Algebr Represent Theor (2016) 19:1017-1041 @ CroseMark
DOI 10.1007/510468-016-9609-4

Cluster Structure on Generalized Weyl Algebras

Ibrahim Saleh!

Received: 13 August 2015 / Accepted: 15 March 2016 / Published online: 18 April 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We introduce a class of non-commutative algebras that carry non-commutative
cluster structure which are generated by identical copies of generalized Weyl algebras.
Equivalent conditions for the finiteness of the set of the cluster variables of these cluster
structures are provided. Mutations along with some combinatorial data, called clus-
ter strands, arising from the cluster structure are used to construct representations of
generalized Weyl algebras.
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1 Introduction

Cluster algebras were introduced by S. Fomin and A. Zelevinsky in [2, 8-10, 16]. A cluster
algebra is a commutative algebra with a distinguished set of generators called cluster vari-
ables and particular type of relations called mutations. A quantum version was introduced
in [3] and [5-7]. The original motivation was to create a combinatorial algebraic framework
to study total positivity and dual canonical basis in coordinate rings of certain semisimple
algebraic groups.
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Generalized Weyl algebras were first introduced by V. Bavula in [1] and separately as
Hyperbolic algebras by A. Rosenberg in [13]. Their motivation was to find a ring theoreti-
cal frame work to study the representation theory of some important “small algebras” such
as the first Heisenberg algebra, Weyl algebras, the universal enveloping algebra of the Lie
algebra s/(2). A complete list of “small algebras” can be found in [13]. Also, in [13] Rosen-
berg has obtained the representation theory of all “small algebras” using the Hyperbolic
algebra as a frame work.

In this paper, we show that by relaxing the commutativity between cluster variables and
some frozen variables (coefficients variables) we can extend the theory of cluster algebras
to include some non-commutative algebras which are generated by isomorphic copies of
generalized Weyl algebras. To achieve this goal, we introduced particular non-commutative
seed-like combinatorial data called presseds, each preseed of rank n is defined by iteration
from a rank one preseed. Every Fomin-Zelevinsky (coefficient free) rank one seed ({x}, -x)
gives rise to a preseed of rank one by attaching a valued star quiver with center at the vertex
-y and assigning a set of frozen variables, one frozen variable at each vertex of the star
quiver. Here the frozen variables associated with the exchange variable x do not necessary
commute with it. Every preseed of rank n is defined through an increasing set of n — 1
(nested) preseeds of ranks 1, ..., n — 1 respectively, Definition 3.2. A valued star quiver is
called balanced if the (componentwise) sum of the valuations of the arrows point in toward
the center vertex equals the sum of the valuations of the arrows point out equals (a, a),
for some non-negative integer a. A preseed is called balanced if each of its star quivers is
balanced.

The set of all cluster variables produced from a preseed is not necessarily finite, even if
the underlying quiver is of Dynkin type, Examples 3.9 and 3.10. In this paper we provide
equivalent conditions on a preseed for its set of cluster variables to be finite, such as in
Theorems 3.15 and Corollary 4.9 which are rephrased respectively as follows

Theorem 1.1 Let p be a balanced preseed in the ambient division ring D. If ¢ is a
D-automorphism that fixes the frozen variables such that for every frozen variable f
associated to the initial cluster variable x we have

fx=9¢x)f.
Then the set of all cluster variables of p is finite if and only if ¢ is of finite order.

Corollary 1.2 Let p be a balanced preseed with a non zero element q in the field K such
that for every initial cluster variable x, we have

fx = qxf, for each frozen variable f associated to x.

Then the set of all cluster variables of p is finite if and only if q is an m'™"

some natural number m.

-root of unity, for

Although Corollary 1.2 can be seen as a consequence of Theorem 1.1, in this paper we
provide independent proofs for both of them.

Every generalized Weyl algebra of rank n gives rise to a preseed p of rank n endowed
with an automorphism 6 over the coefficients ring (the group ring of the group generated
by the frozen variables), Example 4.5. In Theorem 4.12 we show that the associated cluster
algebra H(p) satisfies the following
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(1) The algebra H(p) is generated by (possibly) infinite isomorphic copies of the associ-
ated generalized Weyl algebra, each vertex in the exchange graph of p, gives rise to
two copies of them;

(2) There are n rank one preseeds pi(x1), ..., p1(x,) such that
H(p) =H(p1(x1) ® --- @ H(p1(xn)). (L.1)
Let V, be the K(f1, ..., fn)-span of the cluster monomials of H(p), where fi, ..., f,

are the frozen variables of p. In Definition 5.5 we use right and left mutations, given in
Definition 3.3, to introduce an action of generalized Weyl algebra in V;,. The combinatorial
structure of the cluster monomials gives rise to combinatorial datum called cluster strands,
which are particular elements of V,,, Definition 5.8. Some properties of the cluster strands
are provided in Lemma 5.12. The submodules generated by cluster strands are called strand
submodules. The properties of the strand submodules are studied in Proposition 5.15 and
5.16 and Corollary 5.17.

Conjecture 1.3 Strand submodules are indecomposable.

The paper is organized as follows. Section 2 is devoted to basic definitions of cluster
algebras associated with valued quivers. In Section 3, we introduce the notion of preseeds
and their mutations. Examples and properties of preseeds are also given. In the same section
we provide equivalent conditions for a preseed to produce a finite set of cluster variables,
Theorems 3.15. In Theorem 3.17, we introduce a class of D-automorphisms that preserve
the set of cluster variables. Weyl cluster algebras are defined in Section 4. The main results
of Section 4 are Corollary 4.9 and Theorem 4.12 which give some basic properties of Weyl
cluster algebras. Section 5 is where we introduce an action of generalized Weyl algebras
on the space of cluster monomials. In the same section we introduce the cluster strands.
Some of their basic properties are in Lemma 5.12. Some Properties of strand submodules
are given in Proposition 5.15 and 5.16.

Through out the paper, K is a field of zero characteristic and the notation [1, k] stands
for the set {1, ..., k}.

2 Cluster Algebras Associated with Valued Quivers
For more details about the material of this section refer to [2, 8, 11, 15, 16].
2.1 Valued Quivers

®  Avalued quiver of rank n is a quadruple Q = (Qo, Q1, V, d), where

— Qo is aset of n vertices labeled by numbers from the set [1, n];

— Q) is called the set of arrows of Q and consists of ordered pairs of vertices,
thatis Q1 C Qo x Qo;

- Visafunction V : Q1 — NxN, (i, j) = (v;j, v};), V is called the valuation
of Q;

- d=(d, - ,dy), where d; is a positive integer for each i, such that d;v;; =
vj;idj, forevery i, j € Q.

In the case of (i, j) € Qj, then there is an arrow oriented from i to j and in notation

(vig,vi)
we shall use the symbol " = 3. If v;j = vj; = 1 we simply write i =g
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1020 Ibrahim Saleh

In this paper, we moreover assume that (i, i) ¢ Q for every i € Qq, and if (i, j) €
Qg then (j,i) ¢ Q1. The vector of positive integers d = (dy, - -- , d,) does not play
any role in the context of this paper, so it will be ignored from now on.

If v;j = vj; for every (v;j, vj;) € V then I is called equally valued quiver.

We say that the valued quiver I' = (Qg, Q1, V) is connected, if for every v, v’ € Qy,
there is a sequence of vertices v = vy, -+, v = v’ such that fort = 1,---,1 — 1,
either (vy, v;41) or (vi4+1, vy) is in Q1, in other words, any pair of subsequent vertices
vy and v;41 are connected by an arrow.

Remarks 2.1 (1) Every (non valued) quiver Q without loops nor 2-cycles corresponds to
an equally valued quiver which has an arrow (i, j) if there is at least one arrow directed
from i to j in Q and with the valuation (v;;, vj;) = (m, m), where m is the number of
arrows from i to j.

