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Abstract We introduce Hopf categories enriched over braided monoidal categories. The
notion is linked to several recently developed notions in Hopf algebra theory, such as
Hopf group (co)algebras, weak Hopf algebras and duoidal categories. We generalize the
fundamental theorem for Hopf modules and some of its applications to Hopf categories.
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1 Introduction

The starting point of this paper is enriched category theory. Given a (strict) monoidal cat-
egory V, we can consider the notion of V-category. For example, if V is the category of
sets, then a V-category is an ordinary category. If V is the category of vector spaces, then
a V-category is a linear category. A V-category with one object is an algebra (or monoid)
in V.

Now consider a braided monoidal category. The category C()) of coalgebras in V
is a monoidal category, so we can consider C(V)-categories. A Hopf V-category is a
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C(V)-category with an antipode. These definitions are designed in such a way that C(V)-
categories, resp. Hopf V-categories, with one object correspond to bialgebras, resp. Hopf
algebras in V. In the world of sets, the notion is not of great interest, since C(Sets) = Sets :
it is well-known that every set has a unique structure of a coalgebra in Sets. Hopf cat-
egories are groupoids, that is, categories in which every morphism is invertible. In fact,
C(V)-categories only come to life when we pass to the k-linear world!

Hopf categories are related to several recent generalizations of Hopf algebras and
monoidal categories. For example, Hopf group algebras and Hopf group coalgebras give
rise to examples of Hopf categories, respectively over the category of vector spaces and its
dual category, see Section 6. In Section 8 we will show that k-linear Hopf categories with a
set of objects are Hopf monoids in the sense of [7] (in particular bimonoids in the sense of
[1, 5]) in a suitable duoidal category. This also indicates the relation with other generalized
Hopf-like structures, such as Hopf monads [10].

Hopf categories with a finite number of objects can be used to construct examples of
weak Hopf algebras, see Section 7. As we have mentioned above, groupoids are Hopf cat-
egories over sets. Applying the linearization functor, we obtain a Hopf category over the
category of vector spaces, Putting this into packed form, we obtain a weak Hopf algebra,
which turns out to be the groupoid algebra, the basic example of a weak Hopf algebra.

This brings us to duality. The second author made attempts to construct a satisfactory
duality theory for group algebras, based on the philosophy developed in [12]. For Hopf cat-
egories, duality works. The dual of a (finite) Hopf M-category (also termed a k-linear
Hopf category) is a Hopf sz—category, see Theorems 4.5 and 4.6. We also have a cate-
gorical version of the well-known property that C-comodules correspond to C*-modules,
in the case where C is a finitely generated projective coalgebra, see Proposition 5.4.

It also turns out that some well-known results about Hopf algebras can be generalized
to Hopf categories. We mention a few first results. We have a categorical version of the
important fact that the representation category of a bialgebra carries a monoidal structure,
see Section 4. The fundamental theorem extends to Hopf categories, see Section 10.

It is well-known that Morita contexts can be viewed as k-linear categories with two
objects. This is the starting point of Section 9, where the relationship between Hopf cate-
gories, H-Galois objects and Morita theory is investigated. It is possible to develop descent
and Galois theory for Hopf categories, this is the topic of a forthcoming paper. Hopf cate-
gories are also related to partial actions of groups and Hopf algebras (see [2, 14, 15, 17]),
this will be investigated in [4].

2 Preliminary Results on Enriched Category Theory

Let (V, ®, k) be a monoidal category. We will assume that V is strict. Our results extend
easily to arbitrary monoidal categories, in view of the classical result that every monoidal
category is equivalent to a strict one, see for example [16]. For a class X, we construct a
new monoidal category V(X). An object is a family of objects M in V indexed by X x X:

M = (Mx,y)x,yeX~

A morphism ¢ : M — N consists of a family of morphisms ¢, , : M, , — N, ,in V),
indexed by X x X. The tensor product M e N is defined by the formula

(M eN)yy=M,y®N,y,
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Hopf Categories 1175

and the unit object is J, with J, , = k, for all x,y € X. To make our notation more
transparent, we will write Jx y = ke, y, where e, , can be viewed as an elementary matrix.

We have a functor (—)°P : V(X) — V(X). The opposite V°P of an object V € V(X) is
given by Vyo, b=V, y, for all x, y € X, and the opposite ¢°P of a morphism ¢ is given by
QD;?X = @x,y-

From [9, Sec. 6.2], we recall the notion of a V-category. A V-category A consists of a
class |[A| = X, and an object A € V(X) together with two classes of morphisms in V),
namely,

(1) the multiplication morphisms m = my y . : Axy ® Ay, — A, ., defined for each
x,y,z€X;
(2) unit morphisms 1y : Jy x = kex x — Ay x, defined for each x € X,

such that the following associativity and unit conditions are satisfied:

My y,t © (Ax,y ® my,z,t) =My z,t © (mx,y,z ®A;) = m,%,y,z,t; (1)
My, x,y © (ny ® Ax,y) = Ax,y =My y,y O (Ax,y ® 77)')- )

Observe that J is a V-category; the multiplication maps ke , ® ke, ; — ke, ; and the
unit maps ke, , — key x are all the identity maps.

If (V,®,k) = (Sets, x, {x}), then a V-category is an ordinary category. Indeed, for a
Sets-category A with underlying class X, set Hom4 (x, y) = Ay . Fora € Homy (x, y) =
Ay x and b € Homy(y, z) = A; y, we define the composition b o a = m;,y x(b, a). The
unit morphism in Homy (x, x) = Ay x is 1 ().

If (V,®,k) = (Mg, ®, k), the category of modules over a commutative ring k, then a
V-category is also called a k-linear category.

If (V, ®, k, c) is a braided monoidal category, then the tensor product A e B in V(X)
of two V-categories A and B is again a V-category: the multiplication morphisms are the
compositions

AeB )
mx,.y,z = (my,y: @myy ) o(Axy ®cp, A, ® By2):

Axy®Bry®Ay ; @By ; > Axy® Ay ;@ By y ® By ; —> Ay ; ® By ;.

V-categories can be organized into a 2-category  Cat.

Let A and B be V-categories, with underlying classes |[A| = X and |B| = Y. A V-
functor f : A — B consists of the following data: for each x € X, we have f(x) € Y, and
we have morphisms

feyt Axy = Breo.ro

in V such that the following diagrams commute, for all x, y, z € X:

Az,y ® Ay7z M Aw,z kex,x [T Azw
fw,y@fy,zl lf@v,z m lfmz
Mf(x),f(y), f(2)
Bia), ) @ Bry).f(z) = Br@).s(2) By, f@) 3)
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1176 E. Batista et al.

Let f,g: A — B be V-functors. A V-natural transformation « : f = g consists of a
class of morphisms o, : k — Bg(x), r(x) in V such that the diagrams

gz ,y®aty

Azy By(2),9(9) © By(y),f(v)
Oéa:@fa:,yl lmg(z),g(y%f(y)
Mg(x),f(x),f(y)
By@),f@) © By, fy) By@), )

commute, for all x, y € X. We have a 2-category yCat with V-categories, }V-functors and
V-natural transformation as 0-cells, 1-cells and 2-cells. Let us describe the composition of
1-cells and 2-cells. Given 1-cells f, f': A— Bandg, g¢: B—> C,gof: A— Cis
given by the formulas

(80 fxy =8rw).ro ° fryt Ax,y = Clgof)),(gof)(y)-

Now consider 2-cellsa : f = f'andB: g=g'.a*xB: go f = g o f’is defined
as follows:

(@ By = mg (e, (Fane(f@) © (8 fia) ©&x) ® Brix)
= Mg/ (£/(0)),8(f ). (Fx) © (Bfrx) ® (8f(x), fx) © Ux))

Now let f,g,h: A — Bbel-cells,andlete : f = g, f: g = h be 2-cells. We define
the vertical decomposition 8 o« : f = h by the rule

(B o)y =mMp),gx), Fx) © (Bx @ ax).

Now fix a class X. A V-category with underlying class X is called a V-X-category. A
V-functor f : A — B between two V-X-categories A and B is called a V-X-functor if
f(x) =xforall x € X, thatis, f is the identity on objects. yCat(X) is the 2-subcategory of
yCat with V- X -categories as 0-cells, V-X-functors as 1-cells and V-natural transformations
as 2-cells.

If X is a singleton, then the O-cells and 1-cells of y,Cat(X) are V-algebras and V-algebra
morphisms. A 2-cell @ : f = g between two algebra morphisms f,g : A — Bisa
morphism« : k — Bsuchthatmo (g ®a) =mo (¢ ® f).

Consider the particular situation where ¥V = Mjy. Then morphisms o, : k — By
correspond to elements o, € By y,anda2-celle : f = g between two k-linear X-functors
consists of elements «, € By , such that

gx,y(a)(xy = axfx,y(a)’ 4

foralla € Ay yand x,y € X.

Let (V, ®, k) and (W, O, [) be two strict monoidal categories. Recall that a monoidal
functor V — W is a triple (F, ¢o, ¢2), where F : V — W is a functor, ¢o : [ — F(k) is
a morphism in W, and ¢, : FOF = F o ® is a natural transformation, satisfying certain
properties, we refer to [16, XI.4] for detail. A monoidal functor is called strong if ¢p and ¢»
are isomorphisms.

Proposition 2.1 A monoidal functor F : V — W induces a bifunctor F : yCat —

wCat. If F is a strong monoidal equivalence of categories, then the induced bifunctor is a
biequivalence.
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Hopf Categories 1177

Proof (sketch). Let A be a V-category, and define F(A) as follows: F(A)y y = F(Ax ).
The multiplication and unit maps are given by the formulas

m;,y,z = F(my,y ) o a(Axy, Ayz)
D F(Axy) @ F(Ay ;) > F(Ayy ® Ay z) = F(Ax )
;7; =Fmy)ogy: | = F(k) - F(Axx).

It is straightforward to show that F'(A) is a J/V-category.
Now let f : A — B be a V-functor. F(f) : F(A) — F(B) is given by the data

F(f)x,y =F(fx,y): F(Axy) = F(Bru), ro))-

We leave it to the reader to show that F(f) is a VV-functor.
Let f,g : A — B be V-functors, and let @ : f — g be a V-natural transformation.
F (@) is defined as follows.

F(a)y = F(ay)owy: | - F(k) — F(Bg(x),f(x))-

F (@) is a YW-natural transformation, and F : )Cat — y Cat is a bifunctor. Further details
are left to the reader. O

Let V = (V,®,k) be a monoidal category, and consider its opposite VP =
(V°P, ®°P, k). For later use, we provide a brief description of V°P-categories. A V°P-
category consists of a class X, A € V(X) and a collection of morphisms

Myyz: Axz > Ay ®Axy 5 Nx: Axx — k

in V. A V°P-functor f : A — B consists of f : X — Y together with morphisms
fry ¢ B, f(y) = Ax,y in V. A V°P-natural transformation o : f = g consists of a
collection of morphisms o : Bg(x), f(x) — k in V. We leave it to the reader to formulate
all the necessary axioms that have to be satisfied.

3 Hopf Categories

Let V be a strict braided monoidal category, and consider C()), the category of coalgebras
(or comonoids) and coalgebra morphisms in V. C()) is again a monoidal category: the
tensor product of two coalgebras, resp. two coalgebra morphisms is again a coalgebra (resp.
a coalgebra morphism), and the unit object k of V is a coalgebra.

Now we can consider C())-categories, that is, categories enriched in C())). According to
the definitions in Section 2, a C(V)-category A consists of a class |A| = X, and coalgebras
Ay,y, forall x, y € X, together with coalgebra morphisms my y ; : Axy ® Ay, — Ay,
and ny @ Jyx = key x = A,y satisfying (1-2).

The definition of a C(V)-category can be restated. Before we do this, we first make the
elementary observation that a coalgebra in V(X) is an object C € V(X), together with
families of morphisms Ay y : Cxy — Cxy ® Cyyand gy y : Cyy — Jy y = kex y such
that (Cx y, Ay,y, x,y) is acoalgebrain V, for all x, y € X. A coalgebra morphism between
two coalgebras C and D in V(X) is a morphism f : C — D in V(X) such that fy , is a
coalgebra map, for all x, y € X.

Proposition 3.1 Let X be a class and let V be a strict braided monoidal category. A C(V)-
category with underlying class X is an object in V' (X) which has the structure of V-category
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1178 E. Batista et al.

and of a coalgebra in V(X) such that the morphisms Ay , and e y define V-X-functors
A: A— AeAande: A — J.

Proof Assume that A is a V-category and a coalgebra in V(X), and consider the following
diagrams in V.

Mz,y,z

AI,y ® Ay,z Aac,z 3
Aw7y®Ay7Zl lA:c,z
miyh
Apy @ Apy ® Ay, ® Ay, Ag @ Ay )
Nz
keﬁ,ﬁ Az,z 9
Az,z
A;L’,;L’ & A;L’,;L’ (6)
Max,y,z
szy ® A?J,Z : AI7Z I
5m,y®5y,zl lé‘m,z
kezvy ® keyvz - kezvz (7)
and
keg o I Az gz -
\ l&wvw

A is a V- X-functor if and only if the diagrams (5) and (6) commute, for all x, y, z € X. ¢ is
a V-X-functor if and only if the diagrams (7) and (8) commute, for all x, y, z € X.my ,  is
a coalgebra map if and only if (5) and (7) commute, and 7, is a coalgebra map if and only
if (6) and (8) commute. O

Observe that C())-categories with one object correspond to bialgebras in V. It fol-
lows from the results in Section 2 that C())-categories can be organized into a 2-category
c(v)Cat. In particular, a C(V)-functor between two C(V)-categories A and B is a V-functor
f 1 A — Bsuchthatevery fy, : Ay, — By, is a morphism of coalgebras. For a
fixed class X, C(V)-categories with underlying class X can be organized into a 2-category
cov)Cat(X). A C(V)-natural transformation between two C(V)-functors f, g : A — B
consists of grouplike elements a, € By, satisfying (4).

