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Abstract We introduce Hopf categories enriched over braided monoidal categories. The
notion is linked to several recently developed notions in Hopf algebra theory, such as
Hopf group (co)algebras, weak Hopf algebras and duoidal categories. We generalize the
fundamental theorem for Hopf modules and some of its applications to Hopf categories.
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1 Introduction

The starting point of this paper is enriched category theory. Given a (strict) monoidal cat-
egory V , we can consider the notion of V-category. For example, if V is the category of
sets, then a V-category is an ordinary category. If V is the category of vector spaces, then
a V-category is a linear category. A V-category with one object is an algebra (or monoid)
in V .

Now consider a braided monoidal category. The category C(V) of coalgebras in V
is a monoidal category, so we can consider C(V)-categories. A Hopf V-category is a
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C(V)-category with an antipode. These definitions are designed in such a way that C(V)-
categories, resp. Hopf V-categories, with one object correspond to bialgebras, resp. Hopf
algebras in V . In the world of sets, the notion is not of great interest, since C(Sets) = Sets :
it is well-known that every set has a unique structure of a coalgebra in Sets. Hopf cat-
egories are groupoids, that is, categories in which every morphism is invertible. In fact,
C(V)-categories only come to life when we pass to the k-linear world!

Hopf categories are related to several recent generalizations of Hopf algebras and
monoidal categories. For example, Hopf group algebras and Hopf group coalgebras give
rise to examples of Hopf categories, respectively over the category of vector spaces and its
dual category, see Section 6. In Section 8 we will show that k-linear Hopf categories with a
set of objects are Hopf monoids in the sense of [7] (in particular bimonoids in the sense of
[1, 5]) in a suitable duoidal category. This also indicates the relation with other generalized
Hopf-like structures, such as Hopf monads [10].

Hopf categories with a finite number of objects can be used to construct examples of
weak Hopf algebras, see Section 7. As we have mentioned above, groupoids are Hopf cat-
egories over sets. Applying the linearization functor, we obtain a Hopf category over the
category of vector spaces, Putting this into packed form, we obtain a weak Hopf algebra,
which turns out to be the groupoid algebra, the basic example of a weak Hopf algebra.

This brings us to duality. The second author made attempts to construct a satisfactory
duality theory for group algebras, based on the philosophy developed in [12]. For Hopf cat-
egories, duality works. The dual of a (finite) Hopf Mk-category (also termed a k-linear
Hopf category) is a Hopf Mop

k -category, see Theorems 4.5 and 4.6. We also have a cate-
gorical version of the well-known property that C-comodules correspond to C∗-modules,
in the case where C is a finitely generated projective coalgebra, see Proposition 5.4.

It also turns out that some well-known results about Hopf algebras can be generalized
to Hopf categories. We mention a few first results. We have a categorical version of the
important fact that the representation category of a bialgebra carries a monoidal structure,
see Section 4. The fundamental theorem extends to Hopf categories, see Section 10.

It is well-known that Morita contexts can be viewed as k-linear categories with two
objects. This is the starting point of Section 9, where the relationship between Hopf cate-
gories, H -Galois objects and Morita theory is investigated. It is possible to develop descent
and Galois theory for Hopf categories, this is the topic of a forthcoming paper. Hopf cate-
gories are also related to partial actions of groups and Hopf algebras (see [2, 14, 15, 17]),
this will be investigated in [4].

2 Preliminary Results on Enriched Category Theory

Let (V, ⊗, k) be a monoidal category. We will assume that V is strict. Our results extend
easily to arbitrary monoidal categories, in view of the classical result that every monoidal
category is equivalent to a strict one, see for example [16]. For a class X, we construct a
new monoidal category V(X). An object is a family of objects M in V indexed by X × X:

M = (Mx,y)x,y∈X.

A morphism ϕ : M → N consists of a family of morphisms ϕx,y : Mx,y → Nx,y in V ,
indexed by X × X. The tensor product M • N is defined by the formula

(M • N)x,y = Mx,y ⊗ Nx,y,
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and the unit object is J , with Jx,y = k, for all x, y ∈ X. To make our notation more
transparent, we will write Jx,y = kex,y , where ex,y can be viewed as an elementary matrix.

We have a functor (−)op : V(X) → V(X). The opposite V op of an object V ∈ V(X) is
given by V

op
y,x = Vx,y , for all x, y ∈ X, and the opposite ϕop of a morphism ϕ is given by

ϕ
op
y,x = ϕx,y .
From [9, Sec. 6.2], we recall the notion of a V-category. A V-category A consists of a

class |A| = X, and an object A ∈ V(X) together with two classes of morphisms in V ,
namely,

(1) the multiplication morphisms m = mx,y,z : Ax,y ⊗ Ay,z → Ax,z, defined for each
x, y, z ∈ X;

(2) unit morphisms ηx : Jx,x = kex,x → Ax,x , defined for each x ∈ X,

such that the following associativity and unit conditions are satisfied:

mx,y,t ◦ (Ax,y ⊗ my,z,t ) = mx,z,t ◦ (mx,y,z ⊗ Az,t ) = m2
x,y,z,t ; (1)

mx,x,y ◦ (ηx ⊗ Ax,y) = Ax,y = mx,y,y ◦ (Ax,y ⊗ ηy). (2)

Observe that J is a V-category; the multiplication maps kex,y ⊗ key,z → kex,z and the
unit maps kex,x → kex,x are all the identity maps.

If (V, ⊗, k) = (Sets,×, {∗}), then a V-category is an ordinary category. Indeed, for a
Sets-category A with underlying class X, set HomA(x, y) = Ay,x . For a ∈ HomA(x, y) =
Ay,x and b ∈ HomA(y, z) = Az,y , we define the composition b ◦ a = mz,y,x(b, a). The
unit morphism in HomA(x, x) = Ax,x is ηx(∗).

If (V,⊗, k) = (Mk, ⊗, k), the category of modules over a commutative ring k, then a
V-category is also called a k-linear category.

If (V,⊗, k, c) is a braided monoidal category, then the tensor product A • B in V(X)

of two V-categories A and B is again a V-category: the multiplication morphisms are the
compositions

mA•B
x,y,z = (mx,y,z ⊗ mx,y,z) ◦ (Ax,y ⊗ cBx,y ,Ay,z ⊗ By,z) :

Ax,y ⊗ Bx,y ⊗ Ay,z ⊗ By,z → Ax,y ⊗ Ay,z ⊗ Bx,y ⊗ By,z → Ax,z ⊗ Bx,z.

V-categories can be organized into a 2-category VCat.
Let A and B be V-categories, with underlying classes |A| = X and |B| = Y . A V-

functor f : A → B consists of the following data: for each x ∈ X, we have f (x) ∈ Y , and
we have morphisms

fx,y : Ax,y → Bf (x),f (y)

in V such that the following diagrams commute, for all x, y, z ∈ X:

(3)
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Let f, g : A → B be V-functors. A V-natural transformation α : f ⇒ g consists of a
class of morphisms αx : k → Bg(x),f (x) in V such that the diagrams

commute, for all x, y ∈ X. We have a 2-category VCat with V-categories, V-functors and
V-natural transformation as 0-cells, 1-cells and 2-cells. Let us describe the composition of
1-cells and 2-cells. Given 1-cells f, f ′ : A → B and g, g′ : B → C, g ◦ f : A → C is
given by the formulas

(g ◦ f )x,y = gf (x),f (y) ◦ fx,y : Ax,y → C(g◦f )(x),(g◦f )(y).

Now consider 2-cells α : f ⇒ f ′ and β : g ⇒ g′. α ∗ β : g ◦ f ⇒ g′ ◦ f ′ is defined
as follows:

(α ∗ β)x = mg′(f ′(x)),g′(f (x)),g(f (x)) ◦ ((g′
f ′(x),f (x) ◦ αx) ⊗ βf (x))

= mg′(f ′(x)),g(f ′(x)),g(f (x)) ◦ (βf ′(x) ⊗ (gf ′(x),f (x) ◦ αx))

Now let f, g, h : A → B be 1-cells, and let α : f ⇒ g, β : g ⇒ h be 2-cells. We define
the vertical decomposition β ◦ α : f ⇒ h by the rule

(β ◦ α)x = mh(x),g(x),f (x) ◦ (βx ⊗ αx).

Now fix a class X. A V-category with underlying class X is called a V-X-category. A
V-functor f : A → B between two V-X-categories A and B is called a V-X-functor if
f (x) = x for all x ∈ X, that is, f is the identity on objects. VCat(X) is the 2-subcategory of
VCat with V-X-categories as 0-cells, V-X-functors as 1-cells and V-natural transformations
as 2-cells.

If X is a singleton, then the 0-cells and 1-cells of VCat(X) are V-algebras and V-algebra
morphisms. A 2-cell α : f ⇒ g between two algebra morphisms f, g : A → B is a
morphism α : k → B such that m ◦ (g ⊗ α) = m ◦ (α ⊗ f ).

Consider the particular situation where V = Mk . Then morphisms αx : k → Bx,x

correspond to elements αx ∈ Bx,x , and a 2-cell α : f ⇒ g between two k-linearX-functors
consists of elements αx ∈ Bx,x such that

gx,y(a)αy = αxfx,y(a), (4)

for all a ∈ Ax,y and x, y ∈ X.
Let (V, ⊗, k) and (W,�, l) be two strict monoidal categories. Recall that a monoidal

functor V → W is a triple (F, ϕ0, ϕ2), where F : V → W is a functor, ϕ0 : l → F(k) is
a morphism in W , and ϕ2 : F�F ⇒ F ◦ ⊗ is a natural transformation, satisfying certain
properties, we refer to [16, XI.4] for detail. A monoidal functor is called strong if ϕ0 and ϕ2
are isomorphisms.

Proposition 2.1 A monoidal functor F : V → W induces a bifunctor F : VCat →
WCat. If F is a strong monoidal equivalence of categories, then the induced bifunctor is a
biequivalence.
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Proof (sketch). Let A be a V-category, and define F(A) as follows: F(A)x,y = F(Ax,y).
The multiplication and unit maps are given by the formulas

m′
x,y,z = F(mx,y,z) ◦ ϕ2(Ax,y, Ay,z)

: F(Ax,y) ⊗ F(Ay,z) → F(Ax,y ⊗ Ay,z) → F(Ax,z);
η′

x = F(ηx) ◦ ϕ0 : l → F(k) → F(Ax,x).

It is straightforward to show that F(A) is aW-category.
Now let f : A → B be a V-functor. F(f ) : F(A) → F(B) is given by the data

F(f )x,y = F(fx,y) : F(Ax,y) → F(Bf (x),f (y)).

We leave it to the reader to show that F(f ) is aW-functor.
Let f, g : A → B be V-functors, and let α : f → g be a V-natural transformation.

F(α) is defined as follows.

F(α)x = F(αx) ◦ ϕ0 : l → F(k) → F(Bg(x),f (x)).

F (α) is a W-natural transformation, and F : VCat → WCat is a bifunctor. Further details
are left to the reader.

Let V = (V,⊗, k) be a monoidal category, and consider its opposite Vop =
(Vop,⊗op, k). For later use, we provide a brief description of Vop-categories. A Vop-
category consists of a class X, A ∈ V(X) and a collection of morphisms

mx,y,z : Ax,z → Ay,z ⊗ Ax,y ; ηx : Ax,x → k

in V . A Vop-functor f : A → B consists of f : X → Y together with morphisms
fx,y : Bf (x),f (y) → Ax,y in V . A Vop-natural transformation α : f ⇒ g consists of a
collection of morphisms αx : Bg(x),f (x) → k in V . We leave it to the reader to formulate
all the necessary axioms that have to be satisfied.

3 Hopf Categories

Let V be a strict braided monoidal category, and consider C(V), the category of coalgebras
(or comonoids) and coalgebra morphisms in V . C(V) is again a monoidal category: the
tensor product of two coalgebras, resp. two coalgebra morphisms is again a coalgebra (resp.
a coalgebra morphism), and the unit object k of V is a coalgebra.

Now we can consider C(V)-categories, that is, categories enriched in C(V). According to
the definitions in Section 2, a C(V)-category A consists of a class |A| = X, and coalgebras
Ax,y , for all x, y ∈ X, together with coalgebra morphisms mx,y,z : Ax,y ⊗ Ay,z → Ax,z

and ηx : Jx,x = kex,x → Ax,x satisfying (1–2).
The definition of a C(V)-category can be restated. Before we do this, we first make the

elementary observation that a coalgebra in V(X) is an object C ∈ V(X), together with
families of morphisms �x,y : Cx,y → Cx,y ⊗ Cx,y and εx,y : Cx,y → Jx,y = kex,y such
that (Cx,y,�x,y, εx,y) is a coalgebra in V , for all x, y ∈ X. A coalgebra morphism between
two coalgebras C and D in V(X) is a morphism f : C → D in V(X) such that fx,y is a
coalgebra map, for all x, y ∈ X.

Proposition 3.1 Let X be a class and let V be a strict braided monoidal category. A C(V)-
category with underlying classX is an object in V(X) which has the structure of V-category
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and of a coalgebra in V(X) such that the morphisms �x,y and εx,y define V-X-functors
� : A → A • A and ε : A → J .

Proof Assume that A is a V-category and a coalgebra in V(X), and consider the following
diagrams in V .

(5)

(6)

(7)

and

(8)

� is a V-X-functor if and only if the diagrams (5) and (6) commute, for all x, y, z ∈ X. ε is
a V-X-functor if and only if the diagrams (7) and (8) commute, for all x, y, z ∈ X. mx,y,z is
a coalgebra map if and only if (5) and (7) commute, and ηx is a coalgebra map if and only
if (6) and (8) commute.

Observe that C(V)-categories with one object correspond to bialgebras in V . It fol-
lows from the results in Section 2 that C(V)-categories can be organized into a 2-category
C(V)Cat. In particular, a C(V)-functor between two C(V)-categories A and B is a V-functor
f : A → B such that every fx,y : Ax,y → Bx,y is a morphism of coalgebras. For a
fixed class X, C(V)-categories with underlying class X can be organized into a 2-category
C(V)Cat(X). A C(V)-natural transformation between two C(V)-functors f, g : A → B

consists of grouplike elements αx ∈ Bx,x satisfying (4).
Let A be a V-category, and consider its opposite Aop in V(X). Aop is also a V-category,

with multiplication morphisms

m
op
x,y,z = mz,y,x ◦ cAy,x ,Ax,y : A

op
x,y ⊗ A

op
y,z = Ay,x ⊗ Az,y → A

op
x,z = Az,x

and unit morphisms η
op
x = ηx . Observe that we need the inverse braiding here, compare to

[26, 1.3].
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Let C be a coalgebra in V(X). The coopposite coalgebra Ccop is equal to C as an object
of V(X), with comultiplication morphisms

�
cop
x,y = c−1

Cx,y ,Cx,y
◦ �x,y : Cx,y → Cx,y ⊗ Cx,y,

and counit morphisms ε
cop
x,y = εx,y .

Proposition 3.2 Let V be a strict braided monoidal category, and let A be a C(V)-category.
Then Aopcop is also a C(V)-category.

Proof We have to show that the diagrams (5–8) applied to Aopcop commute. (5) takes the
following form:

(9)

From the axioms for a braiding c, we have the following formula, for allA,B,C, D ∈ V :

cA⊗B,C⊗D = (C ⊗ cA,D ⊗ B) ◦ (cA,C ⊗ cB,D) ◦ (A ⊗ cB,C ⊗ D). (10)

The triangle, the squares and the pentangle in the next diagram all commute: the
top square commutes because c is natural; the pentangle is just (5); the bottom right
square commutes because c−1 is natural; commutativity of the bottom left square fol-
lows from (10). We deleted the indices in the morphisms in the diagram; they are pretty
obvious.