(2) Every valued quiver of rank n corresponds to a skew symmetrizable integer matrix
B(Q) = (bi})i, je[1,n) given by

vij, if (@, j) e 01,
bij =10, if neither (i, j) nor (j, i) isin Oy, 2.1)
—Vij, if(j, i) € Ql.
Conversely, given a skew symmetrizable n x n matrix B, a valued quiver Q p can be
easily defined such that B(Q g) = B. This gives rise to a bijection between the skew-
symmetrizabke n x n integral matrices B and the valued quivers with set of vertices
[1, n], up to isomorphism fixing the vertices.

Definition 2.2 (Valued quivers mutations) Let Q be a valued quiver. The mutation i (Q)
at a vertex k is defined through Fomin-Zelevinsky’s mutation of the associated skew-
symmetrizable matrix. The mutation of a skew symmetrizable matrix B = (b;;) on the
direction k € [1, n] is given by i (B) = (blfj), where

b — { —bij, ifk e {i, j}, 2.2)

t b;j + sign(b;;) max (0, b;;by;), otherwise. ’

Remarks 2.3 (1) Let Q = (Qop, Q1,V) be a valued quiver. The new valued quiver
wr(Q) = (Qo, Q’l, V'), obtained from Q by applying mutation at the vertex k, can
be described using the mutation of B(Q) as follows: We obtain Q’l and V'’ by altering
Q1 and V, based on the following rules

(a) replace the pairs (i, k) and (k, j) with (k, i) and (j, k) respectively and switch
the components of the ordered pairs of their valuations;

(b) if (i, k), (k, j) € O1,suchthatatleasti or jisin Qo but (j,i) ¢ Q1 and (i, j) ¢
Q1 (respectively (i, j) € Q1) add the pair (i, j) to Q’l, and give it the valuation
(virvkj, vri v jk) (respectively change its valuation to (v;j +vixVkj, Vji + VkiVjk));

(c) if (i, k), (k, j) and (j, i) in Q1, then we have three cases

(i) if vigvrj < vjj, then keep (j,7) and change its valuation to (v;; —
VjkUkis | — Vij + VikVkj1);
(it) if vigvg; > v;j, thenreplace (j, i) with (i, j) and change its valuation
to (—vij + virvj, [Vji — VjkVkil)s
(iii) if vigvg; = v;j, then remove (j, i) and its valuation.

(2) One can see that; /,L]%(Q) = Q and ui(B(Q)) = B(ui(Q)) at each vertex k.
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Example 2.4 Let

(2,3) (2,3) (2,1)
L= 4 3 2 5
(1,2)
(gkl (6,3)
T 1 T 6 2.3)

One can see that I" is a valued quiver withd = (1, 2, 3,2, 1, 2, 1). Applying mutation at
the vertex 2, produces the following valued quiver

(2,3) (3,2) (1,2)
p2(l) = 4 ‘3 ‘2

5
N
(3,1) (2,2)

7 '6a) ¢

2.2 Cluster Algebras

Zelevinsky [16] Let F be an ambient field of rational functions in n independent variables

over Q(t1, ..., ty). A seed in F is a pair (X, Q), where

e X ={x,...,x,} forms a free generating set of F, and

e (O = (Qo, Q1,V) isavalued quiver with Qg = {1,...,n,n+1,...,n + m}, where
vertices 1, ..., n are called exchange vertices and n+1, ..., n+m are the called frozen
vertices.

The variables xi, ..., x, are associated with the exchange vertices and they are called

exchange cluster variables and the variables 1, ..., 1, are associated with the frozen

vertices and they are called frozen variables.

Definition 2.5 (Seed mutations) Let p = (X, Q) be aseed in F and letk € [1, n]. Applying
the seed mutation p; on (X, Q) produces a new seed wx(X, Q) = (ui(X), ur(Q)) by
setting px (X) = {x1, ..., X, ..o, Xn, tugls - - - » tnym} Where x; is defined by the so-called
exchange relations:

I;ka _ H t:);:‘-jj,k H xf”” + H t:i’:-;H H xf’”
b4 Tk i Tk J kT 'y bk T
2.4)
And i (Q) is the mutation of Q at the vertex k, given in Definition 2.2 and Remarks 2.3.
The elements of J obtained by applying iterated mutations on the elements {xi, ..., x,}
are called cluster variables.

Definitions 2.6 (Cluster algebra and exchange graph) (1) Let X be the set of all cluster
variables of F produced from a seed (X, Q). The cluster algebra A = A(X, Q) is the
Z[P]-subalgebra of F generated by X', where P is the (free) abelian group generated
by the frozen variables written multiplicatively.

(2) The exchange graph of A(X, Q), denoted by G(X, Q), is the n-regular graph whose
vertices are labeled by the seeds that can be obtained from (X, Q) by applying some
sequence of mutations, and whose edges correspond to mutations. Two adjacent seeds
in G can be obtained from each other by applying a mutation pu for some k € [1, n].
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1022 Ibrahim Saleh

Theorem 2.7 ([8, Theorem 3.1, Laurent Phenomenon]) The cluster algebra A(X, Q) is
contained in the integral ring of Laurent polynomials Z.[IP] [xli, ey x,fc].

3 Preseeds

Before introducing preseeds, we will introduce an increasing filtration of division rings of
fractions by iteration and a particular type of quivers known as star quivers.

For each m in [1,n], let P, be a finitely generated free abelian group, written
multiplicatively, with set of generators

m
F" =|_J F; where Fi = {fi1..... fim). (3.1

i=1
Let Ry = K[P] be the group ring of P; over K. Let D be an Ore domain containing
R; such that there is t; € D; so that {tix‘ ;o1 € 7} form a basis for Dy as a left R;-
module. Let D; denote the set of right fractions ab~! with a,b € Dy, and b # 0; two
such fractions ab~! and cd~! are identified if af = cg and bf = dg for some non-
zero f,g € Dy. The ring D; is embedded into Dy via d +— d - 17!. The addition and
multiplication in D; extend to D; so that D; becomes a division ring. (Indeed, we can
define ab='+cd~! = (ae+cf)g~! where non-zero elements e, f , and g of D; are chosen
so that be = df = g; similarly, ab™! - cd™' = ae - (df)~", where non-zero e, f € D are
chosen so that cf = be). In such case we say D is the division ring of fractions in #; of Dy
over R;. Now, fori € [2,n], let R; = K[P;] and D; be an Ore domain containing (as sub

rings) R; and D;_ such that there is t; € D; so that

titj =t;t; and t; fj, = fj,t;, foreveryi, je[l,n], j <i, forall r € [1,m;]; (3.2)

and {ti“ s a; € Z} form a basis for D; as a left R;-module. Let D; be the division ring of
fractions in #; of D; over R;. For each i € [1, n], the elements of the set F; are called frozen
variables. More details about Ore domains can be found in [12] and [2]. The following
diagram is meant to help readers understand the relations between the rings R;, D; and
Dii=1,---,n.
RiICR,C---CRy,
nA N - N
DiCcDyC---CDy
n N - N

Dl CDzC"'CDn.
Definitions 3.1 (Valued star quivers) ® A valued quiver I' = (Qo, Q1, V) is called a
valued star quiver with center at k € Qg if we have
01 C ({k} x Qo) U (Qo x {k}).
Furthermore, I' is called a balanced star quiver if
C> v > w =0 > vk Y vk = (ak, ),
3k T J ok T b Tk b Tk

(3.3)
and in this case the non-negative integer ay is called the frozen component of T.
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Cluster Structure on Generalized Weyl Algebras 1023

e A set of n star quivers ' = {I'y,...,I,} is said be balanced with frozen rank
(aiy, ..., ay) if each I't is balanced with frozen component ax, k =1, ..., n.