Let A be a V-category, and consider its opposite A°? in V(X). AP is also a V-category,
with multiplication morphisms

op . AP op _ op
Myyz =MzyxOCA A, " Axy ® Ay = Ay x ® Azy = Axz = Agx
. . O] . . g0
and unit morphisms 7y’ = 7,. Observe that we need the inverse braiding here, compare to

[26, 1.3].
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Hopf Categories 1179

Let C be a coalgebra in V(X). The coopposite coalgebra C°P is equal to C as an object
of V(X), with comultiplication morphisms

cop _ —1 .
Ayy = CCeyiCry © Axy: Cxy = Cxy ®Cxy,
. . cop
and counit morphisms &} = &y y.

Proposition 3.2 Let V be a strict braided monoidal category, and let A be a C(V)-category.
Then A°P°P is also a C(V)-category.

Proof We have to show that the diagrams (5-8) applied to A°P°°P commute. (5) takes the
following form:

Aye © Azy Az
AGEOALY l lAiﬂ’E
op
mA.A,z,y,z
Aya® Aye ® Asy ® Asy Aa® Asy ©

From the axioms for a braiding c, we have the following formula, forall A, B, C, D € V:
cagB,cop = (C®ca,p®B)o(cac ®cp,p)o(A®cpc®D). (10)

The triangle, the squares and the pentangle in the next diagram all commute: the
top square commutes because ¢ is natural; the pentangle is just (5); the bottom right
square commutes because ¢! is natural; commutativity of the bottom left square fol-
lows from (10). We deleted the indices in the morphisms in the diagram; they are pretty
obvious.

Ay,fl‘ ® Az,y = AZ,y ® Ay,fl‘ i AZ,Z’
lA@A AQA
Ao ®@Aye @ Asy @ Asy —— Az @ Az y ® Ay @ Ay A
= A®c®A
ARc @A ®
lc_1®c_1 c 1 c 1
ARc oA mem

From the commutativity of the whole diagram, it follows that
AP omPy o = ey ®meyo (Acy Bes) Ly @A)

-1 -1
o (CAz‘y’Az‘y ® CAy,x»Ay,x) OCAy  ®Ay x, Az y®Azy © (Ay,x ® Ay,x)~
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1180 E. Batista et al.

The square at the top of the next diagram commutes because c is natural; commutativity of
the bottom triangle follows from (10).

cl®cll lcl®c1
c

A®c®Al lA®c1®A

It follows that (9) commutes. The commutativity of the three other diagrams is obvious.
O

Proposition 3.2 generalizes the fact that the opposite-cooposite of a bialgebra is again a
bialgebra: take X a singleton. We refer to Sweedler [25] for the case where )V is the category
of vector spaces, and to [26, 1.6] for the case where V is an arbitrary braided monoidal
category.

Definition 3.3 A Hopf V-category is a C(V)-category A together with a morphism S :
A — AP in V(X) such that

My,y,x © (Ax,y 02 Sx,_v) o Ax,y = Nx O&x,y: Ax,y — Ay s (11)
my,x,yo(Sx,y®Ax,y)oAx,y = 1Ny O0é&xy: Ax,y - Ay,y» (12)
forallx,y € X.

Observe that a Hopf V-category with one object is a Hopf algebra in V. If V = M,
then a Hopf V-category is also termed a k-linear Hopf category.

Example 3.4 Sets.

Let V = (Sets, X, {*}). We have seen above that a }V-category is an ordinary category. It
is well-known that every set G is in a unique way a coalgebra in Sets: the comultiplication is
the diagonal map G — G x G, sending g to (g, g). The counit is the unique map G — {x}.
This means that the categories Sets and C(Sets) are identical, and therefore the same is true
for the 2-categories Cat = gesCat and ¢ (sers)Cat.

Now let us investigate Hopf categories. Assume that G is a Hopf category. For all x, y €
X = |G|, we have amap Sy y : Gyx,y — Gy, satisfying (11-12). Take a € Gy y, this
means that @ : y — x is a morphism in G. It is easily checked that (11) implies that
aSy,y(a) = 1, and that (12) implies that Sy y(a)a = 1. This shows that every morphism
of G is invertible, hence G is a groupoid. Conversely, it is easy to show that a groupoid is a
Hopf category.

Proposition 3.5 Let V = (Sets, x, {x}). Then a Hopf V-category is the same thing as a
groupoid.

Lemma 3.6 Let A be a Hopf V-category. Then the following statements hold, for all
x,y,z€X:

Sx,z O My yz = Mz yx© (Sy,z ® Sx,y) OCA, Ay > (13)
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Hopf Categories 1181

Ay yoSyy = CAy Ay, © (Sx,y ® Sx,y) 0 Ay y. (14)
Proof In order to make our computations more transparant, we introduce some notation.
Ax,y ® Ay ; is a coalgebra, with comultiplication
Ax,y,z = (Ax,y ® CAx,yvAy,z ® Ay,z) o (Ax,y ® Ay,z)
and counit &y y ; = &x y ® €y ;. (5) can be restated as
AxzomMyyz = (Myy, @My y )0 Axy,. (15)
The coassociativity of Ay y . is expressed by the formula
2
Ay =Dy y: @Ay @Ay ) oAy y:=(Axy ®Ay: ®Axy ) oAy (16
Now consider the morphisms f, g, h: A,y ® Ay ; — Z; , given by the formulas

f = Mgy x0(Sy;®Sxy)o CAry Ay
g
h= mgyxgyyz,x o(fR®Ay®Ay,®g) o Aﬁ’w.

Sx.z 0 My y 25

We compute that

2
My y,z,x © (Ax,y® Ay ®8 0 Ax )y,
= My ;x© (Ax; ® Sy 7)o (mx,y,z ® mx,y,z) o Ax,y,z
(15)
= My ;x© (Ax,z ® Sx,z) 0 Ay ;0 My y z

(1) )
= Nx O&x,zOMyx yz=MNx0Exyz,

and
h = Mz x,x © (f®ny)o (Ax,y ® Ay,z ° Ex,y,z) o Ax,y,z =f.

On the other hand, we have that

2

My xy.z© (fO®A,y®Ay)oAyy
=m0 Sy ® Sy ® Ay ®Ay2)0(Ca,,n,. ®Ary ®Ay.)
o (Axy ®ca, A, ®Ay)o(Ary ®Ay ;)
= mly .0 (S ®Sey ® Ary ® Ay2)
0 (€A, @A, 4, ® Ay ) o (Ary ® Ay,)
Q)
= m?,y,y,z © (CA},,VV,AZ,}, ®Ay)o(my,y®A;y®Azy)
0 (Sx,y®Axy®Sy:®Ay)o(AyyRAy;)
12)
= m?,y,y,z o(Cay,a., ®Ay) oy @Ay ®A;y)
© (Sy: ®Ayz)o(ex,y ®Ayz)
- mg»y,y,z 0(Azy®@Ny ®Azy) o (Sy: ®Ayz)o(exy®Ay2)
(E) M2y, © (Sy: ® Ayz) 0 Ay zo(ex,y ®Ayz)

= N70¢&yz0 (8x,y ® Ay,z) =10z 0&xy,z-
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1182 E. Batista et al.

At (x), we used the naturality of the braiding c, resulting in the commutativity of the
diagram

CAz,y®Az,y,Ay,z

(Ax,y ® ACL‘,y) ® Ay,z —— Ay,z ® (Ax,y ® Agmy)

(Sm,y@Az,y)(@Sy,Zl lsy,z@)(s-r,y@/‘m,y)

(Ayrs ® Az y) ® Ay Ay ® Ay ® Az y)

my,m,y®Az,yl lAz,y@)my,m,y
CAy,y,Azy

Ayvy ® Az,y AZ,ZI ® Ayvy

CAy z®@Az,y,Az,y

Finally,
f=h=mz;x0((mo0 Sx,y,z) ®g)o Axyy,z
=mz;x0(M;®A;x)ogo (8x,y,z) ® Ax,y ® Ay,z) o Ax,y,z =8

This proves formula (13). (14) is proved using similar techniques. Now we consider
fig h: Ayy— Ay, ® A, \ given by the formulas

f = cAy,sty.x o (Sx,y ® Sx,y) o A)c,y;

8 = Ay,x o Sx,y;
h o= mi.A’y!x,y’x 0(§®Ary ®Ary ® f) oA

X,y

In the subsequent computations, the coassociativity of m4*4

will be used frequently. We
first compute that

AeA

mioh o (g®Ary ® Ary) o AT,
= mpoh o (Ayx ® Axy) o (Sry ® Ary) 0 Ay
= Ayyomyryo(Sey®Ar,) oAy
12 Ay y oMoty y = n;"A 0 &x,y.
It follows that
h=m% o @ Ayx ® Ay ) o (exy ® floAyy = f.

Now

mist o (Ary ®Ary ® f)o Aiy

= (Myyx@myyy)o(Ary® CAyy, Ay, @ Ayx)
o (Ary ® Ary ®ca,, . a,,) 0 (Ary ®Ary ® Sy ® Sy y) oA}
= (Myyx ®@myyy)o(Ary ®Ca, @A, .4y,)
0 (Ary ® Axy ® Sxy ® Sxy) 0 A |
ey @My )0 (Ary ® Sey ® Ay ® Sy)
o (Ary ® Axy ® Ary) o (Axy ®ca,,.a,,) 0 Ai’y
2y y e ® 1) 0 (Ary ® Sey) 0 (Ary ® Ay y @6y )
o (Axy®ca,,.a,,)0 Ai,y
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Hopf Categories 1183

= (Arr @) oMy 0(Acy ® Sy ,) 0 (Ary ®er, ® Ayy)
o (Ary ® Ary) oAy

= (Ary ® 1) oMy y 0 (Ary ® Syy) 00A,

L (A ®n) 0x08ry = (1 ® Ne) 0y

At (x), we used the naturality of ¢, resulting in the commutative diagram

CAg,y,Ax,y

Az,y®sz,y®sz,yl lsz,y®Az,y®Sz,y

CAz,y®Ay,z,Ay,z

Finally

f=h= m;};?)v 0 (§®((Mx ®Mnx)oéxy)oAyy

= mlyqtrAy 0 (Ayx ®Ayx ®Naeax) 080 (Axy ®exy)oAxy =g

O

Theorem 3.7 Let A be a Hopf V-category. The antipode S : A — A%PP isa C(V)-X-
functor.

Proof First of all, we need to verify that every Sy , is a morphism in C(}), that is, Sy  :
Ax,y = A;?f is a morphism of coalgebras. To this end, we need the commutativity of the
next two diagrams

Ay Ez,y
Sz,yl lsz,y®sz,y Sz,yl
Ey,x
Ay
Ay?':v Ay?':v ® Ay?':v Ay?':v

The commutativity of the first diagram follows immediately from (14). For the second one,
we proceed as follows:
® (1n
Ex,y = Exx ONx O&x,y = Ex,x OMx y x O (Ax,y 2 Sx,y) o Ax,y

(@)
= (Sx,y ® Sy,x) o (Ax,y ® Sx,y) o Ax,y =&y,x © Sx,y o (gx,y®x,y)Ax,y

= €yx 0 Sxy.

Now we show that S is a C())-functor. The diagrams (3) take the following form

Mz,y,z Nz
A:p,y ® A?LZ Am,z k—— z,z
Sz,y®sy,zl lSz,z \ lsz,z
Nax
op
My y,z
Ay,fE ® AZ,y AZ,"E Aﬂf,ﬂf
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The commutativity of the first diagram follows from (13), after making the observation that
m;l?y,z =Mz yx ©CA,,, A.,,and taking into account the formula

(Sy,z ® Sx,y) OCA, Ay, =CAy A,y © (Sx,y ® Sy,z),
resulting from the naturality of c¢. The commutativity of the second diagram goes as follows:

6
Nx = (gx,x ® Ax,x) oAyo nx(=)(5x,x ® Ax,x) o (Mx ®ny)

= (Sx,x o nx) Q@ Nx = Nx 0 Ex x O Nx

(11)
= My xx 0 (Axx @ Sx,x) 0 Ay x 07y

6)
= My xx 0 (Mx @ Ay,x) 0 Sy x 0My = Sx,x 0 Nx.

O

Proposition 3.8 Let A be a Hopf V-category. For x,y € X, consider the following
statements:

Myoyy = Myyxyo(Ayy® Sy )oATY; 17)
Mx0&yx = Myyxo(Syx®Ayy)o AT (18)
Syx0Sxy = Ary; (19)
Ny o8xy = Myy 0 (Sey ®Axy) oAy y; (20)
My o&xy = My o (Ary ® Syy) o Axy. 21

The following implications hold:

(17) (19) (20)

7N

(18) (21)

Proof (17) = (19). This goes in two steps. First we compute that

my x,y © (Sx,y ® (Sy,x o Sx,y)) o Ax,y

-1
= myyyo(Ayy®Syx)o CAypiAyy ©CAy Ay © (Sx,y ® Sx,y) 0o Axy

(14) cop 17)
= Mmyxy0(Ayx ®Syx)0Ayx0Sxy =1y0Eyx0Sky =1y Exy.

