acyclic. We
remark that in this direction we did not make use of our assumptions. O

Since N ®p Q is a direct sum of summands of N and add 4N < (GprojA)=L, it

We refer to the above conditions as the compatibility conditions on the bimodules 4 Np
and gMy4.

Example 3.2 Let Ap.y) = (, 4, *3*) be a Morita ring.

(i) Assume that M4 is projective as a right A-module and 4N is projective as a left A-
module. Then the functor M ® 4 —: mod-A — mod-B is exact and the subcategory
add 4 N lies in (Gproj A)*. Hence, from Proposition 3.1 (i) it follows that a complex
P* is totally acyclic in mod-A if and only if the complex T4 (P*) is totally acyclic in
mod-A (¢,y). Similarly, if Np is projective as a right B-module and g M is projective
as a left B-module, then the statement of Proposition 3.1 (ii) holds. In particular, con-
sider the case of the Morita ring A ¢) = (ﬁ ﬁ), see Example 2.7. Then it follows
that a complex P® in mod-A is totally acyclic if and only if the complex T (P®) is
totally acyclic in mod-A 4, ¢) if and only if the complex T, (P*®) is totally acyclic in

mod—A(¢,¢).
(ii)) Assume that pd My < oo and pd 4N < oo (orid 4N < 00). Then from [47, Propo-
sition 1.3], it follows that the functor M ® 4 —: mod-A — mod-B sends acyclic

complexes of projective A-modules to acyclic complexes of B-modules and add 4N €
(Gproj A)*. Hence, if A(g,y) is a Morita ring which is an Artin algebra such that
pdMy < ooand pdg4N < oo (orids4N < o0), then from Proposition 3.1 (i) we
get that the functor T4 preserves totally acyclic complexes. Dually, if we assume that
pd Np < oo and pd pM < oo (orid pM < 00), then the conditions of Proposition 3.1
(ii) are satisfied and therefore the functor Tp preserves totally acyclic complexes. Note
that this example generalizes the situation mentioned in (i).

As a consequence of Proposition 3.1 we have the following result, which provides suf-
ficient conditions such that the functors T4 and Tp lift Gorenstein-projective modules. In
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particular, we derive that Cohen-Macaulay finiteness of the Morita ring is inherited to the
underlying algebras as well.

Corollary 3.3 Let Ay, y) be a Morita ring.

(i) Assume that the functor M @4 —: mod-A — mod-B sends acyclic complexes of
projective A-modules to acyclic complexes of B-modules and add 4 N C (Gproj A)*.

(a) If X € Gproj A then T4 (X) € Gproj Ag,y)-
(b) If Aw,y) is of finite Cohen-Macaulay type, then A is also of finite Cohen-
Macaulay type.

(i) Assume that the functor N @ —: mod-B —> mod-A sends acyclic complexes of
projective B-modules to acyclic complexes of A-modules and add gM C (Gproj B)=*.

(a) IfY € Gproj B then Tg(Y) € Gproj Ay, y).
(b) If A,y is of finite Cohen-Macaulay type, then B is also of finite Cohen-
Macaulay type.

Now we turn our attention to the algebra Ay 4) = (ﬁ ﬁ) We recall the following.

Proposition 3.4 Let A be an Artin algebra and let n > 0 be a natural number.

(1) [25, Corollary 6.4] A is n-Gorenstein if and only if the Morita ring A, ¢) is
n-Gorenstein algebra.

(it) [25, Corollary 6.6] Assume that A is Gorenstein. Then a Ay, 4)-module (X, Y, f, g)
is Gorenstein-projective if and only if X and Y are Gorenstein-projective A-modules.

In the next result we show the one direction of Proposition 3.4 (ii) without assuming A
to be Gorenstein.

Lemma 3.5 Let A be an Artin algebra and let Ay ) = ( ) If (X, Y, f, g) is an object
in Gproj A(g,¢) then the A-modules X and Y lie in Gproj A.

Proof Let (X, Y, f, g) be a Gorenstein-projective Ay 4)-module. Then from Proposi-
tion 2.2, there exists a totally acyclic complex of the following form:

T®:

Tl(P EBTQ ———————— PO @TQ(QO)—>

\/

(X,Y, f,9)

where P! and Q' are projective A-modules. Then, if we apply the exact functor
Ui: mod-Ag.4) —> mod-A, we get the exact sequence of projective A-modules:

Pe:

PloAeyQ ) -—--=P'aAoyQ) —s
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We claim that the above complex is totally acyclic. Let P be a projective A-module. Then
from Example 2.7, we have the following isomorphisms:

Homa (P! @ (A ®4 Q') P) = Homa,,, (Ti(P") @ T2(Q"), Hi(P))
= Homa,,, (T1(PY) @ T2(0"), T2(P))

2

Since the complex Hom N (T*, T2(P)) is acyclic, it follows from the above isomorphisms
that the complex Homy (P®, P) is also acyclic. We infer that the complex P*® is totally
acyclic and therefore the A-module X is Gorenstein-projective. Similarly we show that Y
is a Gorenstein-projective A-module. (]

As a consequence of Corollary 3.3 and Lemma 3.5 we obtain the following. Note that if
A is Gorenstein, Proposition 3.4 (ii) gives a direct proof of the next result.

Corollary 3.6 Let A be an Artin algebra and let Ay 4) = (ﬁ ﬁ) Then for a A-module X
the following statements are equivalent:

(i) X € Gproj A.
(1) Ti(X) € Gproj Ay, ).
>iii)) T2(X) € Gproj A(¢,¢).
In the special case where ¢ = 0, the Gorenstein-projective modules T1(X) lie in the

monomorphism category mono(A) as defined in Section 2.3. We close this subsection with
the next example.

Example 3.7 Let K be a field and R = K[[X], X2]]/(X1X2. Consiﬂer the Morita ring
Aoo = (X X). By [19, Example 4.1.5] the R-modules X; and X, are Gorenstein-

projective, where X; is the residue class in R of X; fori = 1, 2. Thus, from Corollary 3.6
and for i = 1,2 it follows that the objects T1(X;) = (X;, Xi, Idyl_,O) and T(X;) =
X;, X;,0, Idy,) are Gorenstein-projective A (g,0)-modules.

3.2 Constructing Gorenstein-Projective Modules

Before we proceed to the main result of this subsection (Theorem 3.10), we need some
preparations.

Lemma 3.8 Let A0 = (31131/4 AII}]B) be a Morita ring. Then for every A-module X and

B-module Y we have the following exact sequences in Mod-A () :

OHZB(]\/[ ®a X) HTA(X) HZA(X) —0

OHZA(NQ@BY)*)TB(Y) ZB(Y) 0
0 Z4(X) Ha(X) — > Zp(Homa(N, X)) — >0
0 Zp(Y) Hp(Y) ——= Za(Homp(M,Y)) ——0
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Proof Let X be an A-module. Then the map (Idy,0): T4(X) — Z4(X) is an epimor-
phism in the category Mod-A (o,0), where Ta(X) = (X, M ®4 X, lduyg,x,0), Za(X) =
(X, 0,0, 0), and the kernel of the morphism (Idy, 0) is the object Zg (M ®4 X) = (0, M @4
X, 0, 0). We infer that the sequence 0 — Zg(M ®4 X) —> T4(X) — Z4(X) —> Ois
exact. In the same way we derive that the rest sequences are exact, the details are left to the
reader. O

Lemma 3.9 Let Ay be a Morita ring. Then for every X, X' € Mod-A and Y,Y' €
Mod- B, we have the following isomorphisms :

Homa o) (Ta(X) ® Tp(Y), Za(X")) = Homu (X, X')

and

Homy g, (TA(X) @ Tp(Y), Zp(Y")) = Homp(Y,Y")

Proof We show the first isomorphism. From Proposition 2.4, we have the adjoint pair
(Q4, Z4) and from the recollement (Mod-A, Mod-A (9,0y, Mod-B) it follows that Q4 Tg = 0.
Then, we have the isomorphism

Homa .0 (TA(X) ® Ta(Y), Z4(X)) = Homy (QaTA(X), X)

and it remains to compute the object Q4T 4 (X). From the counit of the adjoint pair (Tg, Up)
we have the following exact sequence in Mod-A (,0) :

Jdavrgx
TpUp(Ta(X)) —idvex)

TA(X) —_— ZAQA(TA(X)) —_— 0

see Proposition 2.4, where TgUp(TA(X)) = (N Q3 M ®4 X, M ®4 X,0,ldyemsx)
and Z4Q4 (T4 (X)) = Coker (0, Idyygx) = Z4(X). This implies that Q4 T4(X) = X and
therefore we have the isomorphism Homp , , (TA(X) @ Tp(Y), ZA(X)) = Homu (X, X').
The second isomorphism follows similarly by using the adjoint pair (Qp, Zp). O

We are ready to prove the main result of this section which constructs Gorenstein-
projective modules over Morita rings A (o,0). This result constitutes the first part of Theorem
A presented in the Introduction.

Theorem 3.10 Let A g,0) be a Morita ring such that the bimodules s Np and p M 4 satisfy
the compatibility conditions, that is, the following conditions hold:

(i) The functor M @4 —: mod-A — mod-B sends acyclic complexes of projective
A-modules to acyclic complexes of B-modules.
(i) add 4N C (Gproj A)=L.
(iii) The functor N ®p —: mod-B — mod-A sends acyclic complexes of projective
B-modules to acyclic complexes of A-modules.
(iv) add gM C (Gproj B)L.

