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Abstract We introduce a class of non-commutative algebras that carry non-commutative
cluster structure which are generated by identical copies of generalized Weyl algebras.
Equivalent conditions for the finiteness of the set of the cluster variables of these cluster
structures are provided. Mutations along with some combinatorial data, called clus-
ter strands, arising from the cluster structure are used to construct representations of
generalized Weyl algebras.

Keywords Non-commutative cluster algebras · Representations of generalized Weyl
algebras
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1 Introduction

Cluster algebras were introduced by S. Fomin and A. Zelevinsky in [2, 8–10, 16]. A cluster
algebra is a commutative algebra with a distinguished set of generators called cluster vari-
ables and particular type of relations called mutations. A quantum version was introduced
in [3] and [5–7]. The original motivation was to create a combinatorial algebraic framework
to study total positivity and dual canonical basis in coordinate rings of certain semisimple
algebraic groups.
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Generalized Weyl algebras were first introduced by V. Bavula in [1] and separately as
Hyperbolic algebras by A. Rosenberg in [13]. Their motivation was to find a ring theoreti-
cal frame work to study the representation theory of some important “small algebras” such
as the first Heisenberg algebra, Weyl algebras, the universal enveloping algebra of the Lie
algebra sl(2). A complete list of “small algebras” can be found in [13]. Also, in [13] Rosen-
berg has obtained the representation theory of all “small algebras” using the Hyperbolic
algebra as a frame work.

In this paper, we show that by relaxing the commutativity between cluster variables and
some frozen variables (coefficients variables) we can extend the theory of cluster algebras
to include some non-commutative algebras which are generated by isomorphic copies of
generalized Weyl algebras. To achieve this goal, we introduced particular non-commutative
seed-like combinatorial data called presseds, each preseed of rank n is defined by iteration
from a rank one preseed. Every Fomin-Zelevinsky (coefficient free) rank one seed ({x}, ·x)
gives rise to a preseed of rank one by attaching a valued star quiver with center at the vertex
·x and assigning a set of frozen variables, one frozen variable at each vertex of the star
quiver. Here the frozen variables associated with the exchange variable x do not necessary
commute with it. Every preseed of rank n is defined through an increasing set of n − 1
(nested) preseeds of ranks 1, . . . , n − 1 respectively, Definition 3.2. A valued star quiver is
called balanced if the (componentwise) sum of the valuations of the arrows point in toward
the center vertex equals the sum of the valuations of the arrows point out equals (a, a),
for some non-negative integer a. A preseed is called balanced if each of its star quivers is
balanced.

The set of all cluster variables produced from a preseed is not necessarily finite, even if
the underlying quiver is of Dynkin type, Examples 3.9 and 3.10. In this paper we provide
equivalent conditions on a preseed for its set of cluster variables to be finite, such as in
Theorems 3.15 and Corollary 4.9 which are rephrased respectively as follows

Theorem 1.1 Let p be a balanced preseed in the ambient division ring D. If φ is a
D-automorphism that fixes the frozen variables such that for every frozen variable f

associated to the initial cluster variable x we have

f x = φ(x)f.

Then the set of all cluster variables of p is finite if and only if φ is of finite order.

Corollary 1.2 Let p be a balanced preseed with a non zero element q in the field K such
that for every initial cluster variable x, we have

f x = qxf, for each frozen variable f associated to x.

Then the set of all cluster variables of p is finite if and only if q is an mth-root of unity, for
some natural number m.

Although Corollary 1.2 can be seen as a consequence of Theorem 1.1, in this paper we
provide independent proofs for both of them.

Every generalized Weyl algebra of rank n gives rise to a preseed p of rank n endowed
with an automorphism θ over the coefficients ring (the group ring of the group generated
by the frozen variables), Example 4.5. In Theorem 4.12 we show that the associated cluster
algebraH(p) satisfies the following
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(1) The algebra H(p) is generated by (possibly) infinite isomorphic copies of the associ-
ated generalized Weyl algebra, each vertex in the exchange graph of pn gives rise to
two copies of them;

(2) There are n rank one preseeds p1(x1), . . . , p1(xn) such that

H(p) = H(p1(x1)) ⊗ · · · ⊗ H(p1(xn)). (1.1)

Let Vn be the K(f1, . . . , fn)-span of the cluster monomials of H(p), where f1, . . . , fn

are the frozen variables of p. In Definition 5.5 we use right and left mutations, given in
Definition 3.3, to introduce an action of generalized Weyl algebra in Vn. The combinatorial
structure of the cluster monomials gives rise to combinatorial datum called cluster strands,
which are particular elements of Vn, Definition 5.8. Some properties of the cluster strands
are provided in Lemma 5.12. The submodules generated by cluster strands are called strand
submodules. The properties of the strand submodules are studied in Proposition 5.15 and
5.16 and Corollary 5.17.

Conjecture 1.3 Strand submodules are indecomposable.

The paper is organized as follows. Section 2 is devoted to basic definitions of cluster
algebras associated with valued quivers. In Section 3, we introduce the notion of preseeds
and their mutations. Examples and properties of preseeds are also given. In the same section
we provide equivalent conditions for a preseed to produce a finite set of cluster variables,
Theorems 3.15. In Theorem 3.17, we introduce a class of D-automorphisms that preserve
the set of cluster variables. Weyl cluster algebras are defined in Section 4. The main results
of Section 4 are Corollary 4.9 and Theorem 4.12 which give some basic properties of Weyl
cluster algebras. Section 5 is where we introduce an action of generalized Weyl algebras
on the space of cluster monomials. In the same section we introduce the cluster strands.
Some of their basic properties are in Lemma 5.12. Some Properties of strand submodules
are given in Proposition 5.15 and 5.16.

Through out the paper, K is a field of zero characteristic and the notation [1, k] stands
for the set {1, . . . , k}.

2 Cluster Algebras Associated with Valued Quivers

For more details about the material of this section refer to [2, 8, 11, 15, 16].

2.1 Valued Quivers

• A valued quiver of rank n is a quadruple Q = (Q0,Q1, V , d), where

– Q0 is a set of n vertices labeled by numbers from the set [1, n];
– Q1 is called the set of arrows of Q and consists of ordered pairs of vertices,

that is Q1 ⊂ Q0 × Q0;
– V is a function V : Q1 → N×N, (i, j) �→ (vij , vji), V is called the valuation

of Q;
– d = (d1, · · · , dn), where di is a positive integer for each i, such that divij =

vjidj , for every i, j ∈ Q0.

In the case of (i, j) ∈ Q1, then there is an arrow oriented from i to j and in notation

we shall use the symbol . If vij = vji = 1 we simply write .
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In this paper, we moreover assume that (i, i) /∈ Q1 for every i ∈ Q0, and if (i, j) ∈
Q1 then (j, i) /∈ Q1. The vector of positive integers d = (d1, · · · , dn) does not play
any role in the context of this paper, so it will be ignored from now on.

• If vij = vji for every (vij , vji) ∈ V then � is called equally valued quiver.
• We say that the valued quiver � = (Q0, Q1, V ) is connected, if for every v, v′ ∈ Q0,

there is a sequence of vertices v = v1, · · · , vl = v′ such that for t = 1, · · · , l − 1,
either (vt , vt+1) or (vt+1, vt ) is in Q1, in other words, any pair of subsequent vertices
vt and vt+1 are connected by an arrow.

Remarks 2.1 (1) Every (non valued) quiver Q without loops nor 2-cycles corresponds to
an equally valued quiver which has an arrow (i, j) if there is at least one arrow directed
from i to j in Q and with the valuation (vij , vji) = (m,m), where m is the number of
arrows from i to j .

(2) Every valued quiver of rank n corresponds to a skew symmetrizable integer matrix
B(Q) = (bij )i,j∈[1,n] given by

bij =
⎧
⎨

⎩

vij , if (i, j) ∈ Q1,

0, if neither (i, j) nor (j, i) is in Q1,

−vij , if (j, i) ∈ Q1.

(2.1)

Conversely, given a skew symmetrizable n × n matrix B, a valued quiver QB can be
easily defined such that B(QB) = B. This gives rise to a bijection between the skew-
symmetrizabke n × n integral matrices B and the valued quivers with set of vertices
[1, n], up to isomorphism fixing the vertices.

Definition 2.2 (Valued quivers mutations) Let Q be a valued quiver. The mutation μk(Q)

at a vertex k is defined through Fomin-Zelevinsky’s mutation of the associated skew-
symmetrizable matrix. The mutation of a skew symmetrizable matrix B = (bij ) on the
direction k ∈ [1, n] is given by μk(B) = (b′

ij ), where

b′
ij =

{ −bij , if k ∈ {i, j},
bij + sign(bik)max(0, bikbkj ), otherwise.