From the commutativity of the whole diagram, it follows that

�
cop
z,x ◦ m

op
x,y,z = (mz,y,x ⊗ mz,y,x) ◦

(
Az,y ⊗ c−1

Ay,x ,Ax,y
⊗ Ay,x

)

◦
(
c−1
Az,y ,Az,y

⊗ c−1
Ay,x ,Ay,x

)
◦ cAy,x⊗Ay,x ,Az,y⊗Az,y ◦ (�y,x ⊗ �y,x).
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The square at the top of the next diagram commutes because c is natural; commutativity of
the bottom triangle follows from (10).

It follows that (9) commutes. The commutativity of the three other diagrams is obvious.

Proposition 3.2 generalizes the fact that the opposite-cooposite of a bialgebra is again a
bialgebra: take X a singleton. We refer to Sweedler [25] for the case where V is the category
of vector spaces, and to [26, 1.6] for the case where V is an arbitrary braided monoidal
category.

Definition 3.3 A Hopf V-category is a C(V)-category A together with a morphism S :
A → Aop in V(X) such that

mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ �x,y = ηx ◦ εx,y : Ax,y → Ax,x; (11)

my,x,y ◦ (Sx,y ⊗ Ax,y) ◦ �x,y = ηy ◦ εx,y : Ax,y → Ay,y, (12)

for all x, y ∈ X.

Observe that a Hopf V-category with one object is a Hopf algebra in V . If V = Mk ,
then a Hopf V-category is also termed a k-linear Hopf category.

Example 3.4 Sets.
Let V = (Sets,×, {∗}). We have seen above that a V-category is an ordinary category. It

is well-known that every set G is in a unique way a coalgebra in Sets: the comultiplication is
the diagonal map G → G×G, sending g to (g, g). The counit is the unique map G → {∗}.
This means that the categories Sets and C(Sets) are identical, and therefore the same is true
for the 2-categories Cat = SetsCat and C(Sets)Cat.

Now let us investigate Hopf categories. Assume that G is a Hopf category. For all x, y ∈
X = |G|, we have a map Sx,y : Gx,y → Gy,x , satisfying (11–12). Take a ∈ Gx,y , this
means that a : y → x is a morphism in G. It is easily checked that (11) implies that
aSx,y(a) = 1x and that (12) implies that Sx,y(a)a = 1y . This shows that every morphism
of G is invertible, hence G is a groupoid. Conversely, it is easy to show that a groupoid is a
Hopf category.

Proposition 3.5 Let V = (Sets,×, {∗}). Then a Hopf V-category is the same thing as a
groupoid.

Lemma 3.6 Let A be a Hopf V-category. Then the following statements hold, for all
x, y, z ∈ X:

Sx,z ◦ mx,y,z = mz,y,x ◦ (Sy,z ⊗ Sx,y) ◦ cAx,y ,Ay,z ; (13)
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�y,x ◦ Sx,y = cAy,x ,Ay,x ◦ (Sx,y ⊗ Sx,y) ◦ �x,y. (14)

Proof In order to make our computations more transparant, we introduce some notation.
Ax,y ⊗ Ay,z is a coalgebra, with comultiplication

�x,y,z = (Ax,y ⊗ cAx,y ,Ay,z ⊗ Ay,z) ◦ (�x,y ⊗ �y,z)

and counit εx,y,z = εx,y ⊗ εy,z. (5) can be restated as

�x,z ◦ mx,y,z = (mx,y,z ⊗ mx,y,z) ◦ �x,y,z. (15)

The coassociativity of �x,y,z is expressed by the formula

�2
x,y,z = (�x,y,z ⊗ Ax,y ⊗ Ay,z) ◦ �x,y,z = (Ax,y ⊗ Ay,z ⊗ �x,y,z) ◦ �x,y,z. (16)

Now consider the morphisms f, g, h : Ax,y ⊗ Ay,z → Zz,x given by the formulas

f = mz,y,x ◦ (Sy,z ⊗ Sx,y) ◦ cAx,y ,Ay,z ;
g = Sx,z ◦ mx,y,z;
h = m3

z,x,y,z,x ◦ (f ⊗ Ax,y ⊗ Ay,z ⊗ g) ◦ �2
x,y,z.

We compute that

m2
x,y,z,x ◦ (Ax,y ⊗ Ay,z ⊗ g) ◦ �x,y,z

= mx,z,x ◦ (Ax,z ⊗ Sx,z) ◦ (mx,y,z ⊗ mx,y,z) ◦ �x,y,z
(15)= mx,z,x ◦ (Ax,z ⊗ Sx,z) ◦ �x,z ◦ mx,y,z
(11)= ηx ◦ εx,z ◦ mx,y,z

(7)=ηx ◦ εx,y,z,

and

h = mz,x,x ◦ (f ⊗ ηx) ◦ (Ax,y ⊗ Ay,z ◦ εx,y,z) ◦ �x,y,z = f.

On the other hand, we have that

m2
z,x,y,z ◦ (f ⊗ Ax,y ⊗ Ay,z) ◦ �x,y,z

= m3
z,y,x,y,z ◦ (Sy,z ⊗ Sx,y ⊗ Ax,y ⊗ Ay,z) ◦ (cAx,y ,Ay,z ⊗ Ax,y ⊗ Ay,z)

◦ (Ax,y ⊗ cAx,y ,Ay,z ⊗ Ay,z) ◦ (�x,y ⊗ �y,z)

= m3
z,y,x,y,z ◦ (Sy,z ⊗ Sx,y ⊗ Ax,y ⊗ Ay,z)

◦ (cAx,y⊗Ax,y ,Ay,z ⊗ Ay,z) ◦ (�x,y ⊗ �y,z)

(∗)= m2
z,y,y,z ◦ (cAy,y ,Az,y ⊗ Ay,z) ◦ (my,x,y ⊗ Az,y ⊗ Az,y)

◦ (Sx,y ⊗ Ax,y ⊗ Sy,z ⊗ Ay,z) ◦ (�x,y ⊗ �y,z)
(12)= m2

z,y,y,z ◦ (cAy,y ,Az,y ⊗ Ay,z) ◦ (ηy ⊗ Az,y ⊗ Az,y)

◦ (Sy,z ⊗ Ay,z) ◦ (εx,y ⊗ �y,z)

= m2
z,y,y,z ◦ (Az,y ⊗ ηy ⊗ Az,y) ◦ (Sy,z ⊗ Ay,z) ◦ (εx,y ⊗ �y,z)

= mz,y,z ◦ (Sy,z ⊗ Ay,z) ◦ �y,z ◦ (εx,y ⊗ Ay,z)
(12)= ηz ◦ εy,z ◦ (εx,y ⊗ Ay,z) = ηz ◦ εx,y,z.
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At (∗), we used the naturality of the braiding c, resulting in the commutativity of the
diagram

Finally,

f = h = mz,z,x ◦ ((ηz ◦ εx,y,z) ⊗ g) ◦ �x,y,z

= mz,z,x ◦ (ηz ⊗ Az,x) ◦ g ◦ (εx,y,z) ⊗ Ax,y ⊗ Ay,z) ◦ �x,y,z = g.

This proves formula (13). (14) is proved using similar techniques. Now we consider
f, g, h : Ax,y → Ay,x ⊗ Ay,x given by the formulas

f = cAy,x ,Ay,x ◦ (Sx,y ⊗ Sx,y) ◦ �x,y;
g = �y,x ◦ Sx,y;
h = m2

A•A,y,x,y,x ◦ (g ⊗ Ax,y ⊗ Ax,y ⊗ f ) ◦ �3
x,y,

In the subsequent computations, the coassociativity of mA•A will be used frequently. We
first compute that

mA•A
y,x,y ◦ (g ⊗ Ax,y ⊗ Ax,y) ◦ �2

x,y

= mA•A
y,x,y ◦ (�y,x ⊗ �x,y) ◦ (Sx,y ⊗ Ax,y) ◦ �x,y

(5)= �y,y ◦ my,x,y ◦ (Sx,y ⊗ Ax,y) ◦ �x,y

(12)= �y,y ◦ η◦εx,y = ηA•A
y ◦ εx,y .

It follows that

h = mA•A
y,x,y ◦ (ηA•A

y ⊗ Ay,x ⊗ Ay,x) ◦ (εx,y ⊗ f ) ◦ �x,y = f.

Now

mA•A
x,y,x ◦ (Ax,y ⊗ Ax,y ⊗ f ) ◦ �2

x,y

= (mx,y,x ⊗ mx,y,x) ◦ (Ax,y ⊗ cAx,y ,Ay,x ⊗ Ay,x)

◦ (Ax,y ⊗ Ax,y ⊗ cAy,x ,Ay,x ) ◦ (Ax,y ⊗ Ax,y ⊗ Sx,y ⊗ Sx,y) ◦ �3
x,y

= (mx,y,x ⊗ mx,y,x) ◦ (Ax,y ⊗ cAx,y⊗Ay,x ,Ay,x )

◦ (Ax,y ⊗ Ax,y ⊗ Sx,y ⊗ Sx,y) ◦ �3
x,y

(x)= (mx,y,x ⊗ mx,y,x) ◦ (Ax,y ⊗ Sx,y ⊗ Ax,y ⊗ Sx,y)

◦ (Ax,y ⊗ Ax,y ⊗ �x,y) ◦ (Ax,y ⊗ cAx,y ,Ax,y ) ◦ �2
x,y

(12)= (mx,y,x ⊗ ηx) ◦ (Ax,y ⊗ Sx,y) ◦ (Ax,y ⊗ Ax,y ⊗ εx,y)

◦ (Ax,y ⊗ cAx,y ,Ax,y ) ◦ �2
x,y
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= (Ax,x ⊗ ηx) ◦ mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ (Ax,y ⊗ εx,y ⊗ Ax,y)

◦ (Ax,y ⊗ �x,y) ◦ �x,y

= (Ax,x ⊗ ηx) ◦ mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ ◦�x,y
(12)= (Ax,x ⊗ ηx) ◦ ηx ◦ εx,y = (ηx ⊗ ηx) ◦ εx,y .

At (x), we used the naturality of c, resulting in the commutative diagram

Finally

f = h = mA•A
y,x,y ◦ (g ⊗ ((ηx ⊗ ηx) ◦ εx,y) ◦ �x,y

= mA•A
y,x,y ◦ (Ay,x ⊗ Ay,x ⊗ ηA•A,x) ◦ g ◦ (Ax,y ⊗ εx,y) ◦ �x,y = g

Theorem 3.7 Let A be a Hopf V-category. The antipode S : A → Aopcop is a C(V)-X-
functor.

Proof First of all, we need to verify that every Sx,y is a morphism in C(V), that is, Sx,y :
Ax,y → A

cop
y,x is a morphism of coalgebras. To this end, we need the commutativity of the

next two diagrams

The commutativity of the first diagram follows immediately from (14). For the second one,
we proceed as follows:

εx,y
(8)= εx,x ◦ ηx ◦ εx,y

(11)= εx,x ◦ mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ �x,y
(7)= (εx,y ⊗ εy,x) ◦ (Ax,y ⊗ Sx,y) ◦ �x,y = εy,x ◦ Sx,y ◦ (εx,y⊗x,y)�x,y

= εy,x ◦ Sx,y .

Now we show that S is a C(V)-functor. The diagrams (3) take the following form
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The commutativity of the first diagram follows from (13), after making the observation that
m

op
x,y,z = mz,y,x ◦ cAy,x ,Az,y , and taking into account the formula

(Sy,z ⊗ Sx,y) ◦ cAx,y ,Ay,z = cAy,x ,Az,y ◦ (Sx,y ⊗ Sy,z),

resulting from the naturality of c. The commutativity of the second diagram goes as follows:

ηx = (εx,x ⊗ Ax,x) ◦ �x ◦ ηx
(6)=(εx,x ⊗ Ax,x) ◦ (ηx ⊗ ηx)

= (εx,x ◦ ηx) ⊗ ηx = ηx ◦ εx,x ◦ ηx
(11)= mx,x,x ◦ (Ax,x ⊗ Sx,x) ◦ �x,x ◦ ηx
(6)= mx,x,x ◦ (ηx ⊗ Ax,x) ◦ Sx,x ◦ ηx = Sx,x ◦ ηx.

Proposition 3.8 Let A be a Hopf V-category. For x, y ∈ X, consider the following
statements:

ηy ◦ εy,x = my,x,y ◦ (Ay,x ⊗ Sy,x) ◦ �
cop
y,x ; (17)

ηx ◦ εy,x = mx,y,x ◦ (Sy,x ⊗ Ay,x) ◦ �
cop
y,x ; (18)

Sy,x ◦ Sx,y = Ax,y ; (19)

ηx ◦ εx,y = m
op
x,y,x ◦ (Sx,y ⊗ Ax,y) ◦ �x,y ; (20)

ηy ◦ εx,y = m
op
y,x,y ◦ (Ax,y ⊗ Sx,y) ◦ �x,y. (21)

The following implications hold:

Proof (17) ⇒ (19). This goes in two steps. First we compute that

my,x,y ◦ (Sx,y ⊗ (Sy,x ◦ Sx,y)) ◦ �x,y

= my,x,y ◦ (Ay,x ⊗ Sy,x) ◦ c−1
Ay,x ,Ay,x

◦ cAy,x ,Ay,x ◦ (Sx,y ⊗ Sx,y) ◦ �x,y

(14)= my,x,y ◦ (Ay,x ⊗ Sy,x) ◦ �
cop
y,x ◦ Sx,y

(17)= ηy ◦ εy,x ◦ Sx,y = ηy ◦ εx,y .

Then we compute that

m2
x,y,x,y ◦ (Ax,y ⊗ Sx,y ⊗ (Sy,x ◦ Sx,y)) ◦ �2

x,y

is equal to

mx,y,y ◦ (Ax,y ⊗ ηy) ◦ (Ax,y ⊗ εx,y) ◦ �x,y = Ax,y

and, using (11), to

mx,x,y(ηx ⊗ Ax,y) ◦ Sy,x ◦ Sx,y ◦ (εx,y ⊗ Ax,y) ◦ �x,y = Sy,x ◦ Sx,y .
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(19) ⇒ (20).

ηx ◦ εx,y = Sx,x ◦ ηx ◦ εx,y
(11)= Sx,x ◦ mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ �x,y

(13)= mx,y,x ◦ (Sy,x ⊗ Sx,y) ◦ cAx,y ,Ay,x ◦ (Ax,y ⊗ Sx,y) ◦ �x,y

= mx,y,x ◦ cAy,x ,Ax,y ◦ (Sx,y ⊗ (Sy,x ◦ Sx,y)) ◦ �x,y

(19)= m
op
x,y,x ◦ (Sx,y ⊗ Ax,y) ◦ �x,y.

The proof of the remaining two implications is similar.

Corollary 3.9 Suppose that V is a symmetric monoidal category. For a Hopf V-category,
the following assertions are equivalent:

(1) (17) holds, for all x, y ∈ X;
(2) (18) holds, for all x, y ∈ X;
(3) Sy,x ◦ Sx,y = Ax,y , for all x, y ∈ X.

Proof Using the naturality of c and the fact that c is a symmetry, we obtain that

m
op
x,y,x ◦ (Sx,y ⊗ Ax,y) ◦ �x,y

= mx,y,x ◦ cAy,x ,Ax,y ◦ (Sx,y ⊗ Ax,y) ◦ �x,y

= mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ cAx,y ,Ay,x ◦ �x,y

= mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ c−1
Ax,y ,Ay,x

◦ �x,y

= mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ �
cop
x,y .

This tells us that (20) considered for (x, y) ∈ X × X is equivalent to (17) considered for
(y, x) ∈ X × X. The statement now follows easily.

Let A and B be Hopf V-categories. A C(V)-functor f : A → B is called a Hopf
V-functor if

SB
f (x),f (y) ◦ fx,y = fy,x ◦ SA

x,y, (22)

for all x, y ∈ X.

Proposition 3.10 Let A and B be Hopf V-categories. If f : A → B is a C(V)-functor,
then it is also a Hopf V-functor.