(o) Assume that there exists a Gorenstein-projective B-module Z with a monomorphism
s: N®p Z —> X, for some A-module X, such that Coker s lies in Gproj A and there is a
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monomorphismt: M @ 4 Cokers —> Y with Cokert = Z and for some B-module Y. Then
the tuple

(X, Y, (Idy ®mx) ot, (Idy ®my) os) (3.

is a Gorenstein-projective A o,0)-module, where wx: X —> Cokers and ny: Y —>
Cokert.
(B) Assume that there exists a Gorenstein-projective A-module Z with a monomorphism
t: M ®sZ — Y, for some B-module Y, such that Cokert lies in Gproj B and there is a
monomorphism s: N ®p Cokert — X with Coker s = Z and for some A-module X. Then
the tuple

(X, Y, (dy ®mx) o1, (Idy ®my) o 5) (3.2

is a Gorenstein-projective A (,0)-module, where wx: X —> Cokers and ny: Y —>
Cokert.

Proof We prove («), the statement () is dual. The proof for () is divided into four steps.
In the first two steps we construct (co)resolutions of X and Y by objects coming from the
totally acyclic complexes of Coker s and Z. Then in the third step we lift this (co)resolutions
to mod-A 9,0y and in the final step we show that this construction is indeed a totally acyclic
complex of the object (X, Y, (Idys ®mx) o, (Idy ®my) o 5).

Step 1: Since the A-module Cokers is Gorenstein-projective, there exists a totally
acyclic complex of projective A-modules:

Pe: .. pr L po Y p

such that Ker d% = Coker s and let d;l = A;l o K;l be the canonical factorization through
Coker s. Also, since the B-module Z is Gorenstein-projective there exists a totally acyclic
complex of projective B-modules:

—1 0
dQ QO dQ Ql

such that Ker d% = Z and let dél = )\él o /cél be the canonical factorization through
Z. Then from the assumption (iii), it follows that the complex of A-modules N ®p Q° is
acyclic. Applying to the exact sequence :

Q*: - Q1

0—>N®pZ—X "5 Cokers —=0

the functor Hom4 (—, N @5 09), we get the exact sequence:

0 — Hom 4(Coker s, N @3 Q°) —= Hom (X, N ®p Q%) — Hom (N ®p Z,N ®p Q°) ——=0

since Cokers € Gproj A and N ® g Q° € (Gproj A)* from the assumption (ii). This implies
that there is a map y°: X — N ®p Q0 such that s 0 % = Idy ®x§1 and therefore we
obtain the map

O[O = (ﬂXOK;l yo): X — PO@(N@)B QO)
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Then from the Horseshoe Lemma, see also [47, Lemma 1.6], we obtain the exact
commutative diagram:

0 0 0
Ty @t 0 Idy ®dg 1
00— N®pZ——>NQXp N®pQ >
o _7
s L~ (01) (01)
0- - - >XZ - Yo P e (NepQ")-% =P &(NosQl)- -
x (%) (8)
k! d9
0 —— Cokers L PO z p!
0 0 0

. l_l . . .
where for all i > 1 we have o/ = (d}’:,. IdN;d”l): Ple(N®s 0™ — P o(N®s
0

O andy’: P! — N®p Q'. Note that the existence of the maps y* follow by using the
assumption (ii). In the same way, we can construct a resolution of X by objects of the form

P! @ (N ®p Q') but now we use that the modules P~ i > 1, are projective. In particular,
we get the map

—1 14 L p—1 1
o = ((IdN ®)\él)os)' P 2] (N ®p Q ) — X

where y~!: P~! — X suchthat y~'omy = A,', and for every i > 2 we have the maps:

. d=t 0 . . . .
o ’:(yi,.ldwdé,.):P "To(N®p0) — P e (N®s 07

similarly as described above. Thus, summarizing the construction so far, we have con-
structed the following exact sequence:

< < (172 Ul
= PPO(N@pQ )P lo(NepQ ) ---->P o (NepQ’) > P o (NepQ') — -

a1 .y

X (%)
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Step 2: We construct an exact sequence similar to (%) for the B-module Y. Since
addgM C (GprojB)J- (assumption (iv)) we have as in Step 1 the following exact

commutative diagram:

0 0 0
Idy k5! Idy ®@dY
0—> M@, Cokers — "o Ma, PO — %% oy, Pl ...
7
.
¢ B (10) (10)
_ T8 0 o B 1 1

0- ———>v=2 - s Mo PYeQ -t - (Mo PHY®Q — — > .. (%)

my B () ) (9)
0 A "e QO dQ Ql

0 0 0

where B0 := (8% 7yoxy'): ¥ —> (M ®4 P) @ Q% and foralli > 1 we have:

i ldyedy !t s i1 i1 i i
pr= (ST L) M ea PThe 0T — ey Phe o

for some §': Q'~! — M ®4 P'. Then, as in Step 1 we construct a resolution of ¥ by
objects of the form (M ®4 P') & Q' and putting together these, we obtain the following
exact sequence :

5 B2 B
e (M@ P eQ e (Mo P ) eQl-———>(Mas PYaQ 5 (Me, PhoQ — -

Bt %
Y

Step 3: We glue together the exact sequences () and (+x) and we derive the following
sequence :

(%)

—2 372) TA(Pfl)@TB(Qil) ________ >TA(pO)@TB(QO)M>...

(o

T

(a™t871) (a?,8°%)
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We claim that the sequence T® is exact in mod-A (g, o). First, since the following diagrams
are commutative

(Massrs 0
(M®4P)o (M4 N g Q) L (M &, P& Qi
( Idy ®dp 0 ) (IdM ®dip §it1 )
Idar ®@7 ! Tdprgn ®dg Id, g pis1 0 0 dh

(M®4PT)@ (Mo NopQt) —2 % (Mo, P o @it

and

(N®p M ®4 P)® (N ®p Q)

(Idef ®d% Idy @571 )
0 Idy ®df,

Pio (N®p Q)

di 0
(0 0 ) l(vl“ Idy ®d’Q)
1 ir1y V0 Tdygqitt 1 1
(N@pM®s P (N Q) —————— Pl @ (N ep Q')

it follows that the maps
@, B): Ta(PH®TE(Q) — Ta(P™HeTeQ™

are morphisms in mod-A (g,o). Since the complexes () and (xx) are acyclic, it follows from
Remark 2.1 (i) that T® is an exact sequence in mod-A (g o). Moreover, the object (X, Y, f, g)
arises as the kernel of the morphism (!, B 1y and by Remark 2.1 (ii) we observe that f =
(Idy @mx) ot and g = (Idy ®my) o s.

Step 4: The final step of the proof is devoted to show that the acyclic complex
T® is totally acyclic. From Proposition 2.2, it is enough to show that the complexes
Homa 0, (T®, TA(P)) and Hompy q, (T®, Tp(Q)) are acyclic, where P is a projective A-
module and Q is a projective B-module. From Lemma 3.8 we have the exact sequence
00— Zp(M ®4 P) —> T4(P) —> Z4(P) — 0 and since each term of the complex T*
is a projective A (,0)-module, it follows that the following sequence :

0 —=Homy, o (T*, Zp(M ®a P)) —=Homp, ,, (T*, Ta(P)) —= Homy, . (T*, Za(P)) —0

3.3)
is an exact sequence of complexes. Then, from Lemma 3.9 we have the isomorphism
Homp 0, (T®, Za(P)) = Homs(P®, P) and since P* is totally acyclic we infer that
Homy 0, (T®, Za(P)) is acyclic. Also, from Lemma 3.9 we have Homy , , (T®, Zg (M ®4
P)) = Homp(Q®, M ®4 P) and since M ®4 P lies in (GprojB)+ by assumption
(iv), it follows that the complex Homp(Q®, M ®4 P) is acyclic. Then, the complex
Homa g, (T*,Zp(M ®4 P)) is acyclic and therefore from the exact sequence (3.3), we
infer that the complex Homy, o, (T®, T4 (P)) is acyclic. Similarly, using the exact sequence
0 — Z4(N ®p Q) — Tp(Q) — Zp(Q) —> 0 we derive that the complex
Homy g0, (T*, T(Q)) is acyclic.

In conclusion, the A (g g)-module (X, Y, (Idy ®mx) o t, Idy ®my) o s) is Gorenstein-
projective. O

Corollary 3.11 Let Ao,0) be a Morita ring such that the conditions (1) or (3), and (2) or

(4) hold:
(1) pdMy < o0 and pd 4N < oo. 3) pdMy < oo and id N < oo.
(2) pdNp <00 and pdpM < oo. (4) pdNp <00 and idgM < oo.

(a0) Assume that for an A-module X there exists an exact sequence
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0—>N®pZ—>X X5 Cokers —=0

with Z € Gproj B and Coker s € Gproj A, such that there is an exact sequence

0— > M, Cokers ——>Y s 7 0

for some B-module Y. Then the objects: (X, Y, (Idy ®mx)ot, (Idy ®my)os), T4 (Cokers),
Tg(Z) are Gorenstein-projective A (o,0)-modules.
(B) Assume that for a B-module Y there exists an exact sequence

0—>M®AZt—>Y7T—Y>Cokert—>O

with Z € Gproj A and Cokert € Gproj B, such that there is an exact sequence

0— > N®pgCokert —>> X X5 7 0

for some A-module X. Then the objects: (X, Y, (Idy ®mx) o t, (Idy ®my) o s), Ta(Z),
Tg(Cokert) are Gorenstein-projective A ,0)-modules.