Then we compute that
m2 oy 0 (Ary ® Sy ® (Syx 0 Sxy)) 0 A2
is equal to
My,y,y 0 (Ax,y ®Ny) 0 (Ax,y @éxy) 0 Axy = Axy
and, using (11), to

mx,x,y(rlx ® Ax,y) o Sy,x o Sx,y o (gx,y ® Ax,y) o Ax,y = Sy,x o Sx,y-
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19) = (20).
Me 0 Exy = Sex M 06xy = Sex 0y 0 (Ary ®Sey) o0 Ar,
L ey 0 (S ® Sy oca,, a0 (Axy ®Sey) 0 Ary
= MyyxOCA, A, © (Sxy ® (Sy,x o Sx,y)) o Ax.y
L P, 0 (Sry ® Ary) 0 Ayy.

The proof of the remaining two implications is similar. O

Corollary 3.9 Suppose that V is a symmetric monoidal category. For a Hopf V-category,
the following assertions are equivalent:

(1) (17) holds, forall x,y € X;
(2) (18) holds, forall x,y € X;
(3) SyxoSyy=Axy forallx,y € X.

Proof Using the naturality of ¢ and the fact that ¢ is a symmetry, we obtain that

op
My y x © (Sx,y ® Ax,y) o Ax,y

= mx,y»x ° CAy,x,Ax,y ° (vay ® Ax»)’) o Ax,y

My, y,x © (Ax,y (2 Sx,y) OCA, Ay © Ax,y

-1
= My yx 0 (Axy ®Syy)o Cav AL © Ayy

X
cop

= My yx 0 (Ax,y ® Sx,y) 0 Ayy.

This tells us that (20) considered for (x, y) € X x X is equivalent to (17) considered for
(y,x) € X x X. The statement now follows easily. O

Let A and B be Hopf V-categories. A C(V)-functor f : A — B is called a Hopf
V-functor if

B A
St fo) © fry = frx oSy (22)
forall x,y € X.

Proposition 3.10 Let A and B be Hopf V-categories. If f : A — B is a C(V)-functor,
then it is also a Hopf V-functor.

Proof Consider the morphisms k, g, i : Ay y — Fy(y), f(x) defined by the formulas

k= Sp.fm o fry 5 8= FraoSey s h=m30) 1o fin. ) 0 kS fry®g) oA |
We have that
M), f(),fx) © (fr,y @8 o Axy
= Mf@).f). @ © (fry ® fry) o (Ary ® Sy y)oAxy
= frxomyyxo(Axy ®Sry)oAyxy
D Sxx 0Nx 0 &xy = Nfx) O Exy,

hence

h=mpgq), ro),f) 0 By, fx) @Nfw)) ok o (Axy @éxy) o Axy =k.
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We also have that

My, fex), f(y) © (K® fry)oAyy
= M), f),f) © Sre), fo) @ Br), ) © (fr,y ® fx,y) o Ayxy
(;) mg(y), f(x),f(y) © (Sf(x),f(y) ® Bf(x),f(y)) o Af(x),f(y) ° fx,y
= Nf() O Ef.f() © fry = Nfy) ©x,ys

so that

k=h=mgq), ru,re° Mo @ By, rx) 080 (Ex,y @ Axy) 0 Ay y = 8.
0

We introduce yyHopfCat as the full 2-subcategory of ¢(y)Cat, with Hopf V-categories as 0-
cells. For two Hopf V-categories A and B, the category of morphisms A — B in yyHopfCat

coincides with the category of morphisms A — B in ¢(y)Cat. Thus 1-cells are Hopf V-
functors (in view of Proposition 3.10) and 2-cells are C(V)-natural transformations.

Proposition 3.11 Let F : V — W be a strong monoidal functor. F induces bifunctors
F: Q(V)% — Q(W)% and yHopfCat — yyHopfCat.

Proof F induces a strong monoidal functor F : C(V) — C(W). For a V-coalgebra C,
F(C) is a W-coalgebra. The comultiplication is @{l oF(A): F(C)»> F(C)® F(C) —
F(C ® C), and the counitis ¢, ' o F(e) : F(C) — F(k) — I.

Now apply Proposition2.1to F : C(V) — C(WV). We obtain a bifunctor F : ¢)Cat —
cow)Cat. For a ¢(v)-category A, we have that F(A),, = F(Ay,y), with multiplication
maps

F(mx,y,z) N2 F(Ax,y) ® F(Ay,z) g F(Ax,y & Ay,z) g F(Ax,y)

and unit maps F(ny) oo : | = F(k) —> F(A).

Now let A be a Hopf V-category. We claim that the maps F (S, ) : F(Axy) = F(Ayx)
define an antipode on F(A). Let us show that (11) is satisfied. Using the fact that ¢, is
natural, we obtain that

F(my.yx) 0920 (F(Axy) ® F(Sxy) o9y ' o F(Ayy)
= Flmey) o F(Auy ®Sey)ogr 09y o F(Axy)
= F(myyro0(Ary®Scy)oAyry)
E Fncoery) = Fn) ooy o Flecy),

as needed. The proof of (12) is similar. O

Example 3.12 Consider the linearization functor L : Sets — M. It is well-known that L
is strong monoidal, so, by Proposition 3.11, it sends Hopf categories (which are groupoids,
see Proposition 6.2) to k-linear Hopf categories. More precisely, consider a groupoid G, and
let G,y be the set of maps from y to x. Then L(G) = A is defined as follows:

Ayy =kGy .
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The multiplication is the obvious one: the multiplication on G is extended linearly. kG
has the structure of grouplike coalgebra: Ay ,(g) = g® g and g, y(g) = 1 for g € Gy y.
The antipode is given by the formula Sy ,(g) = g le Gy x.

4 The Representation Category

Definition 4.1 Let A be a V-category. A left A-module is an object M in V(X) together
with a family of morphisms

Y="Yryz:: Axy @ My, —> My

in V such that the following associativity and unit conditions hold:

1;[/x,y,u o (Ax,y &® 1;[fy,z,u) = 1px,z,u o (mx,y,z ® Mz,u)§ (23)

llfx,x,y o(nx ® Mx,y) = Mx,y« (24)

Let M and N be left A-modules. A morphism ¢ : M — N in V(X)) is called left A-linear if
Ox,z O Vx,yz = Vn,yz0 (Ax,y ® 0y z) 1 Axy @ My, — Ny, (25)

forallx, y, z € X.

4V (X) will denote the category of left A-modules and left A-linear morphisms. Right
A-modules and (A, B)-bimodules are defined in a similar way, and they form categories
V(X)a and A V(X)p.

Proposition 4.2 Let A be a V-bicategory. Then there is a monoidal structure on oV (X)
such that the forgetful functor 4V (X) — V(X) is monoidal.

Proof Let M and N be left A-modules. We have a left A-action on M ® N as follows:

(Wx,y,z ® Iﬁx,y,z) o (Ax,y ® CAyy, My, ® Ny,z) o (Ax,y ® My,z ® Ny,z) :
Axy @My QNy: = Ary @Ay @My : ® Ny -
— Ax,y M, . R® Ax’y ® Ny ;
— My ;QNy;=(MQN),;.

J is a left H-module with structure morphisms
Ex,y ®key,: Ay ®key, — keyy ®key, =ke,,.

Verification of all the other details is left to the reader. O

5 Duality
5.1 Dual V-Categories

The notion of V-category can be dualized. A dual V-category C consists of a class |C| = X
and C € V(X) together with two classes of morphisms in V, namely

Agyz: Crz > Cyy®Cy; and &x : Cyx — k,
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satisfying the following coassociativity and counit conditions
(Ax,y,z & Cz,u) o Ax,z,u = (Cx.y Q Ay,z,u) o Ax.y,u;
(ex ® Cx,y) o Ax,x,y = (Cx,y ® 8}’) © Ax,y,y-

Dual V-categories can be organized into a 2-category YCat. A 1-cell f : C — D between
two dual V-categories C and D is a dual V-functor, and consists of the following data. For
each x € X = |C|, we have f(x) € Y = |D]|, and for each x, y € X, the morphisms
Sfx,y© Dy, f(y) = Cx,y such that

(fry ® fy,.2) © A f), f0, f(0) = Br,y,z © faz
Ef(x) = &x © Srox-

Let f, g : C — D be dual V-functors. A dual V-natural transformation « : f = g consists
of morphisms &y : D f(x),g(x) = k in V such that

(fx,y @ aty) 0 Apx), f().8(n) = (@x ® 8x,y) © A f(x),5(x),8(1)>

for all x, y € X. Dual V-natural transformations are the 2-cells in ¥V Cat.
The composition of 1-cells goes as follows. Let f : C — Dand g : D — E be dual
V-functors. g o f is defined by the formulas

(8o Fxy=Jfeyo 8w f»m + Egof),gof)y) = Cxiy-

Nowlet f': C — Dand g’ : D — E be two more dual V-functors, and leta : f = f’
and B : g = g’ be dual V-natural transformations. @ x 8 : go f = g’ o f’ is defined by
the formulas

@ B)x = (Breo ® (@x 080 1)) © Algo (@) (g/0 (). (g/0 ()
= ((@x 0 &7, 1)) ® Bf1(x)) © Digo (), (g0f)(0), (/0 f)(x)

Now let f,g,h : C — D be dual V-functors, andlet : f = g, 8 : g = h be dual
V-natural transformations. The vertical composition 8 o« : f = h is the following:

(Boa)y = (ax ® Bx) 0 Af(x),g(x)h(x) : Breo,ne) — k.

Let VP = (V°P, ®° k) be the opposite of the monoidal category V. Recall that
Homyw (M, N) = Homy (N, M), and that the opposite tensor product ® is given by
MRPN=N®@Mand f P g=¢g® f.

Proposition 5.1 Let V be a strict monoidal category. Then the 2-categories ¥ Cat and
ver Cat are 2-isomorphic. o

Proof (Sketch) We will define a 2-functor F : YCat — yopCat. Take a dual V-category C,
with underlying class X, and consider A = C°P in V(X). We have V-morphisms

. O]
Ax,y,z Gy =Ary > Cx,,v ® Cy.z = Az,y ®%® Ay,m
and V°P-morphisms
N 0]
Myyx=Aryz: Ary ®P Ay x — Ag .

Also gy = &x 1 k = Ayxx = Cyxx is a V°P-morphism, and straightforward computations
show that this makes A a V°P-category. We define F(C) = A.

@ Springer



Hopf Categories 1189

Let f : C — D be a dual V-functor, and let F(D) = B. For all x, y € X, we have

V-morphisms

Foyt D, fo) = Bro), fo) = Cry = Ay
Forall x,y € X, let g(x) = f(x) and gy,x = fx,y. Then gy : Ayx = By, f)isa
V°P-morphism, and standard arguments tell us that g : A — B is a V°P-functor, and we
define F(f) = g.

Finally let f, f' : C — D be dual V-functors and let @ : f = f’ be a dual V-natural
transformation. For every x € X, we have a V-morphism o : B/(y), fx) = Df), f/(x) =
k, and therefore a V°P-morphism a, : k — Bjyi(x) (x) = Bg'(x),g(x)- We leave it to the
reader to show that this defines a V°P-natural transformation« : g = F(f) = g = F(f).
We define F(«) = «. Standard computations show that F is a 2-functor. The inverse of F
is defined in a similar way. O

A dual V-category with underlying class X is called a dual V-X-category. A dual V-
functor f between two dual V- X-categories is called a dual V-X-functor if f(x) = x, for
all x € X. YCat(X) is the subcategory of Y Cat, consisting of dual V-X -categories, dual V-
X-functors and dual V-natural transformations. As an immediate corollary of Proposition
5.1, we have the following result.

Corollary 5.2 Let X be a class, and let V be a strict monoidal category. Then the
2-categories yop Cat(X) and ¥ Cat(X) are 2-isomorphic.

If X is a singleton, then the objects in v%(X ) are V-coalgebras. Deleting the non-unit
2-cells in Y Cat(X), we obtain C(V)°P, the opposite of the category of coalgebras.

5.2 Modules Versus Comodules

We now consider V = (M, ®, k), the category of finitely generated projective modules
over a commutative ring k, and its opposite VP = (Mffp, ®°P, k). It is well-known that

the functor (—)* : M£ — ./\/l,ffp taking a module M to its dual M* = Hom(M, k) is an
equivalence of categories. Moreover, we have a strong monoidal functor

(=), 90.92) © (M. ®.K) — (M. @, k).
Let ¢o : k — (k)* = k be the identity map. We now construct a natural isomorphism
P20 @P o ()" () = (9 ow.
For two finitely generated projective k-modules M and N, we need an isomorphism
@2(M,N): M*®P N* — (M ® N)*
in M;Op , or, equivalently, an isomorphism
@(M,N):  MQN)* - N*" @ M*
in ./\/12 It is well-known that the map
L: N*QM* - M@ N)*, ((n* @m™),m@n) = n*, n)(m*, m)
is invertible, with inverse given by the formula

M Z(% m; @ njn @ my,
ij
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where ) ; m; ® m} and Zj nj® nj‘ are the finite dual bases of M and N. We now define
@2(M, N) as the inverse of t. As ((—)*, o, ¢2) is strong monoidal, it follows from Propo-
sition 2.1 that we have a biequivalence between Mt Cat and o Cat. Applying Proposition
5.1, we find that Ao Cat is 2-isomorphic to M, Cat. Combining these two biequivalences,

k
we obtain the following result.