Proof Consider the morphisms k, g, h : Ax,y → Ff (y),f (x) defined by the formulas

k = Sf (x),f (h) ◦fx,y ; g = fy,x ◦Sx,y ; h = m2
f (y),f (x),f (y),f (x) ◦ (k ⊗fx,y ⊗g) ◦�2

x,y .

We have that

mf (x),f (y),f (x) ◦ (fx,y ⊗ g) ◦ �x,y

= mf (x),f (y),f (x) ◦ (fx,y ⊗ fx,y) ◦ (Ax,y ⊗ Sx,y) ◦ �x,y

= fx,x ◦ mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ �x,y
(11)= fx,x ◦ ηx ◦ εx,y = ηf (x) ◦ εx,y,

hence

h = mf (y),f (y),f (x) ◦ (Bf (y),f (x) ⊗ ηf (x)) ◦ k ◦ (Ax,y ⊗ εx,y) ◦ �x,y = k.
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We also have that

mf (y),f (x),f (y) ◦ (k ⊗ fx,y) ◦ �x,y

= mf (y),f (x),f (y) ◦ (Sf (x),f (y) ⊗ Bf (x),f (y)) ◦ (fx,y ⊗ fx,y) ◦ �x,y

= mf (y),f (x),f (y) ◦ (Sf (x),f (y) ⊗ Bf (x),f (y)) ◦ �f (x),f (y) ◦ fx,y
(12)= ηf (y) ◦ εf (x),f (y) ◦ fx,y = ηf (y) ◦ εx,y,

so that

k = h = mf (y),f (y),f (x) ◦ (ηf (y) ⊗ Bf (y),f (x)) ◦ g ◦ (εx,y ⊗ Ax,y) ◦ �x,y = g.

We introduce VHopfCat as the full 2-subcategory of C(V)Cat, with Hopf V-categories as 0-
cells. For two Hopf V-categories A and B, the category of morphisms A → B in VHopfCat

coincides with the category of morphisms A → B in C(V)Cat. Thus 1-cells are Hopf V-
functors (in view of Proposition 3.10) and 2-cells are C(V)-natural transformations.

Proposition 3.11 Let F : V → W be a strong monoidal functor. F induces bifunctors
F : C(V)Cat → C(W)Cat and VHopfCat → WHopfCat.

Proof F induces a strong monoidal functor F : C(V) → C(W). For a V-coalgebra C,
F(C) is aW-coalgebra. The comultiplication is ϕ−1

2 ◦ F(�) : F(C) → F(C) ⊗ F(C) →
F(C ⊗ C), and the counit is ϕ−1

0 ◦ F(ε) : F(C) → F(k) → l.
Now apply Proposition 2.1 to F : C(V) → C(W). We obtain a bifunctor F : C(V)Cat →

C(W)Cat. For a C(V)-category A, we have that F(A)x,y = F(Ax,y), with multiplication
maps

F(mx,y,z) ◦ ϕ2 : F(Ax,y) ⊗ F(Ay,z) → F(Ax,y ⊗ Ay,z) → F(Ax,y)

and unit maps F(ηx) ◦ ϕ0 : l → F(k) → F(A).
Now letA be a Hopf V-category. We claim that the maps F(Sx,y) : F(Ax,y) → F(Ay,x)

define an antipode on F(A). Let us show that (11) is satisfied. Using the fact that ϕ2 is
natural, we obtain that

F(mx,y,x) ◦ ϕ2 ◦ (F (Ax,y) ⊗ F(Sx,y)) ◦ ϕ−1
2 ◦ F(�x,y)

= F(mx,y,x) ◦ F(Ax,y ⊗ Sx,y) ◦ ϕ2 ◦ ϕ−1
2 ◦ F(�x,y)

= F(mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ �x,y)
(11)= F(ηx ◦ εx,y) = F(ηx) ◦ ϕ0 ◦ ϕ−1

0 ◦ F(εx,y),

as needed. The proof of (12) is similar.

Example 3.12 Consider the linearization functor L : Sets → Mk . It is well-known that L
is strong monoidal, so, by Proposition 3.11, it sends Hopf categories (which are groupoids,
see Proposition 6.2) to k-linear Hopf categories. More precisely, consider a groupoid G, and
let Gx,y be the set of maps from y to x. Then L(G) = A is defined as follows:

Ax,y = kGx,y.
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The multiplication is the obvious one: the multiplication on G is extended linearly. kGx,y

has the structure of grouplike coalgebra: �x,y(g) = g ⊗ g and εx,y(g) = 1 for g ∈ Gx,y .
The antipode is given by the formula Sx,y(g) = g−1 ∈ Gy,x .

4 The Representation Category

Definition 4.1 Let A be a V-category. A left A-module is an object M in V(X) together
with a family of morphisms

ψ = ψx,y,z : Ax,y ⊗ My,z → Mx,z

in V such that the following associativity and unit conditions hold:

ψx,y,u ◦ (Ax,y ⊗ ψy,z,u) = ψx,z,u ◦ (mx,y,z ⊗ Mz,u); (23)

ψx,x,y ◦ (ηx ⊗ Mx,y) = Mx,y. (24)

Let M and N be left A-modules. A morphism ϕ : M → N in V(X) is called left A-linear if

ϕx,z ◦ ψx,y,z = ψx,y,z ◦ (Ax,y ⊗ ϕy,z) : Ax,y ⊗ My,z → Nx,z, (25)

for all x, y, z ∈ X.

AV(X) will denote the category of left A-modules and left A-linear morphisms. Right
A-modules and (A,B)-bimodules are defined in a similar way, and they form categories
V(X)A and AV(X)B .

Proposition 4.2 Let A be a V-bicategory. Then there is a monoidal structure on AV(X)

such that the forgetful functor AV(X) → V(X) is monoidal.

Proof Let M and N be left A-modules. We have a left A-action on M ⊗ N as follows:

(ψx,y,z ⊗ ψx,y,z) ◦ (Ax,y ⊗ cAx,y ,My,z ⊗ Ny,z) ◦ (�x,y ⊗ My,z ⊗ Ny,z) :
Ax,y ⊗ My,z ⊗ Ny,z → Ax,y ⊗ Ax,y ⊗ My,z ⊗ Ny,z

→ Ax,y ⊗ My,z ⊗ Ax,y ⊗ Ny,z

→ Mx,z ⊗ Nx,z = (M ⊗ N)x,z.

J is a left H -module with structure morphisms

εx,y ⊗ key,z : Ax,y ⊗ key,z → kex,y ⊗ key,z = kex,z.

Verification of all the other details is left to the reader.

5 Duality

5.1 Dual V-Categories

The notion of V-category can be dualized. A dual V-category C consists of a class |C| = X

and C ∈ V(X) together with two classes of morphisms in V , namely

�x,y,z : Cx,z → Cx,y ⊗ Cy,z and εx : Cx,x → k,
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satisfying the following coassociativity and counit conditions

(�x,y,z ⊗ Cz,u) ◦ �x,z,u = (Cx,y ⊗ �y,z,u) ◦ �x,y,u;
(εx ⊗ Cx,y) ◦ �x,x,y = (Cx,y ⊗ εy) ◦ �x,y,y .

Dual V-categories can be organized into a 2-category VCat. A 1-cell f : C → D between
two dual V-categories C and D is a dual V-functor, and consists of the following data. For
each x ∈ X = |C|, we have f (x) ∈ Y = |D|, and for each x, y ∈ X, the morphisms
fx,y : Df (x),f (y) → Cx,y such that

(fx,y ⊗ fy,z) ◦ �f (x),f (y),f (z) = �x,y,z ◦ fx,z;
εf (x) = εx ◦ fx,x .

Let f, g : C → D be dual V-functors. A dual V-natural transformation α : f ⇒ g consists
of morphisms αx : Df (x),g(x) → k in V such that

(fx,y ⊗ αy) ◦ �f (x),f (y),g(y) = (αx ⊗ gx,y) ◦ �f (x),g(x),g(y),

for all x, y ∈ X. Dual V-natural transformations are the 2-cells in VCat.
The composition of 1-cells goes as follows. Let f : C → D and g : D → E be dual

V-functors. g ◦ f is defined by the formulas

(g ◦ f )x,y = fx,y ◦ gf (x),f (y) : E(g◦f )(x),(g◦f )(y) → Cx,y.

Now let f ′ : C → D and g′ : D → E be two more dual V-functors, and let α : f ⇒ f ′
and β : g ⇒ g′ be dual V-natural transformations. α ∗ β : g ◦ f ⇒ g′ ◦ f ′ is defined by
the formulas

(α ∗ β)x = (
βf (x) ⊗ (αx ◦ g′

f (x),f ′(x))
) ◦ �(g◦f )(x),(g′◦f )(x),(g′◦f ′)(x)

= (
(αx ◦ gf (x),f ′(x)) ⊗ βf ′(x)

) ◦ �(g◦f )(x),(g◦f ′)(x),(g′◦f ′)(x)

Now let f, g, h : C → D be dual V-functors, and let α : f ⇒ g, β : g ⇒ h be dual
V-natural transformations. The vertical composition β ◦ α : f ⇒ h is the following:

(β ◦ α)x = (αx ⊗ βx) ◦ �f (x),g(x),h(x) : Bf (x),h(x) → k.

Let Vop = (Vop, ⊗op, k) be the opposite of the monoidal category V . Recall that
HomVop(M,N) = HomV (N,M), and that the opposite tensor product ⊗ is given by
M ⊗op N = N ⊗ M and f ⊗op g = g ⊗ f .

Proposition 5.1 Let V be a strict monoidal category. Then the 2-categories VCat and
VopCat are 2-isomorphic.

Proof (Sketch) We will define a 2-functor F : VCat → VopCat. Take a dual V-category C,
with underlying class X, and consider A = Cop in V(X). We have V-morphisms

�x,y,z : Cx,z = Az,x → Cx,y ⊗ Cy,z = Az,y ⊗op Ay,x,

and Vop-morphisms

mz,y,x = �x,y,z : Az,y ⊗op Ay,x → Az,x.

Also ηx = εx : k → Ax,x = Cx,x is a Vop-morphism, and straightforward computations
show that this makes A a Vop-category. We define F(C) = A.
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Let f : C → D be a dual V-functor, and let F(D) = B. For all x, y ∈ X, we have
V-morphisms

fx,y : Df (x),f (y) = Bf (y),f (x) → Cx,y = Ay,x.

For all x, y ∈ X, let g(x) = f (x) and gy,x = fx,y . Then gy,x : Ay,x → Bf (y),f (x) is a
Vop-morphism, and standard arguments tell us that g : A → B is a Vop-functor, and we
define F(f ) = g.

Finally let f, f ′ : C → D be dual V-functors and let α : f ⇒ f ′ be a dual V-natural
transformation. For every x ∈ X, we have a V-morphism αx : Bf ′(x),f (x) = Df (x),f ′(x) →
k, and therefore a Vop-morphism αx : k → Bf ′(x),f (x) = Bg′(x),g(x). We leave it to the
reader to show that this defines a Vop-natural transformation α : g = F(f ) ⇒ g′ = F(f ′).
We define F(α) = α. Standard computations show that F is a 2-functor. The inverse of F

is defined in a similar way.

A dual V-category with underlying class X is called a dual V-X-category. A dual V-
functor f between two dual V-X-categories is called a dual V-X-functor if f (x) = x, for
all x ∈ X. VCat(X) is the subcategory of VCat, consisting of dual V-X-categories, dual V-
X-functors and dual V-natural transformations. As an immediate corollary of Proposition
5.1, we have the following result.

Corollary 5.2 Let X be a class, and let V be a strict monoidal category. Then the
2-categories VopCat(X) and VCat(X) are 2-isomorphic.

If X is a singleton, then the objects in VCat(X) are V-coalgebras. Deleting the non-unit

2-cells in VCat(X), we obtain C(V)op, the opposite of the category of coalgebras.

5.2 Modules Versus Comodules

We now consider V = (Mf
k,⊗, k), the category of finitely generated projective modules

over a commutative ring k, and its opposite Vop = (Mfop
k ,⊗op, k). It is well-known that

the functor (−)∗ : Mf
k → Mfop

k taking a module M to its dual M∗ = Hom(M, k) is an
equivalence of categories. Moreover, we have a strong monoidal functor

((−)∗, ϕ0, ϕ2) : (Mf
k,⊗, k) → (Mfop

k ,⊗op, k).

Let ϕ0 : k → (k)∗ = k be the identity map. We now construct a natural isomorphism

ϕ2 : ⊗op ◦ ((−)∗, (−)∗) ⇒ (−)∗ ◦ ⊗.

For two finitely generated projective k-modules M and N , we need an isomorphism

ϕ2(M,N) : M∗ ⊗op N∗ → (M ⊗ N)∗

inMfop
k , or, equivalently, an isomorphism

ϕ2(M, N) : (M ⊗ N)∗ → N∗ ⊗ M∗

inMf
k . It is well-known that the map

ι : N∗ ⊗ M∗ → (M ⊗ N)∗, 〈ι(n∗ ⊗ m∗),m ⊗ n〉 = 〈n∗, n〉〈m∗,m〉
is invertible, with inverse given by the formula

ι−1(μ) =
∑
i,j

〈μ, mi ⊗ nj 〉n∗
j ⊗ m∗

i ,
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where
∑

i mi ⊗ m∗
i and

∑
j nj ⊗ n∗

j are the finite dual bases of M and N . We now define
ϕ2(M,N) as the inverse of ι. As ((−)∗, ϕ0, ϕ2) is strong monoidal, it follows from Propo-
sition 2.1 that we have a biequivalence between Mf

k
Cat and Mfop

k

Cat. Applying Proposition

5.1, we find that Mfop
k

Cat is 2-isomorphic to Mf
kCat. Combining these two biequivalences,

we obtain the following result.

Theorem 5.3 Let k be a commutative ring. (−)∗ induces a biequivalence

Mf
k
Cat → Mf

kCat.

Let us describe this biequivalence at the level of 0-cells. Suppose that A is a k-linear
category, with all underlying Ax,y finitely generated and projective. First we have to apply
the duality functor (−)∗, sending A to A∗, with (A∗)x,y = A∗

x,y . In order to compute the
multiplication and unit maps, we have to apply the construction sketched in the proof of
Proposition 2.1. The multiplication is the following composition inMfop

k :

m∗
x,y,z ◦ ϕ2(Ax,y, Ay,z) : A∗

y,z ⊗ A∗
x,y → (Ax,y ⊗ Ay,z)

∗ → A∗
x,z.

The unit map is η∗
x : k → A∗

x,x in Mfop
k . To A∗, we apply the construction performed in

the proof of Proposition 5.1, which sends A∗ to C, with Cx,y = A∗
y,x . The comultiplication

maps are the following maps inMf
k:

�z,y,x = ϕ2(Ax,y, Ay,z) ◦ m∗
x,y,z : A∗

x,z = Cz,x → A∗
y,z ⊗ A∗

x,y = Cz,y ⊗ Cy,x.