Proof From Example 3.2 the conditions (i) — (iv) of Theorem 3.10 are satisfied. Then the
result follows from Corollary 3.3 and Theorem 3.10. O

The next result is a consequence of Theorem 3.10 for the Morita ring A g 0). Recall that
mod-A ,0) is the double morphism category DMor(mod-A) that we studied in Section 2.2.

Corollary 3.12 Let A be an Artin algebra and consider the algebra A,y = (4 2). Let
(X, 7Y, f,8) bea Aq,)-module such that there exist exact sequences

0 72X ZXew 0

t

0 w y sz 0

with Z, W € Gproj A and set f :=mx ot, g := my o s. Then the objects (X, Y, f, g) and
(Y, X, g, f) are Gorenstein-projective A ,0y-modules.

Remark 3.13 Let (X, Y, f, g) be a A(g,0)-module. Assume that for X and Y the conditions
of Theorem 3.10 («) are satisfied. Then, we cannot infer in general from Theorem 3.10
that (X, Y, f, g) lies in Gproj A ,0). In other words, Theorem 3.10 does not provide us with
sufficient conditions for a tuple (X, Y, f, g) to be Gorenstein-projective. We explain now
where is the problem. Following the construction of Theorem 3.10, we conclude that the
object (X, Y, (Idys ®nx) ot, (Idy ®my) os) is Gorenstein-projective. From Remark 2.1 (ii)
we know that the maps (Idy; ®x)ot and (Idy ®my)os are uniquely determined and satisfy
the corresponding commutative diagrams (2.2). But since f and g are arbitrary maps, we
don’t know in general if they satisfy the diagrams (2.2). If f and g satisfy these diagrams,
then from uniqueness it follows that f = (Idy ®mx) o, g = (Idy ®my) o s and therefore
(X, 7, f, g) is Gorenstein-projective. Hence, we cannot conclude from Theorem 3.10 that
(X, 7, f, g) is Gorenstein-projective.

The next example shows how we can apply Corollary 3.12 to construct Gorenstein-
projective modules over A,y from Gorenstein-projective modules over the underlying
triangular matrix algebras.
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Example 3.14 Let A be an Artin algebra and consider the Morita ring A0y = (4 4)-

(i) Consider the lower triangular matrix algebra To(A) = (ﬁ R) From [47, Theorem
1.4], a triple (X, Y, f) is a Gorenstein-projective I'-module if and only if there is an
exact sequence

0 X ! Y —"= Coker f —=0 (3.4)

such that the A-modules X and Coker f are Gorenstein-projective. Let (X, Y, f) be a
Gorenstein-projective I'-module. Thus, we have the sequence (3.4) and we also form
the split exact sequence:

(10) (9)
0 —— Coker f —> Coker f @ X ——= X ——=0
Then, Corollary 3.12 yields that the objects
(Y, Coker f @ X, mo(10),(9)of) and (Cokerf @ X.,Y,(%)o fimo(10))

are Gorenstein-projective A g, 0)-modules. Consider now the upper triangular matrix
algebra ¥ = (6‘ ﬁ) and let (Z, W, g) € Gproj X. Then, from [47, Theorem 1.4] there
is an exact sequence :

g9 4

0 W Z Cokerg ——=0

such that the A-modules W and Coker g lie in Gproj A, and we also have the split
exact sequence:

(%)

10
0 —— Cokerg ——> Cokerg @& W ——= W ——=0
Hence, by Corollary 3.12 it follows that the following objects:
(Z,Cokerg ® W, po(10),(9)og) and (Cokerg@® W.Z,(9)og.po(10))

are Gorenstein-projective A (g,0)-modules.

(i) Let X be a Gorenstein-projective A-module. From (i) the objects (X, X, 0, Idx)
and (X, X, Idy, 0) are Gorenstein-projective A q,0)-modules. Note that this was also
observed in Corollary 3.6.

The above example shows that using Theorem 3.10, we obtain non-trivial examples of
Gorenstein-projective modules over the Morita ring A g,0) from Gorenstein-projective mod-
ules of the triangular matrix algebras I' and X. It should be noted that we don’t know if all
Gorenstein-projective modules over A (q,o) arises in this way, as well as how many objects
from Gproj A g,0y we finally obtain.

We close this subsection with the following consequence of Corollary 3.12 and an exam-
ple. We mention that Example 3.16 provides an interesting connection between our main
result (Theorem 3.10) and the class of strongly Gorenstein-projective modules.

Corollary 3.15 Let A be an Artin algebra and consider the algebra A 0) = (ﬁ ﬁ) Let
(X, 7Y, f,8) bea A o)-module such that Im f = Ker g, Im g = Ker f and assume that Im f

@ Springer



Gorenstein Homological Aspects of Monomorphism 511

lies in Gproj A. Then (X, Y, f, g) € Gproj A0y if and only if X, Y € Gproj A if and only if
(Y, X, g, f) € Gproj A0,0).

Proof Suppose first that X and Y are Gorenstein-projective A-modules. Then, from our
assumptions the following complex :

x oy fox Ty

is acyclic. Thus, we have the short exact sequences 0 — Img — X — Imf —
Oand 0 — Imf — Y — Img — 0. Since Gproj A is closed under kernels of
epimorphisms, it follows that Im f € Gproj A if and only if Img € Gproj A. Then, for
Z = Img in Corollary 3.12, we get that the module (X, Y, f, g) is Gorenstein-projective.
Note that, in this case, the maps of the tuple that we obtain from Corollary 3.12 are precisely
f and g. Similarly, if Z = Im f then the tuple (Y, X, g, f) is Gorenstein-projective. The
converse directions follow from Lemma 3.5. O

Example 3.16 Let A be an Artin algebra and consider the matrix algebra A ,0) = (ﬁ A )
Let

ptop t.op 1. p

be a totally acyclic complex of projective A-modules. Then, from Corollary 3.15 it follows
that (P, P, f, f) is a Gorenstein-projective A g o)-module. In this case, the A-module Im f
is called strongly Gorenstein-projective. We refer to [13] for more details on this class of
modules.

As a particular example, let K be a field, A = K[X]/ (Xz) and consider the matrix
algebra A (g ). Denote by X the residue class of X in A. Then by [13, Example 2.5] the
following sequence

A xr A x A €T A

is a totally acyclic complex of projective A-modules and X = Imx = Kerx is a strongly
Gorenstein-projective A-module. We infer that (A, A, x, x) is a Gorenstein-projective
A(o,o)—module.

Remark 3.17 By Corollary 3.15 we can instantly derive Example 3.14 (i). Indeed,
let f: X — Y be a monomorphism with Coker f in Gproj A. Consider the maps
(10): Coker f —> Coker f & X and (?): Coker f & X —> X. Then by Corollary 3.15
we get that (Y, Coker f @ X, m o (10), %?) o f) is a Gorenstein projective A q,9)-module
if and only if ¥ and Coker f @ X are Gorenstein-projectives if and only if ¥ and X are
Gorenstein-projectives.

4 Homological Embeddings and Gorenstein Artin Algebras

Our purpose in this section is to provide a method for constructing Morita rings A,0) =
(B 1/31A Ag/’*) which are Gorenstein Artin algebras. It turns out that our construction is
strongly connected with the property of the functors Zg: Mod-B —> Mod-A (o,0) and
Zj: Mod-A —> Mod-A 0,0y being homological embeddings. This section is divided into

two subsections and the main result is stated in the second one.
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4.1 Homological Embeddings
Let A@g,y) = (B ;‘“ AgB ) be a Morita ring. Associated with the Morita ring A g,y are the
following recollements of abelian categories (see Proposition 2.4):

Ta T

Mod-B/Im ¢ — 2 Mod-A ;) —2—> Mod-A  Mod-A/ Im 1) — > Mod-A ) —=—> Mod-B
Using the idempotent elements e = (4 0) and f = ({ ) of A gy, we obtain easily that
Mod-A/AeA =~ Mod-B/Im¢, Mod-eAe ~ Mod-A, Mod-A/AfA =~ Mod-A/Im and
Mod- f A f >~ Mod-B. Note that for simplicity we denote the Morita ring A (g,y) by A.
In this subsection we investigate when the ideals (¢) = AeA and (f) = AfA are
stratifying. We recall first the notion of stratifying ideals due to Cline-Parshall-Scott [20].
Let R be a ring and e an idempotent element of R. Then we have the exact sequence

0 —> Kerpup —> Re ®cpe eR 2> R—> R/ReR —> 0

where Imug = ReR and Ker up lies in Mod-R/ReR. The ideal (¢) = ReR is called
stratifying, if the following two conditions hold:

(i) The multiplication map Re ®.re ¢R —> ReR is an isomorphism.
(i) Tor,,, (Re,eR) =0, foralli > 0.

The surjective ring homomorphism R — R/ReR induces a fully faithful functor
Ir: Mod-R/ReR — Mod-R. Then it is known from [20] that the ideal (e) is stratify-
ing if and only if the functor I is a homological embedding [36], i.e. the exact functor
Iz induces an isomorphism Ext’;e/ReR(X, Y) = Ext}(X,Y) for all X,Y in Mod-R/ReR
and n > 0. For more on homological embeddings between abelian categories we refer to
[36].