(2.2)

Remarks 2.3 (1) Let Q = (Q0,Q1, V ) be a valued quiver. The new valued quiver
μk(Q) = (Q0,Q

′
1, V

′), obtained from Q by applying mutation at the vertex k, can
be described using the mutation of B(Q) as follows: We obtain Q′

1 and V ′ by altering
Q1 and V , based on the following rules

(a) replace the pairs (i, k) and (k, j) with (k, i) and (j, k) respectively and switch
the components of the ordered pairs of their valuations;

(b) if (i, k), (k, j) ∈ Q1, such that at least i or j is in Q0 but (j, i) /∈ Q1 and (i, j) /∈
Q1 (respectively (i, j) ∈ Q1) add the pair (i, j) to Q′

1, and give it the valuation
(vikvkj , vkivjk) (respectively change its valuation to (vij +vikvkj , vji +vkivjk));

(c) if (i, k), (k, j) and (j, i) in Q1, then we have three cases

(i) if vikvkj < vij , then keep (j, i) and change its valuation to (vji −
vjkvki , | − vij + vikvkj |);

(ii) if vikvkj > vij , then replace (j, i) with (i, j) and change its valuation
to (−vij + vikvkj , |vji − vjkvki |);

(iii) if vikvkj = vij , then remove (j, i) and its valuation.

(2) One can see that; μ2
k(Q) = Q and μk(B(Q)) = B(μk(Q)) at each vertex k.
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Example 2.4 Let

(2.3)

One can see that � is a valued quiver with d = (1, 2, 3, 2, 1, 2, 1). Applying mutation at
the vertex 2, produces the following valued quiver

2.2 Cluster Algebras

Zelevinsky [16] Let F be an ambient field of rational functions in n independent variables
over Q(t1, . . . , tm). A seed in F is a pair (X,Q), where

• X = {x1, . . . , xn} forms a free generating set of F , and
• Q = (Q0,Q1, V ) is a valued quiver with Q0 = {1, . . . , n, n + 1, . . . , n + m}, where

vertices 1, . . . , n are called exchange vertices and n+1, . . . , n+m are the called frozen
vertices.

The variables x1, . . . , xn are associated with the exchange vertices and they are called
exchange cluster variables and the variables t1, . . . , tm are associated with the frozen
vertices and they are called frozen variables.

Definition 2.5 (Seed mutations) Let p = (X,Q) be a seed inF and let k ∈ [1, n]. Applying
the seed mutation μk on (X,Q) produces a new seed μk(X,Q) = (μk(X), μk(Q)) by
setting μk(X) = {x1, . . . , x′

k, . . . , xn, tn+1, . . . , tn+m} where x′
k is defined by the so-called

exchange relations:

(2.4)
And μk(Q) is the mutation of Q at the vertex k, given in Definition 2.2 and Remarks 2.3.
The elements of F obtained by applying iterated mutations on the elements {x1, . . . , xn}
are called cluster variables.

Definitions 2.6 (Cluster algebra and exchange graph) (1) Let X be the set of all cluster
variables ofF produced from a seed (X,Q). The cluster algebraA = A(X,Q) is the
Z[P]-subalgebra of F generated by X , where P is the (free) abelian group generated
by the frozen variables written multiplicatively.

(2) The exchange graph of A(X,Q), denoted by G(X,Q), is the n-regular graph whose
vertices are labeled by the seeds that can be obtained from (X,Q) by applying some
sequence of mutations, and whose edges correspond to mutations. Two adjacent seeds
in G can be obtained from each other by applying a mutation μk for some k ∈ [1, n].
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Theorem 2.7 ([8, Theorem 3.1, Laurent Phenomenon]) The cluster algebra A(X,Q) is
contained in the integral ring of Laurent polynomials Z[P][x±

1 , . . . , x±
n ].

3 Preseeds

Before introducing preseeds, we will introduce an increasing filtration of division rings of
fractions by iteration and a particular type of quivers known as star quivers.

For each m in [1, n], let Pm be a finitely generated free abelian group, written
multiplicatively, with set of generators

Fm =
m⋃

i=1

Fi where Fi = {fi1, . . . , fimi
}. (3.1)

Let R1 = K[P1] be the group ring of P1 over K . Let D1 be an Ore domain containing
R1 such that there is t1 ∈ D1 so that {tα11 ; α1 ∈ Z} form a basis for D1 as a left R1-
module. Let D1 denote the set of right fractions ab−1 with a, b ∈ D1, and b �= 0; two
such fractions ab−1 and cd−1 are identified if af = cg and bf = dg for some non-
zero f, g ∈ D1. The ring D1 is embedded into D1 via d �→ d · 1−1. The addition and
multiplication in D1 extend to D1 so that D1 becomes a division ring. (Indeed, we can
define ab−1+cd−1 = (ae+cf )g−1 where non-zero elements e, f , and g of D1 are chosen
so that be = df = g; similarly, ab−1 · cd−1 = ae · (df )−1, where non-zero e, f ∈ D1 are
chosen so that cf = be). In such case we sayD1 is the division ring of fractions in t1 of D1
over R1. Now, for i ∈ [2, n], let Ri = K[Pi] and Di be an Ore domain containing (as sub
rings) Ri and Di−1 such that there is ti ∈ Di so that

ti tj = tj ti and tifjr = fjr ti , for every i, j ∈ [1, n], j < i, for all r ∈ [1,mj ]; (3.2)

and {tαi

i ; αi ∈ Z} form a basis for Di as a left Ri-module. Let Di be the division ring of
fractions in ti of Di over Ri . For each i ∈ [1, n], the elements of the set Fi are called frozen
variables. More details about Ore domains can be found in [12] and [2]. The following
diagram is meant to help readers understand the relations between the rings Ri , Di and
Di , i = 1, · · · , n.

R1 ⊂ R2 ⊂ · · · ⊂ Rn

∩ ∩ · · · ∩
D1 ⊂ D2 ⊂ · · · ⊂ Dn

∩ ∩ · · · ∩
D1 ⊂ D2 ⊂ · · · ⊂ Dn.

Definitions 3.1 (Valued star quivers) • A valued quiver � = (Q0,Q1, V ) is called a
valued star quiver with center at k ∈ Q0 if we have

Q1 ⊂ ({k} × Q0) ∪ (Q0 × {k}).
Furthermore, � is called a balanced star quiver if

(3.3)
and in this case the non-negative integer ak is called the frozen component of �.
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• A set of n star quivers � = {�1, . . . , �n} is said be balanced with frozen rank
(a1, . . . , an) if each �k is balanced with frozen component ak, k = 1, . . . , n.

The following valued quiver is an example of a balanced valued star quiver of frozen
rank 8 and d = (6, 4, 12, 24, 6, 3)

Although, in general, presseds can be defined using any valued quiver, here they are
defined using valued star quivers which serves best the purpose of the paper. From now on
we will omit the word valued from the term valued star quiver.

Definition 3.2 (Preseeds) • A preseed p1 of rank 1 inD1 is the triple ({F1}, {x1}, {�1}),
where

(1) F1 is as described in Eq. 3.1;
(2) x1 is an element of D1 such that there is an R1- linear automorphism on D1 that

fixes the frozen variables and sends t1 to x1. The element x1 is called an exchange
cluster variable and the set

X̃ := {f11, . . . , f1m1 , x1}
is called the extended cluster of p1;

(3) �1 is a star quiver of rank m1 + 1. The center vertex ·1 of �1 is called exchange
vertex and all other vertices are called frozen vertices.

• A preseed pn of rank n inDn is the triple (F,X, �), where F = {F1, . . . , Fn} (as given
in Eq. 3.1), X = {x1, . . . , xn} and � = {�1, . . . , �n} such that pk = ({Fk}, {xk}, {�k}}
is a preseed of rank 1 in Dk , for every k ∈ [1, n]. The following set

X̃ = {f11, . . . , f1m1 , . . . , fn1, . . . , fnmn, x1, . . . , xn}
is called the extended cluster of pn. Furthermore, pn is called balanced preseed if � is
a balanced set of star quivers and the frozen rank of pn is the same as the frozen rank
of �.

Definition 3.3 (Preseeds mutations) Let pn = (F,X, �) be a preseed in Dn. For each k ∈
[1, n], two new triples μR

k (pn) = (F, μR
k (X), μk(�)) and μL

k (pn) = (F, μL
k (X), μk�))

can be obtained from pn as follows

• (Right mutation)

μR
k (xi) =

{

(
∏

j,ij →i f
vij i

ij

∏
j→i x

vji

j + ∏
j,i→ij

f
viij

ij

∏
j,i→j x

vij

j )x−1
i , i = k;

xi, i �= k.

(3.4)
• (Left mutation)

μL
k (xi) =

{

x−1
i (

∏
j,j→i x

vji

j

∏
j,ij →i f

vij i

ij + ∏
j,i→j x

vij

j

∏
j,i→ij

f
viij

ij ), i = k;
xi, i �= k.