The counit maps are εx = η∗
x : Cx,x = A∗

x,x → k.
Let us also give a brief description of the inverse construction. Let (C,�, ε) be a dual

Mf
k-category. We will use the following Sweedler-Heyneman type notation: for c ∈ Cx,z,

�x,y,z(c) = c(1,y) ⊗ c(2,y) ∈ Cx,y ⊗ Cy,z. Let A ∈ Mfop
k (X) be defined as Ax,y = C∗

y,x .
The multiplication map mx,y,z : Ax,y ⊗ Ay,z → Ax,z = C∗

z,x is defined by the formula

〈ab, c〉 = 〈a, c(2,y)〉〈b, c(1,y)〉.
for a ∈ Ax,y , b ∈ Ay,z, c ∈ Cz,x . The unit elements are εx ∈ C∗

x,x = Ax,x .
LetC be a dual k-linear category. A rightC-comoduleM is an objectM ∈ V(X) together

with a family of maps
ρx,y,z : Mx,z → Mx,y ⊗ Cy,z

such that the coassociativity and counit conditions (26–27) are satisfied. For m ∈ Mx,z, we
will write

ρx,y,z(m) = m[0,y] ⊗ m[1,y].
For all m ∈ Mx,z, we need that

m[0,y][0,u] ⊗ m[0,y][1,u] ⊗ m[1,y] = m[0,u] ⊗ m[1,u](1,y) ⊗ m[1,u](2,y), (26)

in Mx,u ⊗ Cu,y ⊗ Cy,z, and
m[0,z]εz(m[1,z]) = m. (27)

Proposition 5.4 Let k be a commutative ring, and let C be a dual k-linear cate-
gory,with underlying class X, and with all Cx,y finitely generated and projective. Let A

be the corresponding k-linear category. Then the categories Mfop
k (X)C and Mf

k(X)A are
isomorphic.
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Proof Let M be a right C-comodule. We have the structure maps

ρx,y,z : Mx,z → Mx,y ⊗ Cy,z

Now we claim that M is also a right A-module, with structure maps

ψx,z,y : Mx,z ⊗ Az,y → Mx,y, ψx,z,y(m ⊗ a) = ma = 〈a, m[1,y]〉m[0,y].

Let us first show that this right A-action is associative. Take m ∈ Mx,z, a ∈ Az,y and
b ∈ Ay,u. Then

(ma)b = 〈a, m[1,y]〉〈b, m[0,y][1,u]〉m[0,y][0,u]
(26)= 〈a, m[1,u](2,y)〉〈b, m[1,u](1,y)〉m[0,u]
= 〈ab, m[1,u]〉m[0,u] = m(ab).

Now we prove the unit property. The unit element of Ax,x is εx , and for all m ∈ Mx,x ,
we have that mεx = 〈εx,m[1,x]〉m[0,x] = m.

Conversely, let M be a right A-module. As before, let
∑

i a
y,z
i ⊗ c

y,z
i ∈ Az,y ⊗ Cy,z be

the finite dual basis of Cy,z. We define a right C-coaction on M , via the structure maps

ρx,y,z : Mx,z → Mx,y ⊗ Cy,z, ρx,y,z(m) =
∑

i

ma
y,z
i ⊗ c

y,z
i .

It is straightforward to show that this makes M into a right C-comodule.
These two constructions are inverses. First we start with a right C-coaction on M . The

above construction then provides a right A-action on M , and the a new right C-coaction ρ̃,
which coincides with the original ρ. Indeed, for all m ∈ Mx,z, we have that

ρ̃x,y,z(m) =
∑

i

ma
y,z
i ⊗ c

y,z
i =

∑
i

〈ay,z
i , m[1,y]〉m[0,y] ⊗ c

y,z
i

= m[0,y] ⊗ m[1,y] = ρx,y,z(m).

Now start from a right A-action on M . Applying the two constructions from above, we
arrive first at a right C-coaction on M , and then a new right A-action that coincides with the
original one: for m ∈ Mx,z and a ∈ Az,y , we have that

m · a = 〈a, m[1,y]〉m[0,y] =
∑

i

〈a, c
y,z
i 〉ma

y,z
i = ma.

5.3 Duality Between Hopf Categories and Dual Hopf Categories

(−)∗ induces an equivalence of categories (−)∗ : C(Mf
k) → C(Mfop

k ). Observing that the

categories C(Mfop
k ) andA(Mf

k)
op are isomorphic, we obtain an equivalence of categories

(−)∗ : C(Mf
k) → A(Mf

k)
op.

Let us compute the algebra structure on the dual C∗ of a coalgebra C. The coalgebra
structure inMfop

k is the composition

ϕ2(C,C)−1 ◦ �∗ : C∗ → (C ⊗ C)∗ → C∗ ⊗ C∗,

inMfop
k which is the composition

m = �∗ ◦ ι : C∗ ⊗ C∗ → (C ⊗ C)∗ → C∗.
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It easily computed that m is the opposite of the convolution product, that is m(c∗ ⊗ d∗) =
c∗d∗, with 〈c∗d∗, c〉 = 〈c∗, c(2)〉〈d∗, c(1)〉. Now we claim that we have a strong monoidal
equivalence

((−)∗, ϕ0, ϕ2) : (C(Mf
k), ⊗, k) → (A(Mf

k)
op,⊗op, k).

ϕ0 is again the identity on k, and

ϕ2(C, D) : D∗ ⊗ C∗ → (C ⊗ D)∗

in A(Mf
k)

op is the inverse of the map ι defined above. It follows from Proposition 2.1 that
(−)∗ induces a biequivalence

(−)∗ : C(Mf
k)
Cat → A(Mf

k)
opCat.

We now from Proposition 5.1 that A(Mf
k)

opCat is 2-isomorphic to A(Mf
k)Cat. Hence we

have the following result.

Theorem 5.5 Let k be a commutative ring. We have a biequivalence

C(Mf
k)
Cat → A(Mf

k)Cat.

For a C(Mf
k)
Cat-category A, we provide the corresponding dual A(Mf

k)Cat-category C.

First we have to apply the duality functor (−)∗, sendingA toA∗, with (A∗)x,y = A∗
x,y . Then

we apply the construction performed in the proof of Proposition 5.1, which sends A∗ to C,
with Cx,y = A∗

y,x . From Theorem 5.3, we already know the dual k-linear category structure
on C. Each Cx,y = A∗

y,x is a k-coalgebra, with opposite convolution as multiplication, and
1x,y = εy,x as unit element.

Let us also give a brief description of the inverse construction. Let (C,�, ε) be a dual
Mf

k-category. The k-linear category structure on A has already been given in the comments
following Theorem 5.3. Each Ax,y = C∗

y,x is a k-coalgebra with comultiplication

�(a) =
∑
i,j

〈a, cicj 〉a∗
j ⊗ a∗

i ,

where
∑

i ci ⊗ ai ∈ Cy,x ⊗ Ax,y is the dual basis of Cy,x .
Let C be a dual V-category. C is called a dual Hopf V-category if there exist morphisms

Sx,y : Cy,x → Cx,y in V such that

mx,y ◦ (Cx,y ⊗ Sx,y) ◦ �x,y,x = ηx,y ◦ εx; (28)

my,x ◦ (Sy,x ⊗ Cy,x) ◦ �x,y,x = ηy,x ◦ εx. (29)

Theorem 5.6 Let k be a commutative ring. In the biequivalence from Theorem 5.5, Hopf
Mf

k-categories correspond to dual HopfMf
k-categories.

Proof Assume that C is a dual Hopf Mf
k-category with antipode S, and let A be the

corresponding HopfMf
k-category. We claim that T defined by

Tx,y = S∗
y,x : Ax,y → Ay,x

is an antipode for A. We have to show that (51) holds. The first formula in (51) reduces to

a(1)Tx,y(a(2)) = 〈a, 1y,x〉εx,
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in Ax,x = C∗
x,x , for all a ∈ Ax,y . For all c ∈ Cx,x , we have that

〈a(1)Tx,y(a(2)), c〉 = 〈a(1), c(2,y)〉〈Tx,y(a(2)), c(1,y)〉
= 〈a(1), c(2,y)〉〈a(2), Sy,x(c(1,y))〉
= 〈a, Sy,x(c(1,y))c(2,y)〉(29)= 〈a, 1y,x〉〈εx, c〉.

The second formula in (51) is proved in a similar way.

6 Hopf Categories and Hopf Group (co)Algebras

Let (V,⊗, k) be a monoidal category. A group graded V-algebra consists of a group G

together with a family of objects A = {Aσ | σ ∈ G} in V and morphisms

mσ,τ : Aσ ⊗ Aτ → Aστ ; η : k → Ae

in V such that the following associativity and unit properties hold, for all σ, τ, ρ ∈ G:

mστ,ρ ◦ (mσ,τ ⊗ Aρ) = mσ,τρ ◦ (Aσ ⊗ mτ,ρ);
me,σ ◦ (η ⊗ Aσ ) = mσ,e ◦ (Aσ ⊗ η) = Aσ .

Consider the case where V is the category of modules over a commutative ring k, and let
A = {Aσ | σ ∈ G} be a graded algebra. Then A = ⊕σ∈GAσ is a G-graded algebra in
the usual sense (see [22] for the general theory of graded algebras), and is called a graded
algebra in packed form. Graded algebras can be organized into a 2-category Vgr.

A 1-cell f : (G,A) → (H, B) consists of a a group morphism f : G → H together
with a family of morphisms fσ : Aσ → Bf (σ) in V such that fστ ◦ mσ,τ = mf (σ),f (τ) ◦
(fσ ⊗ fτ ) and fe ◦ η = η.

Let f, g : (G,A) → (H,B) be 1-cells; a 2-cell α : f ⇒ g consists of a family of
morphisms ασ : k → Bg(σ)−1f (σ) such that the following diagrams commute:

We have the dual notion of graded coalgebra. A group graded coalgebra in V consists of
a group G together with a family of objects C = {Cσ | σ ∈ C} in V and morphisms

�σ,τ : Cστ → Cσ ⊗ Cτ ; ε : Ce → k

such that

(�σ,τ ⊗ Cρ) ◦ �στ,ρ = (Cσ ⊗ �τ,ρ) ◦ �σ,τρ

(ε ⊗ Cρ) ◦ �e,σ = (Cσ ⊗ ε) ◦ �σ,e = Cσ .

Let V = Mk , and suppose that G is a finite group. If C is a G-graded coalgebra, then
⊕σ∈GCσ is a G-graded coalgebra in the sense of [21].

Graded coalgebras can be organized into a 2-category Vgr.

A 1-cell f : (G,C) → (H, D) is a morphism of graded coalgebras. This consists of a
a group morphism f : G → H together with a family of morphisms fσ : Df (σ) → Cσ

such that (fσ ⊗ fτ ) ◦ �f (σ),f (τ) = �σ,τ ◦ fστ and ε ◦ fe = ε.
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Now let f, g : C → D be 1-cells. A 2-cell α : f → g consists of a family of morphisms
ασ : Df (σ)−1g(σ) → k such that

(fσ−1τ ⊗ ατ ) ◦ �f (σ)−1f (τ),f (τ )−1g(τ) = (ασ ⊗ gσ−1τ ) ◦ �f (σ)−1g(σ),g(σ )−1g(τ).

Proposition 6.1 Let V be a strict monoidal category. Then the 2-categories Vgr and Vopgr

are 2-isomorphic.

Proof The proof is similar to the proof of Proposition 5.1. We will describe the 2-functor
F : Vgr and Vopgr. Let (G,C) be a graded coalgebra, and let F(G,C) = (G,A), with

Aσ = Cσ−1 . The multiplication map mσ,τ : Aσ ⊗op Aτ → Aστ in Vop is given by
�τ−1,σ−1Cτ−1σ−1 → Cτ−1 ⊗ Cσ−1 in V .

Let f : (G,C) → (H, D) be a morphism of graded coalgebras. We define F(f ) =
g : F(G,C) = (G,A) → F(H,D) = (H,B) as follows: g(σ ) = σ , for all σ ∈ G, and
gσ : Aσ → Bf (σ) in Vop is the map fσ−1 : Df (σ)−1 = Bf (σ) → Cσ−1 = Aσ in V .

Let f, f ′ : (G,C) → (H,D) be morphisms of graded coalgebras, and let α : f ⇒ f ′
be a 2-cell in Vgr. We have morphisms ασ : Df (σ)−1f ′(σ ) → k in V , which are also

morphisms ασ : k → Bf ′(σ )−1f (σ) in Vop, defining a 2-cell F(f ) ⇒ F(f ′) in Vopgr.

Proposition 6.2 Let V be a strict monoidal category. We have 2-functors K : Vgr → VCat

and H : Vgr → VCat.

Proof Let A be a G-graded algebra. We define a V-category K(A) = K(G,A) as follows.
The underlying class is G, and K(A)σ,τ = Aσ−1τ . The multiplication maps are

mσ,ρ,τ = mσ−1ρ,ρ−1τ

: K(A)σ,ρ = Aσ−1ρ ⊗ K(A)ρ,τ = Aρ−1τ → K(A)σ,τ = Aσ−1τ ,

and the unit maps are ηx = η : k → Ae = Aσ,σ .
Let f : (G,A) → (H,B) be a morphism of graded algebras. K(f ) = g : K(G,A) →

K(H, B) is then defined as follows. g(σ ) = f (σ), for all σ ∈ G, and gσ,τ = fσ−1τ :
K(A)σ,τ = Aσ−1τ → K(B)f (σ),f (τ) = Bf (σ)−1f (τ).

Now let α : f ⇒ f ′ be a 2-cell in Vgr. We have morphisms ασ : k → Bg(σ)−1f (σ) =
K(B)g(σ),f (σ ), and these also define a 2-cell g ⇒ g′ in VCat.

The 2-functor H : Vgr → VCat is constructed in a similar way. Let us just mention that,

for a G-graded coalgebra C, H(C)σ,τ = Cσ−1τ .

Let V be a braided (strict) monoidal category. We can consider graded coalgebras in
A(V) and graded algebras in C(V). A graded coalgebra in A(V) is a graded coalgebra C

in V , such that every Cσ is an algebra in V , and the comultiplication and counit morphisms
�σ,τ and ε are algebra maps. Graded coalgebras inA(V) are known in the literature as semi-
Hopf group coalgebras. They appeared in [27] (see also [28]), and a systematic algebraic
study was initiated in [30].

In a similar way, a graded algebra in C(V) is a graded algebra A in V such that every Aσ

is a coalgebra in V , and the multiplication and counit morphisms mσ,τ and η are coalgebra
morphisms. In the literature, this is also called a semi-Hopf group algebra.
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This provides us with a new categorical interpretation of semi-Hopf group algebras and
coalgebras. We also obtain that semi-Hopf group algebras (resp. coalgebras) can be orga-
nized into a 2-category C(V)gr (resp. A(V)gr). Note that a different interpretation, where

group algebras and coalgebras appear as bialgebras in a suitable symmetric monoidal
category was given by the second author and De Lombaerde in [12].

Recall that a semi-Hopf group coalgebra C is called a Hopf group coalgebra if there exist
morphisms Sσ : Cσ−1 → Cσ such that

mσ ◦ (Cσ ⊗ Sσ ) ◦ �σ,σ−1 = mσ ◦ (Sσ ⊗ Cσ ) ◦ �σ−1,σ = ησ ◦ ε.

A semi-Hopf group algebra A is called a Hopf group algebra if there exist morphisms Sσ :
Aσ → Aσ−1 such that

mσ,σ−1 ◦ (Aσ ⊗ Sσ ) ◦ �σ = mσ−1,σ ◦ (Sσ ⊗ Aσ ) ◦ �σ = η ◦ εσ .

Proposition 6.3 Let V be a braided strict monoidal category. We have 2-functors K :
C(V)gr → C(V)Cat and K : A(V)gr → A(V)Cat. The first functor sends Hopf group alge-

bras to Hopf V-categories, and the second one sends Hopf group coalgebras to dual Hopf
V-categories.

Proof The first statement is an immediate corollary of Proposition 6.2. The proof of the
second statement is straightforward. Let A be a Hopf group algebra. K(S)σ,τ = Sσ−1τ :
K(A)σ,τ = Aσ−1τ → K(A)τ,σ = Aτ−1σ makes K(A) into a Hopf V-category.

7 Hopf Categories and Weak Hopf Algebras

Let A be a k-linear Hopf category, with |A| = X a finite set, and consider

A = ⊕x,y∈XAx,y.