We now characterize when the ideals (e) and (f) are stratifying, or equivalently when
the functors Ip: Mod-B/Im¢ — MOd-A((PJ//) and l4: Mod-A/Imy — MOd-A(,PJ/,)
are homological embeddings.

Proposition 4.1 Let Ay y) be a Morita ring.

(i) The ideal (e) is stratifying if and only if the map ¢: M @4 N —> B is a
monomorphism and TorlA(M, N)=0foralli > 0.

(i) The ideal (f) is stratifying if and only if the map ¥: N Qg M —> A is a
monomorphism and TorlB (N,M)=0foralli > 0.

Proof We only prove (i) since part (ii) is dual. For simplicity we write A for the Morita
ring Ap,y). An easy computation shows that fAe = M and eAf = N. Then, since
Ae =eAe® fAeand eA = eAe @ eAf, we have the following isomorphisms:

Tor\,(Ae,eA) = Tor , ,(eAe ® fAe,eAe @ eAf) =Tor,, (fAe, eAf) = Tory, (M, N)

Also, the canonical map pp : Ae®epee A —> A is a monomorphism if and only if the map
fAe®cpce A —> f A isamonomorphism if and only if the map fAe®.nceAf — fASf
is a monomorphism, i.e. the map ¢: M ® 4 N —> B is a monomorphism. Hence, we infer
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that the ideal (e) is stratifying if and only if TorlA (M,N) = 0 foralli > 0 and the map
¢: M ®4 N — B is a monomorphism. O

We provide examples of Morita rings where the conditions of Proposition 4.1 are
satisfied.

Example 4.2 Let A y) be a Morita ring. If M = 0 we have the upper trian-
gular matrix ring A = (/3 AgB) and the recollements (Mod-B, Mod-A, Mod-A) and
(Mod-A, Mod-A, Mod-B), see [36, Example 2.12]. Then we obtain immediately from
Proposition 4.1, that the functors Zp: Mod-B — Mod-A and Z4: Mod-A —> Mod-A

are homological embeddings. The same considerations hold when N = 0.

Example 4.3 Let A 0) be a Morita ring such that 4 Np has an A-tight projective A (,0)-
resolution and g M4 has a B-tight projective A (g,)-resolution, in the sense of [25]. This
means that we have projective resolutions -+ —> 4P} —> 4Py — sAN —> 0 and

-—> Q1 —> pQop —> pM —> O,suchthat M ® 4 P, = 0and N ® g Q; = 0. Then,
if we apply the functor M ® 4 — to the projective resolution of N we obtain that M@, N = 0
and Torlf4 (M,N) = O for all i > 0. Similarly, by applying the functor N ® g — to the
projective resolution of M, it follows that N ® g M = 0 and ToriB (N,M)=0foralli > 0.
Hence, from Propositions 4.1 we infer that the functors Z4 : Mod-A —> Mod-A¢,0) and
Zg: Mod-B — Mod-A (,0) are homological embeddings. We refer to [25] for examples
of Morita rings with tight resolutions.

Example 4.4 Let A be an Artin algebra with primitive idempotents {ey, ..., e,}. Let
{S1,..., Sy} be the corresponding simple A-modules. Assume that S := S§; is local-
izable, i.e. pdaS < 1 and Ext}\(S, S) = 0. If we consider the idempotent element
o = e+ -+ ey, then it is easy to see that «(S;) = 0. This shows that add S is the
kernel of the exact functor A ® A —: mod-A — mod-a A, in particular the category
mod-A/AaA is precisely the additive closure add S of S. From the short exact sequence
0 — AodA — A — A/AaA —> 0Oand since pd s A/AaA < 1, it follows that Ao A
is a projective A-module. Then by [29, Remark 3.2] we get that o A is a projective left o Ao~
module and the map Ao ®qpq ¢ A —> Aa A is an isomorphism. This implies that the map
e1Aa ®qarq ¥ Aey —> e1Ae; is a monomorphism and Torfoa(e]Aa, alAey) = 0 for all
i > 0. Note that we view A as the Morita ring with A = ¢ Ao, B = ejAe;, N = aAe; and
M = ey Aw, see Example 2.3 (i). Hence, from Proposition 4.1 we infer that the ideal Ao A
is stratifying. The above claim, that Ao A being projective implies that Aa A is a stratifying
ideal, can be proved in a different way. We refer to [36, Example 3.14] for more details.

We restrict now to the case where the bimodule homomorphisms ¢ and i are zero,
that is A(o,0) is the trivial extension (A x B) X M @& N and we have the recollements
(Mod-A, Mod-A 9,0y, Mod-B) and (Mod-B, Mod-A (9,0), Mod-A), see Proposition 2.4 and
Example 2.3 (iii). The following result, which is due to Beligiannis [9, Corollary 4.4], shows
that under some conditions we can compute the extension groups induced by the functors
Z4: Mod-A — Mod-A .0y and Zg: Mod-B — Mod-A (9,0).

Lemma 4.5 Let A,0) be a Morita ring. Assume that the right modules M 4 and Np are
projective.

(1) For every A-modules X, X' and n > 0 there are the following isomorphisms:
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(@) Forn=0,1: Ext’['\m’o)(ZA(X), Z4(X")) = Ext (X, X').

(b) Forn=2k: Exty  (Za(X),Za(X") = EXF (X, X) oExt V(N M4

X, XY @EX D (N@p M)® ®4 X, X)@- - -@HomA(N©p M)® @4 X, X).

(©) Forn=2k+1: Ext} (Za(X),Za(X") = ExA (X, X') @ ExtX T (N ®p

M @4 X, X) ® EXX (N @3 MT@4X,X) & -+ & Exth (N ®p
M @4X, X').

(ii) For every B-modules Y, Y' and n > 0O there are the following isomorphisms :
(@) Forn=0,1: Exty (Zp(Y),Zp(Y')) = Exty(Y,Y").

(b) Forn=2k: Exth = (Zp(¥),Zg(Y") = EX} (¥, V) @ Exty V(M @4 N ®5p

Y, V) @Bty (M @4 N)® ©pY, V)@ --®Homp(M ®4 N)® ©5Y, Y.
(¢) Forn=2k+1: Ext'}\(w Zp(Y),Zp(Y")) = Ext2Bk+l(Y, Y) @ Ext%k—1(M @4

N®gY, YVBEXX 3 (M@sN)®’ ®3Y, Y)®- - -@Ext, (M®4N)® ®3Y, Y').

Proof We only sketch the proof of (ii), statement (i) follows similarly. From Proposi-
tion 2.4 the functor Zg: Mod-B — Mod-A (o) is fully faithful and from [36, Remark
3.7] we always have the isomorphism Ext}9 Y,YH = Ext}\(0 0 (Zg(Y), Zg(Y")) for all B-
modules Y and Y’. We explain now how we obtain the rest isomorphisms from [9, Corollary
4.4]. First, from Example 2.3 (iii) or Proposition 2.5 (i), the module category Mod-A (o,0)
is equivalent to the trivial extension (Mod-A x Mod-B) x H, where H is the endofunc-
tor H: Mod-A x Mod-B —> Mod-A x Mod-B, H(X,Y) = (NQp Y, M ®4 X). We
refer to [22] for more details on trivial extensions of abelian categories. We compute
only Extf\(0 0 (Zp(Y),Zp(Y")). Using the description of Mod-A(,0) as a trivial exten-
sion and [9, Corollary 4.4], it follows that Ext%(o 0 (Zp(Y),Zp(Y")) is isomorphic with
the direct sum @12:0 Ext’AX g(H 2-1(0,Y), (0, Y")). The latter extension group is isomor-
phic with Ext} (Y, Y’) @ Homp(M ®4 N ®p Y, Y’), since Ext, ,(H(0,Y), (0,Y") =
Ext), (N ®3p Y,0),(0,Y") = 0. Hence, Ext} | (Zp(Y),Zp(Y")) = Extp(Y.Y) @
Homg(M ®4 N ®p Y, Y’). The rest isomorphisms follow in the same way, the details are
left to the reader. O

As a consequence of Lemma 4.5 we have the next result. Note that it also follows from
Proposition 4.1.

Corollary 4.6 Let A (o,0) be a Morita ring such that the modules M o and Np are projective
modules.
(i) The following are equivalent:

(@) The functor Z4: Mod-A — Mod-A (o) is a homological embedding.
b)) N®pM=0.

(i) The following are equivalent:

(@) The functor Zg: Mod-B —> Mod-A (9,0 is a homological embedding.
(b) M®4 N =0.
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Proof (i) (a) = (b) If the functor Z4 is a homological embedding, then from Lemma 4.5
(i) we get that Homa (N®pM®4 X, X') = 0 for every A-module X and X’. We infer that
N®pM = 0.

(b) = (a) If N@pM = 0, then from Lemma 4.5 (i) it follows that Ext’, (X, X")
EXt’}\(O,O) (Za(X), Z4(X")) for every A-module X, X" and n > 0.

(i) This follows as in (i) using Lemma 4.5 (ii). O

1

The next result provides another reason for investigating stratifying ideals. It is a con-
sequence of Proposition 4.1 and the well known result of Cline-Parshal-Scott [20] which
relates stratifying ideals and recollements of derived module categories. For the notion of
recollement of triangulated categories see [7], and for more details on deriving recollements
of abelian categories we refer to [38].