(3.5)
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• The mutation μk(�) is as defined in Definition 2.2 and Remarks 2.3.

Proposition 3.4 Let pn = (F,X, �) be a preseed in Dn. Then the following are true

(1) For any sequence of right mutations (respectively left) μR
i1
μR

i2
. . . μR

iq
, we have

μR
i1
μR

i2
. . . μR

iq
(pn) (respectively μL

i1
μL

i2
. . . μL

iq
(pn)) is again a preseed .

(2) For every k ∈ [1, n],
μR

k μL
k (pn) = μL

k μR
k (pn) = pn. (3.6)

Proof We prove part (1) for μR
k (pn), (respectively μL

k (pn)) and the proof for an arbi-
trary sequence of right (respectively left) mutations is by induction on the length of
the sequence. From Eq. 3.4 (respectively (3.5) one has μR

k (xk) (respectively μL
k (xk))

is an expression in the elements of the set {x−1
k } ∪ Fk . Then Eq. 3.2 guarantees that

{x1, . . . , xk−1, μ
R
k (xk), xk+1, . . . , xn} (respectively {x1, . . . , xk−1, μ

L
k (xk), xk+1, . . . , xn})

is a commutative set. The commutativity of the elements of the set {μR
k (xk)} ∪ Fj (respec-

tively the elements of the set μL
k (xk) ∪ Fj ) for j �= k is again due to that the expression

of μR
k (xk) (respectively μL

k (xk)) contains only elements of {x−1
k } ∪ Fk which is by Eq. 3.2

commute with elements of Fj . Part (2) is immediate using the Eqs. (3.2), (3.4) and (3.5)
and the fact that mutation is involutive on valued quivers.

Definition 3.5 (Cluster sets) Let pn be a preseed in Dn. An element y ∈ Dn is said to be a
cluster variable if y is a cluster variable in some seed qn, where qn is obtained from pn by
applying some sequence of (right or left) mutations. The set of all cluster variables of pn is
called the cluster set of pn and is denoted by X (pn).

Remark 3.6 (1) From the definition of preseeds, each exchange vertex is connected only
to its associated frozen vertices. Then from the proof of Part 1 of Proposition 3.4, one
can see that every cluster variable in Dn, can be written as a Laurent expression in
exactly one cluster variable and the frozen variables associated to it in some pressed.
Which is a major difference between cluster variables produced from preseeds and
cluster variables produced from other non-commutative seeds such as quantum seeds
introduced in [3].

(2) Mutations of preseeds are not involutive but they are invertible, in the sense of Part 2
Proposition 3.4, however mutations of classical or quantum seeds are involutive.

Definition 3.7 A quadruple (F, X, �, ϕ) is said to be ϕ-commutative preseed in Dn if
(F,X, �) is a preiseed and ϕ is an Rn-linear automorphism of Dn, such that the following
equations are satisfied

f xi = ϕ(xi)f, ∀f ∈ Fi, ∀i ∈ [1, n]. (3.7)

One can see Eq. 3.7 induces the equations

f axi = ϕa(xi)f
a,∀f ∈ Fi, ∀i ∈ [1, n], a ∈ Z≥0. (3.8)
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And
xif

a = f aϕ−a(xi), ∀f ∈ Fi, ∀i ∈ [1, n], a ∈ Z≥0. (3.9)

An example of a ϕ-commutative preseed is given in next section, Example 4.5.

Proposition 3.8 The properties of balanced and ϕ-commutative of preseeds are invariant
under preseeds mutations.

Proof One can see that the mutation of balanced preseed is again a balanced preseed with
the same frozen rank.

Now we show that ϕ-commutativity of preseeds is invariant under right mutations and
for left mutation is quite similar. For every k ∈ [1, n], the right mutation μR

k of pn gives rise
to an Rn-automorphism ψ : Dn → Dn induced by

ψ(xj ) := μR
k (xj ), ∀j ∈ [1, n]. (3.10)

We will show that μR
k (pn) is ψϕψ−1-commutative. Let i ∈ [1, n], f ∈ Fi . We have

f μk(xi) = ψ(f xi)

= ψ(ϕ(xif ))

= ψϕψ−1(μk(xi))f.

Let p = ({x1}, ·x1) be a coefficient free seed of rank 1 in the field of fractions K(t).
In this case there is only one more seed ({ 2

x1
}, · 2

x1
) which is mutation equivalent to p. The

Fomin-Zelevinsky (commutative) cluster algebra of p is the algebra of polynomials with
integral coefficientsA = Z[x1, 2

x1
]. In the following we will see two examples of attaching

star quivers at vertex ·x1 to produce preseeds.

Example 3.9 The simplest non balanced preseed . Let p1 be the seed ({F1}, {x1}, {�1})
where F1 = {f11} and �1 is the following star quiver

Applying mutation at the vertex ·x1 , we obtain the following cluster variables

x1
μL
1⇒ x−1

1 (f11 + 1)

μL
1⇒ (f11 + 1)−1x1(f11 + 1)

μL
1⇒ (f11 + 1)−1x−1

1 (f11 + 1)2

μL
1⇒ (f11 + 1)−2x1(f11 + 1)+2

. . .

μL
1⇒ (f11 + 1)−kx−1

1 (f11 + 1)k+1

μL
1⇒ (f11 + 1)−(k+1)x1(f11 + 1)k+1

. . . ,
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and

x1
μR
1⇒ (f11 + 1)x−1

1

μR
1⇒ (f11 + 1)x1(f11 + 1)−1

μR
1⇒ (f11 + 1)2x−1

1 (f11 + 1)−1

μR
1⇒ (f11 + 1)2x1(f11 + 1)−2

. . .

μR
1⇒ (f11 + 1)k+1x−1

1 (f11 + 1)−k

μR
1⇒ (f11 + 1)k+1x1(f11 + 1)−(k+1)

. . . .

Then, we have the infinite cluster set X (p1) = {x1, (1 + f11)
k+1x−1

1 (1 + f11)
−k, (1 +

f11)
kx1(1+f11)

−k, (1+f11)
−kx−1

1 (1+f11)
k+1, (1+f11)

−kx−1
1 (1+f11)

k, k ∈ Z}. Later
in this article, we will see that this seed is related to first Weyl algebra.

Example 3.10 The cluster set of the simplest (nontrivial) balanced ϕ-commutative pre-
seed. Consider the seed p1 = ({F1}, {x1}, {�1}, ϕ) where F1 = {f11, f12} and �1 is the
following star quiver with frozen rank is (1)

If ϕ be a R-linear automorphism of D1 satisfying the conditions (3.7). Then this seed
produces the cluster set X (p1) given by

{(f11 +f12)x
−1
1 , x−1

1 (f11 +f12), ϕ
k(x1), (f11 +f12)ϕ

−k(x1), ϕ
−k(x1)(f11 +f12); k ∈ Z}.

One can see that X (p1) is a finite set if and only if ϕ is of finite order.

Remark 3.11 Examples 3.9 and 3.10 show that the Fomin-Zelevinsky finite type classifica-
tion [9] does not work in the preseed case in general.

Lemma 3.12 Let pn = (F, X, �, ϕ) be a ϕ-commutative preseed. If �k is a balanced star
quiver, then we have

(μR
k )2(xk) = ϕak (xk) for some nonnegative integer ak; (3.11)

and
(μL

k )2(xk) = ϕ−ak (xk) for some nonnegative integer ak. (3.12)

Proof Since μR
k (�k) = −�k . Then, one has

(μR
k )2(xk) = μR

k ((
∏

i,·i→·k
f

vik

ki +
∏

i,·k→·i
f

vki

ki ))x−1
k )

= (
∏

i,·i→·k
f

vik

ki +
∏

i,·k→·i
f

vki

ki )xk(
∏

i,·i→·k
f

vik

ki +
∏

i,·k→·i
f

vki

ki )−1

= ϕak (xk).
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The last equation is by the commutativity of x1, . . . , xk, . . . xn and applying (3.8), noticing
that �k is a balanced star quiver with frozen rank ak . This finishes the proof of Eq. 3.11. The
proof of Eq. 3.12 is quite similar except for using the commutation relations (3.9) instead
of (3.8).

Corollary 3.13 Let pn = (F,X, �, ϕ) be a ϕ-commutative preseed with ϕ be a finite order
ring homomorphism. If �k is a balanced star quiver, then there is a non negative integer r

such that

(μR
k )2r (pn) = (μL

k )2r (pn) = pn. (3.13)

Proof Assume that ϕr = idDn for some non negative integer r . Then using (3.11) (r-times)
we get

(μR
k )2r (xk) = ϕrak (xk) = xk. (3.14)

And, we already have (μR
k )2r (xj ) = xj for j �= k, and (μR

k )2r (�) = �, which finishes
the proof.

Question 3.14 For which preseed pn = (F,X, �), the set of cluster variables X (pn) is
finite?