We define a multiplication on A in the usual way: for h ∈ Ax,y and k ∈ Az,u, the product of
hk is the image of h ⊗ k under the map mx,y,u : Ax,y ⊗ Ay,u → Ax,u if y = z, and hk = 0
if y �= z. This multiplication is extended linearly to the whole of A. Then A is a k-algebra
with unit 1 = ∑

x∈X 1x , where 1x is the identity morphism x → x.
Now we define � : A → A ⊗ A, ε : A → k, S : A → A in such a way that their

restrictions to Ax,y are respectively �x,y , εx,y and Sx,y .

Proposition 7.1 Let A be a k-linear Hopf category, with |A| = X a finite set. Then A =
⊕x,y∈XAx,y is a weak Hopf algebra.

Proof We refer to [8] for the definition of a weak Hopf algebra. We compute that

�(1) = 1(1) ⊗ 1(2) =
∑
x∈X

1x ⊗ 1x,

and

1(1) ⊗ 1(2)1(1′) ⊗ 1(2′) =
∑

x,y∈X

1x ⊗ 1x1y ⊗ 1y =
∑
x∈X

1x ⊗ 1x ⊗ 1x = (� ⊗ A)(�(1)),
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as needed. In a similar way, we show that

1(1) ⊗ 1(1′)1(2) ⊗ 1(2′) = (� ⊗ A)(�(1)).

Let us now show that

ε(hkl) = ε(hk(1))ε(k(2)l).

It suffices to show this for h ∈ Ax,y , k ∈ Ay′,z′ , l ∈ Az,u. If y �= y′ or z �= z′, then
both sides of the equation are 0. Assume that y = y′ and z = z′. From (7), it follows
that ε(hk(1))ε(k(2)l) = ε(h)ε(k(1))ε(k(2)l) = ε(h)ε(ε(k(1))k(2)l) = ε(h)ε(kl) = ε(hkl).
Similar arguments show that

ε(hkl) = ε(hk(2))ε(k(1)l).

This proves that A is a weak bialgebra. For h ∈ Ax,y , we compute that

εt (h) =
∑
z∈X

〈ε, 1zh〉1z = 〈ε, 1xh〉1x = 〈εx,y, h〉1x .

In a similar way, we show that εs(h) = 〈ε, h1y〉1y = 〈εx,y, h〉1y . Now

h(1)Sx,y(h(2))
(11)= ηx(εx,y(h)) = εt (h);

Sx,y(h(1))h(2)
(12)= ηy(εx,y(h)) = εs(h),

and, finally,

Sx,y(h(1))h(2)Sx,y(h(3)) = εx,y(h(1))1ySx,y(h(2)) = Sx,y(h).

Remark 7.2 Let G be a groupoid. Using Example 3.12, we obtain a k-linear Hopf cate-
gory. Then applying Proposition 7.1, we find a weak Hopf algebra, which is precisely the
groupoid algebra kG.

Now let C be a dual k-linear Hopf category. Then every Cx,y is an algebra, and we have
k-linear maps �x,y,z : Cx,z → Cx,y ⊗ Cy,z, εx : Cx,x → k and Sx,y : Cy,x → Cx,y such
that the following axioms are satisfied, for all h, k ∈ Cx,z and l, m ∈ Cx,x :

�x,u,y(h(1,y)) ⊗ h(2,y) = h(1,y) ⊗ �y,u,z(h(2,y)) (30)

εx(h(1,x))h(2,x) = h(1,z)εz(h(2,z)) = h; (31)

�x,y,z(hk) = h(1,y)k(1,y) ⊗ h(2,y)k(2,y); (32)

εx(lm) = εx(l)εx(m); (33)

�x,y,z(1x,z) = 1x,y ⊗ 1y,z; (34)

εx(1x,x) = 1; (35)

l(1,y)Sx,y(l(2,y)) = εx(l)1x,y; (36)

Sy,x(l(1,y))l(2,y) = εx(l)1y,x . (37)

Cere 1x,y is the unit element of Cx,y , and we used the Sweedler-Heyneman notation

�x,y,z(h) = h(1,y) ⊗ h(2,y).

Proposition 7.3 Let C be a dual k-linear Hopf category, and assume that |C| = X is finite.
Then C = ⊕x,y∈XCx,y is a weak Hopf algebra.
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Proof Being the direct product of a finite number of k-algebras, C is itself a k-algebra, with
unit 1 = ∑

x,z∈X 1x,z. We define a comultiplication on C as follows:

�(h) =
∑
y∈X

�x,y,z(h),

for h ∈ Cx,z. It follows immediately from (30) that � is coassociative. The counit is defined
by (h ∈ Cx,y):

ε(h) =
{

εx(h) if x = y

0 if x �= y

We verify the left counit condition:

((ε ⊗ C) ◦ �)(h) =
∑
y∈X

ε(h(1,y))h(2,y) = εx(h(1,x))h(2,x)
(31)= h.

The right counit condition can be verified in a similar way, and we conclude that C is a
coalgebra. It follows from (32) and (33) that � and ε preserve the multiplication. it follows
from (34) that

�(1) = 1(1) ⊗ 1(2) =
∑

x,y,z∈X

1x,y ⊗ 1y,z.

We now find easily that

1(1) ⊗ 1(2)1(1′) ⊗ 1(2′) =
∑

x,y,z,u,v,w∈X

1x,y ⊗ 1y,z1u,v ⊗ 1v,w

=
∑

x,y,z,w∈X

1x,y ⊗ 1y,z ⊗ 1z,w = 1(1) ⊗ 1(2) ⊗ 1(3).

In a similar way, we find that 1(1) ⊗ 1(1′)1(2) ⊗ 1(2′) = 1(1) ⊗ 1(2) ⊗ 1(3). Now take
h, k, l ∈ Cx,x .

ε(hk(1))ε(k(2)l) =
∑
y∈X

ε(hk(1,y))ε(k(2,y)l) = εx(hk(1,x))εx(k(2,x)l)

(33)= εx(h)εx(k(1,x))εx(k(2,x)l) = εx(h)εx(εx(k(1,x))k(2,x)l)
(31)= εx(h)εx(kl)

(33)= εx(hkl) = εx(hkl).

We conclude that
ε(hk(1))ε(k(2)l) = ε(hkl), (38)

if h, k, l ∈ Cx,x . If h, k, l ∈ Cx,y with y �= x, then both sides of (38) are zero. So we can
conclude that (38) holds for all h, k, l ∈ C. In a similar way, we can show that

ε(hk(2))ε(k(1)l) = ε�(g◦f )(x),(g′◦f )(x),(g′◦f ′)(x)(hkl),

for all h, k, l ∈ C. This shows that C is a weak bialgebra.
Recall from [8] that the maps εs, εt : C → C are given by the formulas

εs(h) = 1(1)ε(h1(2)) ; εt (h) = ε(1(1)h)1(2).

These maps can be easily computed: for h ∈ Cx,z, we have

εt (h) =
∑

u,v,y∈X

ε(1u,vh)1v,y =
∑
y∈X

ε(h)1z,y =
{ ∑

y∈X εx(h)1x,y if x = z

0 if x �= z

In a similar way, we find that

εs(h) =
{ ∑

y∈X εx(h)1y,x if x = z

0 if x �= z
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Now we define S : C → C as follows: the restriction of S to Cx,y is Sy,x , and then we
extend linearly. Then we have, for h ∈ Cx,z:

(S ∗ C)(h) =
∑
y∈X

Sy,x(h(1,y))h(2,y).

If x �= z, then we find easily that (S ∗ C)(h) = 0 = εs(h). If x = z, then we find

(S ∗ C)(h)
(37)=

∑
y∈X

εx(h)1y,x = εs(h).

This shows that S ∗ C = εs . In a similar way, we have that C ∗ S = εt . Finally we have that

(S ∗ C ∗ S)(h) =
∑

y,u∈X

Su,x(h(1,y)(1,u))h(1,y)(2,u)Sz,y(h(2,y)).

The terms on the right hand side are products of an element of Cu,x , an element of Cu,y and
an element of Cz,y . These products are zero if x �= y of z �= u. Hence we find

(S ∗ C ∗ S)(h) = Sz,x(h(1,x)(1,z))h(1,x)(2,z)Sz,x(h(2,x))
(37)= εx(h(1,x))1z,xSz,x(h(2,x))

(31)= Sx,z(h) = S(h).

This proves that C satisfies all the axioms of a weak Hopf algebra, see [8].

Remark 7.4 If A be a k-linear Hopf category, with |A| = X an infinite set, then A =
⊕x,y∈XAx,y is an algebra without unit, but with (idempotent) local units. We believe that if
A is a Hopf category and using similar constructions as above, the associated algebra A can
be endowed with the structure of a weak multiplier Hopf algebra (see [29] and [6]), but we
haven’t worked out the details of this construction.

8 Hopf Categories and duoidal Categories

Let X be a set. We have seen in Section 2 that (Mk(X), •, J ) is a monoidal category. We
will define a second monoidal structure on Mk(X), in such a way that Mk(X) becomes
a duoidal category (also called 2-monoidal category) in the sense of [1]. We will follow
the notation of [5], andwe call • the black tensor product onMk(X). The second tensor product
is called the white tensor product and is defined as follows. For M,N ∈ Mk(X), let

(M 
 N)x,z = ⊕y∈XMx,y ⊗ Ny,z.

The unit object for the white tensor product is I , defined by

Ix,y =
{

kex,x if x = y

0 if x �= y

We will simply write
Ix,y = kδx,y,

where the Kronecker symbol δx,y stands formally for the element of the identity matrix in
the (x, y)-position. Let

τ : I → J

be the natural inclusion. We compute that

(I • I )x,y = kδx,y ⊗ kδx,y = kδx,y = Ix,y,

hence I • I = I , and we let
δ : I → I • I
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be the identity map. Now we compute that

(J 
 J )x,y = ⊕z∈Xkex,z ⊗ kez,y = ⊕z∈Xkzex,y = kXex,y .

We now define � : J 
 J → J . For all x, y ∈ X,

�x,y : ⊕z∈Xkzex,y → kex,y, �x,y(
∑
z∈X

αzzex,y) =
∑
z∈X

αzex,y .

For M,N,P,Q ∈ V(X) we have that

((M • N) 
 (P • Q))x,y =
⊕
z∈X

Mx,z ⊗ Nx,z ⊗ Pz,y ⊗ Qz,y;

((M 
 P) • (N 
 Q))x,y =
⊕

u,v∈X

Mx,u ⊗ Pu,y ⊗ Nx,v ⊗ Qv,y,

and we define

ζM,N,P,Q : (M • N) 
 (P • Q) → (M 
 P) • (N 
 Q)

as follows: for x, y ∈ X, ζM,N,P,Q,x,y is the map switching the second and third tensor
factor, followed by the natural inclusion.

Theorem 8.1 Let X be a set. (Mk(X),
, I, •, J, δ, �, τ, ζ ) is a duoidal category.

Proof We have to show that the axioms in [5, Def. 1.1] are satisfied.

1) (J,�, τ) is a monoid in (Mk(X),
, I ).
Associativity: first compute that

(J 
 J 
 J )x,y = k(X × X)ex,y = ⊕u,v∈Xk(u, v)ex,y,

and

(�(J 
 �))(
∑
u,v

α(u,v)(u, v)ex,y) = �(
∑
u,v

α(u,v)uex,y)

=
∑
u,v

α(u,v)ex,y = (�(� 
 J ))(
∑
u,v

α(u,v)(u, v)ex,y).

Left unit property: we have to show that the diagram

commutes, for all x, y ∈ X. Observe that (J 
 I )x,y = ⊕z∈Xkex,z ⊗ kδz,y = kex,y =
Jx,y and (J 
 J )x,y = kXex,y . Now

�x,y

(
(J 
 τ)x,y(αex,y

) = �x,y(αyex,y) = αex,y,

for all α ∈ k. The right unit property can be shown in a similar way.
2) (I, δ, τ ) is a comonoid in (Mk(X), •, J ).
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The coassociativity of δ is clear, since δ is the identity map. For the left counit
property: oberve that the diagram

commutes: the three maps in the diagram are the identity map.
3) Verification of the associativity and unitality axioms [5, 1.6-7] is obvious and is left to

the reader.

Recall the following definition from [1, Def. 6.25] (see also [5, Def. 1.2]).

Definition 8.2 Let (M,
, I, •, J, δ, �, τ, ζ ) be a duoidal category. A bimonoid is an
object A, together with an algebra structure (μ, η) in (M,
, I ) and a coalgebra structure
(�, ε) in (M, •, J ) subject to the compatibility conditions

� ◦ μ = (μ • μ) ◦ ζ ◦ (� 
 �); (39)

� ◦ (ε 
 ε) = ε ◦ μ; (40)

(η • η) ◦ δ = � ◦ η; (41)

ε ◦ η = τ. (42)

Theorem 8.3 Let X be a set, and let A ∈ Mk(X). We have a bijec-
tive correspondence between bimonoid structures on A over the duoidal category
(Mk(X),
, I, •, J, δ, �, τ, ζ ) from Theorem 8.1 and C(Mk)-category structures on A.

Proof First let A be a bimonoid. A has an algebra structure (μ, η) on (Mk(X),
, I ).
Consider the (x, y)-component of the multiplication map μ : A 
 A → A, namely

μx,y : ⊕u∈XAx,u ⊗ Au,y → Ax,y,

and let μx,z,y be the composition

μx,y ◦ iz : Ax,z ⊗ Az,y → ⊕u∈XAx,u ⊗ Au,y → Ax,y,

where iz is the natural inclusion. Also consider the (x, x)-component of the unit map η :
I → A, namely ηx = ηx,x : k → Ax,x . Now it is easy to see that (1–2) are satisfied, so
that A becomes a k-linear category.

A has a coalgebra structure (�, ε) on (Mk(X), •, J ). Consider the (x, y)-component of
the comultiplication � : A → A • A and of the counit ε : A → J . This gives k-linear
maps �x,y : Ax,y → Ax,y ⊗ Ax,y and εx,y : Ax,y → k making Ax,y into a k-coalgebra.

Now we write the (x, y)-component of (39) and (40) as commutative diagrams. This
gives us
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and

Evaluating the two diagrams at a ⊗ b ∈ Ax,z ⊗ Az,y , we find that

�x,y(ab) = a(1)b(1) ⊗ a(2)b(2) and εx,y(ab) = εx,z(a)εy,z(b).

Now we write the (x, x)-component of (41) and (42) as commutative diagrams. This gives

Evaluating these diagrams at 1, we find that �x,x(1x) = 1x ⊗ 1x and εx,x(1x) = 1, and
we conclude that A is a C(Mk)-category.

Conversely, let A be a C(Mk)-category. Define μ : A 
 A → A, η : I → A,
� : A → A•A and ε : A → J as follows.μx,y = ∑

u μx,u,y : ⊕u∈XAx,u⊗Au,y → Ax,y ;
ηx,y = 0 if x �= y and ηx,x = ηx ; the components of � and ε are just �x,y and εx,y .
Straightforward computations show that this turns A into a bimonoid. It is clear that these
two operations are inverses. This completes the proof.

8.1 Linearization and the Duoidal Category of Spans

We have seen in Theorem 8.1 that we can associate a duoidal categoryMk(X) to a set X. In
[1, 5], two other classes of duoidal categories are investigated, namely the category span(X)

consisting of spans, and the category RMR of bimodules over a commutative k-algebra R.
We will now discuss how these three classes of examples are related. To this end, we need
to give alternative descriptions ofMk(X) and span(X).

As we have seen in Example 3.4, every set X carries a unique comonoid structure in
Sets. A right X-coaction on a set V consists of a map ρ : V → V × X of the form
ρ(v) = (v, s(v)), where s : V → X is a function. So right X-coactions on V correspond
bijectively toXV . In a similar way, giving a two-sided coaction ofX on V amounts to giving
two functions s, t : V → X, which means precisely that (V , t, s) is a span, see [5, Sec. 4.2].
Morphisms of spans correspond to bicomodule maps, and we conclude that the categories
XSetsX and span(X) are isomorphic. The white product of two spans V and W is

V 
 W = {(v,w) ∈ V × W | s(v) = t (w)}
is precisely the cocarthesian product V ×X W . Now observe that the category XSetsX is
isomorphic to SetsX×X . The black product is

V • W = {(v,w) ∈ V × W | s(v) = s(w), t (v) = t (w)}
and this is the cocarthesian product V ×X×X W . The white unit object is X, and the black
unit object is X × X.