Corollary 4.7 Let Ay y) be a Morita ring.

(i) Ifthemap ¢: M @4 N —> B is a monomorphism and Torlf4 (M,N)=0foralli >0,
then we have the following recollement of derived categories:

/—\ /\
D(Mod-B/ Im ) — )~ D(Mod-Ay.4)) — L~ D(Mod-A)

\_/\/

(ii) Ifthemap v: N®pM —> A is a monomorphism and TorlB (N, M) =0foralli >0,
then we have the following recollement of derived categories :

/—\ /_\
D(Mod-A/ Im 1)) — 2\ D(Mod-A(y4)) — '~ D(Mod-B)

\_/\/

4.2 Gorenstein Algebras

Recall from [4, 27] that an Artin algebra A is called Gorensteinifid s A < coandid Ap <
oo. Equivalently, A is Gorenstein if and only if spliA = sup{pd s/ | I € injA} < oo and
silp A = sup{idp P | P € proj A} < oo, i.e. mod-A is a Gorenstein abelian category in the
sense of [12].

We start with the next result which, under some conditions, gives isomorphisms between
the extension groups induced from the adjoint pairs (T4, U4) and (T, Up). It follows from
[36, Theorem 3.10], but for completeness we give a direct proof.

Lemma 4.8 Let Ay ) be a Morita ring. Let X be an A-module and let Y be a B-module.
(1) Assume that the module Mp is projective. Then for every Ay y)-module

(X', Y, f',¢) and n > 0 we have an isomorphism:

Exth,  (Ta(X), (XY, f'.¢) —= Ext}(X,X)
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(ii) Assume that the module Np is projective. Then for every Ay y)-module
(X', Y, f',¢) and n > 0 we have an isomorphism:

Exty,  (To(Y), (XY f'.¢)) — Exth(Y,Y")

Proof (i) Let X be an A-module and let - -- — P — Pp —> X — 0 be a projective
resolution of X. Since the functor M ®4 — is exact, it follows from Proposition 2.2 and
Remark 2.1 that the sequence - - - —> T4 (P1) —> Ta(Py) —> Ta(X) — 0O is a projec-
tive resolution of T4 (X). Let (X', Y’, f’, g') be a A(g,y)-module. Then, using the adjoint
pair (T4, U4) we have the following commutative diagram:

(TA(X)7 (le Ylv f/vgl))>—> (TA(P0)7 (X/v Ylv fl7g,)) - (TA(P1)7 (le Ylv flvgl)) —

4 4 4

Hom 4 (X, X') Hom 4 (P, X') Homu (P, X') —— - -

This implies that Ext’}\(d) ]//)(TA(X), (X', Y, f',g") = Ext, (X, X) for every n > 0.

(ii) This follows similarly as in (i). O

Lemma 4.9 Let Ay ) be a Morita ring.
(i) Assume that Mo and N are projective modules. Ifid  , , A(g,y) < 00, then:

idgA <00, idgB < 0.

idaN < 00, idpM < oo.

(i) Assume that pM and s N are projective modules. If id A(¢,¢)A(¢ " < oo, then:

idAjy < o0, idBp < 00.

idNp < o0, idMy < oo.

Proof (i) From Proposition 2.2 we have id A(¢,«//>TA(A) < o0 and id A TB (B) < oo.
Then, from Lemma 4.8 (i) we have the following isomorphisms for every A-module X and
n>0:
EXtr/l\@,w) (Ta(X), Ta(A)) = Exty (X, A) and EXtr/’\w,w (Ta(X), Tr(B)) = Ext} (X, N)
These isomorphisms imply that id4A < id A@W)TA(A) < o0 and idgaN <
id Ay TB(B) < 0o. Similarly, for every B-module Y and n > 0 we have from Lemma 4.8
(ii) the following isomorphisms:

EXtr/l\w),w (Te(Y), Ta(A)) = Extz (Y, M) and EXt’}\w,w
Hence, idgM < ooandid gB < o0.

(ii) In this part we use right modules. If X is a right A-module, then T4 (X) = (X, X ®4
N, Idxgn, Wx) and since 4 N is projective it follows that the functor —®4 N: mod-A —
mod- B is exact and therefore T4 is exact. Similarly, since p M is projective we obtain that
the functor Tp is exact. Then using the isomorphisms of Lemma 4.8, but for right modules
now, the result follows as in case (i). O

(Tp(Y), Tp(B)) = Exty(Y, B)
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It should be clear from the proof of the above result, that the assumption of M4, resp.
Np, being projective, implies that id 4A < oo and id 4N < oo, resp. id B < oo and
id pM < oo. The same separation property also holds for part (ii). We continue with the
next consequence of Lemma 4.9.

Corollary 4.10 Let Ay y) be a Morita ring which is a Gorenstein Artin algebra.

(i) If M4 is a projective right A-module and s N is a projective left A-module, then the
algebra A is Gorenstein.

(1) If Np is a projective right B-module and g M is a projective left B-module, then the
algebra B is Gorenstein.

Let A be an Artin algebra and consider the Morita ring A ¢) = (2 2) If Ag,g) is
Gorenstein, then by Corollary 4.10 the algebra A is also Gorenstein. We mention that this
was observed in Proposition 3.4 (i), where the the converse also holds in this case. Hence,
Corollary 4.10 generalizes the one direction of Proposition 3.4 (i). We give an example to
show that the conditions in Corollary 4.10 are only sufficient.

Example 4.11 Let A be a bimodule d-Calabi-Yau noetherian algebra over a field k, where
d > 2 is an integer. Let e be a non-trivial idempotent element of A such that A/AeA
is a finite dimensional k-algebra. By [1, Theorem 2.2] and it’s proof, the algebra eAe is
Gorenstein and the eAe-module eA is a non-projective Gorenstein-projective. Note that
from [1, Proposition 2.4] the algebra A has finite global dimension and therefore A is
Gorenstein.

In the rest of the subsection our aim is to consider the converse of Corollary 4.10, that is
how the Gorensteinness of A and B should be inherited to the whole Morita ring. We first
need the following preliminary result. As usual we denote by D: mod-A —> mod-A°P the
duality for Artin algebras, see [5].

Lemma 4.12 Let A (o) = (B:;IA A be a Morita ring.

(i) Assume thatpd 4N < oo. Ifid Ao ZA (A) < oo then id A0 ZA (N) < .
(i) Assume that pd pM < oo. Ifid AooZB(B) <00 thenid p 0 Zp(M) < 00.
(iii) Assume that pdMy < oo. If pdaggZa(D(A)) < o0 then
pd A o Za(Homp(M, D(B))) < oo.
(iv) Assume that pdNp < oo. If pdageZs(D(B)) < oo then
pd A o, Z8(Hom (N, D(A))) < oo.

Proof (i)Let0 — P, — --- —> Py —> 4N —> 0 be a finite projective resolution of
N. Then, since the functor Z4: mod-A —> mod-A (,0) is exact (see Proposition 2.4) and
id A(o,O)ZA(A) < 00, it follows that id A0 ZA (N) < oo. The proof of part (ii) is dual.

(iii) Since the projective dimension of M, is finite if and only if the injective dimension
of 4 D(M) is finite and we have an isomorphism 4Homp(pM4,p D(B)) = 4D(M), then the
result follows by applying the exact functor Z4 to a finite injective coresolution of 4 D(M).
The proof of part (iv) is dual. O

The following is the main result of this section which provides sufficient conditions for
Morita rings A (g,0) with zero bimodule homomorphisms such that silp A9y < oo and
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spliA,0) < oo. This result constitutes the second part of Theorem A presented in the
Introduction.

Theorem 4.13 Let Ao,0) = (Bl’alA AgB ) be a Morita ring.

(1) Assume the following conditions:

(@) My is projective and pd pM < oo.
(b) Np is projective and pd 4N < o0.
(c) The functors Z,, Zp are homological embeddings.

If'silp A < oo and silp B < 00, then silp A ,0) < o0.
(i) Assume the following conditions:

(a) BM is projective and pd M4 < oo.
(b) 4N is projective and pd Np < 00.
(¢) The functors Zs, Zp are homological embeddings.

If'spliA < oo and spli B < 00, then spli A (g,0) < oo.

Proof (i) From Proposition 2.2, it is enough to consider the projective A (o,0)-modules
Ta(A) and Tg(B). Assume that pd pM =k < coand pd 4N = A < co. From Lemma 3.8,
we have the following exact sequences in mod-A (o) :

0 —Zp(M) Ta(4) Za(A)—=0 @.1

and

0——=Z4(N)——=Tp(B) —=Zp(B) ——=0 4.2)

Thus, from Lemma 4.12 we have to show that id Ao ZA (A) <ocandid A(O,O)ZB(B) < 00.