The following valued quiver is an example of a balanced valued star quiver of frozen
rank 8 and d = (6,4, 12,24, 6, 3)

(2,4) (6,4)
= 3——= 4 <—=

(4y l \se)

‘4 5 ‘6-

Although, in general, presseds can be defined using any valued quiver, here they are
defined using valued star quivers which serves best the purpose of the paper. From now on
we will omit the word valued from the term valued star quiver.

Definition 3.2 (Preseeds) ® A preseed p; of rank 1 in D is the triple ({F1}, {x1}, {T'1}),
where

(1) Fj is as described in Eq. 3.1;

(2) xj is an element of D such that there is an R;- linear automorphism on D; that
fixes the frozen variables and sends 71 to x. The element x; is called an exchange
cluster variable and the set

X :={fir,--, fim»x1}
is called the extended cluster of p1;
(3) Ty is astar quiver of rank m| + 1. The center vertex - of Iy is called exchange
vertex and all other vertices are called frozen vertices.

e Apreseed p,ofrankninD, isthe triple (F, X, I"), where F = {F1, ..., F,} (as given
inEq.3.1), X = {x1,...,x,}and I = {I"y, ..., [y} such that pr = ({Fi}, {xx}, {Tk}}
is a preseed of rank 1 in Dy, for every k € [1, n]. The following set

X:{f117"'aflmp“'vfnla~"5fnm,,a-x17'~'7-xn}

is called the extended cluster of p,. Furthermore, p,, is called balanced preseed if T is
a balanced set of star quivers and the frozen rank of p, is the same as the frozen rank
of I'.

Definition 3.3 (Preseeds mutations) Let p,, = (F, X, I') be a preseed in D,,. For each k €
[1, n], two new triples yf (pn) = (F, uf (X), k() and pf (pn) = (F, g (X), ju D))
can be obtained from p,, as follows

¢ (Right mutation)

Vi Vi Vii ; Vijiy —1 . .
iRy = L Wlgmi Jiy " T ™ Ty £y T 25707 1 =K
Xi, i 75 k.
(3.4)
e (Left mutation)

-1 vii Vi Vi Vii ; . .
by = 150 Wi 7 Tiymi fiy T 657 Ty £y ) 1=
Xi, i #k.

(3.5)
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e The mutation uy (") is as defined in Definition 2.2 and Remarks 2.3.

Proposition 3.4 Let p,, = (F, X, ") be a preseed in D,,. Then the following are true

R
i

(1) For any sequence of right mutations (respectively left) |

,u{fuil; e uf: (pn) (respectively ,ulLI uiLz e ,ul.Lq (pn)) is again a preseed .

(2) Foreveryk €[1,n],

R R
iy e i e have

M/fﬂ/%(prz) = M/%/'L]f(pn) = Dn- (3.6)

Proof We prove part (1) for M/f (pn), (respectively u,f (pn)) and the proof for an arbi-
trary sequence of right (respectively left) mutations is by induction on the length of
the sequence. From Eq. 3.4 (respectively (3.5) one has /L,If (xx) (respectively /L,f (xr))
is an expression in the elements of the set {x; 1} U Fk. Then Eq. 3.2 guarantees that
{x1,..., Xk—1, /L,f(xk), Xk+1,---,Xn} (respectively {xi, ..., xk—1, ;L,f(xk), Xk41s---»Xn})
is a commutative set. The commutativity of the elements of the set {1 ]’f (xx)} U Fj (respec-
tively the elements of the set u,f (xx) U F}) for j # k is again due to that the expression
of M;f (xz) (respectively M;% (xx)) contains only elements of {x; 1} U Fy which is by Eq. 3.2
commute with elements of F;. Part (2) is immediate using the Egs. (3.2), (3.4) and (3.5)
and the fact that mutation is involutive on valued quivers. O

Definition 3.5 (Cluster sets) Let p, be a preseed in D,,. An element y € D, is said to be a
cluster variable if y is a cluster variable in some seed ¢,, where g, is obtained from p, by
applying some sequence of (right or left) mutations. The set of all cluster variables of p;, is
called the cluster set of p, and is denoted by X (py,).

Remark 3.6 (1) From the definition of preseeds, each exchange vertex is connected only
to its associated frozen vertices. Then from the proof of Part 1 of Proposition 3.4, one
can see that every cluster variable in D,,, can be written as a Laurent expression in
exactly one cluster variable and the frozen variables associated to it in some pressed.
Which is a major difference between cluster variables produced from preseeds and
cluster variables produced from other non-commutative seeds such as quantum seeds
introduced in [3].

(2) Mutations of preseeds are not involutive but they are invertible, in the sense of Part 2
Proposition 3.4, however mutations of classical or quantum seeds are involutive.

Definition 3.7 A quadruple (F, X, T, ¢) is said to be g-commutative preseed in D, if

(F, X, T) is a preiseed and ¢ is an R, -linear automorphism of D,,, such that the following
equations are satisfied

fxi=9oW)f, VfeF, Vielln] (€]
One can see Eq. 3.7 induces the equations

Féxi = ¢%(xi) f4Vf € Fi,Vi € [1,n],a € Zso. (3.8)

@ Springer



Cluster Structure on Generalized Weyl Algebras 1025

And
xi f*= f%x;).Vf € F;,¥i € [1,n],a € Z=o. (3.9)
An example of a p-commutative preseed is given in next section, Example 4.5.

Proposition 3.8 The properties of balanced and ¢-commutative of preseeds are invariant
under preseeds mutations.

Proof One can see that the mutation of balanced preseed is again a balanced preseed with
the same frozen rank.

Now we show that ¢p-commutativity of preseeds is invariant under right mutations and
for left mutation is quite similar. For every k € [1, n], the right mutation ,u,f of p, givesrise
to an R,-automorphism v : D, — D, induced by

Y(x;) = u,f(xj), Vjell,n]. (3.10)

We will show that u,f(pn) is Yoy ~!-commutative. Leti € [1,n], f € F;. We have

i) = v(fxi)
= Y (e f)
= Yoy u(x)) f.
O

Let p = ({x1}, -x;) be a coefficient free seed of rank 1 in the field of fractions K (7).
In this case there is only one more seed ({%}, - 2 ) which is mutation equivalent to p. The
X1

Fomin-Zelevinsky (commutative) cluster algebra of p is the algebra of polynomials with
integral coefficients A = Z[x1, %]. In the following we will see two examples of attaching
star quivers at vertex -, to produce preseeds.

Example 3.9 The simplest non balanced preseed . Let p; be the seed ({F1}, {x1}, {T"1})
where F1 = {f11} and I'; is the following star quiver

it 'y -

Applying mutation at the vertex -, , we obtain the following cluster variables

=
~

xi = 7' (fu+D

=
~

i+ +1

(fu+ D7+ D2

=
~

=
o~

(fui + D21 (f11 + DF?

i+ D75 G+ DR

IESNE

(fir + 1)~ Dx (fry + D

L
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and

=
=

X1 (fir + Dyt

=

S (4 Da(fu+ D!
R
S+ D+
R
£ (i + D% (fn+1)72
:“"R. k+1 —1
(fu+1 (fu+1D7*
uk

(fir + D g (fy 4+ D~ ®FD

Then, we have the infinite cluster set X (p1) = {x1, (1 + fi1)*Tlx _1(1 + fin~k A+

fkxd+ fin7 A+ a0~ A+ A0 A+ A0 0+ fiok ke Z). Later
in this article, we will see that this seed is related to first Weyl algebra.

Example 3.10 The cluster set of the simplest (nontrivial) balanced ¢p-commutative pre-
seed. Consider the seed p1 = ({F1}, {x1}, {["1}, ¢) where F1 = {f11, f12} and T'1 is the
following star quiver with frozen rank is (1)

“fi1 ‘T “fiz -

If ¢ be a R-linear automorphism of D; satisfying the conditions (3.7). Then this seed
produces the cluster set X'(p;) given by

(i + foxr a7 G+ f2), o5 (), (i + e (), o ) (fir + fio)s k € Z).