A similar description applies to Mk(X). kX is a coalgebra, and we have isomorphisms
of categories

Mk(X) ∼= kXMkX
k

∼= Mk(X×X)
k .
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An object (Mx,y)x,y∈X corresponds to M = ⊕x,y∈XMx,y , with left and right kX-coaction
given by the formulas

λ(m) = x ⊗ m ; ρ(m) = m ⊗ y,

for m ∈ Mx,y , extended linearly. The black tensor product in Mk(X) is precisely the
cotensor product over k(X × X), and the white one is the cotensor product over kX.

The linearization functorL : Sets → Mk is strongly monoidal, sendsX to the grouplike
coalgebra kX and a set V with a two-sided X-coaction to the kX-bicomodule kV . We find
the following result.

Proposition 8.4 The linearization functor induces a functor L : span(X) → Mk(X)

preserving the black and white tensor products.

This construction can be generalized, replacing kX by a cocommutative coalgebra C. We
have to assume that the cotensor product is associative, which can be done by requiring that
k is a field, or else that k is a commutative ring and thatC is finitely generated and projective
over k. Then the category CMC

k
∼= MC⊗C

k of C-bicomodules is duoidal, with the cotensor
product over C and C ⊗ C as the white and black tensor product. This brings us back to the
second example of duoidal category studied in [1, 5]. For a commutative k-algebra A, the
category AMA

∼= MA⊗A is a duoidal category, with the tensor products over A and A⊗A

as the black and white tensor product. This is precisely the dual construction.

8.2 Generalized Hopf Monoids in Monoidal Bicategories

Now we focus attention to the recent work by Böhm and Lack [7] on generalized Hopf
monoids in monoidal bicategories.

It is well-known that the category of endomorphisms of an object of a bicategory is a
monoidal category. It was observed in [24] that, in a similar way, duoidal categories arise
as the category of endomorphisms in a monoidal bicategory of a pseudomonoid whose
multiplication 1-cell and unit 1-cell have a right adjoint (such an object is known as a map-
monoidale). In this case, the second monoidal structure is obtained using a convolution
product. Consider the monoidal bicategory of free k-coalgebras, bicomodules and bicomod-
ule maps, with the cotensor product as horizontal composition, the opposite composition as
vertical composition and the k-tensor product as monoidal product. kX is a map-monoidale
in this monoidal bicategory. Hence the category Mk(X) ∼= kXMkX

k of kX-bicomodules is
the category of endomorphisms over a map-monoidale, so it can be endowed with a duoidal
structure. This duoidal structure coincides with the one described above, the black monoidal
product being the convolution product. It also follows from [24] that A is a bimonoid over
the duoidal endohom categoryMk(X) if and only if it is a monoidal comonad on kX in the
monoidal bicategory described above, hence it induces a monoidal comonad onMk(X).

Furthermore, Böhm and Lack provide equivalent conditions for the bimonoid A in the
duoidal endohom category to have an antipode (i.e. to be a Hopf monoid), in terms of a
fundamental theorem of Hopf modules (see also our Section 10) and in terms of the associ-
ated monoidal comonad to be a Hopf (co)monad. In particular, this leads us to the following
result.

Theorem 8.5 Let X be a set, and let A ∈ Mk(X). We have a bijective correspondence
between Hopf monoid structures on A (in the sense of [7]) over the duoidal category
(Mk(X),
, I, •, J, δ, �, τ, ζ ) from Theorem 8.1 and HopfMk-category structures on A.
In particular, if A is HopfMk-category, then this induces a Hopf monad onMk(X).
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Proof From the discussion above, we already know that the structure of an C(Mk)-category
on A corresponds to the structure of a bimonoid in the duoidal category Mk(X). Hence it
only remains to compare the antipode axioms for Hopf categories (11) and (12) with the
antipode axioms of [7, Theorem 7.2]. We leave out the details, but remark that the monoidal
bicategory of bicomodules over free coalgebras has duals. Given a kX-kY bicomodule
M = ⊕(x,y)∈X×Y Mx,y , then M− = Mop = ⊕(y,x)∈Y×XMy,x is a kY -kX bicomodule.
Furthermore, the 2-cell ϕ in [7] should in our setting be interpreted as the inclusion map
Ax,y ⊗ Ay,x → ⊕y∈XAx,y ⊗ Ay,x .

9 Hopf Categories and Morita Contexts

Let k be a commutative ring, and V = Mk , the category of k-modules.

Definition 9.1 A Morita context consists of the following data:

(1) a class X;
(2) Ax,x is a k-algebra, for all x ∈ X;
(3) Ax,y is an (Ax,x, Ay,y)-bimodule, for all x, y ∈ X;
(4) mx,y,z : Ax,y ⊗Ay,y Ay,z → Ax,z is an (Ax,x, Az,z)-bimodule map,

satsifying the following conditions:

(1) mx,x,y : Ax,x ⊗Ax,x Ax,y → Ax,y and mx,y,y : Ax,y ⊗Ay,y Ay,y → Ax,y are the
canonical isomorphisms;

(2) the associativity condition (43) is satisfied, for all x, y, z, u ∈ X

mx,y,u ◦ (Ax,y ⊗Ay,y my,z,u) = mx,z,u ◦ (mx,y,z ⊗Az,z Az,u). (43)

For a ∈ Ax,y and b ∈ Ay,z, we will write mx,y,z(a ⊗Ay,y n) = ab.

Morita contexts can be organized into a 2-category kMor. Before we describe the 1-cells,
we recall the following result. Let f : A → B be a morphism of k-algebras, and consider
M, N ∈ MA, M ′, N ′ ∈ MB , and k-linear maps g : M → M ′ and h : N → N ′ such that
g(ma) = g(m)f (a) and h(an) = f (a)h(n), for all a ∈ A, m ∈ M and n ∈ N . Then we
have a well-defined map

g ⊗f h : M ⊗A N → M ′ ⊗B N ′, (g ⊗f h)(m ⊗A n) = g(m) ⊗B h(n).

A 1-cell f : A → B in kMor consists of f : X → Y , and maps fx,y : Ax,y → Bf (x),f (y)

such that

• every fx,x is an algebra map;
• fx,y(a

′aa′′) = fx,x(a
′)fx,y(a)fy,y(a

′′), for all a′inAx,x , a ∈ Ax,y and a′′ ∈ Ay,y ;
• fx,y ◦ mx,y,z = mf (x),f (y),f (z) ◦ (fx,y ⊗fy,y fy,z).

For two given 1-cells f, g : A → B, a 2-cell α : f ⇒ g consists of a family of elements
αx ∈ Bg(x),f (x) indexed by x such that

mg(x),g(y),f (y)(gx,y(a) ⊗Bg(y),g(y)
αy) = mg(x),f (x),f (y)(αx ⊗Bg(x),g(x)

fx,y(a)),

for all x, y ∈ X and a ∈ Ax,y .
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Let A be a Morita context, and take x �= y ∈ X. Take p, r ∈ Ax,y and q ∈ Ay,x . It
follows from (43) that

mx,y,x(p ⊗Ay,y q)r = pmy,x,y(q ⊗Ax,x r).

It follows that (Ax,x, Ay,y, Ax,y, Ay,x,mx,y,x,my,x,y) is a Morita context. In particular,
Morita contexts with a pair as underlying class are Morita contexts in the classical sense.

Theorem 9.2 The 2-categories Mk
Cat and kMor are isomorphic.

Proof (sketch) Let A be a k-linear category, with underlying class X. It is clear that Ax,x

is a k-algebra, and that Ax,y is an (Ax,x, Ay,y)-bimodule, for all x, y ∈ X. Take a ∈ Ax,y ,
b ∈ Ay,y and c ∈ Ay,z. From (1), it follows that mx,y,z(ab ⊗ c) = mx,y,z(a ⊗ bc), so we
have a well-defined map

mx,y,z : Ax,y ⊗Ay,y Ay,z → Ax,z, mx,y,z(a ⊗Ay,y c) = mx,y,z(a ⊗ c).

From (2), it follows that my,y,z(1y ⊗Ay,y c) = my,y,z(1y ⊗ c) = c, so that my,y,z is the
canonical isomorphism Ay,y ⊗Ay,y Ay,z

∼= Ay,z. It is easy to verify that the associativity
axiom (43) is satisfied, and it follows that A is a Morita X-context.

Conversely, let A be a Morita context with underlying class X. Define mx,y,z as the
composition of mx,y,z and the canonical surjection Ax,y ⊗ Ay,z → Ax,y ⊗Ay,y Ay,z. It is a
straightforward verification to check that A is k-linear category.

It is clear that these two constructions are inverses, and this defines 2-functors between
our two 2-categories at the level of 0-cells. We leave it to the reader that we have a one-to-
one correspondence between 1-cells and 2-cells in Mk

Cat and kMor.

Theorem 9.3 Let A be a k-linear category with underlying class X, and consider the
corresponding Morita context. The following statements are equivalent.

(1) mx,y,z is surjective, for all x, y, z ∈ X

(2) mx,y,x is surjective, for all x, y ∈ X;
(3) mx,y,x is bijective, for all x, y ∈ X;
(4) mx,y,z is bijective, for all x, y, z ∈ X.

A is called strict if these four equivalent conditions are satisfied.

Proof The implications 4) ⇒ 1) ⇒ 2) are obvious.
2) ⇒ 3). If mx,y,x is surjective, then mx,y,x is also surjective. We have seen that

(Ax,x, Ay,y, Ax,y, Ay,x,mx,y,x,my,x,y) is a Morita context, hence surjectivity of mx,y,x

implies injectivity, by a classical property of Morita contexts, see [3].
3) ⇒ 4). For all x, y ∈ X, we have that mx,x,y and mx,y,y are bijective (by definition),

and mx,y,x is bijective by assumption. It follows from (43) that

mx,y,z ◦ (Ax,y ⊗Ay,y my,x,z) = mx,x,z ◦ (mx,y,x ⊗Ax,x Ax,z).

The right hand side is invertible, and therefore mx,y,z ◦(Ax,y ⊗Ay,y my,x,z) is also invertible.
This implies that mx,y,z has a right inverse, and that Ax,y ⊗Ay,y my,x,z has a left inverse.
Having a right inverse, mx,y,z is surjective, for all x, y, z ∈ X.

It also follows that Ay,x ⊗Ax,x Ax,y ⊗Ay,y my,x,z and my,x,y ⊗Ay,y my,x,z have a left
inverse, because my,x,y is bijective. Let f be the left inverse of my,x,y ⊗Ay,y my,x,z, and
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take α ∈ Kermy,x,z. my,x,y is surjective, hence there exists β ∈ Ay,x ⊗Ax,x Ax,y such that
my,x,y(β) = 1y . Now

β ⊗Ay,y α = (
f ◦ (my,x,y ⊗Ay,y my,x,z)

)
(β ⊗Ay,y α) = 0,

and
0 = my,x,y(β) ⊗Ay,y α = 1y ⊗Ay,y α

in Ay,y ⊗Ay,y Ay,x ⊗Ax,x Ax,z
∼= Ay,x ⊗Ax,x Ax,z, and, finally, α = 0. We conclude that

my,x,z is injective.

Example 9.4 The category A of k-progenerators, is a strict k-linear category. For two
finitely generated projective k-modules P and Q, we have that AP,Q = Hom(Q, P ), and
mP,Q,P : AP,Q ⊗ AQ,P → AP,P is given by composition: mP,Q,P (f ⊗ g) = f ◦ g. We
have to show that mP,Q,P is surjective.

Q is a generator of kM, so there exist qi ∈ Q and q∗
i ∈ Q∗ such that

∑
i〈q∗

i , qi〉 = 1.
P is finitely generated projective, so there exist pj ∈ P and p∗

j ∈ P ∗ such that p =∑
j 〈p∗

j , p〉pj , for all p ∈ P . Now consider

fij : Q → P ; fij (q) = 〈q∗
i , q〉pj ;

gij : P → Q ; gij (p) = 〈p∗
j , p〉qi .

Now
mP,Q,P (

∑
i,j

fij ⊗ gij )(p) =
∑
i,j

〈p∗
j , p〉〈q∗

i , qi〉pj = p,

hence mP,Q,P (
∑

i,j fij ⊗ gij ) = P and mP,Q,P is surjective.

Example 9.5 Let A be a G-graded k-algebra, and consider the corresponding k-linear cat-
egory K(A) (see Proposition 6.2). K(A) is strict if and only if the multiplication maps
Ag−1h ⊗ Ah−1g → Ae are surjective, for all g, h ∈ G. This is equivalent to surjectivity of
Ag−1 ⊗ Ag → Ae, for all g ∈ G. This is one of the equivalent definitions of a strongly
graded k-algebra, see for example [22]. We conclude that K(A) is strict if and only if A is
a strongly graded k-algebra.

Now assume that A is a C(Mk)-category. It follows from the axioms that every Ax,x

is a bialgebra and that every Ax,y is an (Ax,x, Ay,y)-bimodule coalgebra. In this case the
induction functors Ax,y ⊗ − : Ay,yM → Ax,xM are comonoidal.

Example 9.6 Let H be Hopf algebra with bijective antipode S, and let A be a faithfully
flat right H -Galois object. In [23], a new Hopf algebra L is constructed in such a way that
A is a faitfhully flat left L-Galois object, and even an (L,H)-bigalois object. Aop is an
(H, L)-bigalois object (see [23, Remark 4.4]). The left H -coaction on Aop is the following:

λ(a) = S−1(a[1]) ⊗ a[0].

We now have a dualA(Mk)-category A with underlying class {x, y} defined as follows:
Ax,x = H ; Ay,y = L; Ax,y = A; Ay,x = Aop.

A is even a dual Hopf category; the antipode maps are the following: SH : H → H ,
SL : L → L and the identity Ax,y = A → Ay,x = Aop.

Now let H be finitely generated and projective; then A and L are also finitely generated
and projective, and the dual category of A is an example of a k-linear Hopf category.
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10 Hopf Modules and the Fundamental Theorem

Let V be a strict monoidal category with equalizers, and let A be a C(V)-category, with
underlying class |A| = X. Assume that M ∈ V(X), with the following additional structure:

• M ∈ VA in the sense of Definition 4.1, with structure morphisms ψx,y,z : Mx,y ⊗
Ay,z → Mx,z;

• M ∈ VA, that is, M is a right comodule over A considered as a coalgebra in V(X);
this means that every Mx,y is a right Ax,y-comodule, with coaction ρx,y : Mx,y →
Mx,y ⊗ Ax,y .

Recall that A • A is also a V-category. M • A ∈ VA•A, with structure maps

ψM•A
x,y,z = (ψx,y,z ⊗ mx,y,z) ◦ (Mx,y ⊗ cAx,y ,Ay,z ⊗ Ay,z).

M is called a Hopf module if the compatibility relation

ρx,z ◦ ψx,y,z = ψM•A
x,y,z ◦ (ρx,y ⊗ Ay,z) (44)

holds for all x, y, z ∈ X. A morphism between Hopf modules is a morphism in V that is a
morphism in VA and VA. The category of Hopf modules is denoted V(X)AA.

We introduce the category D(X) (D stands for “diagonal”). Its objects are families of
objects in V indexed by X, and a morphism N → N ′ consists of a family of morphisms
Nx → N ′

x in V .

Proposition 10.1 We have a pair of adjoint functors (F,G) between D(X) and V(X)AA.

Proof We define a functor F : D(X) → V(X)AA as follows. For N ∈ D(X), let F(N) ∈
V(X)AA be given by the data

F(N)x,y = Nx ⊗ Ax,y; ψx,y,z = Nx ⊗ mx,y,z; ρx,y = Nx ⊗ �x,y.