We first prove thatid 5, , Z5(B) < 00. Let (X, Y, f, g) be a A(9,0)-module. Then, from the

morphism (Idy, f): Ta(X) — (X, Y, f, g), we derive the following exact sequences in
mod-A ,0) :

0——=ZgKerf) —=Ta(X) —— (X,Im f,k',0) ——=0 4.3)

and

0—— (X,Imf,k',0) —= (X,Y, f,g) — Zp(Coker f) ——0 (4.4)

Applying the functor Homy (=, Zg(B)) to the exact sequence (4.3), we obtain the
following long exact Ext-sequence:

s Bty (X Im fiK,0), Zp(B)) = Ext} ,  (Ta(X),Zp(B)) = Ext} , , (Zp(Ker f),Zp(B)) > -

From Lemma 4.8 (i) it follows that Ext’[’\(o‘o) (Ta(X),Zp(B)) = 0 for every n > 0. Let
silp B = . < oo. Since the functor Zg: mod-B — mod-A ,0) is a homological embed-
ding, we have Ext’l’\(om (Zp(Ker f),Zp(B)) = O for every n > pu + 1. We infer that
Exth ((X,Im f,k’,0),Zp(B)) = 0 for every n > u + 2. Then from the following long

A0.0)
exact sequence:

s Ext;{(”m (ZB(Coker ), ZB(B)) > Extx(u_“) ((X,Y, f.9)s ZB(B)) > E><tX(“_“J ((X, Im f, k', 0), ZB(B)) >
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obtained from Eq. 4.4, it follows that Ext'l'\(0 0)((X, Y, f,8),Zp(B)) = 0 for every n >
w+2. Hence we have id A, Zp(B) < p+ 1 and therefore from Lemma 4.12 we infer that
id Ag0ZB(M) < k + p + 1. Next, for the injective dimension of Z4 (A), we consider the

following exact sequence :

JId
0> Za(Kerg) — Tu(¥) " (X,Y, f,9) —> Za(Cokerg) —> 0

4.5)
where Im (g,Idy) = (Img,Y,0,0'). Let sipA = v < oo. Then, applying the functor
Homy 0, (—, Z4(A)) to the two short exact sequences obtained from Eq. 4.5, we derive as
above that id A0 ZA (A) < v+ 1. Note that now we use Lemma 4.8 (ii) and that the functor
Zj: mod-A —> mod-A,0) is a homological embedding. Since pd 4N = A < 00, it
follows from Lemma 4.12 that id 5 ©00Za(N) < A+v+1. Hence, from the exact sequences
(4.1) and (4.2) we have id 5 5, Ta(A) < max{x + u, v} + 1 andid 5, Tp(B) < max{r +
v, i} + 1. We infer that silp A g,0) < o0.

(ii) This part follows by dual arguments but for completeness we sketch the proof. First,
from Proposition 2.2 it is enough to consider the injective A (g y-modules H4(D(A)) and
Hp(D(B)). Then, from Lemma 3.8 we have the exact sequences in mod-Ay: 0 —>
Z4(D(A)) — HA(D(A)) —> Zpg(Homy(N,D(A))) — 0 and 0 — Zp(D(B)) —
Hp(D(B)) —> Za(Homp(M,D(B))) —> 0. Thus, from Lemma 4.12 we have to show
that pd A, Z4(D(A)) < o0 and pd p,,Z5(D(B)) < oo. Also, for any A (g,0)-module
(X, Y, f, g) we obtain, from the units of the adjoint pairs (U4, H4) and (Up, Hp), the exact
sequences: 0 — Zy(Kerm(f)) — (X, Y, f,g) — Hp(Y) —> Z4(Cokerm(f)) —
0and 0 — Zp(Kerp(g)) — (X.Y, f,g) —> Ha(X) —> Zp(Cokerp(g)) — O.
Then, similarly with part (i) we show that spli A ,0y < oo. The details are left to the reader.

O

As a consequence we have the next result on the finiteness of the global dimension of
A0,0)-

Corollary 4.14 Let Ag,0) = (B;&A Ag’B ) be a Morita ring such that the modules M 4, Np
are projective and the functors Z, Zp are homological embeddings. If gl. dim A < oo and
gl.dim B < oo, then gl. dim A0,0) < 00.

Proof By the proof of Theorem 4.13 we have thatid 4 o, Z4a(N) < coandid 5, Zp(M) <
0o. Since spli A,0) < o0 it follows that pd 4, Za(N) < oo and pd A, Zp(M) < 0.
Using that A(,0) is the trivial extension ring (A x B) x M @ N (Example 2.3 (iii)) and
[25, Proposition 5.19], we infer that the global dimension of A g,y is finite. O

We continue with the following result which gives us a class of Morita rings, in particular
a class of trivial extension rings (Example 2.3 (iii)), where Theorem 4.13 can be applied.

Corollary 4.15 Let Ao = (A,’?,A AZA) be a Morita ring. Assume the following
conditions:

(@) Ny and g N are projective.
b)) N®saN=0.

If A is Gorenstein, then the ring A (o,0) is Gorenstein.
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Proof The condition N ®4 N = 0 implies that the functor Z4: mod-A — mod-A (,0) is
a homological embedding, see Corollary 4.16. The second functor we have to check that is
a homological embedding is Z, : mod-A — mod-A g, given by Z/, (X) = (0, X, 0, 0).
Note that this is the functor Z; in the notation of Section 2.2. Exactly in the same way
with Remark 2.6 (iii), we show that the two recollements of mod-A (o,0) are equivalent.
Both of them are of the form (mod-A, mod-A (,0y, mod-A), see Proposition 2.4. Using this
equivalence it follows that Z is a homological embedding if and only if Z/, is a homological
embedding. Then the result follows from Theorem 4.13. O

The above method for constructing Gorenstein algebras is illustrated in the next example.

Example 4.16 Let A be a finite dimensional Gorenstein k-algebra, where £ is a field, and
let e and f be two idempotents elements of A such that fAe = 0. Consider the A-A-
bimodule N := Ae ®; fA. Then it follows easily that N ® 4 N = 0 and therefore from
Corollary 4.15 we get the Gorenstein algebra:

A ANy
Aoo = (ANA A >

Note that A g,y is the trivial extension algebra (A x A) x N @ N, see Example 2.3 (iii).

We close this section with an example of a Morita ring which is a Gorenstein algebra and
the conditions of Theorem 4.13 are not satisfied.

Example 4.17 Let A be aring and M be a right A-module. Then from Example 2.3 (ii) we
have the Morita ring
Mgy = (5* BZXIA

where B = Ends(M) and M* = sHomy (M, A)p. Note that this Morita ring is the
Auslander context, in the sense of Buchweitz [15], defined by the pair (A, M). If M4 is
a finitely generated projective right A-module, then from [15, Proposition 2.6, Corollary
1.10] it follows that the rings A and A (4, y) are Morita equivalent, and therefore A is Goren-
stein if and only if Ay y) is Gorenstein. Hence, if A is a Gorenstein algebra and M4 is a
finitely generated projective module, then the Morita ring A (¢, is Gorenstein. By Exam-
ple 2.3 (ii), the bimodule homomorphisms of this Morita ring are not zero, and also the rest
assumptions of Theorem 4.13 are not satisfied in general.

5 Gorenstein Subcategories and Coherent Functors

In this section we study the monomorphism category mono(A), see Eq. 2.5 in Section 2.3.
In particular, we investigate the full subcategory 6 of mono(A) consisting of all monomor-
phisms f: X — Y such that the projective dimension of X is finite. In the first subsection,
we show that it is a Gorenstein subcategory of mono(A) when A is a Gorenstein Artin alge-
bra. In the second subsection, we prove that the category of coherent functors over the stable
category of ¢ is a Gorenstein abelian category.

5.1 The Gorenstein Subcategory of mono(A)

Let </ be an abelian category with enough projective and injective objects and let n be a
non-negative integer. Recall from [12, Theorem 2.2, Chapter VII] that <7 is n-Gorenstein
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if and only if every object has Gorenstein-projective dimension at most 7. For our purpose,
we need the notion of a Gorenstein subcategory but now in the context of exact categories
(see Section 2.3). Before that, we define Gorenstein-projective objects for exact categories.

Definition 5.1 Let & = (&, &) be an exact category with enough projective objects.
An object X in o/ is called Gorenstein-projective if there is an &-acyclic complex of
projective objects in . :

Pe: ... P PO P! P2

| A

X

such that Hom (P*, P) is acyclic for every object P in Proj.</ and d° = A o k, where
k: PO — X is a deflation and A: X —> P! is an inflation. We denote by GProj .o/ the
full subcategory of Gorenstein-projective objects of 7.

For a complex being acyclic in an exact category we refer to [16, Definition 10.1]. From
now on, when we write .27 for an exact category we fix a class & of exact pairs.

Definition 5.2 Let </ be an exact category with enough projective objects. Then .o is
n-Gorenstein for some non-negative integer n if every object has Gorenstein-projective
dimension at most n. Let % be an exact subcategory of o7. We call 4 an n-Gorenstein
subcategory of .27, if for all X in & there exists an exact sequence 0 — G, —> - -+ —>
Go — X — 0in A such that G; € GProj«/ forall0 < j < n.

Consider now the following subcategory of mono(A):
¢ :={(X.Y, £.0) € mono(A) | pdxX < co}. (5.1

We denote by &?<>°(A) the full subcategory of mod-A consisting of all A-modules of
finite projective dimension. Then &?~<°°(A) is an exact subcategory of mod-A, since it is
extension closed, and this implies that 4 is also an exact subcategory of mono(A). The
first main result on the structure of € is as follows. This result constitutes the first part of
Theorem B presented in the Introduction.

Theorem 5.3 Ler A be an n-Gorenstein algebra for some non-negative integer n. Then €
is an n-Gorenstein subcategory of mono(A).