One can see that X'(p1) is a finite set if and only if ¢ is of finite order.

Remark 3.11 Examples 3.9 and 3.10 show that the Fomin-Zelevinsky finite type classifica-
tion [9] does not work in the preseed case in general.

Lemma 3.12 Let p, = (F, X, T, ¢) be a p-commutative preseed. If Ty is a balanced star
quiver, then we have
(le)z(xk) = @% (xy) for some nonnegative integer ay; (3.11)

and
(;L,f)z(xk) = @~ % (xx) for some nonnegative integer ay. (3.12)

Proof Smce,u (I'y) = —TI'k. Then, one has
) = w8 CTT i+ T A5

iy i—k i, k=i
= H vlk 1_[ Ukt)xk( 1_[ Uzk 1_[ Ukz -1
Qi ek i k=i ik Q=i
= % (xp).
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The last equation is by the commutativity of x1, ..., xg, ... x, and applying (3.8), noticing
that I'y is a balanced star quiver with frozen rank ay. This finishes the proof of Eq. 3.11. The
proof of Eq. 3.12 is quite similar except for using the commutation relations (3.9) instead
of (3.8). O

Corollary 3.13 Let p, = (F, X, T, ¢) be a p-commutative preseed with ¢ be a finite order
ring homomorphism. If Ty is a balanced star quiver, then there is a non negative integer r
such that

WY (pn) = WP (Pn) = pa. (3.13)

Proof Assume that ¢” = idp, for some non negative integer r. Then using (3.11) (r-times)
we get

(O (x) = "% (o) = xe. (3.14)
And, we already have (M,f)zr (xj) = xj for j # k, and (M,f)2’ (') = T, which finishes
the proof. O

Question 3.14 For which preseed p, = (F, X, T"), the set of cluster variables X (py) is
finite?

In the following we provide equivalent conditions on g-commutative preseed to produce
a finite type cluster algebra.

Theorem 3.15 Let p, = (F, X, T, ¢) be a balanced, ¢-commutative preseed. Then, the set
of all cluster variables X (py,) is a finite set if and only if ¢ is of finite order.

Proof Let u;;, ..., i;, be a sequence of mutations containing j copies of p. Then, by the
definition of preseeds mutation, we have

Wiy -+ i (k) = g (k).

Hence, for any preseed (F, X, I'), we have

X(pn) = J X (p1(x)), where pi(xi) = ({Fi}, {xi), {Tw)). (3.15)
k=1

So, from Eq. 3.11 one has, for every k € [1, n] the set of all cluster variables of pp(xx)
contains the set of the cluster variables of the form {gol“k (xx); | € N}, where ay is the frozen
rank of pj(xx). The set {gal”k (xx); I € N} is an infinite set if ¢ is not of finite order. Which
implies that if the set of cluster variables of p,, is finite then ¢ must be of finite order. Now
assume that, ¢ is of finite order. Then from Eq. 3.13, the preseed p; (xx) will be reproduced
after applying pk, 2r-times which means that the set of cluster variables of pj(xy) is finite
for every k € [1, n] and then so is the set of cluster variables of p,,. O

Saleh [15] Let f be a Rj-linear automorphism over D,,. Then f is said to be a cluster
variable preserver of the preseed p,, if it keeps the cluster set X’ of p,, invariant.

Question 3.16 Given a preseed p, = (F, X, I') describe the set of all cluster preservers of
Pn-
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Theorem 3.17 Let p, = (F, X, T, ¢) be a balanced ¢-commutative preseed with frozen
rank (ay, ..., ay). Let ¢; be the Ry-linear automorphisms of Dy, induced by

$i1(t) =1, Vi € Ry and ¢r(xx) = ¢'% (xp), Vk € [1,n]. (3.16)

Then, for everyl € Z, ¢; is a cluster variables preserver for py.

Proof Notice that, by definition of ¢y, it depends on the frozen rank of p,, which is invariant
under mutation, thanks to Proposition 3.8.

First, for nonnegative integers. Let / = 1. Equations (3.11) assure that, the action of the
automorphism ¢; on the cluster variables of p,, is identified with the action of the sequence
of the mutations [T/_, (1f)?.

Let x be an element of X' (p,), without loss of generality, we assume that x is a clus-
ter variable of some seed g,, that can be obtain from p, by applying some sequence of
only right mutations say u{f ... ,u,i’f[ . Then, ¢ (x) must be a cluster variable in the seed
1o ()% (@) = TTimy 2l o 1 ().

For ! > 2, again using (3.11), the action of ¢; is identified with the action of the sequence
of mutations (]_[le(uf)z)l(p,,). Proving that ¢; permutes the elements of X (p,) is quite
similar to the case of [ = 1 with the obvious changes.

The case, when [ is a negative integer, is similar, with using Eq. 3.12 instead of Eq. 3.11.

O

4 Weyl Cluster Algebras
4.1 Definition of Generalized Weyl Algebras

Definition 4.1 (Generalized Weyl algebra (1, 13, 14)) Let {&1, ..., &,} be a fixed set of
elements of a commutative ring R and 6 = {61, ..., 0,} be a set of ring automorphisms
such that 6;(§;) = &; for all i # j. The generalized Weyl algebra of degree n, denoted
by R(#, &, n), is defined to be the ring extension of R generated by the 2n indeterminates
X1y -++sXn, Y1, - - - » Yo modulo the commutation relations:

xir = 6;(r)x; and y;jr = Gi_l(r)yi, for any i € [1, n] and for any r € R, “4.1)

Xiyi = Ei, yiXxXi = 9_1(51‘), XiyYj = YjXi, XiXj = XjXi and Yiyj =YjJi Vi 7& ] € [l,l’l].
4.2)

We warn the reader that x;y; # y;x; in general. The variables x1, ..., x,, y1, ..., y, are
called Weyl variables.

Example 4.2 [4, 13, 14] Let A, be the n'" Weyl algebra generated by the 2n variables
X1y ey Xny Y1 --., Yy over K with the relations

xiyi —yixi =1, and x;x; = x;x;, y;y; =y;y fori#j, Vi, jel[l,n]. 4.3)
Let& = y;x; + 1, R be the ring of polynomials K [&1,...,&,] and §; : R — R, induced

byé — &+ 1,8 — &;,j #1i, foralli, j € [1,n]. It is known that A,, is isomorphic to
the generalized Weyl algebra R(6, &, n).
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Example 4.3 [13, 14] The coordinate algebra A(SL,(2, k)) of algebraic quantum group
SL4(2, k) is the K-algebra generated by x, y, u, and v subject to the following relations

qux = Xu, qux =Xxv, qyu =uy, qyv =vy, uv=ovu, q € K* 4.4)

xy=quv+1, and yx = ¢ luv+1. 4.5)

A(SL4(2, k)) is isomorphic to the generalized Weyl algebra R(€, 6, 1), where R is the
algebra of polynomials K [u, v]; & = 1 + ¢~ 'uv and 0 is an automorphism of R, defined
by 6(f (1, v)) = f(qu, qv) for any polynomial f(u, v).