Theorem 5.3 Let k be a commutative ring. (—)* induces a biequivalence

f
ME Cat — Mk Cat.

Let us describe this biequivalence at the level of O-cells. Suppose that A is a k-linear
category, with all underlying A, y finitely generated and projective. First we have to apply
the duality functor (—)*, sending A to A*, with (A*), , = Aj,y. In order to compute the
multiplication and unit maps, we have to apply the construction sketched in the proof of
Proposition 2.1. The multiplication is the following composition in ./\/l,f:)p :

m,t,y,z o (/’2(Ax,y, A}’,Z) : A;,Z ® A;,y e (Ax,y ® Ay,z)* e A;Z'
The unit map is n} : k — A}, in MiOP. To A*, we apply the construction performed in

the proof of Proposition 5.1, which sends A* to C, with C, , = A;‘,’x. The comultiplication
maps are the following maps in ./\/l£:

* . * * * —
Aryx =@2(Axy, Ay)omy 0 AL, =Cox > A @AY, =Cy ®Cy .

The counit maps are e, = 0 : Cy y = Aj’x — k.
Let us also give a brief description of the inverse construction. Let (C, A, €) be a dual
Mi-category. We will use the following Sweedler-Heyneman type notation: for ¢ € Cy ,

Asy2(€) = c(1,y) ® €y) € Cry ® Cyz. Let A € M (X) be defined as A, = C.
The multiplication map my y ; : Axy ® Ay ; — Ay ;= C} is defined by the formula
{ab, c) = (a, co )b, cqy)-

fora € Ay y,b € Ay ;, c € C; . The unit elements are &, € C;ck,x = Ay
Let C be a dual k-linear category. A right C-comodule M is an object M € V(X) together
with a family of maps

Pxyz: My —> My y ®Cy;

such that the coassociativity and counit conditions (26—27) are satisfied. For m € My, we
will write

Px,y,z(m) = myo 3] @ my1,y).

For all m € M ., we need that
Mo, y1[0,u1 ® M[0,y1(1,u] @ M[1,y] = M[0,u] ® M[1,ul(1,y) & M[1,u12,y), (26)

inM,, ®C,,®Cy;,and
mo,;1€;(m1,z) = m. 27

Proposition 5.4 Let k be a commutative ring, and let C be a dual k-linear cate-
gory,with underlying class X, and with all Cy y finitely generated and projective. Let A

be the corresponding k-linear category. Then the categories MJIZOP (X)€ and Mi(X )A are
isomorphic.
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Proof Let M be aright C-comodule. We have the structure maps
Pryzt Myz— My y ®Cy ¢
Now we claim that M is also a right A-module, with structure maps
Vrzyt My ®Ary > Myy, Yxzy(m®a)=ma = (a,mp y)nmp,y.

Let us first show that this right A-action is associative. Take m € M, ;,a € A, and
be Ay ,. Then

(ma)b = {a, mp,y1){b, mo,yIr1,u1) M0, y1[0,u]

IS
1S
o)

{a, mp1,u1@2. )by m{1u)(1,y))11[0,4]
= (ab, m[1,u)mo,u) = m(ab).
Now we prove the unit property. The unit element of A  is €y, and for all m € M, ,,
we have that mey = (ex, m1 x])m[0,x] = m.
Conversely, let M be a right A-module. As before, let Y, a;* ® ¢;"“ € A, , ® Cy ; be
the finite dual basis of C, ;. We define a right C-coaction on M, via the structure maps

V,Z 2
Pxyz: Myz—> My y®Cy o, pxy(m) = Zmalt ® ciy .
i
It is straightforward to show that this makes M into a right C-comodule.
These two constructions are inverses. First we start with a right C-coaction on M. The
above construction then provides a right A-action on M, and the a new right C-coaction p,
which coincides with the original p. Indeed, for all m € M, ,, we have that

v,z vz _ .z V.2
D omal T @ = (aF mp y)mp,y ® ¢}
i

i

ﬁx,y,z(m)

= mo,y] ® m{1,y] = Px,y,z(m).

Now start from a right A-action on M. Applying the two constructions from above, we
arrive first at a right C-coaction on M, and then a new right A-action that coincides with the
original one: form € M, ; and a € A; ,, we have that

m-a = (a,mpy)mo,y| = Z(a, ciy’z)maiy’Z =ma.

i

5.3 Duality Between Hopf Categories and Dual Hopf Categories

(—)* induces an equivalence of categories (—)* : C (./\/li) —-C (./\/li()p). Observing that the

categories C (M?p) and A(M£)°p are isomorphic, we obtain an equivalence of categories
()" : CMp) — AMP.

Let us compute the algebra structure on the dual C* of a coalgebra C. The coalgebra
. fop . \s
structure in M, ™ is the composition

0(C,O) ' oA CF > (CRO) - CF® CF,
in ./\/l,t:)p which is the composition

m=A*o1: C*®C* - (C®C)* > C*.
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It easily computed that m is the opposite of the convolution product, that is m(c* @ d*) =
c*d*, with (c*d*, c) = (c*, c2))(d*, c¢(1y). Now we claim that we have a strong monoidal
equivalence

(=), @0, 92) : (C(M]). ®. k) = (AM™P, @, k).
@o is again the identity on k, and
»w(C,D): D"Q®C* — (C® D)*
in A(/\/li)"l’ is the inverse of the map ¢ defined above. It follows from Proposition 2.1 that
(—)* induces a biequivalence

* .
()"t coupyCat = g Cat.

We now from Proposition 5.1 that A Mi)op% is 2-isomorphic to A(Mi)%. Hence we
have the following result.

Theorem 5.5 Let k be a commutative ring. We have a biequivalence

cmhyar — AMD Car.

For a o Mi)g—category A, we provide the corresponding dual A(Mi)%-category C.
First we have to apply the duality functor (—)*, sending A to A*, with (A*)y,, = A} . Then
we apply the construction performed in the proof of Proposition 5.1, which sends A* to C,
with Cyy = A} . From Theorem 5.3, we already know the dual k-linear category structure
on C. Each Cy y = AJ , is a k-coalgebra, with opposite convolution as multiplication, and
L,y = &y x as unit element.

Let us also give a brief description of the inverse construction. Let (C, A, ¢) be a dual

./\/li-category. The k-linear category structure on A has already been given in the comments
following Theorem 5.3. Each A, , = CY , is a k-coalgebra with comultiplication

Al@) =) (a.cic;)a} @,
ij
where ) ¢; ® a; € Cy x ® A,y is the dual basis of C, ;.

Let C be a dual V-category. C is called a dual Hopf V-category if there exist morphisms
S,y : Cyx — Cy yin )V such that

My y0(Cyry @Sy y)oAyyx = Nxy0&x; (28)
ny x © (Sy,x ® Cy,x) o A)c,y,x = MNy,x O &x. (29)

Theorem 5.6 Let k be a commutative ring. In the biequivalence from Theorem 5.5, Hopf
./\/li-categories correspond to dual Hopf ./\/li-categories.

Proof Assume that C is a dual Hopf .Mi-category with antipode S, and let A be the
corresponding Hopf M,f(—category. We claim that T defined by

Ty, = S;x D Axy = Ay
is an antipode for A. We have to show that (51) holds. The first formula in (51) reduces to

ammTr,y(ap) = (a, 1,.x)ex,

@ Springer



Hopf Categories 1193

in Ay =Cj,, foralla € Ay . Forall c € Cy y, we have that
{amyTy,y(aw)), c) = {aqy, ce,n){Tx,y(@w), ca,y))
= {aq, ce,y){ae), Syx(ca,y))
)
= {(a, Sy,x(c(l,y))C(Z.y)) =a, ly,x)<5x, c).
The second formula in (51) is proved in a similar way. O

6 Hopf Categories and Hopf Group (co)Algebras

Let (V, ®, k) be a monoidal category. A group graded V-algebra consists of a group G
together with a family of objects A = {A, | 0 € G} in V and morphisms

Mgr: Ae @ Ar > Agr 5 N k— A,
in V such that the following associativity and unit properties hold, for all o, 7, p € G:

Mgz,p © (Mg ® Ap) = Mg1p © (Ag ®ml’,p);
Me,g © M®As) = Mg.e © (As @ 1) = As.

Consider the case where )V is the category of modules over a commutative ring k, and let
A = {As | 0 € G} be a graded algebra. Then A = @y,ecAs is a G-graded algebra in
the usual sense (see [22] for the general theory of graded algebras), and is called a graded
algebra in packed form. Graded algebras can be organized into a 2-category y gr.

A l-cell f: (G, A) — (H, B) consists of a a group morphism f : G — H together
with a family of morphisms f, : A; — Bf(s) in V such that f,; o my = My, r(z) ©
(fo ® fr) and feon =n.

Let f,g : (G,A) — (H, B) be 1-cells; a 2-cell « : f = g consists of a family of
morphisms oy : kK — B

2(0)-! f(o) Such that the following diagrams commute:
90—1T®a7
Ag1r By(o)-19(r) @ By(r)-15(r)
ag®f(,17l lmgm—lg(f),gm—lf(r)
My(o)=1f(0),f ()~ 1 f(7)
By(o)1£(0) @ Bf(o)-15(r) By(o)-14(r)

We have the dual notion of graded coalgebra. A group graded coalgebra in ) consists of
a group G together with a family of objects C = {C, | 0 € C} in V and morphisms
Agr: Cor > CoQ@Cr 5 61 Co—>k
such that

(Aa,r &® Cp) o Aar,p = (Cs ® Ar,p) o Ao,rp
(e® Cp) o Ae,o =(Cs®¢)o0 Aa,e =Cs.
Let V = My, and suppose that G is a finite group. If C is a G-graded coalgebra, then

@seccCy is a G-graded coalgebra in the sense of [21].
Graded coalgebras can be organized into a 2-category ¥ gar.

A lcell f: (G,C) — (H, D) is a morphism of graded coalgebras. This consists of a
a group morphism f : G — H together with a family of morphisms f; : Dys) — Co
such that (fo ® fi) 0o Af(o),f(z) = Ao,z 0 forandso f, = &.
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Nowlet f, g : C — Dbe l-cells. A2-cella : f — g consists of a family of morphisms
oo Dyg)-14() — k such that

(for1: ® ) 0 A p(o)1 £(2), f(r)Tg(r) = (o ® 85-17) © A f(g)-1g(0),g(0) g (1)

Proposition 6.1 Let V be a strict monoidal category. Then the 2-categories V&" and yor gr

are 2-isomorphic.

Proof The proof is similar to the proof of Proposition 5.1. We will describe the 2-functor
F Vgr and popgr. Let (G, C) be a graded coalgebra, and let F(G, C) = (G, A), with
Ay = C,-1. The multiplication map m, . : A, ®P A; — Ay, in VP is given by
At g-1Ciget > Cei @ Cpmr in V.

Let f : (G,C) — (H, D) be a morphism of graded coalgebras. We define F(f) =
g: F(G,C)=(G,A) - F(H,D) = (H, B) as follows: g(¢) = o, forall 0 € G, and
8 1 Ac = ByyinVPisthemap f,-1: Dyy-1 = Bfo) > Co-1 = Agin V.

Let f, f': (G, C) — (H, D) be morphisms of graded coalgebras, and leta : [ = f’
be a 2-cell in Vg. We have morphisms &5 @ Dj(,)-1 /) — k in V, which are also

morphisms oy : k- B ¢1(5)-1 (o) in VP, defining a 2-cell F(f) = F(f’)in voogr. [

Proposition 6.2 Let V be a strict monoidal category. We have 2-functors K : ygr — Cat
and H : 'V gr— v %.

Proof Let A be a G-graded algebra. We define a V-category K (A) = K (G, A) as follows.
The underlying class is G, and K (A)s, = A,-1,. The multiplication maps are

Mo, p,c =Mg—1p p-lg

P K(A)op =A5-1,8K(A)pr=A)1; > K(A)or = A

o1t

and the unit maps are ny =n: k - Ae = Ao 0.

Let f: (G, A) — (H, B) be a morphism of graded algebras. K(f) =g : K(G, A) —
K (H, B) is then defined as follows. g(o) = f(0), forall o € G, and go,r = f,-1; :
K(A)or =As-1; > K(B)fo),f(t) = Byo)-1 f(r)-

Now let« : f = f/ be a2-cell in ygr. We have morphisms o5 : k — By(y)-1 f(0) =
K(B)g(0), f(0)- and these also define a 2-cell g= g in V%.

The 2-functor H : Y gr—> Y(Cat is constructed in a similar way. Let us just mention that,
for a G-graded coalgebr?C, H(C)sr =C O

o1t

Let V be a braided (strict) monoidal category. We can consider graded coalgebras in
A(V) and graded algebras in C()). A graded coalgebra in A()) is a graded coalgebra C
in V, such that every C, is an algebra in V), and the comultiplication and counit morphisms
A, - and ¢ are algebra maps. Graded coalgebras in ,4()) are known in the literature as semi-
Hopf group coalgebras. They appeared in [27] (see also [28]), and a systematic algebraic
study was initiated in [30].