Proof Let (X, Y, f,0) be an object in % and consider the following exact sequence in
mono(A):
Idx, 0,

0—T1(X) L Xy, £,0) 0 7y (Coker /) —>0 (52
Since (Uz, Ty) is an adjoint pair of exact functors and both functors preserve projec-
tive objects (Lemma 2.9), we have the isomorpism Ext’mono(A)((Gl, Go, £,0), T1(X)) =
Exty (U2(G1, Go, £,0),X) = Ext\ (G2, X) for all i > 1 and (G, G, f,0) in
Gproj(mono(A)). Since mono(A) has the same projectives as mod-T2(A), it follows that
it has the same Gorenstein-projective objects as mod-T2(A). Thus, [31, Theorem 1.1]
yields that the A-module G is Gorenstein-projective. Since pd x X < oo, it follows that
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Exti\(Gz, X) = O forall i > 1 (recall that (Gproj A, Z=°°(A)) is a cotorsion pair in

mod-A, see [12]). Hence, we have Extfnono(A)((Gl, Ga, £,0),Ti(X)) = Oforalli > 1
and (G1, G2, £, 0) in Gproj(mono(A)). This implies that Eq. 5.2 remains exact after apply-
ing HoMmono(r) (G 1, G2, f, 0), —), for every (G1, G2, f, 0) in Gproj(mono(A)). Since the

algebra A is n-Gorenstein, there exist the following two exact sequences of left A-modules:

ai ao

P Py X 0

and

b1 bo

0 Gn G1 Go Cokerf —0

where P; and G are Gorenstein-projective A-modules for all 0 < j < n. Applying the
exact functors T and Z,, respectively, we get the exact sequences in % :

Ti(an) o 1(a1) T1(ao)

0 T.(P,) T.(P) Ty () T.(X) 0

and

00— 2,G) 2L s 7,60) 2 7,(Go) 2L 7, (Coker ) —— 0

where T1(P;) and Z,(G ;) belong to Gproj(mono(A)), for all 0 < j < n, by [31, Theorem
1.1] again. Since the map HoMmono(a))(Z2(Go), (0, p)) is surjective, we obtain from the

Horseshoe Lemma the following exact commutative diagram:

‘(0 1)

(10)
0 ——Ti(Po) —= T1(FPy) D Z2(Go) 0

iTl(aU) lao

0—— T (x) L (x v, £,0)

Z5(Go)

izz(bo)

©0) Z5(Coker f) ——=0

Now taking the exact sequence of the kernels and applying the functor
HoM(mono(a)) (Z2(G1), —), we obtain that the map Hommono(a))(Z2(G1), Kerag) —
HoMmono(a) (Z2(G1), Za(Ker by)) is surjective. This follows since
Extrlnono(A)(Zz(Gl), Ti(Kerap)) = Ext}\ (G1, Kerag) = 0. Then continuing in the same way
we construct an exact sequence of (X, Y, f, 0) by objects in Gproj(mono(A)) of length at

most n. We infer that % is an n-Gorenstein subcategory of mono(A). O
5.2 Categories of Coherent Functors and Gorensteinness

It is known by [14, 34] that the singularity category Dsg(A) of an algebra A is defined as
the Verdier quotient D°(mod-A)/KP(proj A). When we deal with an additive category .,
the notion of singularity category can be extended using the category of coherent functors
over .«/. This approach was recently investigated by Matsui and Takahashi [32]. We now
recall this. Let o/ be an additive category with weak kernels, that is, for each morphism
f: X —> Y in & there exists a morphism g: Z —> X in 7 such that the sequence
Homg/ (—, Z) —> Homg(—, X) —> Hom(—, Y) is exact. We denote by mod-/ the
category of coherent functors over <7, i.e. functors F: &/°?P —> /b such that there is an
exact sequence Homg (—, X) —> Homg/(—,Y) — F —> 0O with X and Y in &. It
is known that mod-./ is an abelian category with enough projective objects. We refer to
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[2, 3] for more details on coherent functors. Then, Matsui and Takahashi [32] considered
the Verdier quotient

Dsg(mod-47) := D°(mod-27) /K (proj(mod-.27))

and call it the singularity category of mod-.<7. We remark that this triangulated category
is included in the general framework of the stabilization of an abelian or exact category
studied by Beligiannis [8].

In what follows, we show that the singularity category of mono(A) is trivial. We write
mod-mono(A) for the category of coherent functors over the monomorphism category
mono(A).

Proposition 5.4 Let A be an Artin algebra. Then the following hold

(i) The category mod-mono(A) is abelian.
(ii)) We have: gl.dim(mod<(mod-A)) < gl. dim(mod-mono(A)) < 2.
(iii) ~ The singularity category Dsg(mod-mono(A)) is trivial.

Proof (i) Since mono(A) is closed under kernels by Lemma 2.9, it follows that mono(A)
has weak kernels. Hence, the category of coherent functors mod{mono(A)) is abelian.
(ii) Let F be a functor in mod-mono(A), that is, there is an exact sequence :

(_7(a7b))
Hommono(A)(_7 (X17 Yy, flv O)) -

where (X1, Y1, f1,0) and (Xo, Yo, fo, 0) are objects in mono(A). Since we have the exact
sequence

Hommono(A)(_a (X07Y07 vaO)) —F—0

b
00— (Keraa Kerb7k70) — (X17Y15 f170) g (XO7YOaf070)7
and Ker (a,b) = (Kera,Kerb,k,0) lies in mono(A), we obtain the following exact
sequence :

0— (77 Ker (avb)) e (7a (leyla f170)) - (77 (Xoa}/Oa f070)) —F—0

This implies that gl. dim(mod-mono(A)) < 2. From Lemma 2.9 we know that (T, Uy) is
an adjoint pair between mod-A and mono(A) and the functor Ty is fully faithful. Then [44,
Theorem 3.1] yields that gl. dim(mod{mod-A)) < gl. dim(mod-mono(A)). This completes
the proof of (ii).

(iii) This statement follows immediately from (ii). O

Although that the singularity category Dsg(mod-mono(A)) is trivial, we show in Corol-
lary 5.8 that if we restrict to the subcategory 4" of mono(A), then this singularity category
is not at all trivial.

Before we get there we need some more definitions.

Definition 5.5 An additive subcategory & of 7 is called quasi-resolving if it contains
Proj.o/ and given a conflation X —> Y — Z with Y and Z in 4 then the object X
lies in Z. A quasi-resolving subcategory Z is called resolving if it is closed under direct
summands and extensions, i.e. given a conflation X — Y — Z with X and Z in % then
the object Y lies in A.
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Note that a resolving subcategory % of o is an exact subcategory of &7 since it is
closed under extensions. Let X be an object in .27. Since <7 has enough projective objects
there exists a deflation g: P —> X with P € Proj.</ (or a right Proj <7 -approximation).
This means that there is an exact pair K — P —> X, where the map f: K — P
is an inflation. The object K is called the first syzygy of X and is denoted by € (X). The
nth syzygy Q"(X) of X is defined inductively as (2"~ (X)). We denote by Q" (/) the
subcategory of o/ consisting of all nth syzygies of objects in .«7. Assume that there is
a left Proj <7 -approximation f: X —> P, i.e. f is an inflation with P € Proj.</ such
that the map Hom g,/ (f, P’): Homg (P, P’y —> Hom (X, P’) is surjective for all P’ €
Proj.o/. Then we have the exact pair X —> P —> L, where the map g: P — L
is a deflation. The object L is called the first cosyzygy of X and is denoted by Q~!(X).
The nth cosyzygy " (X) of X is defined inductively as ~!1(Q~"~1(X)). We denote by
Q7" (<) the subcategory of o7 consisting of all nth cosyzygies of objects in .o7.

We are now ready to prove the second main result of this section which generalizes
[32, Theorem 3.11] to the setting of exact categories.

Theorem 5.6 Let o/ be an exact category with enough projective objects. Let 9B be a quasi-
resolving subcategory of </ such that Q" (%) C GProj.</ for some non-negative integer n
and is closed under Q. Then the following statements hold.

(i) mod-Q"(A) is a Frobenius abelian category.
(i) mod-Z is a 3n-Gorenstein abelian category.

Moreover, there are the following triangle equivalences:

Deg(mod-Z) —— Gproj(mod-Z) and Dg(mod-Q" (%)) —— mod-Q" ()

Proof We divide the proof into four steps.