Definition 4.4 (Weyl preseeds and g-commutative preseeds) Let p, = (F, X, I") be a pre-
seed of rank n in D,,. A quadruple (F, X, I, 0) is said to be a Weyl preeseed if there is a
setf = {01, ..., 6,} of ring automorphisms of R,, such that for every i € [1, n], 6; fixes all
the exchange cluster variables and satisfies

=0 ()X Vf e FLvie [l (4.6)
If there is a fixed scalar ¢ € K™* such that 6; satisfies
0;(fi) = qf;, forevery i €[l,n]. “.7)

In such special case, p, = (F, X, I, q) is called g-commutative preseed.
Let p, = (F, X, T") be a preseed and let

b= T1 s+ [T A ketin 49)

Pk ki
Then Relations 4.6 can be extended to Skil as follows
o (EFHE = xFEF kel nl. 4.9)

Example 4.5 Let R(6, &, n) be a generalized Weyl algebra. Consider the quintuple p, =
(F.Y,T,9,0), where F = {F;}{_, Fi ={fi; fi = yixi}, Y = {y1, ..., )}, T = {TW}7_,
such that for i € [1, n], I'; is the quiver

fi < Yi o

and g is given by
@(vi) = &yi& ' where& =1+ fi, i €[1,n]. (4.10)

A short calculation shows that ¢ satisfies Eq. (3.7), hence p, = (F, X, ', ¢, 0) is a ¢-
commutative preseed. Also, from the properties of the R-automorphisms 6 = (61, ..., 6,)
given in Egs. (4.1) and (4.2) one can see that 6; satisfies Eq. (4.6) for each i € [1, n] which
makes p, a Weyl preseed, then p, is ¢-commutative Weyl preseed.

In this case the iterated division rings D;, i = 1, ..., n, attached with p,,, are subrings of
the division ring of rational functions in yy, ..., y, over the ring R. In particular, in the case
of the n'" Weyl algebra A,, the ring R is the ring of polynomials K [£(, ..., &,]. One can
see that this ambient division ring of rational functions is an Ore domain. For information
about Ore domains we refer to [3, 12].
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Example 4.6 Recall the coordinate algebra A(SL4(2, k)) of the algebraic quantum group
SL4(2, k). Consider the preseed p1 = ({F1}, {x}, {I'1},{61}), where F| = {qu, v}, 0; :
R — R given by 01 (f (u, v)) = f(qu, gv) and I'; is given by

One can see that p; is a g-commutative preseed. Let ¢ = quv + 1. The cluster set of pj is
given by

X(p1) = {x, ¢/xe=I, oM e == j e NY Uy, ¢/ye 7, ¢/ y=le ==t j e N

(4.11)

Remark 4.7 If p, = (F,X,I,0) is a Weyl preseed, then the two quadruples
(F, uR(X), =T, 6~") and (F, u*(X), —T,0~") where 6 = {6;', ..., 6, '} are again Weyl
preseeds, for every i € [1, n].

Lemma 4.8 Let p,, be a g-commutative preseed with g being an m'" root of unity, for some
natural number m and let Ty, be balanced star quiver. Then, we have

W™ (pn) = (WEY*™ (Pn) = Pa- (4.12)

Proof

w00 = wd T v+ [T »*»xH

Lyi—™k k=i

(1_[ v+ 1_[ ¥ x( l_[ v+ l_[ yr!
i,.

ik k=i Li =k Lik=>i

= C[T o™+ TT s TT v+ TT 597

ii—k iyk—>i Iy —>k Iyk=>i

= CJ] »™+ [T »™e T 5™+ T] ™ O

b=k k=i b=k k=i

= [T »+ [T s IT s+ T v 'x

ii—>k iog—>i ii—>k (R

= q~ % xx, where qy is the frozen component of I'.

Then

(f)" () = g 7" % = xy.
And since we already have (,u,f)”” (I') = T', which completes the proof. O
Corollary 4.9 Let p, = (F, X, T, q) be a q-commutative balanced preseed. Then the set

of of all cluster variables X (p,) is finite if and only if q is an m'™"-root of unity, for some
natural number m.

Proof From Lemma 4.8 and Eq. 3.15 we have
{g" % 1€ N} C X(pi1(x) C X(pa). Vk € [1,n].
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If for every natural number m, ¢ # 1, then for each k € [1, n], the set {q(’“k)lxk; | e N}
is an infinite set. So, if X'(p,) is a finite set then g must be an m’ h_root of unity, for some
natural number m. Now, assume that g = 1, for some natural number m, then again using
Lemma 4.8, for each & in [1, n], the seed p;(xx) will be reproduced after applying uf, 2m-
times. Then X (p1(x¢)) is a finite set for each & in [1, n] and hence again from Eq. 3.15, the
set X' (p,) must be a finite set. O

Definition 4.10 (Wey] cluster algebras) Let p, = (F, X, I, ) be a Weyl preseed. The Weyl
cluster algebra H(p,) is defined to be the R,-subalgebra of D, generated by the cluster set
X (pn)-

The following remark and theorem shed some light on the structure of the Weyl cluster
algebra H(p,). Remark 4.11 and first part of the Theorem 4.12 can be phrased as, the Weyl
cluster algebra H(py) is generated by R, and many (could be infinite) isomorphic copies
of generalized Weyl algebras, each vertex in the exchange graph of p, gives rise to two
copies of them. The second part of the theorem is the Laurent phenomenon, Theorem 2.8,
in the Weyl preseeds case. The third part of the same theorem is simply saying that H(p,)
is isomorphic to the tensor product of the n Weyl cluster algebras of rank one associated to
the n iterated rank one Weyl preseeds associated to p,,.

Remark and Definition 4.11 Let p, = (F,X,T,0) be a Weyl preseed and R =
K&, ..., &,] be thering of polynomialsin &, ..., &, where §&;,i = 1, ..., n are as defined
in Eq. 4.8. Then p, gives rise to two copies of generalized Weyl algebras of rank »n, as
follows

(a) HR(p,) is the ring extension of R generated by uR (x1), ..., uR(xn), x1, ..., x5

(b) HE(py) is the ring extension of R generated by x1, ..., x,, ub(x1), ..., nk(x,).

(b) In particular, if p, = (F,Y, T, ¢, 0) is the preseed given in Example 4.5, then each
of HR(p,) and HE (p,) are isomorphic to R(6, &, n) as generalized Weyl algebras. In
the case of HR(py) (respectively H L(pp)) the isomorphism is defined by sending the
cluster variable ,uiR (x;) to the Weyl variable x; and the cluster variable x; to the Weyl
variable y; of R(0, &, n) (respectively by sending the cluster variable x; to the Weyl
variable x; and ,ulR (x;) to the Weyl variable y;) fori = 1, ..., n. Details for the case
n = 1 are given in Example 4.14.

Theorem 4.12 Let p, = (F, X, T, 0) be a Weyl preseed in D,,. Then the following are true

(1) Right and left mutations on p, induce isomorphisms between the generalized Weyl
algebras H® (p,) and H® (g (pn)) (respectively H" (p,) and H (it (pn))).

(2) The Weyl cluster algebra H(p,,) is a subring of the (non-commutative) ring of Laurent
polynomials in the initial exchange cluster variables with coefficients from ring of
polynomials R, [0 (&71), ..., 0 (5, D]

(3) Let p1(xk) be the rank one preseed (Fy, {xi}, {Tx}, Ok}). Then

H(pn) = H(p1(x1) @ - & H(p1(xn)). (4.13)

Proof To prove part (1), consider the R,-linear automorphism of D,, denoted by T;f“ X
D, — D, induced by x; — pL,If (xx), k € [1, n]. The restriction of this automorphism
on HR(p,) induces the algebras isomorphism Tpi,i,k HR(p,) — HR(u,f (pn)) given by
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r > rVroe Ryand xp > ul(xi) = &x;',Vk € [1,n]. Which implies uff (x¢) >
Ekxkf;'k_ = Uy (/Lk (xx)). Finally, it is easy to see that the generalized Weyl commutation
relations (4.1) are invariant under Tlf - (The argument for H L(pn) is quite similar).