In a similar way, a graded algebra in C(V) is a graded algebra A in V such that every A,
is a coalgebra in V), and the multiplication and counit morphisms m, ; and n are coalgebra
morphisms. In the literature, this is also called a semi-Hopf group algebra.
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This provides us with a new categorical interpretation of semi-Hopf group algebras and
coalgebras. We also obtain that semi-Hopf group algebras (resp. coalgebras) can be orga-
nized into a 2-category ¢(v)gr (resp. AWV) gr). Note that a different interpretation, where

group algebras and coalgebras appear as bialgebras in a suitable symmetric monoidal
category was given by the second author and De Lombaerde in [12].

Recall that a semi-Hopf group coalgebra C is called a Hopf group coalgebra if there exist
morphisms S, : C,-1 — C, such that

Mg 0 (Co @ Sg) 0 Ay 51 =g 0(Se ®Cy)o Ay, =15 0€.
A semi-Hopf group algebra A is called a Hopf group algebra if there exist morphisms S, :
As; — A,-1 such that

My s—10(As @ S5) 0 Ay = Mg-1 5 O (Se ® Ag) 0o Ay =noé,.

Proposition 6.3 Let V be a braided strict monoidal category. We have 2-functors K :
cov)8r — ¢ Catand K : A(V)g — A(V)@. The first functor sends Hopf group alge-
bras to Hopf V-categories, and the second one sends Hopf group coalgebras to dual Hopf
V-categories.

Proof The first statement is an immediate corollary of Proposition 6.2. The proof of the
second statement is straightforward. Let A be a Hopf group algebra. K(S)s,: = S,-1; :

K(A)or = Ag-1;, > K(A)r s = A1, makes K (A) into a Hopf V-category. O

7 Hopf Categories and Weak Hopf Algebras

Let A be a k-linear Hopf category, with |A| = X a finite set, and consider
A= ®x,y€XAx,y-

We define a multiplication on A in the usual way: forh € Ay, and k € A, ,, the product of
hk is the image of 4 ® k under the map my y , : Ax y ® Ay — Ay, if y=z,and hk =0
if y # z. This multiplication is extended linearly to the whole of A. Then A is a k-algebra
with unit 1 = )" _y 1, where 1 is the identity morphism x — x.

Now we define A: A > AQ A, e: A —> k,S: A — A insuch a way that their
restrictions to Ay y are respectively A, y, &y y and Sy .

Proposition 7.1 Let A be a k-linear Hopf category, with |A| = X a finite set. Then A =
®x,yex Ax,y is a weak Hopf algebra.

Proof We refer to [8] for the definition of a weak Hopf algebra. We compute that

A =1 ®le = Z 1 ® 1i,

xeX
and
ly®lpl®ley= Y. LeLL®l, =Y L®L el =(AdA)Al),
x,yeX xeX
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as needed. In a similar way, we show that
Ly ® 1ayle) ® 1oy = (A @ A)(A(D)).
Let us now show that
e(hkl) = e(hky)e(koyl).

It suffices to show this for h € Ay y, k € Ay o, 1 € A, If y # y' or z # 2/, then
both sides of the equation are 0. Assume that y = y’ and z = 7. From (7), it follows
that E(hk(l))é‘(k(z)l) = 8(/’1)8(/((1))8(/{(2)[) = 8(/’1)8(8(k(1))k(2)l) = S(h)E(kl) = 8(hkl).
Similar arguments show that

e(hkl) = e(hk2))e(kayl).
This proves that A is a weak bialgebra. For h € A, ,, we compute that
er(h) =) (e, 1h) 1, = (&, 1h) 1 = (ec y, W1,
zeX
In a similar way, we show that e;(h) = (g, h1,)1, = (gy y, h)1,. Now

(11)

h1ySx,y(h@)) = nx (ex,y (M) = & (h);
(12)

Sx,y(h(l))h(Z) = ny(sx,y(h)) = g;(h),

and, finally,
Se,y(h)h@)Sx,y(h3)) = &x,y(ha)) 1y Sy, y(h2)) = Sx,y(h).
O

Remark 7.2 Let G be a groupoid. Using Example 3.12, we obtain a k-linear Hopf cate-
gory. Then applying Proposition 7.1, we find a weak Hopf algebra, which is precisely the
groupoid algebra kG.

Now let C be a dual k-linear Hopf category. Then every Cy y is an algebra, and we have
k-linear maps Ay y ; : Cy; = Cyy ® Cyz, 6y 0 Cxx — kand Sy y : Cy y — Cx y such
that the following axioms are satisfied, for all i, k € Cx ; and [, m € Cy y:

A)c,u,y(]’l(l,y)) ® h(2,y) = h(l,y) &® Ay,u,z(h(Z,y)) (30)
ex(hax)hexy = hane(hey) =h; (31
Axy(hk) = ha yka.y ® hayka.y); (32)

ex(Im) = ex(D)ex(m); (33)

Ay yz(lxz) = 1oy @1y 25 (34)

ex(lyx) = 15 (35)
laySxyUy) = ex(Dlyy; (36)

Sy xUa e,y = ex(Dly x. 37

Cere 1,y is the unit element of Cy y, and we used the Sweedler-Heyneman notation

Axyz(h) =hay) ®ha,y).

Proposition 7.3 Let C be a dual k-linear Hopf category, and assume that |C| = X is finite.
Then C = ®y,yexCx,y is a weak Hopf algebra.
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Proof Being the direct product of a finite number of k-algebras, C is itself a k-algebra, with
unit 1 =y 1y ;. We define a comultiplication on C as follows:

A(h)y =" Ay yz(h),

yeX

for h € Cy ;. It follows immediately from (30) that A is coassociative. The counit is defined
by (h € Cy y):

_Jeah)ifx =y
e(h) = {0 ifx # y

We verify the left counit condition:
(€29}
(®C)oA)h) =) elhayha.y = ex(han)hax = h.
yeX
The right counit condition can be verified in a similar way, and we conclude that C is a

coalgebra. It follows from (32) and (33) that A and ¢ preserve the multiplication. it follows
from (34) that

A =1H Q1 = Z Liy®1y..
x,y,2€X
We now find easily that

Iy®@lplin®ley = Y. Ly®Llw®l

Xx,y,2,u,v,weX

Z liy®1y @1 =11 ® 1) @ 13).

x,y,z,weX

In a similar way, we find that 1(1) ® 1111 ® 12y = 1(1) ® 1(2) ® 1(3). Now take
h,k,l € Cyx.

e(hkay)elk)l) = Z e(hkq,y))elkenl) = ex(hka x))ex(ka,xl)

yeX
D e ex ki) kil = ex(hex(ex kakeoD)
D o ex (k) Dey (hkl) = e, (hkl).
We conclude that
e(hky)ekoyl) = e(hkl), (38)
ifh,k,l € Cy x.If h, k,l € Cx y with y # x, then both sides of (38) are zero. So we can
conclude that (38) holds for all &, k, [ € C. In a similar way, we can show that

e(hk@))e(kayl) = €A go f)). (g0 ) (x).(g'0 1)) (HKLD),
for all i, k, 1 € C. This shows that C is a weak bialgebra.
Recall from [8] that the maps &5, & : C — C are given by the formulas
es(h) = 1Lne(hl) ; &(h) =e(lh)l().
These maps can be easily computed: for 4 € Cy ;, we have

gy = Y e(luyh)lyy =Y el)l.y= [Ozyex ex(M)lyy ifx =z

if x
u,v,yeX yex 72
In a similar way, we find that

Z)’EX Ex(h)ly,x ifx = bd

&s(h) = {0 if x # 2
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Now we define S : C — C as follows: the restriction of S to Cy y is Sy x, and then we
extend linearly. Then we have, for i € Cy ;:

(S*xC)(h) =Y Sy (hay)ha.y).-
yeX
If x # z, then we find easily that (S % C)(h) = 0 = &;(h). If x = z, then we find
37
SO Y er)y ., = e5(h).
yeX
This shows that § x C = g;. In a similar way, we have that C * S = &;. Finally we have that
(S*xCx M) = Y Suxlhyaun)hay@wSeyhay).
y,ueX
The terms on the right hand side are products of an element of Cy, x, an element of C,, , and

an element of C; . These products are zero if x # y of z # u. Hence we find

(S*xCx8)(h) =S, x(ha,x)1.9)h1,x)2.0)5,x(h2,x)
37 31
D e (h(o) enSex (ha) ZSe . () = S(h).

This proves that C satisfies all the axioms of a weak Hopf algebra, see [8]. O

Remark 7.4 If A be a k-linear Hopf category, with |A| = X an infinite set, then A =
®yx,yex Ax,y is an algebra without unit, but with (idempotent) local units. We believe that if
A is a Hopf category and using similar constructions as above, the associated algebra A can
be endowed with the structure of a weak multiplier Hopf algebra (see [29] and [6]), but we
haven’t worked out the details of this construction.

8 Hopf Categories and duoidal Categories

Let X be a set. We have seen in Section 2 that (M (X), e, J) is a monoidal category. We
will define a second monoidal structure on My (X), in such a way that My (X) becomes
a duoidal category (also called 2-monoidal category) in the sense of [1]. We will follow
the notation of [5], and we call e the black tensor product on M. (X). The second tensor product
is called the white tensor product and is defined as follows. For M, N € M (X), let

(M © N)x,z = @yeXMx,y ® Ny,z~
The unit object for the white tensor product is /, defined by
I kexx ifx =y
RIS 0] ifx #£y
We will simply write
Iy = kby y,
where the Kronecker symbol 4, , stands formally for the element of the identity matrix in
the (x, y)-position. Let
t: 1l —J
be the natural inclusion. We compute that
(I ol)yy=kéxy®kSyy =kbyxy =1y,

hence I o I = I, and we let
§: 1 —>1Tel
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be the identity map. Now we compute that
Jo -I)x,y = Bzexker; ® kez,y = ®z€XkZ€x,y = kX@x,y-
We now definew : JOJ — J.Forallx,y € X,
@,y . Drexkzery — ke y, wx,y(z Qzzexy) = Zazex,y.
zeX zeX
For M, N, P, Q € V(X) we have that

(MeN)O(PoQ))ry=EPM: QN :® Py ® Q.

zeX

(MOP)oe(NOQ)ey= P Mcu®Puy®Ney® 0y,

u,veX
and we define
MNP (MeN)O(PeQ)— (MOP)e(NOOQ)
as follows: for x,y € X, {m N, P,0,x,y 18 the map switching the second and third tensor

factor, followed by the natural inclusion.

Theorem 8.1 Let X be a set. (Mp(X),®,1,e,J,8, w, T, ) is a duoidal category.

Proof We have to show that the axioms in [5, Def. 1.1] are satisfied.

1) (J,w, 1) isamonoidin (My(X), O, I).
Associativity: first compute that

(.] 0JO6 ‘I)X,y = k(X X X)exyy = @uvaXk(ua v)ex,y»

and

@ Q@) _ W, v)exy) = () dutier.y)

=Y duwery = (@@ O N auwt, v)ex ).

u,v u,v
Left unit property: we have to show that the diagram

(JOT)a,y

(JOI)gy (JO )y

\ lwz7y
Jry

commutes, for all x, y € X. Observe that (J © I)y,y = ®.exkey; Q kb, y = kex y =
Je,yand (J © J)y,y = kXey y. Now

ZZ7)«f,y((~] © T)x,y(aex,y) = wx,y((xyex,y) = QéCy,y,

for all @ € k. The right unit property can be shown in a similar way.
2) (1,86, t)is acomonoid in (M (X), e, J).
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The coassociativity of § is clear, since ¢ is the identity map. For the left counit
property: oberve that the diagram

Iy =kdpy

61 =
(J'T)m,y

Iy =kpy ————(J o)y, =kiyy

commutes: the three maps in the diagram are the identity map.
3) Verification of the associativity and unitality axioms [5, 1.6-7] is obvious and is left to
the reader.

O

Recall the following definition from [1, Def. 6.25] (see also [5, Def. 1.2]).

Definition 8.2 Let (M, ®,1,e,J,8, @, t,¢) be a duoidal category. A bimonoid is an
object A, together with an algebra structure (i, 7) in (M, ©, I) and a coalgebra structure
(A, g)in (M, e, J) subject to the compatibility conditions

Aopu = (uep)olo(AQA); 39)
wo(e®e) =€cou; 40)
(nem)od = Aon; 41)
gon = 1. (42)

Theorem 8.3 Let X be a set, and let A € My(X). We have a bijec-
tive correspondence between bimonoid structures on A over the duoidal category
Mi(X), 0, 1,0,J,8, w, 1, ) from Theorem 8.1 and C(My)-category structures on A.

Proof First let A be a bimonoid. A has an algebra structure (i, n) on (Mp(X), ®, ).
Consider the (x, y)-component of the multiplication map u : A ©® A — A, namely

Mx,y : @MGXAX,M ® Au,y - Ax,)w
and let uy , y be the composition
Mx,yOiz: Ay ®Azy = @BuexAxu @ Auy — Axy,

where i, is the natural inclusion. Also consider the (x, x)-component of the unit map 7 :
I — A, namely ny = nxx : kK — Ay . Now it is easy to see that (1-2) are satisfied, so
that A becomes a k-linear category.

A has a coalgebra structure (A, ¢) on (M (X), e, J). Consider the (x, y)-component of
the comultiplication A : A — A e A and of the counit ¢ : A — J. This gives k-linear
maps Ay y: Axy—> Ayy® Ay yand ey, y : Ay y — k making A, ) into a k-coalgebra.