In the following we provide equivalent conditions on ϕ-commutative preseed to produce
a finite type cluster algebra.

Theorem 3.15 Let pn = (F,X, �, ϕ) be a balanced, ϕ-commutative preseed. Then, the set
of all cluster variables X (pn) is a finite set if and only if ϕ is of finite order.

Proof Let μii , . . . , μit be a sequence of mutations containing j copies of μk . Then, by the
definition of preseeds mutation, we have

μii · · · μit (xk) = μ
j
k(xk).

Hence, for any preseed (F,X, �), we have

X (pn) =
n⋃

k=1

X (p1(xk)), where p1(xk) = ({Fk}, {xk}, {�k}). (3.15)

So, from Eq. 3.11 one has, for every k ∈ [1, n] the set of all cluster variables of p1(xk)

contains the set of the cluster variables of the form {ϕlak (xk); l ∈ N}, where ak is the frozen
rank of p1(xk). The set {ϕlak (xk); l ∈ N} is an infinite set if ϕ is not of finite order. Which
implies that if the set of cluster variables of pn is finite then ϕ must be of finite order. Now
assume that, ϕ is of finite order. Then from Eq. 3.13, the preseed p1(xk) will be reproduced
after applying μk , 2r-times which means that the set of cluster variables of p1(xk) is finite
for every k ∈ [1, n] and then so is the set of cluster variables of pn.

Saleh [15] Let f be a Rn-linear automorphism over Dn. Then f is said to be a cluster
variable preserver of the preseed pn if it keeps the cluster set X of pn invariant.

Question 3.16 Given a preseed pn = (F,X, �) describe the set of all cluster preservers of
pn.
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Theorem 3.17 Let pn = (F,X, �, ϕ) be a balanced ϕ-commutative preseed with frozen
rank (a1, . . . , an). Let φl be the Rn-linear automorphisms of Dn induced by

φl(t) = t, ∀t ∈ Rn and φl(xk) = ϕlak (xk), ∀k ∈ [1, n]. (3.16)

Then, for every l ∈ Z, φl is a cluster variables preserver for pn.

Proof Notice that, by definition of φl , it depends on the frozen rank of pn, which is invariant
under mutation, thanks to Proposition 3.8.

First, for nonnegative integers. Let l = 1. Equations (3.11) assure that, the action of the
automorphism φ1 on the cluster variables of pn is identified with the action of the sequence
of the mutations

∏n
i=1(μ

R
i )2.

Let x be an element of X (pn), without loss of generality, we assume that x is a clus-
ter variable of some seed qn, that can be obtain from pn by applying some sequence of
only right mutations say μR

i1
. . . μR

id
. Then, φ1(x) must be a cluster variable in the seed

∏n
i=1(μ

R
i )2(qn) = ∏n

i=1(μ
R
i )2μR

i1
. . . μR

id
(pn).

For l ≥ 2, again using (3.11), the action of φl is identified with the action of the sequence
of mutations (

∏n
i=1(μ

R
i )2)l(pn). Proving that φl permutes the elements of X (pn) is quite

similar to the case of l = 1 with the obvious changes.
The case, when l is a negative integer, is similar, with using Eq. 3.12 instead of Eq. 3.11.

4 Weyl Cluster Algebras

4.1 Definition of Generalized Weyl Algebras

Definition 4.1 (Generalized Weyl algebra (1, 13, 14)) Let {ξ1, . . . , ξn} be a fixed set of
elements of a commutative ring R and θ = {θ1, . . . , θn} be a set of ring automorphisms
such that θi(ξj ) = ξj for all i �= j . The generalized Weyl algebra of degree n, denoted
by R(θ, ξ, n), is defined to be the ring extension of R generated by the 2n indeterminates
x1, . . . , xn, y1, . . . , yn modulo the commutation relations:

xir = θi(r)xi and yir = θ−1
i (r)yi, for any i ∈ [1, n] and for any r ∈ R, (4.1)

xiyi = ξi, yixi = θ−1(ξi), xiyj = yjxi, xixj = xjxi and yiyj = yjyi ∀i �= j ∈ [1, n].
(4.2)

We warn the reader that xiyi �= yixi in general. The variables x1, . . . , xn, y1, . . . , yn are
called Weyl variables.

Example 4.2 [4, 13, 14] Let An be the nth Weyl algebra generated by the 2n variables
x1, . . . , xn, y1 . . . , yn over K with the relations

xiyi − yixi = 1, and xixj = xjxi, yiyj = yjyi for i �= j, ∀i, j ∈ [1, n]. (4.3)

Let ξi = yixi + 1, R be the ring of polynomials K[ξ1, . . . , ξn] and θi : R → R, induced
by ξi �→ ξi + 1, ξj �→ ξj , j �= i, for all i, j ∈ [1, n]. It is known that An is isomorphic to
the generalized Weyl algebra R(θ, ξ, n).
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Example 4.3 [13, 14] The coordinate algebra A(SLq(2, k)) of algebraic quantum group
SLq(2, k) is the K-algebra generated by x, y, u, and v subject to the following relations

qux = xu, qvx = xv, qyu = uy, qyv = vy, uv = vu, q ∈ K∗ (4.4)

xy = quv + 1, and yx = q−1uv + 1. (4.5)

A(SLq(2, k)) is isomorphic to the generalized Weyl algebra R(ξ, θ, 1), where R is the
algebra of polynomials K[u, v]; ξ = 1 + q−1uv and θ is an automorphism of R, defined
by θ(f (u, v)) = f (qu, qv) for any polynomial f (u, v).

Definition 4.4 (Weyl preseeds and q-commutative preseeds) Let pn = (F,X, �) be a pre-
seed of rank n in Dn. A quadruple (F,X, �, θ) is said to be a Weyl preeseed if there is a
set θ = {θ1, . . . , θn} of ring automorphisms of Rn, such that for every i ∈ [1, n], θi fixes all
the exchange cluster variables and satisfies

x±1
i f = θ±1

i (f )x±1
i , ∀f ∈ Fi, ∀i ∈ [1, n]. (4.6)

If there is a fixed scalar q ∈ K∗ such that θi satisfies

θi(fi) = qfi, for every i ∈ [1, n]. (4.7)

In such special case, pn = (F,X, �, q) is called q-commutative preseed.

Let pn = (F,X, �) be a preseed and let

ξk =
∏

·i→·k
f

vik

ki +
∏

·k→·i
f

vki

ki , k ∈ [1, n]. (4.8)

Then Relations 4.6 can be extended to ξ±1
k as follows

θ±1
k (ξ∓1

k )x±1
k = x±1

k ξ∓1
k , k ∈ [1, n]. (4.9)

Example 4.5 Let R(θ, ξ, n) be a generalized Weyl algebra. Consider the quintuple pn =
(F, Y, �, ϕ, θ), where F = {Fi}ni=1, Fi = {fi; fi = yixi}, Y = {y1, . . . , yn}, � = {�i}ni=1
such that for i ∈ [1, n], �i is the quiver

and ϕ is given by

ϕ(yi) = ξiyiξ
−1
i , where ξi = 1 + fi, i ∈ [1, n]. (4.10)

A short calculation shows that ϕ satisfies Eq. (3.7), hence pn = (F, X, �, ϕ, θ) is a ϕ-
commutative preseed. Also, from the properties of the R-automorphisms θ = (θ1, . . . , θn)

given in Eqs. (4.1) and (4.2) one can see that θi satisfies Eq. (4.6) for each i ∈ [1, n] which
makes pn a Weyl preseed, then pn is ϕ-commutative Weyl preseed.

In this case the iterated division ringsDi , i = 1, . . . , n, attached with pn, are subrings of
the division ring of rational functions in y1, . . . , yn over the ring R. In particular, in the case
of the nth Weyl algebra An, the ring R is the ring of polynomials K[ξ1, . . . , ξn]. One can
see that this ambient division ring of rational functions is an Ore domain. For information
about Ore domains we refer to [3, 12].
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Example 4.6 Recall the coordinate algebra A(SLq(2, k)) of the algebraic quantum group
SLq(2, k). Consider the preseed p1 = ({F1}, {x}, {�1}, {θ1}), where F1 = {qu, v}, θ1 :
R → R given by θ1(f (u, v)) = f (qu, qv) and �1 is given by

(4.11)

One can see that p1 is a q-commutative preseed. Let ζ = quv + 1. The cluster set of p1 is
given by

X (p1) = {x, ζ j xζ−j , ζ j+1x−1ζ−j−1, j ∈ N} ⋃{y, ζ j yζ−j , ζ j+1y−1ζ−j−1, j ∈ N}.

Remark 4.7 If pn = (F,X, �, θ) is a Weyl preseed, then the two quadruples
(F, μR

i (X),−�, θ−1) and (F, μL
i (X),−�, θ−1) where θ = {θ−1

1 , . . . , θ−1
n } are again Weyl

preseeds, for every i ∈ [1, n].