For part (2), let y € X (py). Without loss of generality, using (3.15) we can assume
that y is an element of X (pi(xx)) for some k € [1, n]. Hence, y can be obtained from xj
by applying some sequence of mutations on pj(xg). Let [ be the length of a shortest such
sequence of mutations. By Eq. 3.6 we have that every non-trivial sequence of mutations
can be reduced to either only right mutations or only left mutations. Then, by mathematical
induction on [, one can show

s 141 )0 _(1+|_1) _1

H»]
gkl 5/( T 5

Ekzxkék or g,:kask , if  is an even number.

41
g, , if l is an odd number;

y= (4.14)

Now, let m be a monomial in the elements of X (p,). Then again using (3.15), and the
identities (4.14), (4.9) and the commutations relations (4.2), one can write m as rm’ where
r is a monomial in the elements from the set F” U{Hlil(él_l), e Gf] (En_l)} and m’ is a
monomial of elements from {x,fcl, k € [1,n]}. Finally, the elements of H(p,) are finite
sum of finite product of monomials from the elements of X' (p,) which finishes the proof
of Part (2).

For Part (3), by the definition of Weyl cluster algebra and the proof of Part (2) above one
can see that the Weyl cluster algebra H(p;(xy)) is generated as a K-vector space by the
monomials

me = (L fomt OF € Nl g ., B € 2.V € [1, myl). (4.15)

Then, the Weyl cluster algebra H(p,) is generated as a vector space by m(p,) =
{my---my; mp € my, k € [1,n]}, where mijm; = mjm; form; € m; and m; € m;
for every i # j € [1,n]. Now we will show that m(p;) consists of linearly independent
elements. Let £ = Rn[Glil (Efl), e Gfl(én’l)][tlil, . ,t;—”], consider the linear endo-
morphisms of E given by X,:fl(f) =t*lf, f € E. The map o : H(pn) — End(E)
induced by xkjEl — X kil , k € [1, n] defines an algebras homomorphism. One can see that
the endomorphisms

Xlm

S f e fl s e @FENET )0 6 ) X X

Otji,()l;-i,ﬁj €Z,i€ [l,mj],j e [1,n]

are linearly independent elements of End(E) over K. Hence, m(p,) consists of linearly
independent elements which makes it a basis for H(p,) as a K-vector space and o is an

injective algebra homomorphism. Then the map that sends m---m, onto m; ® --- ®
my, my € my,k € [1,n] defines an isomorphism from H(p,) to H(pi(x1)) ® -+ ®
H(p1(xn)). m

From the Proof of Part (2) of Theorem 4.12, we have the following remark.
Remark 4.13 The Weyl cluster algebra H(p,) is finitely generated algebra.
Example 4.14 (Weyl cluster algebra associated to first Weyl algebra) Recall the n'" Weyl

algebra given in Example 4.2 and the associated preseed given in Example 4.5. Let A1 be the
first Weyl algebra and consider the preseed p1 = ({f}, {y}, {-y — -r}). Here R = K[P],
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where P is the cyclic group generated by f = yx. Then We have the following exchange
graph

e G(pn
R Y3 R Y2 R Y1 R Y=Y R Y% R Y2 R Y R
L L L L L L L L

(4.16)

(here - —B s left mutation and ~ £ is right mutation). Which can be encoded by the
following equations
Yok+1Y2k = YokYok+1 + 1, for k € Z. (4.17)
The Weyl cluster algebra H(p;(y)) is the R;-subalgebra of D; generated by the set of
cluster variables {yx, k € Z}. Relations (4.17) can be interpreted as follows, each arrow in
G(p1) corresponds to a copy of first Weyl algebra, denoted by A¥ = K (yr, yis1), k € Z
and right (respectively left) mutations define isomorphisms between the adjacent copies,
givenby Ty : A’f — AIIH, Yk > Yi+1 fork € Z (respectively to the inverses of Ty, k € Z).

The adjunction isomorphism © : RO',072%),1) - RO, 1) given by r —
6~'(r), x = yand y — x. In [13], the adjunction isomorphism played an important role
in describing the representations theory of generalized Weyl algebra R(0, &).

Remark 4.15 Consider the preseed p; = (F, Y, I') associated to the generalized Wey] alge-
bra R(§, 60, 1), given in Example 4.5. The action of the adjunction isomorphism ® on the
exchange cluster variables of any two adjacent seeds on the exchange graph of p; coincides
with the action of the right and left mutations.

5 Representations Arising from Weyl Cluster Structure
5.1 Space of Representations V,,

In the following, let p, = (F, Y, T, 6) be the generalized Weyl preseed associated to the
generalized Weyl algbera R (0, &, n), as given in Example 4.5. A cluster monomial in H(p,)
is a product of non negative powers of exchange cluster variables belonging to the same
cluster. To visualize that, the monomial m = z’f‘ -~-z§”, Bi € Zxp,i € [1,n]is a cluster
monomial if {zy, ..., z,} is the set of the exchange cluster variables of some seed in the

exchange graph of p,,.

Definition 5.1 The space of representations V,, is defined to be the K (fi, ..., f,)-left span
by the set of all cluster monomials.

Lemma 5.2 The space of representations V,, is independent of p, and depends only on the
exchange graph G(py,).

Proof The statement of the lemma is equivalent to the fact that “the set of all cluster mono-
mials of every seed in G(pj,) is the same” which is equivalent to “any two seeds in G(p,)
have the same exchange graph” which is an immediate result of the fact that the set of
all seeds in G(p,) form an equivalent class under (left and right) mutations as equivalent
relation which is due to Part (2) of Proposition 3.4. O
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Proposition 5.3 If p, is a preseed, then the following are true

(1) For any set of n (or less) different cluster variables, not including two variables pro-
duced from the same initial cluster variable, there is at least one preseeed in G(py,)
which contains all of them;

(2) For any two cluster variables z1 and 7z, produced from the same initial cluster
variable, there are two cases for their product

® if 75 can be obtained from z1 by applying some sequence of mutations of an odd
length, then 7122 € K(f1, ..., fa);

® fz5 can be obtained from 71 by applying some sequence of mutations of an even
length, then z1z2 can be written as gz%, for some g € K(f1, ..., fn)-

Proof Every cluster variable can be traced back to one of the initial cluster variables. More
precisely, forany y € X (p,) thereisk € [1, n] such that y € X' (p;(x)), thanks to Eq. 3.15.

Hence, there is a sequence of mutations ¥ such that y = u”(xg). Now, let {y1, ..., yr}
be a subset of X'(p,) such that r € [1, n]. Then, one can see that the cluster of the seed
uXt - uY (py) contains the set {yy, ..., y}. Part (2) is immediate from Eq. 4.14. O

Let Y = {y1,...,yu} be the cluster of the preseed p,. For t € Z, y;; denotes the
cluster variable obtained from the initial cluster variable y; by applying one of the following
sequence of mutations (1X)" if # > 0 or (uF)~"if t < 0.

Using Proposition 5.3 and the above notation, a typical element of V,, can be written as
a sum of elements of the form

v=r(fa fY (5.1)
where r(f1, ..., fu) € K(f1,..., fu), (B, ..., Bn) € Z;o and (my,...,my) € Z".