Now we write the (x, y)-component of (39) and (40) as commutative diagrams. This
gives us

Hz,y Dz,y
A%y Al’»y ® Aw,y

@zAx,z X Az,y

@zAz,z®Az,yl T#z,y®ﬂz¢y

Ca,
@zAw,z & Aa:,z @ Az,y 02 Az,y §

@u,vAm,u ® Au,y & Az,v X Av,y
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and
D2€x,2Q2,y

@ZAJC,Z X Az,y @zk'ex,z K eyy = @Zk;zex’y
M%yl lw
Ex,y
szy kez,y

Evaluating the two diagrams ata @ b € Ay ; ® A;,y, we find that
Ax,y(ab) = a(l)b(l) ® a(z)b(z) and axyy(ab) = ax,z(a)gy,z(b).

Now we write the (x, x)-component of (41) and (42) as commutative diagrams. This gives

k—" > Ay, and k—2> Ay,

5‘L,‘Ll lAz,z \\ lsw’w

k®k —>Ax,x ®AJ:,J:

Evaluating these diagrams at 1, we find that Ay (1) = 1, ® 1, and & »(1x) = 1, and
we conclude that A is a C(My)-category.

Conversely, let A be a C(My)-category. Define u : AOQA — A, n: [ — A,
A:A— AeAande: A — Jasfollows. iy y =, Mruy ! OuexAxu®Auy = Ay y;
Nx,y = 0if x # y and 5, , = 7ny; the components of A and ¢ are just Ay, and &y y.
Straightforward computations show that this turns A into a bimonoid. It is clear that these
two operations are inverses. This completes the proof. O

8.1 Linearization and the Duoidal Category of Spans

We have seen in Theorem 8.1 that we can associate a duoidal category M (X) to aset X. In
[1, 5], two other classes of duoidal categories are investigated, namely the category span(X)
consisting of spans, and the category g Mg of bimodules over a commutative k-algebra R.
We will now discuss how these three classes of examples are related. To this end, we need
to give alternative descriptions of My (X) and span(X).

As we have seen in Example 3.4, every set X carries a unique comonoid structure in
Sets. A right X-coaction on a set V consists of amap p : V — V x X of the form
p() = (v,s(v)), where s : V — X is a function. So right X-coactions on V correspond
bijectively to X V. In a similar way, giving a two-sided coaction of X on V amounts to giving
two functions s, # : 'V — X, which means precisely that (V, 7, s) is a span, see [5, Sec. 4.2].
Morphisms of spans correspond to bicomodule maps, and we conclude that the categories
XSetsX and span(X) are isomorphic. The white product of two spans V and W is

VoW={w,w)eVxW]|s@) =tw)}

is precisely the cocarthesian product V xX W. Now observe that the category X Sets* is
isomorphic to Sets¥ *X. The black product is

VeW={w,w) e VxW]|s@) =s(w), t(v) =t(w)}

and this is the cocarthesian product V x*** W. The white unit object is X, and the black
unit object is X x X.

A similar description applies to My (X). kX is a coalgebra, and we have isomorphisms
of categories

My (X) = X MEX = prOOD),
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An object (M y)x,yex corresponds to M = @y yex My, y, with left and right kX -coaction
given by the formulas
Am)=x@m ; p(m)=mQy,

for m € M, y, extended linearly. The black tensor product in My (X) is precisely the
cotensor product over k(X x X), and the white one is the cotensor product over kX .

The linearization functor L : Sets — M is strongly monoidal, sends X to the grouplike
coalgebra kX and a set V with a two-sided X-coaction to the k X-bicomodule £ V. We find
the following result.

Proposition 8.4 The linearization functor induces a functor L : span(X) — Myp(X)
preserving the black and white tensor products.

This construction can be generalized, replacing kX by a cocommutative coalgebra C. We
have to assume that the cotensor product is associative, which can be done by requiring that
k is a field, or else that k is a commutative ring and that C is finitely generated and projective
over k. Then the category C./\/lkc = M,€®C of C-bicomodules is duoidal, with the cotensor
product over C and C ® C as the white and black tensor product. This brings us back to the
second example of duoidal category studied in [1, 5]. For a commutative k-algebra A, the
category 4 M4 = Myga is a duoidal category, with the tensor products over A and A ® A
as the black and white tensor product. This is precisely the dual construction.

8.2 Generalized Hopf Monoids in Monoidal Bicategories

Now we focus attention to the recent work by Bohm and Lack [7] on generalized Hopf
monoids in monoidal bicategories.

It is well-known that the category of endomorphisms of an object of a bicategory is a
monoidal category. It was observed in [24] that, in a similar way, duoidal categories arise
as the category of endomorphisms in a monoidal bicategory of a pseudomonoid whose
multiplication 1-cell and unit 1-cell have a right adjoint (such an object is known as a map-
monoidale). In this case, the second monoidal structure is obtained using a convolution
product. Consider the monoidal bicategory of free k-coalgebras, bicomodules and bicomod-
ule maps, with the cotensor product as horizontal composition, the opposite composition as
vertical composition and the k-tensor product as monoidal product. kX is a map-monoidale
in this monoidal bicategory. Hence the category My (X) = *X MKX of kX-bicomodules is
the category of endomorphisms over a map-monoidale, so it can be endowed with a duoidal
structure. This duoidal structure coincides with the one described above, the black monoidal
product being the convolution product. It also follows from [24] that A is a bimonoid over
the duoidal endohom category M (X) if and only if it is a monoidal comonad on kX in the
monoidal bicategory described above, hence it induces a monoidal comonad on M (X).

Furthermore, Bohm and Lack provide equivalent conditions for the bimonoid A in the
duoidal endohom category to have an antipode (i.e. to be a Hopf monoid), in terms of a
fundamental theorem of Hopf modules (see also our Section 10) and in terms of the associ-
ated monoidal comonad to be a Hopf (co)monad. In particular, this leads us to the following
result.

Theorem 8.5 Let X be a set, and let A € My (X). We have a bijective correspondence
between Hopf monoid structures on A (in the sense of [7]) over the duoidal category
Mi(X), 0, 1,0,J,8, w, 1, ) from Theorem 8.1 and Hopf My-category structures on A.
In particular, if A is Hopf M-category, then this induces a Hopf monad on My (X).
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Proof From the discussion above, we already know that the structure of an C(My,)-category
on A corresponds to the structure of a bimonoid in the duoidal category M (X). Hence it
only remains to compare the antipode axioms for Hopf categories (11) and (12) with the
antipode axioms of [7, Theorem 7.2]. We leave out the details, but remark that the monoidal
bicategory of bicomodules over free coalgebras has duals. Given a kX-kY bicomodule
M = B, y)exxyMy y, then M~ = M = @ y)eyxx My, x is a kY-kX bicomodule.
Furthermore, the 2-cell ¢ in [7] should in our setting be interpreted as the inclusion map
Ay @Ay, = ByexAx,y @ Ay x. O

9 Hopf Categories and Morita Contexts
Let k be a commutative ring, and V = My, the category of k-modules.

Definition 9.1 A Morita context consists of the following data:

(1) aclass X;

(2) Ay xisak-algebra, forall x € X;

(3) Ayyisan (Ayx, Ay y)-bimodule, forall x, y € X;

@) myyz: Axy®a,, Ay = Ax; is an (Ax, x, Az ;)-bimodule map,

satsifying the following conditions:

(1) mx,xyy. : Ax,x ®Ax:x Axy > Ayyandmy yy @ Ayxy ®4,, Ay y — Ay, are the
canonical isomorphisms;
(2) the associativity condition (43) is satisfied, for all x, y, z,u € X

mx,y»u ° (Ax,y ®Ay,y m)',z,u) = ﬁx,z,u © (mx,y,z ®Az,Z Az,u)' (43)

Fora € Ay yand b € Ay ;, we will write my y ;(a ®a, , n) = ab.
Morita contexts can be organized into a 2-category yMor. Before we describe the 1-cells,
we recall the following result. Let f : A — B be a morphism of k-algebras, and consider
M,N € My, M',N' € Mg, and k-linear maps g : M — M’ and h : N — N’ such that

g(ma) = g(m) f(a) and h(an) = f(a)h(n),foralla € A,m € M andn € N. Then we
have a well-defined map

g®rh: M@y N —> M ®pN', (§®fh)(m®an)=g(m) Qg h(n).

Al-cell f: A— BinMorconsistsof f: X — Y,andmaps fxy: Ayy = Bru), f(y)
such that

® every fy x is an algebra map;
o fiy(dad”) = fi (@) fry(@) fyy(@"), foralla’'inA, x,a € Ay yanda” € Ay y;
®  fryoMyy:=Mfx) (). f2)° (Sry D fyy fy.2)-

For two given 1-cells f,g: A — B,a2-cell : f = g consists of a family of elements
ay € Bg(y), f(x) indexed by x such that

Mg (x),g(y), £ () (8x,y(@) @By, o) Xy) = Mg(x), £(x), £ () (&x BBy ooy fr,y(@))s

forallx,y € Xanda € Ay y.
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Let A be a Morita context, and take x # y € X. Take p,r € Ay yandg € Ay . It
follows from (43) that

mx,y,x(p ®Ay_y q)l‘ = pmy,x,y(q ®Ax_x r).

It follows that (Ax x, Ay y, Axy, Ay x, My y x, My y) is a Morita context. In particular,
Morita contexts with a pair as underlying class are Morita contexts in the classical sense.

Theorem 9.2 The 2-categories s, Cat and yMor are isomorphic.

Proof (sketch) Let A be a k-linear category, with underlying class X. It is clear that Ay
is a k-algebra, and that Ay , is an (Ax x, Ay y)-bimodule, forall x,y € X. Take a € Ay y,
be Ay yandc € Ay ;. From (1), it follows that m, y ,(ab ® ¢) = my y ;(a ® bc), so we
have a well-defined map

My yz: Axy ®AH Ay,z — Az, mx,y,z(a ®AH c)=myy.(@® o).

From (2), it follows that my, y - (1y ®a4, , ¢) = my,y :(1y ® ¢) = ¢, so that my y ; is the
canonical isomorphism Ay, ®4,, Ay = Ay . Itis easy to verify that the associativity
axiom (43) is satisfied, and it follows that A is a Morita X-context.

Conversely, let A be a Morita context with underlying class X. Define m, , , as the
composition of 7z, . and the canonical surjection Ay y ® Ay ; — Ay y Qa,, Ay .. Itisa
straightforward verification to check that A is k-linear category. h

It is clear that these two constructions are inverses, and this defines 2-functors between
our two 2-categories at the level of O-cells. We leave it to the reader that we have a one-to-
one correspondence between 1-cells and 2-cells in a4, Cat and Mor. O

Theorem 9.3 Let A be a k-linear category with underlying class X, and consider the
corresponding Morita context. The following statements are equivalent.

(1)  my,y . is surjective, forall x,y,z € X
(2) my y,x is surjective, forall x, y € X;
(3)  my,y,x is bijective, forall x,y € X;
(4) my,y,; is bijective, forall x, y, z € X.

A is called strict if these four equivalent conditions are satisfied.

Proof The implications 4) = 1) = 2) are obvious.

2) = 3). If my y  is surjective, then my y , is also surjective. We have seen that
(Ax,xs Ayy, Ax,y, Ay x, My y ¢, My 5 y) is a Morita context, hence surjectivity of my y x
implies injectivity, by a classical property of Morita contexts, see [3].

3) = 4).Forall x, y € X, we have that m,  , and m,  y are bijective (by definition),
and my y  is bijective by assumption. It follows from (43) that

mx.,y,z o (Ax,y ®Ay_y my,x,z) =My, O (mx,y,x Ay, Ax,z)-

The right hand side is invertible, and therefore my y ;0 (Ax,y ®4, , My x,7) is also invertible.
This implies that m, y . has a right inverse, and that Ay y ®a, , 7y, ; has a left inverse.
Having a right inverse, m, y . is surjective, forall x, y, z € X.

It also follows that Ay x ®4, , Ax,y ®4,, Myx,; and My xy 4, Myx, ; have a left
inverse, because niy y y is bijective. Let f be the left inverse of my x y ®4, , My x z, and
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take o € Kermy x ;. My x,y is surjective, hence there exists 8 € Ay, ®a, , Ax,y such that
ny ¢ y(B) = 1y. Now

ﬂ ®A,\',y o= (f ° (m)’ax-y ®A,V»,V m)'WJ))(ﬂ ®Ay,y a) =0,
and
0 =y, x,y(B) ®a,, o = 1y ®a,, o

inAyy®a,, Ayx ®a,, Axz = Ay x ®a,, Axz, and, finally, o = 0. We conclude that
my x ; is injective. O

Example 9.4 The category A of k-progenerators, is a strict k-linear category. For two
finitely generated projective k-modules P and Q, we have that Ap 9 = Hom(Q, P), and
mpop: Ap,o® Ag p — Ap, p is given by composition: mp g p(f ® g) = f o g. We
have to show that mp ¢ p is surjective.
Q is a generator of M, so there exist ¢; € Q and ¢ € Q" suchthat ) (¢, g;) = 1.
P is finitely generated projective, so there exist p; € P and p}‘f € P* such that p =
Zj (p;, p)pj,forall p € P. Now consider

fiit Q=P fijl@) =4} q)pj;
gij: P— Q3 gij(p)=(pj. pai-
Now
mp.o.p()_ fi ® gi)(p) = ) (P}, P)ai ai)pj = p,
ij i,j
hence mp,Q,p(ZLj fij ® gij) = P and mp g p is surjective.