Step 1: We show that mod-Z2 is an abelian category with enough projective objects. It
suffices to show that Z has weak kernels. Let m: M —> N be a morphism in Z. Since
27 has enough projective objects and Proj.o/ C 2, there is a deflation p: P —> N with
P € Proj 7. Then, we have the pullback diagram

’

L—2s M
pP-Y.N

such that the map p’ is also a deflation. From [28, Proposition A.1] and since 4 is a quasi-
resolving subcategory of .27 we obtain the following conflation in %

L —f> Mo P 7. N
where f = ( ” ‘,) and g = ( r). Thus, for an object X in 2 we have the exact sequence :

Hom (X, L) — Hom (X, M & P) — Hom (X, N)

Let u: X —> M & P be a morphism in &/ such that u is in the kernel of
Hom (X, g): Hom (X, M ® P) — Hom_, (X, N). Then u o g is the composition of
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some morphisms a: X — Q andb: Q —> N in o/, where Q € Proj.</. There is a mor-
phismc: Q — M @ P withco g = b. So (a o c — u) o g = 0. This implies that there is
amorphismd: X —> L suchthataoc —u =do f. Wehave u = d o f, which is in the
image of Hom , (X, f): Hom_, (X, L) — Hom_,(X, M). Thus the next sequence is exact
in mod-Z:

Hom_, (-, L)|g — Hom_,(—, M)| — Hom ,(—, N)|z

Step 2: We show that for any object F in mod-Z8 there is a conflation A — B —> C
in #8 which induces a projective resolution as follows:

Hom,, (~, C)|» F 0

(5.3)

Let F be a functor in mod-Z. Then there is an exact sequence Hom_,(—, B)|z i)
Hom_,(—, C)|g — F —> 0 with B, C € & and by Yoneda’s Lemma the map ¢ is of the
form Hom ,(—, u)| g for some morphism #: B — C. As in Step 1, we obtain a confla-
tion A — B® Q — C in A with Q in Proj /. Since <7 has enough projective objects,
there is a deflation P —> C with P projective in 7. Note that any deflation ending at the
object P splits. Then we can form the following pullback diagram

Q(C)=—=20Q(C)
L
A——A®P r
\ l
A—>B£Q o

where every row or column is a conflation. In particular, we get the conflation Q(C) —
A® P — B @ Q. Consider now a deflation Q' — B with Q' in Proj</. From the
following commutative diagram

AB)sQ=——=QB)2Q

| l

QO) —0C) Q' 8Q ——Q 8@

| | |

Q(C) Ae P BoQ

we obtain the conflation Q(B) ® Q — Q(C)® P/ — A ® P where P/ = Q' @ Q.
Iterating this procedure yields the conflations: Q(B) ® Q — Q(C)®d P — A P,
QAP — QB)OP" — QEO)BP, QX CO)®P — QASP" — Q(B)®P”
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and so on, where P’, P”, P" belong to Proj 7. Putting these conflations together and using
Step 1, the desired projective resolution of F follows immediately.

Step 3: We show that for any object F in mod-Z we have
Extﬁnod_:@(F, Proj(mod-Z)) = 0 for i > 3n. Firstly, given a conflation A — B —> C

in 4 such that Extfd(C, Proj<7/) = 0, it follows as in [32, Lemma 2.2 (2)] that the
sequence Hom ,(C,X) — Hom_,(B,X) — Hom_, (A, X) is exact for every
X e 4. Since Q/(C) lies in Gproj.« for all j > n, we know that Ext (Q/(C),
Proje/) = O for all j > n. Thus by the above fact and Step 2 we obtain that
Hom ,(/C,Y) — Hom_,(Q/B,Y) —> Hom ,(Q/ A, Y) is exact for any ¥ € % and
all j > n. Then, applying the functor (—, Hom_,(—, Y)|g) to Eq. 5.3 and using Yoneda’s
Lemma, we infer that Extinod_%(F, Proj(mod-#)) = 0 for i > 3n.

Step 4: Let F be an objecTin mod-Z. By Step 2 there is a conflation A — B — C
in 2 which induces a projective resolution of F as indicated in diagram (5.3). Set G :=
Coker(Hom ,(—, Q"(B))|z —> Hom_,(—, 2"(C))|»). We show that G is a Gorenstein-
projective object in mod-Z. For simplicity, we write L = Q"(A), M := Q"(B) and
N := Q"(C). Then from Step 2 we get a conflation L —> M —> N. Since Q"(A) is
closed under 7!, there is a left Proj o7 -approximation L —> Q with Q € Proj.«Z. We
make the following pushout diagram:

Note that the middle vertical conflation splits, i.e. Extly(N ,0) = 0since N € GProj </
and Q € Proj .o/ Thus we obtain the conflation M —> N @& Q —> Q™ !(L). Iterating this
procedure gives rise to the conflations: N @ Q — Qe — Q'M, QMWL)
0 — Q'MeQ — a'WMeo QMo Q" — Q') e Q" —
Q~2(L) ® Q' and so on, where Q', Q”, Q" are in Proj.o/. Thus by Step 1 we obtain
an exact sequence: Hom ,(—, L)|g —> Hom _,(—, M)|g —> Hom_,(—, N)|g —>
Hom (-, Q7! (L))|gzg —> Hom (-, Q7' (M))|g —> Hom, (- Q7' (N)lzg —
--+. Combining this with Eq. 5.3 we obtain an exact sequence of projective objects in
mod-Z as follows:

------ ——— Hom_,(—,Q(N))|g — Hom,,(—, L)| — Hom , (-, M)\z>

me,N>|gi»Hoimm—vsz*(ng—>m7md<—,srl<M>>|g—>m
5.4)

where Ima = G. By the construction of the above pushout diagrams using left Proj .o/ -
approximations and since Q" (%) C GProj.</, we get that Extizf (QL(QL(AB)), Proj.a?)) =0
for any i € Z. Let Y be an object in Z. Then applying the functor (—, Hom ,(—, Y)|2)
to Eq. 5.4 and using [32, Lemma 2.2 (2)] as explained in Step 3, we obtain an acyclic
complex: .-+ —> Hoimd(Q*l(L), Y) — Hom_(N,Y) — Hom_,M,Y) —
Hom_,(L,Y) —> Hom_,(Q(N),Y) —> ---. This implies that Eq. 5.4 is a totally
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acyclic complex, equivalently, G is a Gorenstein-projective object in mod-Z. Hence, we
have shown that for every object F in mod-Z there is a projective resolution as in
Eq. 5.3 such that the nth syzygy G is Gorenstein-projective. We infer that mod-Z is a
3n-Gorenstein abelian category. Moreover, from [8, Corollary 4.13] we obtain the desired
triangle equivalence between Dgg(mod-Z) and GProj(mod-Z).

It remains to show that mod-Q2" (%) is a Frobenius abelian category, i.e mod-Q" (%) is
of Gorenstein dimension at most zero. From [32, Proposition 3.6] it suffices to show that
the stable category Q" () is triangulated. Recall that GProj 7 is an exact Frobenius cat-
egory and as in the abelian case it follows easily that GProj.</ is extension closed. We
claim that Q" (%) is an admissible subcategory of GProj.of (see [18]), that is, Q" (%) is
an extension closed subcategory of GProj.«/ such that for each object B in Q" (%) there
are conflations B — P —> Q~!(B) and Q(B) — Q —> B with P, Q in Proj <.
Note that Q" (%) being admissible implies that it is an exact Frobenius category and there-
fore from [26] it follows that Q" (%) is triangulated. Since we have Proj.«/ C Q"(%) C
GProj .o/ we only have to show that Q" (%) is extension closed. For this, we first show that
QU (AB) = P N GProj /. Since A is quasi-resolving we have Q" (H) C Z. This implies
that Q" (%) € % N GProj.«/. Let X be an object in 8 N GProj.«7. Then X is Gorenstein-
projective, so X = Q7" (Q"(X)). Since X € % and Q" (%) is closed under Q! we have
that Q"(X) € Q"(A) and Q7" (Q"(X)) € Q"(H). This shows that X € Q"(A), i.e.
B N GProj.o«f C Q"(%). We now show that Q" (%) = % N GProj & is extension closed.
Consider a conflation X — ¥ — Z with X and Z in % N GProj.</. Then there is a left-
Proj .o/ approximation X —> P — ~1(X). Taking the pushout diagram of these two
conflations and since Ext! (Z, P) = 0, we obtain the conflation Y —> P®Z —> Q~1(X).
The object P @ Z lies in £ and the object Q~1(X) lies also in # since we assume that
Q" (B) = % N GProj.«/ is closed under ~!. Since 2 is quasi-resolving, it follows that
the object Y lies in 4. Since GProj.«/ is closed under extensions, we conclude that the
object Y lies in Z N GProj(«7). This completes the proof that mod-Q" (%) is a Frobe-
nius abelian category. Finally, from [8, Corollary 4.13] we get that a triangle equivalence
between Dgg(mod-£2" (%)) and mod-Q" (£). O

Remark 5.7 The first part of the proof of Theorem 5.6 is devoted to show that the category
of coherent functors mod-Z is abelian. This is similar to [32, Proposition 2.11(i)]. However,
in the setting of exact categories we need to show how we obtain from the axioms the
conflation which gives us the correct Hom-exact sequence in order to conclude that
has weak kernels. Part two of our proof is proved in the same way as [32, Proposition
2.11(ii)], but again we need to make clear that this construction works in our setting. Similar
comments hold for the rest of the proof. Moreover, as in [32, Theorem 5.4], we can deduce
a triangle equivalence between Dgg(mod-Z) and Dgg(mod-Q2" (A)).

We return to the subcategory % of mono(A), see Eq. 5.1. Assuming that A is Gorenstein,
it can be shown that: (i) € is a resolving subcategory of mono(A) (but not of mod-A o)),
(ii) the category ©2"(%) is a Frobenius subcategory of Gproj(mono(A)) and Q" (%) is a
triangulated subcategory of Gproj(mono(A)), and (iii) "(%) is closed under QL we
close this section with the following consequence of Theorem 5.6, which is the second part
of Theorem B presented in the Introduction.

Corollary 5.8 Let A be an n-Gorenstein Artin algebra for some integer n > 0. Then for
the category of coherent functors over € and Q" (%), respectively, the following hold.:

(1) mod-% is a 3n-Gorenstein abelian category.
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(i) mod-Q" (%) is a Frobenius abelian category.

Moreover, there are the following triangle equivalences:

Deg(mod-%) ——= Gproj(mod-%) and Dg(mod-Q" (%)) —— mod-Q™ (%)
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