For f : N → N ′ in D(X), let F(f )x,y = fx ⊗ Ax,y . Verification of further details is
straightforward.

Now we define G : V(X)AA → D(X). Let M ∈ V(X)AA. Mx,x is a right Ax,x-module,
for every x ∈ X, and we define G(M) = McoA as follows:

G(M)x = McoA
x = M

coAx,x
x,x ,

the equalizer of the parallel morphisms ρx,x, Mx,x ⊗ ηx : Mx,x → Mx,x ⊗ Ax,x . For
g : M → M ′ in V(X)AA, G(g) = gcoA is defined as follows: G(g)x = gcoA

x is the unique
morphism in V making the diagram

commutative. The existence and uniqueness of gcoA
x is guaranteed by the universal property

of equalizers.
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Next we describe the unit and the counit of the adjunction. For N ∈ D(X), the unit
ηN : N ⊗ GF(N) has X component ηN

x : Nx → GF(N)x = (Nx ⊗ Ax,x)
coAx,x , the

unique morphism in V such that

i ◦ ηN
x = Nx ⊗ ηx : Nx → (Nx ⊗ Ax,x)

coAx,x → Nx ⊗ Ax,x. (45)

For M ∈ V(X)AA, the (x, y)-component of εM : FG(M) → M is

εM = ψx,x,y ◦ (i ⊗ Ax,y) : FG(M)x,y = McoA
x ⊗ Ax,y → Mx,y.

In order to show that (F,G) is an adjoint pair, we have verify that

F(N) = εF(N) ◦ F(ηN) and G(M) = G(εM) ◦ ηG(M),

for all N ∈ D(X) and M ∈ V(X)AA. Now

εF(N)
x,y ◦ F(ηN)x,y = (Nx ⊗ mx.x.y) ◦ (i ⊗ Ax,y) ◦ (ηN

x ⊗ Ax,y)

= (Nx ⊗ mx,x,y) ◦ (Nx ⊗ ηx ⊗ Ax,y) = Nx ⊗ Ax,y = F(N)x,y,

proving the first formula. For the second formula, we consider the diagram

The commutativity of the triangle follows from the definition of η
G(M)
x ; the commu-

tativity of the two squares follows from the definition of G at the level of morphisms.
Now

ψx,x,x ◦ (i ⊗ Ax,x) ◦ (McoA
x ⊗ ηx) = ψx,x,x ◦ (Mx,x ⊗ ηx) ◦ i = i,

and it follows from the uniqueness in the universal property of equalizers that the vertical
composition in the diagram is the identity on McoA

x = G(M)x ; this vertical composition is
the x-component of the right hand side in the second formula.

Let A be a C(V)-category, with underlying class |A| = X. For all x, y, z ∈ X, we
consider the canonical map

canz
x,y = (mz,x,y ⊗ Ax,) ◦ (Az,x ⊗ �x,y) : Az,x ⊗ Ax,y → Az,y ⊗ Ax,y.

With respect to the observations made at the end of Section 8, the following theorem
should be compared to [7, Theorem 7.14].

Theorem 10.2 (Fundamental Theorem for Hopf Modules) Let V be a strict braided
monoidal category with equalizers. For a C(V)-category A with underlying class X, the
following assertions are equivalent.

(1) A is a Hopf V-category;
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(2) the pair of adjoint functors (F,G) from Proposition 10.1 is a pair of inverse
equivalences between the categories D(X) and V(X)AA;

(3) the functor G from Proposition 10.1 is fully faithful;
(4) canz

x,y is an isomorphism, for all x, y, z ∈ X;

(5) canx
x,y has a left inverse fx,y and cany

x,y is an isomorphism, with inverse gx,y , for all
x, y ∈ X.

Proof (1) ⇒ (2). Part 1. εM has an inverse αM , for all M ∈ V(X)AA.
We first show that the morphism

γx,y = ψx,y,x ◦ (Mx,y ⊗ Sx,y) ◦ ρx,y : Mx,y → Mx,x

satisfies the equality
ρx,x ◦ γx,y = (Mx,x ⊗ ηx) ◦ γx,x . (46)

ρx,x ◦ γx,y = ρx,x ◦ ψx,y,x ◦ (Mx,y ⊗ Sx,y) ◦ ρx,y
(44)= (ψx,y,x ⊗ mx,y,x) ◦ (Mx,y ⊗ cAx,y ,Ay,x ⊗ Ay,x) ◦ (ρx,y ⊗ �y,x)

◦ (Mx,y ⊗ Sx,y) ◦ ρx,y
(14)= (ψx,y,x ⊗ mx,y,x) ◦ (Mx,y ⊗ cAx,y ,Ay,x ⊗ Ay,x)

◦ (Mx,y ⊗ Ax,y ⊗ cAy,x ,Ay,x ) ◦ (ρx,y ⊗ Sx,y ⊗ Sx,y)

◦ (Mx,y ⊗ �x,y) ◦ ρx,y

= (ψx,y,x ⊗ Ax,x) ◦ (Mx,y ⊗ Ay,x ⊗ mx,y,x) ◦ (Mx,y ⊗ cAx,y⊗Ay,x ,Ay,x )

◦ (Mx,y ⊗ Ax,y ⊗ Sx,y ⊗ Sx,y) ◦ ρ3
x,y

(∗)= (ψx,y,x ⊗ Ax,x) ◦ (Mx,y ⊗ cAx,x ,Ay,x ) ◦ (Mx,y ⊗ mx,y,x ◦ Ay,x)

◦ (Mx,y ⊗ Ax,y ⊗ Sx,y ⊗ Sx,y) ◦ (Mx,y ⊗ �x,y ⊗ Ax,y) ◦ ρ2
x,y

(11)= (ψx,y,x ⊗ Ax,x) ◦ (Mx,y ⊗ cAx,x ,Ay,x ) ◦ (Mx,y ⊗ ηx ⊗ Ay,x)

◦ (Mx,y ⊗ εx,y ⊗ Sx,y) ◦ ρ2
x,y

= (ψx,y,x ⊗ Ax,x) ◦ (Mx,y ⊗ Ay,x ⊗ ηx) ◦ (Mx,y ⊗ Sx,y) ◦ ρx,y

= (Mx,y ⊗ ηx) ◦ ψx,y,x ◦ (Mx,y ⊗ Sx,y) ◦ ρx,y = (Mx,x ⊗ ηx) ◦ γx,x .

At (∗) we used the naturality of c resulting in the commutative diagram

From (46) and the universal property of equalizers, it follows that there is a unique
morphism γ̃x,y : Mx,y → McoA

x such that i ◦ γ̃x,y = γx,y .
Now we are ready to define αM : M → FG(M). The (x, y)-component is

αM
x,y = (γ̃x,y ⊗ Ax,y) ◦ ρx,y : Mx,y → McoA

x ⊗ Ax,y.

εM
x,y ◦ αM

x,y = ψx,x,y ◦ (i ⊗ Ax,y) ◦ (γ̃x,y ⊗ Ax,y) ◦ ρx,y

= ψ2
x,y,x,y ◦ (Mx,y ⊗ Sx,y ⊗ Ax,y) ◦ ρ2

x,y
(12)= ψx,y,y ◦ (Mx,y ⊗ ηy) ◦ (Mx,y ⊗ εx,y) ◦ ρx,y = Mx,y.
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The proof of the fact that αM is also a left inverse of εM is more involved. We first compute

ρx,y ◦ ψx,x,y ◦ (i ⊗ Ax,y) : McoA
x ⊗ Ax,y → Mx,y ⊗ Ax,y.

ρx,y ◦ ψx,x,y ◦ (i ⊗ Ax,y)
(44)= (ψx,x,y ⊗ Mx,x,y) ◦ (Mx,x ⊗ cAx,x ,Ax,y ⊗ Ax,y)

◦ (ρx,x ⊗ �x,y) ◦ (i ⊗ Ax,y)

= (ψx,x,y ⊗ Mx,x,y) ◦ (Mx,x ⊗ cAx,x ,Ax,y ⊗ Ax,y)

◦ (Mx,x ⊗ ηx ⊗ �x,y) ◦ (i ⊗ Ax,y)

= (ψx,x,y ⊗ Mx,x,y) ◦ (Mx,x ⊗ Ax,y ⊗ ηx ⊗ Ax,y) ◦ (i ⊗ �x,y)

= (ψx,x,y ⊗ Ax,y) ◦ (i ⊗ �x,y). (47)

Our next step is to compute

i ◦ γ̃x,y ◦ ψx,x,y ◦ (i ⊗ Ax,y)

= ψx,y,x ◦ (Mx,y ⊗ Sx,y) ◦ ρx,y ◦ ψx,x,y ◦ (i ⊗ Ax,y)
(47)= ψx,y,x ◦ (Mx,y ⊗ Sx,y) ◦ (ψx,x,y ⊗ Ax,y) ◦ (i ⊗ �x,y)

= ψ2
x,x,y,x ◦ (Mx.x ⊗ Ax,y ⊗ Sx,y) ◦ (Mx.x ⊗ �x,y) ◦ (i ⊗ Ax,y)

(11)= ψx,x,x ◦ (Mx,x ⊗ ηx) ◦ (Mx,x ⊗ εx,y) ◦ (i ⊗ Ax,y)

= i ⊗ εx,y = i ◦ (McoA
x ⊗ εx,y).

The universal property of equalizers tells us that there is a unique f : McoA
x ⊗ Ax,y →

McoA
x such that i ◦ f = i ⊗ εx,y . This implies that

γ̃x,y ◦ ψx,x,y ◦ (i ⊗ Ax,y) = McoA
x ⊗ εx,y . (48)

Finally

αM
x,y ◦ εM

x,y = (γ̃x,y ⊗ Ax,y) ◦ ρx,y ◦ ψx,x,y ◦ (i ⊗ Ax,y)

(47)= (γ̃x,y ⊗ Ax,y) ◦ (ψx,x,y ⊗ Ax,y) ◦ (i ⊗ �x,y)

= (γ̃x,y ⊗ Ax,y) ◦ (ψx,x,y ⊗ Ax,y) ◦ (i ⊗ Ax,y ⊗ Ax,y)) ◦ (McoA
x ⊗ �x,y)

(48)= (McoA
x ⊗ εx,y ⊗ Ax,y) ◦ (McoA

x ⊗ �x,y) = McoA
x .

Part 2. ηN has an inverse βN , for all N ∈ D(X).
The x-component of βN is

βN
x = (Nx ⊗ εx,x) ◦ i : (Nx ⊗ Ax,x)

coAx,x → Nx

It is easy to see that

βN
x ◦ ηN

x = (Nx ⊗ εx,x) ◦ i ◦ ηN
x

(9)= (Nx ⊗ εx,x) ◦ (Nx ⊗ ηx) = Nx.

The universal property of the equalizer entails that there is only one endomorphism f of
(Nx ⊗ Ax,x)

coAx,x such that i ◦ f = i, namely the identity. Now

i ◦ ηN
x ◦ βN

x

(9)= (Nx ⊗ ηx) ◦ (Nx ⊗ εx,x) ◦ i

= (Nx ⊗ εx,x ⊗ Ax,x) ◦ (Nx ⊗ Ax,x ⊗ ηx) ◦ i

= (Nx ⊗ εx,x ⊗ Ax,x) ◦ (Nx ⊗ �x,x) ◦ i = i,

so it follows that ηN
x ◦ βN

x = (Nx ⊗ Ax,x)
coAx,x .

(2) ⇒ (3) is obvious.
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(3) ⇒ (4). For every z ∈ X, consider the object Mz ∈ V(X) given by Mz
x,y = Az,y ⊗

Ax,y . The structure morphisms ρz
x,y = Az,y ⊗ �x,y : Mz

x,y ⊗ Ax,y and

ψz
x,y,u = (mz,y,u ⊗ mx,y,u) ◦ (Az,y ⊗ cAx,y ,Ay,u ⊗ Ay,u) ◦ (Mz

x,y ⊗ �y,u)

: Mz
x,y ⊗ Ay,u → Mz

x,u

make Mz into an object of V(X)AA. Let us verify that the compatibility relation (44) holds.
We compute both sides of the equation, and see that they are equal.

ρz
x,u ◦ ψz

x,y,u = (Az,u ⊗ �x,u) ◦ (mz,y,u ⊗ mx,y,u) ◦ (Az,y ⊗ cAx,y ,Ay,u ⊗ Ay,u)

◦ (Az,y ⊗ Ax,y ⊗ �y,u)

= (mz,y,u ⊗ mx,y,u ⊗ mx,y,u) ◦ (Az,y ⊗ Ay,u ⊗ Ax,y ⊗ cAx,y ,Ay,u ⊗ Ay,u)

◦ (Az,y ⊗ Ay,u ⊗ �x,y ⊗ �y,u) ◦ (Az,y ⊗ cAx,y ,Ay,u ⊗ Ay,u)

◦ (Az,y ⊗ Ax,y ⊗ �y,u)

= (mz,y,u ⊗ mx,y,u ⊗ mx,y,u) ◦ (Az,y ⊗ Ay,u ⊗ Ax,y ⊗ cAx,y ,Ay,u ⊗ Ay,u)

◦ (Az,y ⊗ cAx,y⊗Ax,y ,Ay,u ⊗ Ay,u ⊗ Ay,u) ◦ (Az,y ⊗ �x,y ⊗ Ay,u ⊗ �y,u)

◦ (Az,y ⊗ Ax,y ⊗ �y,u)

= (mz,y,u ⊗ mx,y,u ⊗ mx,y,u) ◦ (Az,y ⊗ cAx,y ,Ay,u ⊗ cAx,y ,Ay,u ⊗ Ay,u)

◦ (Az,y ⊗ Ax,y ⊗ cAx,y ,Ay,u ⊗ Ay,u ⊗ Ay,u) ◦ (Az,y ⊗ �x,y ⊗ �2
y,u);

(ψz
x,y,u ⊗ mx,y,u) ◦ (Az,y ⊗ Ax,y ⊗ cAx,y ,Ay,u ⊗ Ay,u) ◦ (ρz

x,y ⊗ �y,u)

= (mz,y,u ⊗ mx,y,u ⊗ mx,y,u) ◦ (Az,y ⊗ cAx,y ,Ay,u ⊗ Ay,u ⊗ Ax,y ⊗ Ay,u)

◦ (Az,y ⊗ Ax,y ⊗ �y,u ⊗ Ax,y ⊗ Ay,u)

◦ (Az,y ⊗ Ax,y ⊗ cAx,y ,Ay,u ⊗ Ay,u) ◦ (Az,y ⊗ �x,y ⊗ �y,u)

= (mz,y,u ⊗ mx,y,u ⊗ mx,y,u) ◦ (Az,y ⊗ cAx,y ,Ay,u ⊗ Ay,u ⊗ Ax,y ⊗ Ay,u)

◦ (Az,y ⊗ Ax,y ⊗ cAx,y ,Ay,u⊗Ay,u ⊗ Ay,u)

◦ (Az,y ⊗ Ax,y ⊗ Ax,y ⊗ �y,u ⊗ Ay,u) ◦ (Az,y ⊗ �x,y ⊗ �y,u)

= (mz,y,u ⊗ mx,y,u ⊗ mx,y,u) ◦ (Az,y ⊗ cAx,y ,Ay,u ⊗ cAx,y ,Ay,u ⊗ Ay,u)

◦ (Az,y ⊗ Ax,y ⊗ cAx,y ,Ay,u ⊗ Ay,u ⊗ Ay,u) ◦ (Az,y ⊗ �x,y ⊗ �2
y,u).