Example 9.5 Let A be a G-graded k-algebra, and consider the corresponding k-linear cat-
egory K(A) (see Proposition 6.2). K(A) is strict if and only if the multiplication maps
A1, ® Ap1, — A, are surjective, for all g, h € G. This is equivalent to surjectivity of
Ag1 @ Ay — A, forall g € G. This is one of the equivalent definitions of a strongly
graded k-algebra, see for example [22]. We conclude that K (A) is strict if and only if A is
a strongly graded k-algebra.

Now assume that A is a C(My)-category. It follows from the axioms that every Ay x
is a bialgebra and that every A, y is an (A x, Ay y)-bimodule coalgebra. In this case the
induction functors Ay y ® —: 4, M — 4 M are comonoidal.

Example 9.6 Let H be Hopf algebra with bijective antipode S, and let A be a faithfully
flat right H-Galois object. In [23], a new Hopf algebra L is constructed in such a way that
A is a faitfhully flat left L-Galois object, and even an (L, H)-bigalois object. A°P is an
(H, L)-bigalois object (see [23, Remark 4.4]). The left H-coaction on A°P is the following:
Ma) = S~ ap) ® aoy-
We now have a dual A(My)-category A with underlying class {x, y} defined as follows:
Ayx=H; Ayy=1L; Ary=A4; Ay, = A

A is even a dual Hopf category; the antipode maps are the following: Sy : H — H,
Sy : L — L and theidentity Ay y = A — A, , = AP,

Now let H be finitely generated and projective; then A and L are also finitely generated
and projective, and the dual category of A is an example of a k-linear Hopf category.
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10 Hopf Modules and the Fundamental Theorem

Let V be a strict monoidal category with equalizers, and let A be a C(V)-category, with
underlying class |A| = X. Assume that M € V(X), with the following additional structure:

® M € V4 in the sense of Definition 4.1, with structure morphisms ¥, : M, , ®
Ay — My ;;

e M e VA, thatis, M is a right comodule over A considered as a coalgebra in V(X);
this means that every M, , is a right A, ,-comodule, with coaction py , : My, —
M,,®A,,.

Recall that A e A is also a V-category. M e A € Vgq4, With structure maps
)?,4;:2 = (wx,y.,z & mx,y,z) o (Mx,y ® CAyy,Ayz ® Ay,z).

M is called a Hopf module if the compatibility relation

Px,z © 1/f)c,y,z = w;?/[;é o (px,y ® Ay,z) (44)

holds for all x, y, z € X. A morphism between Hopf modules is a morphism in ) that is a
morphism in V4 and V4. The category of Hopf modules is denoted V(X )2‘.

We introduce the category D(X) (D stands for “diagonal”). Its objects are families of
objects in ) indexed by X, and a morphism N — N’ consists of a family of morphisms
Ny — N, in V.

Proposition 10.1 We have a pair of adjoint functors (F, G) between D(X) and V(X)ﬁ.

Proof We define a functor F : D(X) — V(X)ﬁ as follows. For N € D(X), let F(N) €
V(X )ﬁ be given by the data

F(N)x,y =N ® Ax,y; 1/fx,y,z = Ny Q@ myxyzs Px,y = Ny ® Ax,y-

For f: N — N in D(X), let F(f)x,y = fr ® Ay,y. Verification of further details is
straightforward.

Now we define G : V(X)g — D(X).Let M € V(X)g‘. M, . is aright A, ,-module,
for every x € X, and we define G(M) = M4 as follows:

G(M), = M = M,
the equalizer of the parallel morphisms oy x, My @ nx : My x — My x ® Ay x. For
g: M — M in V(X)f‘, G(g) = g4 is defined as follows: G(g), = g§°A is the unique
morphism in V making the diagram

cO

M:c Mgz Mz,z & Az,z
: Pz,x

E”Q;OA fo,a lfL,L@A\L\L

/IVCOA iz ! Mglv,w®7]X /

M — M, ® Ay,

Pz,
CcoA

commutative. The existence and uniqueness of g7° is guaranteed by the universal property
of equalizers.
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Next we describe the unit and the counit of the adjunction. For N € D(X), the unit
ny : N ® GF(N) has X component 77)1(\’ : Ny > GF(N)y = (Ny ® AX,X)COA”, the
unique morphism in V such that

io U)Icv =N, ®ny: Ny > (Nx ® Ax,,\c)COA'\'"’c —> Ny @ Ay x. (45)
For M € V(X)4, the (x, y)-component of e” : FG(M) — M is
eM =Yy 0 (i ®Axy): FG(M)yy=MP*® Ay, — My y.
In order to show that (F, G) is an adjoint pair, we have verify that
F(N)=e™™ o F(»") and G(M) = G(epy) o n¢M,
forall N € D(X) and M € V(X)4. Now
er Vo F™M)ay = (Ne ®@ myr ) 0 (i ® Ary) o (0 ® Ay y)
= (Ny ®mx,x,y) o(Nx®@nx ® Ax,y) =N:® Ax,y = F(N)x,yy

proving the first formula. For the second formula, we consider the diagram

coA
M:c
coA
. m
Nz
[

(M£OA ®Az,z)C0AI’I M£OA ®Az,z
(i®Az,z)COAI’I li(@Az,z
M,y @ Ay g)0Aee — M,,® A
( z,z® x,x) ’ z,z® T,z
otz lw
MeeA - M,

The commutativity of the triangle follows from the definition of nf(M); the commu-
tativity of the two squares follows from the definition of G at the level of morphisms.
Now

wx,x,x o(i ®Axx)o (M)?OA Qny) = wx,x,x o (Mx,x ®ny)oi =1,
and it follows from the uniqueness in the universal property of equalizers that the vertical
composition in the diagram is the identity on M;OA = G(M),; this vertical composition is
the x-component of the right hand side in the second formula. O

Let A be a C(V)-category, with underlying class |A| = X. For all x,y,z € X, we
consider the canonical map
Cani,y = (mz,x,y ®Ay)o(A;x ® Ax.y) DA ® Ax,y g Az,y ® Ax,y~
With respect to the observations made at the end of Section 8, the following theorem

should be compared to [7, Theorem 7.14].

Theorem 10.2 (Fundamental Theorem for Hopf Modules) Let V be a strict braided
monoidal category with equalizers. For a C(V)-category A with underlying class X, the
following assertions are equivalent.

(1) A is a Hopf V-category;
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(2) the pair of adjoint functors (F,G) from Proposition 10.1 is a pair of inverse
equivalences between the categories D(X) and V(X) f“;
(3) the functor G from Proposition 10.1 is fully faithful;

(4)  cant , is an isomorphism, forall x, y, z € X;

(®)] canjr‘_y has a left inverse fx y and can;‘é,y is an isomorphism, with inverse g y, for all
x,y € X.

Proof (1) = (2). Part 1. ¢™ has an inverse o™, for all M € V(X)4.
We first show that the morphism
Vx,y = 1//)c,y,x o (Mx,y ® Sx,y) O Px,y - Mx,y — My

satisfies the equality
Px,x O Vx,y = (M x ® Nx) © Y x- (46)

Px,x ©Vx,y = Pxx © Yx,yx © (Myxy ® Sy y) 0 pxy
Y Wiy @ mayn) o My ®ca,,n,, ® Ay) 0 (pry ® Ay
o (My,y ® Sx.y) 0 px.y
L Wy @may) o (Mey ®cay,a,. ® Ay
o(Myy ®Axy ®ca,,.A,,) 0 (0xy ®Sxy ® Sx.y)
o (My,y ® Ayxy) 0 pxy
= (Yryx ®Axx)o(Myy ® Ay x @My yx) o (Myy ®Ca, @Ay, Ay )
o (Myy ® Ary ® Sxy ® Syy) 0 o3,
Wy ® Arx) o (Mey @i, a,,) 0 (Myy @ My 0 Ay
o (Myy ® Ax,y ® Sx.y ® Sxy) 0 (Myy ® Mgy ® Ary) 0 py
W Yy ® Av) o Moy ®car,a,) 0 (Mey @1, ® Ay )
o (Myy ®£xy ® Sy y)opy,
= (Wryx ®Arx)o(Myy® Ay ®1x) 0 (Myy ® Sxy) 0 pxy
= (Myy ®@nx) oYy yx0(Myy®Syy)opry=Myx ®nx) 0 Vxx-
At (x) we used the naturality of ¢ resulting in the commutative diagram
CAz y®Ay,z,Ay,z

Apy @Ay s @Ay s ————— Ay @ Agy ® Ay »

m:r,y,m@Ay,:ri lAy,x@)mm,y,x

CAz,z,Ay,z

Ax,x ® Ay,x Ay,x 029 Aa:,a:

From (46) and the universal property of equalizers, it follows that there is a unique
morphism py y : My, — M4 such that i o Vxy = Y,y
Now we are ready to define «™ : M — FG(M). The (x, y)-component is

a)lc\tly = (?x,y o Ax,y) O Px,y : Mx,y - MJ‘EOA & Ax,y'

eM Oaﬁ/,lv = 1ﬁx,x,yO(i(X)A)c,y)0(77)c,y®Ax,y)0)0x,y
= Wf,}y,x,y o (Mx,y ® Sx,y ® Ax,y) o pf,y

(12)
= 1ﬁx,y,y o (Mx,y ® Wy) o (Mx,y ® gx,y) O Px,y = Mx,y-
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The proof of the fact that o™ is also a left inverse of ¥ is more involved. We first compute

Pry 0 Vrxyo (®Axy): MA@ Ay — Myy ® Ay y.

Pxy 0 Yxxy o (i ® Axy)
E Wy ® Moy o (Mo ®ca,a,, ® Ary)
o (Px,x ® Ax,y) o (i ® Axy)
= (Yxx,y @ Myxy)o(Myx ®ca,, .4, ®Axry)
o (Myx ®nx ® Ay y) o (i ® Ay y)
= (Yaxy®Myry)o(Myx ®Ary @1 ® Ay y) o (i ® Ay y)
= (Yxx,y ®Axy) o (i ® Ay y). 47
Our next step is to compute
ioPryoYrryo(i®Ayxy)
= VYx,yx 0 (My,y @ Sxy) 0 px,y 0 Yx x,y 0 (i ® Axy)
D Yryr 0 My ® Scy) 0 Py ® Ary) 0 (i ® Agy)
= Yl yx 0 (Mex ® Agy ® Scy) o (Myy ® Ay y) 0 (i ® Ay y)
S w0 (Myx ® 1) 0 (Myx ® 6ry) 0 (0 ® Ay y)
= iQey=io (M Qe
The universal property of equalizers tells us that there is a unique f : M4 ® A, y =
M;"A such thati o f =i ® & y. This implies that
Py © Vary 0l ® Axy) = M4 @6y . 48)
Finally
af oel = ey ® Axy) 0 pry 0 Yrry 0 (i ® Ay,y)

@n -~ .
= (Vx,y ® Ax,y) o (l[fx,x,y ® Ax,y) o(i ® Ax,y)

= (77)c,y ® Ax,y) o (wx,x,y ® Ax,y) o(i® Ax,y ® Ax,y)) o (MEOA ® Ax,y)
48
(:) (M;oA ®£ry ® Ax,y) o (M)(C:OA ® Ax,y) _ M;oA'

Part 2. n" has an inverse gV, for all N € D(X).
The x-component of BV is

/3)1(\/ =Ny ® 3x,x) oi: (Nx® Ax,x)COAXTX — Ny

It is easy to see that

ﬂ)]cv o niv =N, ® gx,x) oio fliv (i) (Nx ® &x,x) o (Ny @ nx) = Nx.
The universal property of the equalizer entails that there is only one endomorphism f of
(Ny ® AXQX)COA“ such that i o f = i, namely the identity. Now
ionivoﬁ,iv @ (Ny ®@nyx) o(Ny ey x)oi
=(N:® Exx ® Ax,x) o(Ny ® Ax,x ®ny)oi
= (Nx & Ex,x &® Ax,x) o(Ny ® Ax,x) ol =i,

s0 it follows that 7Y o BY = (N, ® A, )4,
(2) = (3) is obvious.
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(3) = (4). For every z € X, consider the object M* € V(X) given by Mj’y =4A,,®
Ay, y. The structure morphisms P)Zc,y =A@ Ay Mf(’y ® A,y and

;,y,u = (mz,y,u ® mx,y,u) o (Az,y ® CAx,y,Ayu ® Ay,u) © (Mj,y ® Ay,u)
MY ® Ay —> Mg,

make M? into an object of V(X )ﬁ. Let us verify that the compatibility relation (44) holds.
We compute both sides of the equation, and see that they are equal.