Lemma 4.8 Let pn be a q-commutative preseed with q being an mth root of unity, for some
natural number m and let �k be balanced star quiver. Then, we have

(μR
k )2m(pn) = (μL

k )2m(pn) = pn. (4.12)

Proof

(μR
k )2(xk) = μR

k ((
∏

i,·i→·k
y

vik

i +
∏

i,·k→·i
y

vki

i ))x−1
k )

= (
∏

i,·i→·k
y

vik

i +
∏

i,·k→·i
y

vki

i )xk(
∏

i,·i→·k
y

vik

i +
∏

i,·k→·i
y

vki

i )−1

= (
∏

i,·i→·k
y

vik

i +
∏

i,·k→·i
y

vki

i )xk(
∏

i,·i→·k
y

vik

i +
∏

i,·k→·i
y

vki

i )−1

= (
∏

i,·i→·k
y

vik

i +
∏

i,·k→·i
y

vki

i )θk((
∏

i,·i→·k
y

vik

i +
∏

i,·k→·i
y

vki

i )−1)xk

= (
∏

i,·i→·k
y

vik

i +
∏

i,·k→·i
y

vki

i )(θk(
∏

i,·i→·k
y

vik

i +
∏

(i,·k→·i
y

vki

i ))−1xk

= q−ak xk, where ak is the frozen component of �k.

Then

(μR
k )2m(xk) = q−makxk = xk.

And since we already have (μR
k )2m(�) = �, which completes the proof.

Corollary 4.9 Let pn = (F, X, �, q) be a q-commutative balanced preseed. Then the set
of of all cluster variables X (pn) is finite if and only if q is an mth-root of unity, for some
natural number m.

Proof From Lemma 4.8 and Eq. 3.15 we have

{q(−ak)lxk; l ∈ N} ⊂ X (p1(xk)) ⊂ X (pn), ∀k ∈ [1, n].
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If for every natural number m, qm �= 1, then for each k ∈ [1, n], the set {q(−ak)lxk; l ∈ N}
is an infinite set. So, if X (pn) is a finite set then q must be an mth-root of unity, for some
natural number m. Now, assume that qm = 1, for some natural number m, then again using
Lemma 4.8, for each k in [1, n], the seed p1(xk) will be reproduced after applying μR

k , 2m-
times. Then X (p1(xk)) is a finite set for each k in [1, n] and hence again from Eq. 3.15, the
set X (pn) must be a finite set.

Definition 4.10 (Weyl cluster algebras) Let pn = (F,X, �, θ) be aWeyl preseed. TheWeyl
cluster algebraH(pn) is defined to be the Rn-subalgebra of Dn generated by the cluster set
X (pn).

The following remark and theorem shed some light on the structure of the Weyl cluster
algebraH(pn). Remark 4.11 and first part of the Theorem 4.12 can be phrased as, the Weyl
cluster algebra H(pn) is generated by Rn and many (could be infinite) isomorphic copies
of generalized Weyl algebras, each vertex in the exchange graph of pn gives rise to two
copies of them. The second part of the theorem is the Laurent phenomenon, Theorem 2.8,
in the Weyl preseeds case. The third part of the same theorem is simply saying that H(pn)

is isomorphic to the tensor product of the n Weyl cluster algebras of rank one associated to
the n iterated rank one Weyl preseeds associated to pn.

Remark and Definition 4.11 Let pn = (F,X, �, θ) be a Weyl preseed and R =
K[ξ1, . . . , ξn] be the ring of polynomials in ξ1, . . . , ξn where ξi, i = 1, . . . , n are as defined
in Eq. 4.8. Then pn gives rise to two copies of generalized Weyl algebras of rank n, as
follows

(a) HR(pn) is the ring extension of R generated by μR
1 (x1), . . . , μ

R
n (xn), x1, . . . , xn.

(b) HL(pn) is the ring extension of R generated by x1, . . . , xn, μ
L
1 (x1), . . . , μ

L
n (xn).

(b) In particular, if pn = (F, Y, �, ϕ, θ) is the preseed given in Example 4.5, then each
of HR(pn) and HL(pn) are isomorphic to R(θ, ξ, n) as generalized Weyl algebras. In
the case of HR(pn) (respectively HL(pn)) the isomorphism is defined by sending the
cluster variable μR

i (xi) to the Weyl variable xi and the cluster variable xi to the Weyl
variable yi of R(θ, ξ, n) (respectively by sending the cluster variable xi to the Weyl
variable xi and μR

i (xi) to the Weyl variable yi) for i = 1, . . . , n. Details for the case
n = 1 are given in Example 4.14.

Theorem 4.12 Let pn = (F,X, �, θ) be a Weyl preseed inDn. Then the following are true

(1) Right and left mutations on pn induce isomorphisms between the generalized Weyl
algebras HR(pn) and HR(μR

k (pn)) (respectively HL(pn) and HL(μL
k (pn))).

(2) The Weyl cluster algebraH(pn) is a subring of the (non-commutative) ring of Laurent
polynomials in the initial exchange cluster variables with coefficients from ring of
polynomials Rn[θ±1

1 (ξ−1
1 ), . . . , θ±1

n (ξ−1
n )].

(3) Let p1(xk) be the rank one preseed (Fk, {xk}, {�k}, θk}). Then
H(pn) ∼= H(p1(x1)) ⊗ · · · ⊗ H(p1(xn)). (4.13)

Proof To prove part (1), consider the Rn-linear automorphism of Dn, denoted by T R
pn,k :

Dn → Dn induced by xk �→ μR
k (xk), k ∈ [1, n]. The restriction of this automorphism

on HR(pn) induces the algebras isomorphism T̂ R
pn,k : HR(pn) → HR(μR

k (pn)) given by
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r �→ r, ∀r ∈ R, and xk �→ μR
k (xk) = ξkx

−1
k ,∀k ∈ [1, n]. Which implies μR

k (xk) �→
ξkxkξ

−1
k = μR

k (μR
k (xk)). Finally, it is easy to see that the generalized Weyl commutation

relations (4.1) are invariant under T̂ R
pn,k . (The argument for HL(pn) is quite similar).

For part (2), let y ∈ X (pn). Without loss of generality, using (3.15) we can assume
that y is an element of X (p1(xk)) for some k ∈ [1, n]. Hence, y can be obtained from xk

by applying some sequence of mutations on p1(xk). Let l be the length of a shortest such
sequence of mutations. By Eq. 3.6 we have that every non-trivial sequence of mutations
can be reduced to either only right mutations or only left mutations. Then, by mathematical
induction on l, one can show

y =
⎧
⎨

⎩

ξ
l+1
2

k x−1
k ξ

−( l+1
2 −1)

k or ξ
−( l+1

2 −1)
k x−1

k ξ
l+1
2

k , if l is an odd number;

ξ
l
2
k xkξ

− l
2

k or ξ
− l

2
k xkξ

l
2
k , if l is an even number.

(4.14)

Now, let m be a monomial in the elements of X (pn). Then again using (3.15), and the
identities (4.14), (4.9) and the commutations relations (4.2), one can write m as rm′ where
r is a monomial in the elements from the set Fn

⋃{θ±1
1 (ξ−1

1 ), . . . , θ±1
n (ξ−1

n )} and m′ is a
monomial of elements from {x±1

k , k ∈ [1, n]}. Finally, the elements of H(pn) are finite
sum of finite product of monomials from the elements of X (pn) which finishes the proof
of Part (2).

For Part (3), by the definition of Weyl cluster algebra and the proof of Part (2) above one
can see that the Weyl cluster algebra H(p1(xk)) is generated as a K-vector space by the
monomials

mk = {f αk1
k1 · · · f αkmk

kmk
(θ±1

k (ξ−1
k ))α

′
k x

β
k ;αkj , α

′
k, β ∈ Z,∀j ∈ [1,mk]}. (4.15)

Then, the Weyl cluster algebra H(pn) is generated as a vector space by m(pn) =
{m1 · · · mn; mk ∈ mk, k ∈ [1, n]}, where mimj = mjmi for mi ∈ mi and mj ∈ mj

for every i �= j ∈ [1, n]. Now we will show that m(pn) consists of linearly independent
elements. Let E = Rn[θ±1

1 (ξ−1
1 ), . . . , θ±1

n (ξ−1
n )][t±1

1 , · · · , t±1
n ], consider the linear endo-

morphisms of E given by X±1
k (f ) = t±1f, f ∈ E. The map σ : H(pn) −→ End(E)

induced by x±1
k �−→ X±1

k , k ∈ [1, n] defines an algebras homomorphism. One can see that
the endomorphisms

f
α11
11 · · · f α1m1

1m1
· · · f αn1

n1 · · · f αnmn
nmj

(θ±1
1 (ξ−1

1 ))α
′
k1 . . . (θ±1

n (ξ−1
n ))

α′
kmk X

β1
1 · · ·Xβn

n ;
αji, α

′
ji , βj ∈ Z, i ∈ [1,mj ], j ∈ [1, n]

are linearly independent elements of End(E) over K . Hence, m(pn) consists of linearly
independent elements which makes it a basis for H(pn) as a K-vector space and σ is an
injective algebra homomorphism. Then the map that sends m1 · · ·mn onto m1 ⊗ · · · ⊗
mn, mk ∈ mk, k ∈ [1, n] defines an isomorphism from H(pn) to H(p1(x1)) ⊗ · · · ⊗
H(p1(xn)).