Consider the morphism f = Az,x ⊗ ηx,x : Az,x → Az,x ⊗ Ax,x = Mz
x,x . Since

ρz
x,x ◦ f = (Az,x ⊗ �x,x) ◦ (Az,x ⊗ ηx,x) = (Az,x ⊗ ηx,x ⊗ ηx)

= (Az,x ⊗ Ax,x ⊗ ηx) ◦ (Az,x ⊗ ηx) = (Mz
x,x ⊗ ηx) ◦ f,

there exists a unique f̃ : Az,x → MzcoA
x such that i ◦ f̃ = f . f̃ is invertible, with inverse

g = (Az,x ⊗ εx,x) ◦ i. Indeed,

g ◦ f̃ = (Az,x ⊗ εx,x) ◦ f = (Az,x ⊗ εx,x) ◦ (Az,x ⊗ ηx,x) = Az,x.

We also have that

i ◦ f̃ ◦ g = f ◦ g = (Az,x ⊗ ηx,x) ◦ (Az,x ⊗ εx,x) ◦ i

= (Az,x ⊗ εx,x ⊗ Ax,x) ◦ (Az,x ⊗ Ax,x ⊗ ηx) ◦ i

= (Az,x ⊗ εx,x ⊗ Ax,x) ◦ (Az,x ⊗ �x,x) ◦ i = i,
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and it follows from the uniqueness in the universal property of equalizers that f̃ ◦ g =
MzcoA

x . We know by assumption that

εz
x,y = ψz

x,x,y ◦ (i ⊗ Ax,y) : MzcoA
x → Ax,y → Mz

x,y

is an isomorphism. It follows that

εz
x,y ◦ (f̃ ⊗ Ax,y) = (mz,x,y ⊗ mx,x,y) ◦ (Az,x ⊗ cAx,x ,Ax,y ⊗ Ax,y)

◦ (Az,x ⊗ Ax,x ⊗ �x,y) ◦ (i ⊗ Ax,y) ◦ (f̃ ⊗ Ax,y)

= (mz,x,y ⊗ mx,x,y) ◦ (Az,x ⊗ cAx,x ,Ax,y ⊗ Ax,y)

◦ (Az,x ⊗ Ax,x ⊗ �x,y) ◦ (Ax,x ⊗ ηx,x ⊗ Ax,y)

= (mz,x,y ⊗ mx,x,y) ◦ (Az,x ⊗ cAx,x ,Ax,y ⊗ Ax,y)

◦ (Ax,x ⊗ ηx,x ⊗ Ax,y ⊗ Ax,y) ◦ (Az,x ⊗ �x,y)

= (mz,x,y ⊗ mx,x,y) ◦ (Az,x ⊗ Ax,y ⊗ ηx ⊗ Ax,y) ◦ (Az,x ⊗ �x,y)

= (mz,x,y ⊗ Ax,y) ◦ (Az,x ⊗ �x,y) = canz
x,y

is an isomorphism.
(4) ⇒ (5) is obvious.
(5) ⇒ (1).
We define the antipode as follows:

Sx,y = (Ay,x ⊗ εx,y) ◦ gx,y ◦ (ηy ⊗ Ax,y).

We have to show that the equations (11–12) are satisfied. To this end, we first need some
auxiliary formulas. Composing the equality

(mx,y,y ⊗ Ax,y) ◦ (Ax,y ⊗ cany
x,y)

= (mx,y,y ⊗ Ax,y) ◦ (Ax,y ⊗ my,x,y ⊗ Ax,y) ◦ (Ax,y ⊗ Ay,x ◦ �x,y)

= (mx,x,y ⊗ Ax,y) ◦ (mx,y,x ⊗ Ax,y ⊗ Ax,y) ◦ (Ax,y ⊗ Ay,x ◦ �x,y)

= (mx,x,y ⊗ Ax,y) ◦ (Ax,x ⊗ �x,y) ◦ (mx,y,x ⊗ Ax,y)

= canx
x,y ◦ (mx,y,x ⊗ Ax,y)

to the left with fx,y and to the right with Ax,y ⊗ gx,y , we find that

fx,y ◦ (mx,y,y ⊗ Ax,y) = (mx,y,x ⊗ Ax,y) ◦ (Ax,y ⊗ gx,y). (49)

Composing the equality

(cany
x,y ⊗ Ax,y) ◦ (Ay,x ⊗ �x,y)

= (my,x,y ⊗ Ax,y ⊗ Ax,y) ◦ (Ay,x ⊗ �x,y ⊗ Ax,y) ◦ (Ay,x ⊗ �x,y)

= (my,x,y ⊗ Ax,y ⊗ Ax,y) ◦ (Ay,x ⊗ Ax,y ⊗ �x,y) ◦ (Ay,x ⊗ �x,y)

= (Ay,y ⊗ �x,y) ◦ (my,x,y ⊗ Ax,y) ◦ (Ay,x ⊗ �x,y)

= (Ay,y ⊗ �x,y) ◦ cany
x,y

to the left and to the right with gx,y , we find that

(Ay,x ⊗ �x,y) ◦ gx,y = (gx,y ⊗ Ax,y) ◦ (Ay,y ⊗ �x,y). (50)

ηx ◦ εx,y = (Ax,x ⊗ εx,y) ◦ (ηx ⊗ Ax,y)

= (Axx, ⊗ εx,y) ◦ fx,y ◦ canx
x,y ◦ (ηx ⊗ Ax,y)

= (Axx, ⊗ εx,y) ◦ fx,y ◦ (mx,x,y ⊗ Ax,y) ◦ (Ax,x ⊗ �x,y) ◦ (ηx ⊗ Ax,y)
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= (Axx, ⊗ εx,y) ◦ fx,y ◦ (mx,x,y ⊗ Ax,y) ◦ (ηx ⊗ Ax,y ⊗ Ax,y) ◦ �x,y

= (Axx, ⊗ εx,y) ◦ fx,y ◦ (mx,x,y ⊗ Ax,y) ◦ (Ax,y ⊗ ηy ⊗ Ax,y) ◦ �x,y

(49)= (Axx, ⊗ εx,y) ◦ (mx,y,x ⊗ Ax,y) ◦ (Ax,y ⊗ gx,y)

◦ (Ax,y ⊗ ηy ⊗ Ax,y) ◦ �x,y

= mx,y,x ◦ (Ax,y ⊗ Sx,y) ◦ �x,y,

and this shows that (11) holds.

ηy ◦ εx,y = (Ay,y ⊗ εx,y) ◦ (ηy ⊗ Ax,y)

= (Ay,y ⊗ εx,y) ◦ cany
x,y ◦ gx,y ◦ (ηy ⊗ Ax,y)

= (Ay,y ⊗ εx,y) ◦ (my,x,y ⊗ Ax,y) ◦ (Ay,x ⊗ �x,y) ◦ gx,y ◦ (ηy ⊗ Ax,y)

= my,x,y ◦ (Ay,x ⊗ Ax,y ⊗ εx,y) ◦ (Ay,x ⊗ �x,y) ◦ gx,y ◦ (ηy ⊗ Ax,y)

= my,x,y ◦ (Ay,x ⊗ εx,y ⊗ Ax,y) ◦ (Ay,x ⊗ �x,y) ◦ gx,y ◦ (ηy ⊗ Ax,y)

(50)= my,x,y ◦ (Ay,x ⊗ εx,y ⊗ Ax,y) ◦ (gx,y ⊗ Ax,y)

◦(Ay,y ⊗ �x,y) ◦ (ηy ⊗ Ax,y)

= my,x,y ◦ (Ay,x ⊗ εx,y ⊗ Ax,y) ◦ (gx,y ⊗ Ax,y) ◦ (ηy ⊗ Ax,y ⊗ Ax,y) ◦ �y

= my,x,y ◦ (Sx,y ⊗ Ax,y) ◦ �y,

and this shows that (12) holds.

Remarks 10.3 1) The implication (1) ⇒ (4) can easily be proved directly: it is easily
verified that

(canz
x,y)

−1 = (mz,y,x ◦ Ax,y) ◦ (Az,y ⊗ Sx,y ⊗ Ax,y) ◦ (Az,y ⊗ �x,y).

2) It follows from the Theorem that a Hopf module over a Hopf category is isomorphic to
a free Hopf module, that is a Hopf module in the image of the functor G. This result
is known in the literature as the Fundamental Theorem for Hopf modules. Its original
form (in the case where V is de category of vector spaces and X is a singleton) it is
due to Larson and Sweedler [18], see also [25, Theorem 1.1]. For the case where V
is an arbitrary braided monoidal category with equalizers and X is a singleton, see
[26, Theorem 3.4] and [19, Theorem 1.4].

Let us now proceed to some applications of the Fundamental Theorem. We restrict attention
to the case where V is the category Mf

k of finitely generated projective modules over a
commutative ring k (or finite dimensional vector spaces over a field k). Our applications
generalize applications of the classical Fundamental Theorem as they can be found in [25,
Chapter 4].

For V = Mf
k , the axioms (11–12) take the following form

h(1)Sx,y(h(2)) = εx,y(h)1x ; Sx,y(h(1))h(2) = εx,y(h)1y, (51)

for all x, y ∈ X and h ∈ Ax,y . The formula (13–14) can be written as

Sx,z(hl) = Sy,z(l)Sx,y(h); (52)

�y,x(Sx,y(h)) = Sx,y(h(2)) ⊗ Sx,y(h(1)), (53)

for all x, y, z ∈ X, h ∈ Ax,y and l ∈ Ay,z. The compatibility relation for Hopf modules
amounts to

ρx,z(ma) = m[0]a(1) ⊗ m[1]a(2), (54)
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for all m ∈ Mx,y and a ∈ Ay,z.

Proposition 10.4 Let A be a Hopf category in Mf
k(X). Then A∗ is a Hopf module, with

structure maps ρx,y : A∗
x,y → A∗

x,y ⊗ Ax,y and ψx,y,z : A∗
x,y ⊗ Ay,z → A∗

x,z defined as
follows:

(1) For a∗ ∈ A∗
x,y , ρx,y(a

∗) = ∑
i a∗a∗

i ⊗ ai , where
∑

i a∗
i ⊗ ai ∈ A∗

x,y ⊗ Ax,y is the
finite dual basis of Ax,y . The multiplication on A∗

x,y is the opposite convolution.
(2) For a∗ ∈ A∗

x,y and a ∈ Ay,z, ψx,y,z(a
∗ ⊗ a) = a∗↼a ∈ A∗

x,z is given by the formula
〈a∗↼a, b〉 = 〈a∗, bSy,z(a)〉, for all b ∈ Ay,z.

Proof The right A-coaction is obtained as follows: Ax,y is a k-coalgebra, hence A∗
x,y is a

k-algebra (with opposite convolution product). It is therefore a right A∗
x,y-module, and a

right Ax,y-comodule. The coaction that is opbtained in this way is precisely the one that is
described in the Proposition.

Now let us show that the structure maps ψx,y,z define a right A-module structure on A∗.
Associativity. For all a∗ ∈ A∗

x,y , a ∈ Ay,z, b ∈ Az,u and c ∈ Ax,u, we have that

〈a∗↼(ab), c〉 = 〈a∗, cSy,u(ab)〉 (52)= 〈a∗, cSz,u(b)Sy,z(a)〉
= 〈a∗↼a, cSz,u(b)〉 = 〈(a∗↼a)↼b, c〉.

Unit property. For all a∗ ∈ A∗
x,y and a ∈ Ax,y , we have that

〈a∗↼1y, a〉 = 〈a∗, aSy,y(1i )〉
=

(52)〈a∗, a〉.
Now we verify the Hopf compatibility condition (54). We have to show that

ρx,z(a
∗↼a) =

∑
i

(a∗a∗
i )↼a(1) ⊗ aia(2),

for all a∗ ∈ A∗
x,y and a ∈ Ay,z. Now

ρx,z(a
∗↼a) =

∑
j

(a∗↼a)b∗
j ⊗ bj ,

where
∑

j b∗
j ⊗ bj ∈ A∗

x,z ⊗ Ax,z is the dual basis of Ax,z, so it suffices to show that

∑
j

〈(a∗↼a)b∗
j , c〉bj =

∑
i

〈(a∗a∗
i )↼a(1), c〉aia(2),

for all c ∈ Ax,z. This can be done as follows:

∑
i

〈(a∗a∗
i )↼a(1), c〉aia(2)

(53)=
∑

i

〈a∗, c(2)Sy,z(a(1))〉〈a∗
i , c(1)Sy,z(a(2))〉aia(3)

= 〈a∗, c(2)Sy,z(a(1))〉c(1)Sy,z(a(2))a(3)

(51)= 〈a∗, c(2)Sy,z(a(1))〉c(1)εy,z(a(2))1z = 〈a∗, c(2)Sy,z(a)〉c(1)

=
∑
j

〈a∗↼a, c(2)〉〈b∗
j , c(1)〉bj =

∑
j

〈(a∗↼a)b∗
j , c〉bj .
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We compute A∗coA. Recall that Ax,x is a Hopf algebra, for every x ∈ X, and that

A∗coA
x = (A∗

x,x)
coAx,x =

∫ l

A∗
x,x

= {ϕ ∈ A∗
x,x | ϕa∗ = 〈a∗, 1x〉ϕ, for all a∗ ∈ A∗

x,x},

the space of left integrals on Ax,x . From Theorem 10.2 and Theorem 10.4, we obtain the
following result.

Corollary 10.5 Let A be a Hopf category in Mf
k(X). For all x, y ∈ X, we have an

isomorphism

αx,y = εA∗
x,y :

∫ l

A∗
x,x

⊗Ax,y → A∗
x,y, εA∗

x,y(ϕ ⊗ a) = ϕ↼a.

Proposition 10.6 Let A be a Hopf category inMf
k(X). The antipode maps Sx,y : Ax,y →

Ay,x are bijective, for all x, y ∈ X.

Proof It is well-known (and it also follows from Corollary 10.5) that J = ∫ l

A∗
x,x

is finitely

generated projective of rank one as a k-module. Therefore the evaluation map

ev : J ∗ ⊗ J → k, ev(p ⊗ ϕ) = p(ϕ)

is an isomorphism of k-modules. The isomorphism

α̃x,y = (J ∗ ⊗ α) ◦ (ev−1 ⊗ Ax,y) : Ax,y → J ∗ ⊗ Ax,y

can be described explicitly as follows:

α̃x,y(a) =
∑

l

pl ⊗ ϕl↼a,

where ev−1(1) = ∑
l pl ⊗ ϕl .

Now assume that Sx,y(a) = 0, for some a ∈ Ax,y . For all ϕ ∈ A∗
x,x and b ∈ Ax,y , we

have that

〈ϕ↼a, b〉 = 〈ϕ, bSx,y(a)〉 = 0,

so it follows that α̃x,y(a) = 0, and a = 0, since α̃x,y is a bijection. This proves that Sx,y is
injective.

Now assume that k is a field. The maps

α = Sx,y ◦ Sy,x and β = Sy,x ◦ Sx,y

are injective endomorphisms of the finite dimensional vector spaces Ay,x and Ax,y . From
the dimension formulas, it follows that they are automorphisms. We then have that

Ay,x = α ◦ α−1 = Sx,y ◦ Sy,x ◦ α−1;
Ay,x = β−1 ◦ β = β−1 ◦ Sy,x ◦ Sx,y .

This tells us that Sx,y has a left inverse and a right inverse; these are necessarily equal, hence
Sx,y is bijective.

Now consider the general case where k is a commutative ring. The surjectivity of Sx,y

follows from a local-global argument. Let Q = Coker (Sx,y). For every prime ideal p of k,
we can consider the localized Hopf category Ap, with Ap,x,y = Ax,y ⊗ kp . For every prime
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ideal p of k, Coker (Sp,x,y) = Qp, since localization at a prime ideal is an exact functor.
Now the spaces Ap,x,y/pAp,x,y define a finite dimensional Hopf category Ap/pAp over
the field kp/pkp , and its antipode maps are bijective. It follows from Nakayama’s Lemma
that the localized maps Sp,x,y : Ap,x,y → Ap,y,x are all bijective, and then it follows that
Sx,y is bijective.
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