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1 Introduction

Let g be a simple Lie algebra, Lg = g ⊗ C[t, t−1] the corresponding loop algebra, and
Uq(Lg) the corresponding quantum loop algebra. Minimal affinizations of representations
of quantum groups are an important family of simple Uq(Lg)-modules introduced in [1].
Minimal affinizations are natural generalizations of the celebrated Kirillov-Reshetikhin
modules, which have several applications and are studied intensively during the past few
decades. Minimal affinizations are important from the physical point of view, see for
example, [1, 11, 13].

Graded limits of minimal affinizations, which are graded analogs of the classical limits
defined over the current algebra g[t] = g ⊗ C[t], were studied in [2, 4, 18, 19, 23, 24].

Minimal affinizations over the quantum loop algebra of type G2 were studied in [1, 5,
16, 20, 25]. The aim of this paper is to study the graded limits of minimal affinizations over
the quantum loop algebra of type G2.

Assume that g is of type G2. Let L(m) be the graded limit of a minimal affinization
with highest weight λ, and let M(λ) be the g[t]-module generated by a nonzero vector vλ

with certain relations. Our first main result (Theorem 3.2) is that M(λ) ∼= L(m) ∼= T (λ),
where T (λ) is some generalized Demazure module. These isomorphisms were previously
conjectured by Moura in [18].

Let ω1 (resp. ω2) be the fundamental weight with respect to the long (resp. short) sim-
ple root, and assume that λ = kω1 + lω2. Using the above isomorphisms, we obtain the
following polyhedral multiplicity formula as a g-module (Theorem 3.3)

L(m) ∼=
⊕

(a1,...,a5)∈Sλ

V
(
(k − a1 + a3 + a4 − a5)ω1 + (l − a2 − 3a3 − 3a4)ω2

)
,

where

Sλ = {
(a1, . . . , a5) ∈ Z

5+
∣∣ a1 ≤ k, a1 − a3 + a5 ≤ k, 2a2 + 3a3 + 3a4 ≤ l, 2a2 + 3a4 + 3a5 ≤ l

}
.

Here V (μ) denotes the simple g-module with highest weight μ. As an immediate corollary,
we obtain a similar formula for the multiplicity of minimal affinizations as a Uq(g)-module
(Corollary 3.4). This formula is a generalization of the one given in [5], in which the formula
for Kirillov-Reshetikhin modules (i.e. the case k = 0 or l = 0) is given.

We also give a formula for the limit of normalized characters (Corollary 3.5), which
yields the character formula of least affinizations of generic parabolic Verma modules of
type G2 conjectured by Mukhin and Young [21, Conjecture 6.3].

The paper is organized as follows. In Section 2, we give some background information
about the quantum loop algebra of type G2. In Section 3, we describe our main results in
this paper. In Section 4, we prove Theorem 3.2. In Section 5, we prove Theorem 3.3.

2 Background

Let Z be the set of integers, and Z+ the set of nonnegative integers. In this paper, we take g
to be the complex simple Lie algebra of type G2. Let h be a Cartan subalgebra and b a Borel
subalgebra containing h. Let I = {1, 2}. We choose simple roots α1, α2 and scalar product
(·, ·) such that

(α1, α1) = 6, (α1, α2) = −3, (α2, α2) = 2.
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Therefore α1 is the long simple root and α2 is the short simple root. The set of long positive
roots is

{α1, α1 + 3α2, 2α1 + 3α2}.
The set of short positive roots is

{α2, α1 + α2, α1 + 2α2}.
Denote by � the root system of g, and by �+ the set of positive roots. Let W denote the
Weyl group with simple reflections si (i ∈ I ). Denote by gα (α ∈ �) the corresponding root
space, and for each α ∈ �+ fix nonzero elements eα ∈ gα , fα ∈ g−α and α∨ ∈ h such that

[eα, fα] = α∨, [α∨, eα] = 2eα, [α∨, fα] = −2 fα.