From the Proof of Part (2) of Theorem 4.12, we have the following remark.

Remark 4.13 The Weyl cluster algebraH(pn) is finitely generated algebra.

Example 4.14 (Weyl cluster algebra associated to first Weyl algebra) Recall the nth Weyl
algebra given in Example 4.2 and the associated preseed given in Example 4.5. LetA1 be the
first Weyl algebra and consider the preseed p1 = ({f }, {y}, {·y −→ ·f }). Here R1 = K[P],
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where P is the cyclic group generated by f = yx. Then We have the following exchange
graph

• G(p1)

(4.16)

(here is left mutation and is right mutation). Which can be encoded by the
following equations

y2k±1y2k = y2ky2k±1 + 1, for k ∈ Z. (4.17)

The Weyl cluster algebra H(p1(y)) is the R1-subalgebra of D1 generated by the set of
cluster variables {yk, k ∈ Z}. Relations (4.17) can be interpreted as follows, each arrow in
G(p1) corresponds to a copy of first Weyl algebra, denoted by Ak

1 = K〈yk, yk+1〉, k ∈ Z

and right (respectively left) mutations define isomorphisms between the adjacent copies,
given by Tk : Ak

1 → Ak+1
1 , yk �→ yk+1 for k ∈ Z (respectively to the inverses of Tk, k ∈ Z).

The adjunction isomorphism � : R(θ−1, θ−2(ξ), 1) → R(θ, ξ, 1) given by r �→
θ−1(r), x �→ y and y �→ x. In [13], the adjunction isomorphism played an important role
in describing the representations theory of generalized Weyl algebra R(θ, ξ).

Remark 4.15 Consider the preseed p1 = (F, Y, �) associated to the generalized Weyl alge-
bra R(ξ, θ, 1), given in Example 4.5. The action of the adjunction isomorphism � on the
exchange cluster variables of any two adjacent seeds on the exchange graph of p1 coincides
with the action of the right and left mutations.

5 Representations Arising from Weyl Cluster Structure

5.1 Space of Representations Vn

In the following, let pn = (F, Y, �, θ) be the generalized Weyl preseed associated to the
generalizedWeyl algberaR(θ, ξ, n), as given in Example 4.5. A cluster monomial inH(pn)

is a product of non negative powers of exchange cluster variables belonging to the same
cluster. To visualize that, the monomial m = z

β1
1 · · · zβn

n , βi ∈ Z≥0, i ∈ [1, n] is a cluster
monomial if {z1, . . . , zn} is the set of the exchange cluster variables of some seed in the
exchange graph of pn.

Definition 5.1 The space of representations Vn is defined to be the K(f1, . . . , fn)-left span
by the set of all cluster monomials.

Lemma 5.2 The space of representations Vn is independent of pn and depends only on the
exchange graph G(pn).

Proof The statement of the lemma is equivalent to the fact that “the set of all cluster mono-
mials of every seed in G(pn) is the same” which is equivalent to “any two seeds in G(pn)

have the same exchange graph” which is an immediate result of the fact that the set of
all seeds in G(pn) form an equivalent class under (left and right) mutations as equivalent
relation which is due to Part (2) of Proposition 3.4.
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Proposition 5.3 If pn is a preseed, then the following are true

(1) For any set of n (or less) different cluster variables, not including two variables pro-
duced from the same initial cluster variable, there is at least one preseeed in G(pn)

which contains all of them;
(2) For any two cluster variables z1 and z2, produced from the same initial cluster

variable, there are two cases for their product

• if z2 can be obtained from z1 by applying some sequence of mutations of an odd
length, then z1z2 ∈ K(f1, . . . , fn);

• if z2 can be obtained from z1 by applying some sequence of mutations of an even
length, then z1z2 can be written as gz21, for some g ∈ K(f1, . . . , fn).

Proof Every cluster variable can be traced back to one of the initial cluster variables. More
precisely, for any y ∈ X (pn) there is k ∈ [1, n] such that y ∈ X (p1(xk)), thanks to Eq. 3.15.
Hence, there is a sequence of mutations μy such that y = μy(xk). Now, let {y1, . . . , yt }
be a subset of X (pn) such that t ∈ [1, n]. Then, one can see that the cluster of the seed
μy1 · · ·μyt (pn) contains the set {y1, . . . , yt }. Part (2) is immediate from Eq. 4.14.

Let Y = {y1, . . . , yn} be the cluster of the preseed pn. For t ∈ Z, yi,t denotes the
cluster variable obtained from the initial cluster variable yi by applying one of the following
sequence of mutations (μR

i )t if t ≥ 0 or (μL
i )−t if t < 0.

Using Proposition 5.3 and the above notation, a typical element of Vn can be written as
a sum of elements of the form

v = r(f1, . . . , fn)y
β1
1,m1

· · · yβn
n,mn

, (5.1)

where r(f1, . . . , fn) ∈ K(f1, . . . , fn), (β1, . . . , βn) ∈ Z
n
≥0 and (m1, . . . , mn) ∈ Z

n.

Example 5.4 Consider the Weyl preseed pn = (F, Y, �, θ), as given in Example 4.5. The
ith branch of the exchange graph G(pn) is as follows

For the sake of simplicity, we labeled each vertex by the clusters only. The space of
representations Vn is the left K(ξ1, . . . , ξn)-linear span by the set

{yβ1
1,m1

· · · yβn
n,mn

| for m = (m1, . . . , mn) ∈ Z
n, and β = (β1, . . . , βn) ∈ Z

n
≥0}. (5.2)

Definition 5.5 (Representations ofR(θ, ξ, n) on Vn) An action of the generators x1, . . . , xn

and y1, . . . , yn on the (a generic) element v (given in (5.1)), is given by

yi(v) := r(f1, . . . , fi−1, θ
−1
i (fi), . . . , fn)y

β1
1,m1

· · · yβi−1
i−1,mi−1

y
βi

i,mi−1y
βi+1
i+1,mi+1

· · · yβn
n,mn

;
(5.3)

and

xi(v) := θi(fi)r(f1, . . . , fi−1, θi(fi), . . . , fn)y
β1
1,m1

· · · yβi−1
i−1,mi−1

y
βi

i,mi+1y
βi+1
i+1,mi+1

· · · yβn
n,mn

.

(5.4)

Lemma 5.6 The actions given in definition 5.5 define a fully faithful left module structure
of R(θ, ξ, n) on Vn.
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Proof The module structure of R(θ, ξ, n) on Vn is defined by extending Eqs. (5.3) and (5.4)
to random elements of R(θ, ξ, n). It is obvious to see that the actions given in Eqs. 5.3 and
5.4 are compatible with Relations (4.1). In the following we show that Relations (4.2) are
satisfied on the generic element v, given in (5.1). We have

xiyi(v) = xi(r(f1, . . . , θ
−1
i (fi), . . . , fn)y

β1
1,m1

· · · yβi−1
i−1,mi−1

y
βi

i,mi−1y
βi+1
i+1,mi+1 · · · yβn

n,mn
))

= θi(f )r(f1, . . . , θ
−1
i (θ(fi)), . . . , fn)y

β1
1,m1

· · · yβi−1
i−1,mi−1

y
βi

i,mi
y

βi+1
i+1,mi+1 · · · yβn

n,mn
)

= θi(fi)(v)

= ξiv.

And

yixi(v) = yi(θi(fi)r(f1, . . . , θi (fi), . . . , fn)y
β1
1,m1

· · · yβi−1
i−1,mi−1

y
βi

i,mi+1y
βi+1
i+1,mi+1 · · · yβn

n,mn
))

= θi(θ
−1
i (fi))r(f1, . . . , θi (θ

−1(fi)), . . . , fn)y
β1
1,m1

· · · yβi−1
i−1,mi−1

y
βi

i,mi
y

βi+1
i+1,mi+1 · · · yβn

n,mn
)

= fiv.

In a similar way, one can get the rest of the Relations (4.2). The property of fully faithful
module is a straightforward from the definitions of the actions given in Eqs. 5.3 and 5.4.

Proposition 5.7 The module structure given in Definition 5.5 can be extended to the Weyl
cluster algebra associated to pn.