Example 5.4 Consider the Weyl preseed p, = (F, Y, T, ), as given in Example 4.5. The
i branch of the exchange graph G(p,) is as follows

(Y1,mq - sYiymi—1se-Yn,mn) R (Y1,mq s sYi,my s Yn,ma ) R (Y1,mqss¥Yiimi+15Yn,my )
L L

For the sake of simplicity, we labeled each vertex by the clusters only. The space of
representations V,, is the left K (1, ..., &,)-linear span by the set

vl | for m=(my.....my) € Z" and B = (Bi..... ) € L) (52)

Definition 5.5 (Representations of R(6, &, n) on V,;) An action of the generators x1, ..., x,
and yi, ..., y, on the (a generic) element v (given in (5.1)), is given by
Vi) = fin fin 07 ) oy Y B,
(5.3)
and
X () = 0 (I (frs ey Fimt, 0 (F), ..., fn)y]ﬁfm1 ---yfi’]{miflyfi,,l.ﬂyfjj‘,miﬂ ey
5.4)

Lemma 5.6 The actions given in definition 5.5 define a fully faithful left module structure
of R(6,&,n)onV,.
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Proof The module structure of R(6, &, n) on V,, is defined by extending Egs. (5.3) and (5.4)
to random elements of R(6, &, n). It is obvious to see that the actions given in Egs. 5.3 and
5.4 are compatible with Relations (4.1). In the following we show that Relations (4.2) are
satisfied on the generic element v, given in (5.1). We have

xiyiW) = 5 e 07 ) vy Y )

= (N (fivee e 67O fdy I B

= 0;(fi)(v)
= §v.
And
yixi(v) = yi(9i(fi)r(f1,...,9i(ﬁ),..-,fn)yf}fm]- v Lo ly,ﬂ,,,,Hy,ﬂf]‘m,H b))

6167 S 6O ) SV oy )
fiv.

In a similar way, one can get the rest of the Relations (4.2). The property of fully faithful
module is a straightforward from the definitions of the actions given in Egs. 5.3 and 5.4. O

Proposition 5.7 The module structure given in Definition 5.5 can be extended to the Weyl
cluster algebra associated to p,,.

Proof To upgrade the representations of R(6, &€, n) on V, to the Weyl cluster algebra asso-
ciated to p,, we introduce the action of yfl on the element v, by y;” ! ) = 071 (&)X (v).
The action of a random element of the Weyl cluster algebra H(p,,) will be induced from the
action of both of y; and yi_1 fori =1, ..., n, thanks to Part (2) of Theorem 4.12. O

5.2 Cluster Strands and the Strand Submodules of V,,

Before introducing the cluster strands we need to introduce the following notations. For
t€Z,let

t—times
—
0@(...0(-))), ift >0,
0" (=) = { idg, ift =0,
|t|—times

Lo~ ..07(~))), ift <.

Consider the following three sets of monomials in the elements {0’ (z); t € Z}
)]

MF (@) = {1,0"Ho" T ) - 0T (2D g, 1 € Z=o):
)

M~ (z) = {1,0" 0" @) - 0" )lg € Z=o.t € Zoo);
3)
M(2) := {mimalmi € Mt (2) and my € M~ (2)}. (5.5)
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For every h € K(fi,...,fs) and t = (t1,...,1t,) € Z" we associate a subset of
K(f1,..., fn) as follows

c(h, 1) = a1 -+ auh(0] (f1), ..., 0 (f))| i € M(fi), Vi € [1,nl}. (5.6)

Definition 5.8 (Cluster strands) Fix a natural number / and a one to one map o

[—times
—
(1,I] - ZLy xZ". Let B = (B1,...,B1) € ZLy x --- x Zigand m = (my,...,my) €
|—times B B
— —
Z" x --- x Z" such that o (j) = (01(j), 02(j)) = (B, m;) where B; = (Bj1, ..., Bjn)

andm; = (mjy,...,mj,),j € [1,1]. Letr = (r1,...,r;) suchthatr; € K(fi,..., fu)
for j € [1,1]. Consider the following subset of V,,

!
/S' ﬂ‘n .
S ) = | g k0,185 € €ty = ) €20 € 1L
j=1
(.7)

With the above data, S;(o, r) is called a cluster strand of length I, with respect to r and
o. Furthermore, S (o, r) is called a full cluster strand if o1(j) € Zio for every j € [1,1].

Example 5.9 (A cluster strands of length 2 in V3) Let! = 2, o1(1) = (0, 3,0), 01(2)
(1,0,2), oo(1) = (1,1,0),00(2) = (0,1,1), and r = (f12 + f2, f1f3). For t;
(ljl, tj2, tj3) € Z3,j € [1, 2], we have

c(ff + fo. 1) = {3 (0" (f1)* + 6,2 (f2) i € M(f),i €[1,3]},

and
c(f1 3. 02) = {aronasf P ()02 (f3)| e € M(fi),i € [1,3]}.
With the above data we have

S3(o, 1) = {glyg,m,z +82Y1,0+z21y32,1+,23|g1 ec(fi+ ), g ec(fifo,tr), i € Z3}~

Proposition 5.10 Each element of V,, gives rise to a cluster strand.

Proof For every element v of V,,, one can find rq, ..., r; elements of K(fi,..., f;) such
that v can be written uniquely as follows

v :rl(flm..,fn)y,ls’lyz“ "'y,'?f,"nln +...—|—r1(f],...,fn)yllsf,l,,]1 '“yff;’,,,”.

Such thata 1 — 1 map o : [1,/] — ZZ, x Z" can be defined with o (j) = (01(j), 02())),
where o1(j) = (Bj1,...,Bjx) and 02(j) = (mjy1,...,mj,), j € [1,1]. Using Definition
5.8, one can introduce a cluster strand S;(o,r) with r = (r1,...,r;) and o as defined
above. O

We denote the cluster strand associated to v by S;(o, ) (v).

Question 5.11 Does the cluster strand S; (o, r)(v) depend on the choices of r or o ?
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The following lemma and Remarks 5.14 provide some basic properties of the cluster
strands.

Lemma 5.12 (1) Let v be an element of S;(r, o). Then S;(r, 0)(v) = S;(r, 0);

(2) We have S (o, g) = Si(o, f) if and only if for every i € [1, n], either g; € c(fi, t;) for
somet; € 7" or f; € c(g;, 1)) for somet] € Z";

(3) Letg = (g1,-..,8n) such that g;i € c(fi,t;) for some t; € Z",i € [1,n]. Then
Si(0', 8) = Si(0, f) ifand only if ¥ € [1,11,0](j) = 01(j) and }(j) = 02(j) +4;
for some q; € 7.

Proof For Part (1). Fix v = Zl,‘zl gjyf’;;, ~~yf";/ € Si(o,r). Then we must
? (| in
t t
have, for every j € [L.1].g; = oy a),rj@ (f0).....6/" (fa)) € c(rj.1}), for
some t} = (t;.l, e tj/.n) € Z". A typical element of c¢(rj,t;) would be of the form

@ @juri 07 (f), .., 07" (fu) with aj; € M(f;),Vi € [1,n], which can be written
as

tiy =ty tin—=thy tj1—t’ tin—t),
aji @, 0 T @ T D O T D0 ()

which is an element of c(gj,t; — t;.). Thus, any element of the following form

le=1 rjyl,jrl:jwrtj] -~-yn;’mjn+,jn is in fact an element of S;(g, o"), where o{(j) = o1(j)

and aé(j) =03(j) +tj, j €[1,1]. Then S;(o, ) C Si(o”’, g). But from the Proof of Propo-
sition 5.10, one can see that S;(o”, g) = S;(c’, g)(v). Again from the proof of Proposition
5.10, one can see that S;(o, g)(v) € S;(o, r). Therefore, S;(o, r) = S;(o, g)(v).

For Part (2). (=) is Obvious. For the other direction («). Without loss of generality,
let g; € c(fj,t;) for some t; = (tj1,...,tj,) € Z". Then for every j € [1,]], there
are aj; € M(f;),i € [1,n]such that g; = ajy - aju f5(67 (f1), -, 6x" (). Now, let
v € S;(g, o). Hence, we have

1
Bi1 Bjn
v= X:gjyl,m’.1 o yn,m’
j=1 !

jn

1
t; tin Bj jn
= Do fi@ (). B )y e si(fo).
j=1 J Jn

Therefore S;(o, f) = Si(o, g)(v) = (o, g) thanks to Part (1) of this lemma.