We also use the notation ei = eαi , fi = fαi for i ∈ I , and e−α = fα for α ∈ �+. Set
n± = ⊕

α∈�+ g±α .
Let ωi (i ∈ I ) be the fundamental weight. We have ω1 = 2α1 + 3α2, ω2 = α1 + 2α2.

Let P be the weight lattice, and

P+ =
∑

i∈I
Z+ωi ⊆ P, Q+ =

∑

i∈I
Z+αi ⊆ P.

Note that P coincides with the root lattice
∑

i∈I Zαi , but P+ �= Q+. We write λ ≤ μ for
λ, μ ∈ P if μ − λ ∈ Q+. For λ ∈ P+, denote by V (λ) the simple g-module with highest
weight λ.

Let ĝ = g ⊗ C[t, t−1] ⊕ Ķ ⊕ ḑ be the affine Kac-Moody Lie algebra associated with g,
where K is the canonical central element and d is the degree operator. Let Î = {0, 1, 2}, and

e0 = f2α1+3α2 ⊗ t, f0 = e2α1+3α2 ⊗ t−1.

In this paper, we put̂to denote the objects associated with ĝ. For example, P̂ and Q̂ denote
the weight and root lattices of ĝ respectively, and so on. Let δ ∈ P̂ be the null root, and
denote by �0 ∈ P̂+ the unique dominant integral weight of ĝ satisfying

〈α∨
i , �0〉 = 0 for i ∈ I, 〈K , �0〉 = 1, 〈d, �0〉 = 0.

Let Lg = g ⊗ C[t, t−1] and g[t] = g ⊗ C[t] be the loop algebra and the current algebra
associated with g respectively, whose Lie algebra structures are given by

[x ⊗ f (t), y ⊗ g(t)] = [x, y] ⊗ f (t)g(t).

Note that g[t] is naturally considered as a Lie subalgebra of ĝ.
The quantum loop algebraUq(Lg) in Drinfeld’s new realization is a C(q)-algebra gener-

ated by x±
i,n (i ∈ I, n ∈ Z), k±1

i (i ∈ I ), hi,n (i ∈ I, n ∈ Z\{0}), subject to certain relations,
see [9]. Denote by Uq(g) the subalgebra of Uq(Lg) generated by x±

i,0 (i ∈ I ), k±1
i (i ∈ I ),

which is isomorphic to the quantized enveloping algebra associated with g. For λ ∈ P+, let
Vq(λ) denote the finite-dimensional simple Uq(g)-module of type 1 with highest weight λ.

Simple Uq(Lg)-modules are parametrized by dominant monomials in
Z[Y±1

i,a ]i∈I,a∈C(q)× , where Y±1
i,a ’s are formal variables, and a monomial m =

∏
i∈I,a∈C(q)× Y

ui,a
i,a is dominant if ui,a ≥ 0 for all i and a (see [8], or [11] for the present

formulation). For a dominant monomial m, denote by Lq(m) the corresponding simple
Uq(Lg)-module. Let P+ be the monoid generated by {Yi,a |i ∈ I, a ∈ C

×qZ}.
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Let λ = kω1+ lω2, k, l ∈ Z+. A simpleUq(Lg)-module Lq(m) is a minimal affinization
of Vq(λ) if and only if m is one of the following monomials

(
k−1∏

i=0

Y1,aq6i

)(
l−1∏

i=0

Y2,aq6k+2i+1

)
,

(
l−1∏

i=0

Y2,aq2i

) (
k−1∏

i=0

Y1,aq2l+6i+5

)
, (2.1)

for some a ∈ C(q)×, see [7].

3 Main Results

The aim of this paper is to study the graded limits of minimal affinizations in type G2. So let
us recall briefly the definition of the graded limits (see [23] for example, for more details).