Proof To upgrade the representations of R(θ, ξ, n) on Vn to the Weyl cluster algebra asso-
ciated to pn, we introduce the action of y−1

i on the element v, by y−1
i (v) = θ−1(ξi)xi(v).

The action of a random element of the Weyl cluster algebraH(pn) will be induced from the
action of both of yi and y−1

i for i = 1, . . . , n, thanks to Part (2) of Theorem 4.12.

5.2 Cluster Strands and the Strand Submodules of Vn

Before introducing the cluster strands we need to introduce the following notations. For
t ∈ Z, let

θ t (−) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t−t imes
︷ ︸︸ ︷
θ(θ(. . . θ(−))), if t > 0,
idR, if t = 0,

|t |−t imes
︷ ︸︸ ︷

θ−1(θ−1(. . . θ−1(−))), if t < 0.

Consider the following three sets of monomials in the elements {θ t (z); t ∈ Z}
(1)

M+(z) := {1, θ t (z±1)θ t+1(z±1) · · · θ t+q(z±1)|q, t ∈ Z≥0};
(2)

M−(z) := {1, θ t (z±1)θ t−1(z±1) · · · θ t−q(z±1)|q ∈ Z≥0, t ∈ Z<0};

(3)
M(z) := {m1m2|m1 ∈ M+(z) and m2 ∈ M−(z)}. (5.5)
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For every h ∈ K(f1, . . . , fn) and t = (t1, . . . , tn) ∈ Z
n we associate a subset of

K(f1, . . . , fn) as follows

c(h, t) := {α1 · · ·αnh(θ
t1
1 (f1), . . . , θ

tn
n (fn))| αi ∈ M(fi), ∀i ∈ [1, n]}. (5.6)

Definition 5.8 (Cluster strands) Fix a natural number l and a one to one map σ :

[1, l] → Z
n
≥0 × Z

n. Let β = (β1, . . . , βl) ∈
l−times

︷ ︸︸ ︷
Z

n
≥0 × · · · × Z

n
≥0 and m = (m1, . . . , ml) ∈

l−times
︷ ︸︸ ︷
Z

n × · · · × Z
n such that σ(j) = (σ1(j), σ2(j)) = (βj , mj ) where βj = (βj1, . . . , βjn)

and mj = (mj1, . . . , mjn), j ∈ [1, l]. Let r = (r1, . . . , rl) such that rj ∈ K(f1, . . . , fn)

for j ∈ [1, l]. Consider the following subset of Vn

Sl(σ, r) :=
{ l∑

j=1

gj y
βj1
1,mj1+tj1

· · · yβjn

n,mjn+tjn
|gj ∈ c(rj , tj ), tj = (tj1, . . . , tjn) ∈ Z

n, j ∈ [1, l]
}
.

(5.7)

With the above data, Sl(σ, r) is called a cluster strand of length l, with respect to r and
σ . Furthermore, Sl(σ, r) is called a full cluster strand if σ1(j) ∈ Z

n
>0 for every j ∈ [1, l].

Example 5.9 (A cluster strands of length 2 in V3) Let l = 2, σ1(1) = (0, 3, 0), σ1(2) =
(1, 0, 2), σ2(1) = (1, 1, 0), σ2(2) = (0, 1, 1), and r = (f 2

1 + f2, f1f3). For tj =
(tj1, tj2, tj3) ∈ Z

3, j ∈ [1, 2], we have
c(f 2

1 + f2, t1) = {α1α2α3((θ
t11
1 (f1))

2 + θ
t12
2 (f2))| αi ∈ M(fi), i ∈ [1, 3]},

and

c(f1f3, t2) = {α1α2α3θ
t21
1 (f1)θ

t23
3 (f3)| αi ∈ M(fi), i ∈ [1, 3]}.

With the above data we have

S3(σ, r) = {
g1y

3
2,1+t12

+ g2y1,0+t21y
2
3,1+t23

|g1 ∈ c(f 2
1 + f2, t1), g2 ∈ c(f1f2, t2), t1, t2 ∈ Z

3}.

Proposition 5.10 Each element of Vn gives rise to a cluster strand.

Proof For every element v of Vn, one can find r1, . . . , rl elements of K(f1, . . . , fn) such
that v can be written uniquely as follows

v = r1(f1, . . . , fn)y
β11
1,m11

· · · yβ1n
n,m1n

+ . . . + rl(f1, . . . , fn)y
βl1
1,ml1

· · · yβln
n,mln

.

Such that a 1 − 1 map σ : [1, l] → Z
n
≥0 × Z

n can be defined with σ(j) = (σ1(j), σ2(j)),
where σ1(j) = (βj1, . . . , βjn) and σ2(j) = (mj1, . . . , mjn), j ∈ [1, l]. Using Definition
5.8, one can introduce a cluster strand Sl(σ, r) with r = (r1, . . . , rl) and σ as defined
above.

We denote the cluster strand associated to v by Sl(σ, r)(v).

Question 5.11 Does the cluster strand Sl(σ, r)(v) depend on the choices of r or σ?
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The following lemma and Remarks 5.14 provide some basic properties of the cluster
strands.

Lemma 5.12 (1) Let v be an element of Sl(r, σ ). Then Sl(r, σ )(v) = Sl(r, σ );
(2) We have Sl (σ, g) = Sl (σ, f ) if and only if for every i ∈ [1, n], either gi ∈ c(fi, ti ) for

some ti ∈ Z
n or fi ∈ c(gi, t

′
i ) for some t ′i ∈ Z

n;
(3) Let g = (g1, . . . , gn) such that gi ∈ c(fi, ti ) for some ti ∈ Z

n, i ∈ [1, n]. Then
Sl (σ

′, g) = Sl (σ, f ) if and only if ∀j ∈ [1, l], σ ′
1(j) = σ1(j) and σ ′

2(j) = σ2(j)+ qj

for some qj ∈ Z
n.

Proof For Part (1). Fix v = ∑l
j=1 gjy

βj1

1,m′
j1

· · · yβjn

n,m′
jn

∈ Sl(σ, r). Then we must

have, for every j ∈ [1, l], gj = α′
j1 · · · α′

jnrj (θ
t ′
j1
1 (f1), . . . , θ

t ′jn
n (fn)) ∈ c(rj , t

′
j ), for

some t ′j = (t ′j1, . . . , t ′jn) ∈ Z
n. A typical element of c(rj , tj ) would be of the form

αj1 · · · αjnrj (θ
tj1
1 (f1), . . . , θ

tjn
n (fn)) with αji ∈ M(fi), ∀i ∈ [1, n], which can be written

as

αj1 · · ·αjnα
′
jn(θ

tj1−t ′
j1

1 (f −1
1 )) · · · α′

j1(θ
tjn−t ′jn
n (f −1

n ))gj (θ
tj1−t ′

j1
1 (f1), . . . , θ

tjn−t ′jn
n (fn))

which is an element of c(gj , tj − t ′j ). Thus, any element of the following form
∑l

j=1 rj y
βj1
1,mj1+tj1

· · · yβjn

n,mjn+tjn
is in fact an element of Sl(g, σ ′), where σ ′

1(j) = σ1(j)

and σ ′
2(j) = σ2(j)+ tj , j ∈ [1, l]. Then Sl(σ, r) ⊆ Sl(σ

′, g). But from the Proof of Propo-
sition 5.10, one can see that Sl(σ

′, g) = Sl(σ
′, g)(v). Again from the proof of Proposition

5.10, one can see that Sl(σ, g)(v) ⊆ Sl(σ, r). Therefore, Sl(σ, r) = Sl(σ, g)(v).
For Part (2). (⇒) is Obvious. For the other direction (⇐). Without loss of generality,

let gj ∈ c(fj , tj ) for some tj = (tj1, . . . , tjn) ∈ Z
n. Then for every j ∈ [1, l], there

are αji ∈ M(fi), i ∈ [1, n] such that gj = αj1 · · · αjnfj (θ
tj1
1 (f1), . . . , θ

tjn
n (fn)). Now, let

v ∈ Sl(g, σ ). Hence, we have

v =
l∑

j=1

gjy
βj1

1,m′
j1

· · · yβjn

n,m′
jn

=
l∑

j=1

αj1 · · ·αjnfj (θ
tj1
1 (f1), . . . , θ

tjn
n (fn))y

βj1

1,m′
j1

· · · yβjn

n,m′
jn

∈ Sl(f, σ ).