For Part (3). First for (=). One can see that, if o{(j) = 01(j),Vj € [1,1], then o’ =
0+ (0, q), g € Z". Now, assume that o’ (jo) # o (jo) + (0, g;) for some jo € [1, ] and for
every g € Z". Hence o{(jo) # o1(jo). Then the element

!
/3 inl ﬂ n ﬁ'] /3 in
vo :gjOyl,jr(:lj01+lj01 ...ynv]:’)7_f0n+tj0n + Z gjyl,]}71j1+tj1 .“ynalmjn‘i‘tjn
JElLIN{o}
is an element of S;(¢”, ) with 6{(j) = (B;1, ..., Bjn)- However, vy is not an element of
Si(o, f). (<) is immediate. O

Definition 5.13 Any submodule of V,, generated by a cluster strand S;(o, r) is called a
strand submodule and is denoted by W; (o, r).
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In the occasions, when we want to emphasis on a certain element v of V,;, we will denote
the strand submodule associated to the cluster strand S; (o, r)(v) by W;(o, r)(v) or, for the
sake of simplicity, by W;(v).

Let M(E) be the set of all monomials formed from elements of the set E =
{x1, ..., X0, Y1, ..., Yn}. A special cluster strand is defined to be a subset of a full cluster
strand Sj (o, r) of the form

1
Si(o,r) = { ngyf’éi,-,+z. "'yf;'ﬁljn+tn|’ =(t1,....ta) €Z",gj €c(rj, 1), j €L, l]].
j=1
R (5.8)
The submodule of W; (o, r) generateii by the special cluster strand S;(o, r) is called
special stand module and is denoted by W; (o, r).

Remarks 5.14 (1) Let @(o, h) be a special cluster strand. Then

(@)
§[(O’, h) is a proper subset of S; (o, h);

(b)
§1(O‘, h) = M(E)w, forevery w € E(a, h).

(2) There is a bijection between the set of all cyclic submodules of V,, and the set of all
special strand submodules.

Proof Part (1) is straight forward. For Part (2), let W be a cyclic module generated by w
with assogjated cluster strand Sj (o, r)(w). Then by the definition of special cluster grands,
we have W;(o, r) is a submodule of W. One can realize that W is a submodule of W (o, r)
too, if we recall that W is cyclic module generated by w which is an element of §l(a, r).
The bijection is defined to send W to S;(o, r). O

Proposition 5.15 (1) Every strand submodule W;(f, o) can be identified with a sum of
(identical) copies of the cluster strand S;(h, o).

(2) Every submodule W of V,, is a sum of some strand submodules. In particular, W is
generated by a set of cluster strands.

Proof (1) First we show that the extensions of the action of the elements of M(E),
induced by Egs. 5.3 and 5.4, keeps the cluster strands invariant. One can see that
for every g € K(f1,..., fp) and t € Z" the coefficients set c(g, t) is invariant
under the actions of the elements of E and then under elements of M(E). Now, let
v = lezl gjy'ls’jriljl - -yff}'}li" be an element of the cluster strand S;(h, o). Recalling
that the actions given in Eqgs. 5.3 and 5.4 define a fully faithful representation, one can
see that under the actions of elements of E the length [/ stays unchanged with respect
to h and o, which will stay unchanged too. Hence for any monomial m € M(E), we
have m(v) € S;(h, o), more precisely

1
tj tin Bj Bjn
m(v) = ZOljl e 'Oljngj(eljl (f1), ..., 911 (fn))ylyj,,le_Hjl o 'yn,]m/n_;,_,jn. 5.9)
J=l1
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Where aj; € M(f;) and t;; € Z, Vi € [l,n],j € [I1,[]. Recall that, ele-
ments of W;(h, o) are finite sums of finite products of elements of R(6, &, n) acting
on an element of S;(f, o). But every element of R(6,&,n) can be written as a
K(f1,..., fu)-linear combination of elements of M(E). Then from Eq. (5.9) ele-
ments of W;(h, o) are finite sum of elements of S;(%, o). In the same time one can
obviously see that every sum of elements of S;(%, o) must be an element of W;(h, o).

(2) We first notice that, from Part (1) of Lemma 5.12, we conclude that every two cluster
strands are either identical or have zero intersection. So we can introduce the following
equivalence relation on V,,

Vs,s' € V,, s ~ s’ if and only if s and s’ belong to the same cluster strand. (5.10)

Let W be a submodule of V,, and W* = W/ ~. Here, every w* € W*, is the intersec-
tion of W with the cluster strand S; (o, f)(w). If Wl* (w) denote the submodule of W
generated by w*. Then we have the following identity

W= Y Ww. (5.11)

wreW*

O

Proposition 5.16 Let Si(o, h) be a full cluster strand. Then any two strand submodules of
Wi (o, h) have a non-zero intersection.

Proof Let Wi = Wy, (c*, h*)(w1) and Wo = W, (0%, h*)(w;) be any two proper strand
submodules of W;(o, k). From Proposition 5.15 and Proposition 5.10, one can see that the
cluster stands Sy, (o*, h*)(w1) and Sy, (o2, h*)(w,) satisfy the following

There are two natural numbers d; and d such thatl; = d;l,i = 1, 2;
Y=, .. by, oo b, ., hay ) and B (hll’""h/ll’""h:ill""’hiizl)
where there are ¢j, € Z" such that j, j,, h. . e c(hj,, tj,) forevery j1 € [1,d;], o €

J1J

[, 1; v
e Fori =1,2wehaveo’ : {11,12,...,11,...,d;1,...,d;l} — Z’;O x Z", such that
o' = (oy,0%) where o;(j1j2) = 01(j2) and 0;5(j1j2) = 02(j2) + tj;j, for some

tj j, € Z", forall jr € [1,1].

Now we will show that the sum of any d;-elements of Sj(o,h) is an element of
S (o, h')(w;), for i = 1, 2. Consider the following two elements

Z h .szl . yﬁ]zn
1y 1,m; I-H/]l i n, mjzn-‘rtlljz
2=l
and
Z h ﬂ/zl . yﬂ/zn
1 e szl'H/]Jz mmjpn
J2=

One can see that the elements w, and w}l are elements of S;(o, h) for every j; € [1, d;]
for i = 1, 2. Then the cluster strands associated to wj, and w’. coincide with S; (o, h) for
every j1 € [1,d;],i = 1, 2, thanks to Part (1) of Lemma 5.12.
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For every ji € [1,d;], we have s € S(wj,) = S(wg.l) for every s € S(w). Let I’ be the
least common multiple of /; and ;. So, I’ = n;l;, for some n; € N,i = 1, 2. Consider the
element

l/
w' =) s;, where s; € Sw) \ {s1, ..., 51}, Vi € [1,1].
i=1

One can see that, ‘w’ is in deed a sum of n;d;-elements of the cluster strand of w;; and
elements of S;, (o', h')(w;) are sums of d;-elements of @he pluster strand wj;, i = 1, 2. Then
w’ is a sum of d;-elements of the cluster stared Sy, (¢, h')(w;), i = 1, 2. Therefore from
Part (1) of Proposition 5.15, we have

w' e W(wy) N W(wy).
O

The following corollary is a consequence of the proof of Proposition 5.16. Let S;(o, )
be a cluster strand with a strand module W; (o, ). For every natural number j we introduce
a subset of S; (o, h) give by

S/ h) = {s1 4 +sj; si €S, )\ fs1,....si-1}, Vi € [1, j1}.

Corollary 5.17 (1) For every w/, s/ Slj (0, h), the cluster strands Sj;(c*, h?)(s/) and
Sji(o?, h?)(w’), defined in the Proof of Proposition 5.16 are coincide and with length
of jl.

(2) Let W(j) denote the strand module of Sj;(o*, h?)(s7). Then we have the following
descending chain of strand modules

Wie, )2 W DWRj)D...o0Wmj)D...,VjeN.
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