Pru Wi yu=Aru ®Axu)o(myyu ®myyu)o(Ary®ca,,.a,, ®Ayu)
0(Azy ®Axy ®Ayy)
= (Mg yu @My yu @My yy)o(Azy ® Ay ®Axy ® CAyy Ayy ® Ay.u)
o (Az,y ® Ay,u X Ax,y ® Ay,u) o (Az,y &® CAyy,Ayu ® Ay,u)
0(A;y®Axy ®Ay,)
= (Mg yu @My yy @My yu)o(Ary @Ay ®Axy ®ca,,.a,, ®Ayu)
0(Azy ®CA, @A,y Ay, ®Ayu ®Ayu) o (Azy @ Axy ® Ay u ® Ay )
© (Az,y ® Ax,y ® Ay,u)
= (Mzyu @My yu @My yu) 0 (Ary ®ca, A, ®Ca,y Ay, ®Ayu)
0 (Azy ® Ary ®Cayyn,, ® Ay ® Ay ) o (Azy ® Ay y ® AT )
(Wl yu ®myyu)o(Ary ® Ay ®ca, 4y, ®Ayu) o (py, ® Ay )
= (mzyu ®@myyu®@myyu)o(Ary®ca,,a,, ®Ayu ®Ary ®Ayu)
0(A;y®Axy Ay ®Ary Ay )
0(Ary ®Axy ®ca, A, ®Ayu)o(Ary ® Axy @ Ay y)
= (Mg yu @My yu @My yu)o(Ary®ca, A, ®Ayu®Ary ®Ay )
0 (Azy ® Axy ®CA, . A,,@4,, @ Ayu)
0(A;y®@Axy®Axy @Ay @Ay y)o(Ary @ Axy ® Ay )
= (Mzyu @My yu @My yu)o(Azy ®ca, A, BCA,, A, ® Ayu)
0 (Azy ® Axy ®ca, ay, ®Ayu ®Ayu) o (Ary ® Ay y ® A ).

Consider the morphism f = A; y @ Ny x : Azx —> Az x ® Ay x = M . Since

p)zc,x of = (A x ®@Axx) o (A x ®Nxx) = (Arx @ Ny x 1)
= (Az,x ® Ax,x ®nx) o (Az,x Qny) = (Mﬁ,x ®nyx)o f,

there exists a unique f : A, — M 204 such that i o f = f. f is invertible, with inverse
g =(A;x ®&yyx)oi.Indeed,

8o f = (Az,x &® 8x,x) o f = (Az,x & Ex,x) o (Az,x & nx,x) = Az,x-
We also have that

iofog = fog=(A;xQMyx)o(A;x ®é&xy)oi
= (Az,x ® Ex,x ® Ax,x) o (Az,x &® Ax,x ® nx) oi
= (Az,x ® Ex,x ® Ax,x) o (Az,x ® Ax,x) ol =1,
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and it follows from the uniqueness in the universal property of equalizers that f o g =

MZ°4 We know by assumption that

zZ _ a2 : . ZCOA Z
Exy =Vixy© (i®Axy): M — Ax,y —> Mx7y

is an isomorphism. It follows that
£,0(f®Ary) =(meny @myry)o(Azx ®ca,, A, ®Ary)
0 (Azx ® Axx ® Axy) 0 (i ® Ary) o (f ® Asy)
= (mzx,y ® My xy) 0 (A x @ca, 4, ® Axy)
0 (Azx ® Axx ® Ay y) 0 (Axx ® Nxx @ Ax,y)
= (M xy ®myyxy)o(Azx ®ca, 4, ®Axy)
0 (Axx ®Nxx ®Axy ® Ay y) o (A x ® Ay y)
= (Mzx,y @My xy) 0 (Azx @ Axy ®1x @ Ax,y) 0 (Azx ® Ay y)
= (Mzxy ® Axy) 0 (Azx ® Ay y) = Cani,y
is an isomorphism.
(4) = (5) is obvious.
©®) = .

We define the antipode as follows:

Sx,y = (Ay,x ® Sx,y) O 8x,y © (ny ® Ax,y)-

We have to show that the equations (11-12) are satisfied. To this end, we first need some

auxiliary formulas. Composing the equality
(mx,y,y ® Ax,y) o (Ax,y ® Can;,y)
= (mx,y,y ® Ax,y) o (Ax,y Qmy xy & Ax,y) o (Ax,y ® Ay,x ° Ax,y)
= (mx,x,y ® Ax,y) o (mx,y,x & Ax,y &® Ax,y) o (Ax,y & Ay,x o Ax,y)
= (mx,x,y ® Ax,y) 0(Axx ® Ax,y) o (mx,y,x Q Ax,y)
= canj’y o(myyx®Ayy)
to the left with fy , and to the right with A, , ® gy, y, we find that
fx,y o (mx,y,y ® Ax,y) = (mx,y,x &® Ax,y) o (Ax,y ® gx,y)-
Composing the equality
(cany y ® Ay,y) 0 (Ayy ® Ay y)
= (my,x,y ® Ax,y ® Ax,y) © (Ay,x ® Ax,y ® Ax,y) o (Ay,x ® Ax,y)
= (my,x,y ® Ax,y ® Ax,y) o (Ay,x ® Ax,y ® Ax,y) o (Ay,x &® Ax,y)
= (Ay,y ® Ax,y) o (my,x,y ® Ax,y) o (Ay,x ® Ax,y)
= (Ay,y ® Ay y)ocany y
to the left and to the right with g ,, we find that
(Ay,x ® Ax,y) O 8x,y = (gx,y ® Ax,y) o (Ay,y ® Ax,y)-
Nx O €&x,y = (Ayx ® Sx,y) o(nx ® Ax,y)

= (Axy, ® Sx,y) o fx,y ° can;y oy ® Ax,y)
= (Axx, ® gx,y) o fx,y ° (mx,x,y ® Ax,y) o (Ax,x ® Ax,y) o(nx ® Ay

(49)

(50)

)
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= (Ax, ® gx,y) © fx,y © (mx,x,y ® Ax,y) o(n: ® Ax,y 02 Ax,y) o Ax,y
= (Ax, ® 5x,y) o fx.y o (mx,x,y ® Ax,y) o (Ax.y ®ny ® Ax,y) o Ax,y

49)
= (Axx, ® 8x,y) o (mx,y,x ® Ax,y) o (Ax,y ® gx,y)

0(Ayy®ny @Ay y)oAyxy
= My,yx© (Ax,y ® Sx,y) o Ax,y»
and this shows that (11) holds.

Nyoéxy=(Ayy®eéxy)o M ®Ayxy)
= (Ay,y ®&x,y)ocanyy o gy o (1, ® Ay y)
= (Ayy®é&xy)o(Mmyxy®Axy)o(Ayx ® Axy)ogryo Ny ®Axy)
= Myxy0(Ayx ®Axy ®exy) 0 (Ayx ® Ay y) 0 gx,y o (Ny ® Axy)
= Myyy0(Ayx®&xy®Axy)o(Ayx ®Axy)ogryo(ny ®Axy)

= myxyo(Ayx®eéxy®Axry)o(gry ®Axy)
o(Ayy ® Ay y) o (ny ® Axy)
= Myxy0o(Ayx ®€ry®Ax )0 (8ry @ Axy) oy @Ay y ® Ay y) 0 Ay
= myxyo (Sxy®Axy) oAy,
and this shows that (12) holds. O

Remarks 10.3 1) The implication (1) = (4) can easily be proved directly: it is easily
verified that

(cand ) 7' = (mzy 0 Ary) 0 (Azy ® Sey ® Ary) 0 (Azy ® Ay y).

2) It follows from the Theorem that a Hopf module over a Hopf category is isomorphic to
a free Hopf module, that is a Hopf module in the image of the functor G. This result
is known in the literature as the Fundamental Theorem for Hopf modules. Its original
form (in the case where V is de category of vector spaces and X is a singleton) it is
due to Larson and Sweedler [18], see also [25, Theorem 1.1]. For the case where V
is an arbitrary braided monoidal category with equalizers and X is a singleton, see
[26, Theorem 3.4] and [19, Theorem 1.4].

Let us now proceed to some applications of the Fundamental Theorem. We restrict attention
to the case where ) is the category ./\/l,f{ of finitely generated projective modules over a
commutative ring k (or finite dimensional vector spaces over a field k). Our applications
generalize applications of the classical Fundamental Theorem as they can be found in [25,
Chapter 4].

ForV = ./\/l,f(, the axioms (11-12) take the following form

haySx,y(h@)) = &x y(M)1y 5 Sy y(ha)he) = ex,y(M)1,, (C1))

forallx,y € X and h € A, y. The formula (13-14) can be written as
Sy, (hl) = Sy (1) Sx,y (h); (52)
Ay 5 (Sx,y(h) = Sk y(h2)) @ Sx,y(h(1)), (53)

forall x,y,z € X,h € Ay yand! € Ay ;. The compatibility relation for Hopf modules
amounts to
px,z(ma) = mpjay ® mpjao), (54)
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forallm € My yanda € A, ;.

Proposition 10.4 Let A be a Hopf category in /\/li (X). Then A* is a Hopf module, with
structure maps px,y : AY, — AY |, ® Axyand Yxy . 0 AY |, ® Ay —> A}, defined as
follows:

(1) Fora* € A%, px,y(a®) = Y a*al ® a;, where )", af ® a; € A%, ® Ay y is the
finite dual basis of Ay, y. The multiplication on A% , is the opposite convolution.

(2) Fora* € A} anda € Ay, Yxy(a" ®a) = a*+a € AY , is given by the formula
(a*<a, b) = (a*,bSy ;(a)), forallb € Ay ;.

Proof The right A-coaction is obtained as follows: Ay y is a k-coalgebra, hence A¥ ylisa

k-algebra (with opposite convolution product). It is therefore a right A} ,-module, and a
right A, y-comodule. The coaction that is opbtained in this way is precisely the one that is
described in the Proposition.

Now let us show that the structure maps vy, . define a right A-module structure on A*.

Associativity. For all a* € Aj’y, acAy,,be A, andc e A, ,, we have that

(a*—(ab).c) = (a*,cSyu(ab)) 2 (a*, cS..(b)Sy . (a))

= (a"a, S u(b)) = ({(@"—a)=Db, c).

Unit property. For all a* € A} |, anda € A, , we have that

(@* —1y.a) = (a*,aSy ,(1))(52)(a", a).

Now we verify the Hopf compatibility condition (54). We have to show that

pr (@ a) =Y (a*a})—aq) ® aiaq),

1

foralla* € A} yanda € Ay ;. Now

pro(a*—a) =) (a*—a)bi @b,
J

where b ®bj € A} . ® Ay ; is the dual basis of Ay -, so it suffices to show that

Y (@ —a)bt, c)bj = Y ((@*a})—aq), Aaiaw),
i i

for all ¢ € Ay ;. This can be done as follows:

(53)
Y (@*ap)—aq). aiag) =Y (a*. c@)Sy.c(anar. c)Sy.(a@))aiag,
i i
= (a*, c@Sy,z(an)))c)Sy,z(a@)ag)

(51)
= (a*, c)Sy,.(an))ecyey, (a1, = (a*, c2)Sy,- (@)

= ) (a*<a,co) (b}, cab; =Y (@ —a)b¥, c)b;.

Jj J
O
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We compute A*°4, Recall that A, , is a Hopf algebra, for every x € X, and that

1
AN = (A% )0 :/A ={p € A%, | pa* = (a*, 1\)p, foralla* € A%},

*
XX

the space of left integrals on Ay y. From Theorem 10.2 and Theorem 10.4, we obtain the
following result.

Corollary 10.5 Let A be a Hopf category in ./\/l]f((X). For all x,y € X, we have an
isomorphism

!
oy, = e RAry — A* . eV (9 ®a) = pa
X,y X,y " n XY x,y° “x,y 4 ¥ :

*
X, X

Proposition 10.6 Let A be a Hopf category in ./\/l,f((X). The antipode maps Sxy : Axy —>
Ay x are bijective, forall x,y € X.

Proof 1Tt is well-known (and it also follows from Corollary 10.5) that J = f/i: . is finitely
generated projective of rank one as a k-module. Therefore the evaluation map
ev: J*®J —k, ev(p®¢) = p(p)
is an isomorphism of k-modules. The isomorphism
Gry = *@a)o(ev ' ®A,y): Ary — J*® Ay,
can be described explicitly as follows:

&x,y(a) = ZPI ® p1~—a,
1

where ev™ (1) =Y, p ® ¢1.
Now assume that Sy y(a) = 0, for some a € A, y. Forall ¢ € Aj’;’x and b € Ay y, we
have that

{(p<a, b) = {p,bSx y(a)) =0,
so it follows that &y y(a) = 0, and a = 0, since @y, is a bijection. This proves that S,  is
injective.
Now assume that k is a field. The maps

a=S8cyo0Sy,y and B =35, 08,

are injective endomorphisms of the finite dimensional vector spaces Ay , and A, . From
the dimension formulas, it follows that they are automorphisms. We then have that

Ayx =ao a l= Sy,yoSyxo a !
Ay,x =p! o ﬂ = 571 o Sy,x o Sx,y-
This tells us that Sy y has a left inverse and a right inverse; these are necessarily equal, hence
Sy, y 1s bijective.
Now consider the general case where k is a commutative ring. The surjectivity of Sy

follows from a local-global argument. Let QO = Coker (Sy, ). For every prime ideal p of k,
we can consider the localized Hopf category A, with A, , , = Ay y ® k). For every prime
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ideal p of k, Coker (S, x,y) = O, since localization at a prime ideal is an exact functor.
Now the spaces A, x,y/pAp,x,y define a finite dimensional Hopf category A,/pA, over
the field k, / pk, and its antipode maps are bijective. It follows from Nakayama’s Lemma
that the localized maps Sy vy : Ap x,y — Ap, y x are all bijective, and then it follows that
Sy, y 1s bijective. O
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