Therefore Sl(σ, f ) = Sl(σ, g)(v) = Sl(σ, g) thanks to Part (1) of this lemma.
For Part (3). First for (⇒). One can see that, if σ ′

1(j) = σ1(j),∀j ∈ [1, l], then σ ′ =
σ + (0, q), q ∈ Z

n. Now, assume that σ ′(j0) �= σ(j0) + (0, qj ) for some j0 ∈ [1, l] and for
every q ∈ Z

n. Hence σ ′
1(j0) �= σ1(j0). Then the element

v0 = gj0y
βj01

1,mj01+tj01
· · · yβj0n

n,mj0n+tj0n
+

l∑

j∈[1,l]\{j0}
gjy

βj1
1,mj1+tj1

· · · yβjn

n,mjn+tjn

is an element of Sl (σ
′, g) with σ ′

1(j) = (βj1, . . . , βjn). However, v0 is not an element of
Sl (σ, f ). (⇐) is immediate.

Definition 5.13 Any submodule of Vn generated by a cluster strand Sl (σ, r) is called a
strand submodule and is denoted by Wl(σ, r).
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In the occasions, when we want to emphasis on a certain element v of Vn, we will denote
the strand submodule associated to the cluster strand Sl (σ, r)(v) by Wl(σ, r)(v) or, for the
sake of simplicity, by Wl(v).

Let M(E) be the set of all monomials formed from elements of the set E =
{x1, . . . , xn, y1, . . . , yn}. A special cluster strand is defined to be a subset of a full cluster
strand Sl(σ, r) of the form

Ŝl(σ, r) :=
{ l∑

j=1

gjy
βj1
1,mj1+t1

· · · yβjn

n,mjn+tn
|t = (t1, . . . , tn) ∈ Z

n, gj ∈ c(rj , t), j ∈ [1, l]
}
.

(5.8)
The submodule of Wl(σ, r) generated by the special cluster strand Ŝl(σ, r) is called

special stand module and is denoted by Ŵl(σ, r).

Remarks 5.14 (1) Let Ŝl(σ, h) be a special cluster strand. Then

(a)

Ŝl(σ, h) is a proper subset of Sl(σ, h);
(b)

Ŝl(σ, h) = M(E)w, for every w ∈ Ŝl(σ, h).

(2) There is a bijection between the set of all cyclic submodules of Vn and the set of all
special strand submodules.

Proof Part (1) is straight forward. For Part (2), let W be a cyclic module generated by w

with associated cluster strand Sl(σ, r)(w). Then by the definition of special cluster strands,
we have Ŵl(σ, r) is a submodule of W . One can realize that W is a submodule of Ŵl(σ, r)

too, if we recall that W is cyclic module generated by w which is an element of Ŝl(σ, r).
The bijection is defined to send W to Ŝl(σ, r).

Proposition 5.15 (1) Every strand submodule Wl(f, σ ) can be identified with a sum of
(identical) copies of the cluster strand Sl(h, σ ).

(2) Every submodule W of Vn is a sum of some strand submodules. In particular, W is
generated by a set of cluster strands.

Proof (1) First we show that the extensions of the action of the elements of M(E),
induced by Eqs. 5.3 and 5.4, keeps the cluster strands invariant. One can see that
for every g ∈ K(f1, . . . , fn) and t ∈ Z

n the coefficients set c(g, t) is invariant
under the actions of the elements of E and then under elements of M(E). Now, let

v = ∑l
j=1 gjy

βj1
1,mj1

· · · yβjn
n,mjn

be an element of the cluster strand Sl(h, σ ). Recalling
that the actions given in Eqs. 5.3 and 5.4 define a fully faithful representation, one can
see that under the actions of elements of E the length l stays unchanged with respect
to h and σ , which will stay unchanged too. Hence for any monomial m ∈ M(E), we
have m(v) ∈ Sl(h, σ ), more precisely

m(v) =
l∑

j=1

αj1 · · ·αjngj (θ
tj1
1 (f1), . . . , θ

tjn

1 (fn))y
βj1
1,mj1+tj1

· · · yβjn

n,mjn+tjn
. (5.9)
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Where αji ∈ M(fi) and tj i ∈ Z, ∀i ∈ [1, n], j ∈ [1, l]. Recall that, ele-
ments of Wl(h, σ ) are finite sums of finite products of elements of R(θ, ξ, n) acting
on an element of Sl(f, σ ). But every element of R(θ, ξ, n) can be written as a
K(f1, . . . , fn)-linear combination of elements of M(E). Then from Eq. (5.9) ele-
ments of Wl(h, σ ) are finite sum of elements of Sl(h, σ ). In the same time one can
obviously see that every sum of elements of Sl(h, σ ) must be an element of Wl(h, σ ).

(2) We first notice that, from Part (1) of Lemma 5.12, we conclude that every two cluster
strands are either identical or have zero intersection. So we can introduce the following
equivalence relation on Vn

∀s, s′ ∈ Vn, s ∼ s′ if and only if s and s′ belong to the same cluster strand. (5.10)

Let W be a submodule of Vn and W ∗ = W/ ∼. Here, every w∗ ∈ W ∗, is the intersec-
tion of W with the cluster strand Sl(σ, f )(w). If W ∗

l (w) denote the submodule of W

generated by w∗. Then we have the following identity

W =
∑

w∗∈W ∗
W ∗

l (w). (5.11)

Proposition 5.16 Let Sl(σ, h) be a full cluster strand. Then any two strand submodules of
Wl(σ, h) have a non-zero intersection.

Proof Let W1 = Wl1(σ
1, h1)(w1) and W2 = Wl2(σ

2, h2)(w2) be any two proper strand
submodules of Wl(σ, h). From Proposition 5.15 and Proposition 5.10, one can see that the
cluster stands Sl1(σ

1, h1)(w1) and Sl2(σ
2, h2)(w2) satisfy the following

• There are two natural numbers d1 and d2 such that li = di l, i = 1, 2;
• h1 = (h11, . . . , h1l , . . . , hd11, . . . , hd1l ) and h2 = (h′

11, . . . , h
′
1l , . . . , h

′
d21

, . . . , h′
d2l )

where there are tj2 ∈ Z
n such that hj1j2 , h

′
j1j2

∈ c(hj2 , tj2) for every j1 ∈ [1, di], j2 ∈
[1, l];

• For i = 1, 2 we have σ i : {11, 12, . . . , 1l, . . . , di1, . . . , di l} → Z
n
>0 × Z

n, such that
σ i = (σ i

1, σ
i
2) where σ i

1(j1j2) = σ1(j2) and σ i
2(j1j2) = σ2(j2) + tj1j2 for some

tj1j2 ∈ Z
n, for all j2 ∈ [1, l].

Now we will show that the sum of any di-elements of Sl(σ, h) is an element of
Sli (σ

i, hi)(wi), for i = 1, 2. Consider the following two elements

wj1 =
l∑

j2=1

hj1j2y
βj21

1,mj21+t1j1j2

· · · yβj2n

n,mj2n+tnj1j2

and

w′
j1

=
l∑

j2=1

h′
j1j2

y
βj21

1,mj21+t1j1j2

· · · yβj2n

n,mj2n+tnj1j2
.

One can see that the elements wj1 and w′
j1
are elements of Sl(σ, h) for every j1 ∈ [1, di]

for i = 1, 2. Then the cluster strands associated to wj1 and w′
j1

coincide with Sl(σ, h) for
every j1 ∈ [1, di], i = 1, 2, thanks to Part (1) of Lemma 5.12.
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For every j1 ∈ [1, di], we have s ∈ S(wj1) = S(w′
j1

) for every s ∈ S(w). Let l′ be the
least common multiple of l1 and l2. So, l′ = nili , for some ni ∈ N, i = 1, 2. Consider the
element

w′ =
l′∑

i=1

si ,where si ∈ S(w) \ {s1, . . . , si−1},∀i ∈ [1, l′].

One can see that, w′ is in deed a sum of nidi-elements of the cluster strand of wji
and

elements of Sli (σ
i, hi)(wi) are sums of di-elements of the cluster strand wji

, i = 1, 2. Then
w′ is a sum of di-elements of the cluster stared Sli (σ

i, hi)(wi), i = 1, 2. Therefore from
Part (1) of Proposition 5.15, we have

w′ ∈ W(w1) ∩ W(w2).

The following corollary is a consequence of the proof of Proposition 5.16. Let Sl(σ, h)

be a cluster strand with a strand module Wl(σ, h). For every natural number j we introduce
a subset of Sl(σ, h) give by

S
j
l (σ, h) = {s1 + · · · + sj ; si ∈ Sl(σ, h) \ {s1, . . . , si−1}, ∀i ∈ [1, j ]}.

Corollary 5.17 (1) For every wj , sj ∈ S
j
l (σ, h), the cluster strands Sjl(σ

1, h2)(sj ) and
Sjl(σ

2, h2)(wj ), defined in the Proof of Proposition 5.16 are coincide and with length
of j l.

(2) Let W(j) denote the strand module of Sjl(σ
1, h2)(sj ). Then we have the following

descending chain of strand modules

Wl(σ, h) ⊇ W(j) ⊃ W(2j) ⊃ . . . ⊃ W(nj) ⊃ . . . , ∀j ∈ N.
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