Let λ = kω1+lω2, andm be one of the monomials in Eq. 2.1. Without loss of generality,
we may assume that a ∈ C

×. Let A = C[q, q−1], UA(Lg) be the A-lattice of Uq(Lg) (see
[6]), and LA(m) = UA(Lg)vm where vm is a highest �-weight vector of Lq(m). Then

Lq(m) = LA(m) ⊗A C

becomes a finite-dimensional Lg-module called the classical limit of Lq(m), where we
identify C with A/〈q − 1〉. Define a Lie algebra automorphism ϕa : g[t] → g[t] by

ϕa
(
x ⊗ f (t)

) = x ⊗ f (t − a) for x ∈ g, f ∈ C[t].
Now we consider Lq(m) as a g[t]-module by restriction, and define a g[t]-module L(m) by
the pull-back ϕ∗

a

(
Lq(m)

)
. We call L(m) the graded limit of Lq(m). By the construction we

have for every μ ∈ P+ that
[
Lq(m) : Vq(μ)

]
=

[
L(m) : V (μ)

]
, (3.1)

where the left- and right-hand sides are the multiplicities as a Uq(g)-module and g-module,
respectively.

Now we shall state our first main theorem, which gives isomorphisms between L(m) and
other two g[t]-modules. Let M(λ) be the g[t]-module generated by a nonzero vector vM
with relations

n+[t]vM = 0, (h ⊗ tk)vM = δk0〈h, λ〉vM for h ∈ h, f
〈α∨

i ,λ〉+1
i vM = 0 for i ∈ I,

( fα1 ⊗ t)vM = 0, ( fα2 ⊗ t)vM = 0, ( fα1+α2 ⊗ t)vM = 0. (3.2)

The other g[t]-module is a multiple generalization of a Demazure module defined as fol-
lows. Let ξ1, . . . , ξp be a sequence of elements of P̂ , and assume for each 1 ≤ i ≤ p
that there exists �i ∈ P̂+ such that ξi belongs to the affine Weyl group orbit Ŵ�i

of �i . Let V̂ (�i ) denote the simple highest weight ĝ-module with highest weight �i ,
and vξi ∈ V̂ (�i )ξi be an extremal weight vector with weight ξi . We define a b̂-module
D(ξ1, . . . , ξp) by

D(ξ1, . . . , ξp) = U (̂b)(vξ1 ⊗ · · · ⊗ vξp ) ⊆ V̂ (�1) ⊗ · · · ⊗ V̂ (�p). (3.3)

Here b̂ = b ⊕ Ķ ⊕ ḑ ⊕ tg[t] is the standard Borel subalgebra of ĝ.

Remark 3.1 For any c1, . . . , cp ∈ Z, it obviously holds that

D(ξ1 + c1δ, . . . , ξp + cpδ) ∼= D(ξ1, . . . , ξp)

as
(
b ⊕ tg[t])-modules.
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Now write l = 3r + s with r ∈ Z+, s ∈ {0, 1, 2}, and set

T (λ) =
{
D

(
k(−ω1 + �0), r(−3ω2 + �0)

)
if s = 0,

D
(
k(−ω1 + �0), r(−3ω2 + �0), −sω2 + �0

)
otherwise.

Note that T (λ) is extended to a module over g[t] ⊕ Ķ ⊕ ḑ, and as a g[t]-module T (λ) is
generated by the one-dimensional weight space T (λ)λ.

Our first main theorem is the following.

Theorem 3.2 As a g[t]-module, we have
M(λ) ∼= L(m) ∼= T (λ).

The second main theorem gives a multiplicity formula for L(m) as a g-module. For
λ = kω1 + lω2, define a subset Sλ ⊆ Z

5+ by

Sλ = {
(a1, . . . , a5)

∣∣ a1 ≤ k, a1−a3+a5 ≤ k, 2a2+3a3+3a4 ≤ l, 2a2+3a4+3a5 ≤ l
}
.

Theorem 3.3 As a g-module,

L(m) ∼=
⊕

(a1,...,a5)∈Sλ

V
(
(k − a1 + a3 + a4 − a5)ω1 + (l − a2 − 3a3 − 3a4)ω2

)
.

By Eq. 3.1, we immediately obtain the following corollary.

Corollary 3.4 As a Uq(g)-module,

Lq(m) ∼=
⊕

(a1,...,a5)∈Sλ

Vq
(
(k − a1 + a3 + a4 − a5)ω1 + (l − a2 − 3a3 − 3a4)ω2

)
.

From Theorem 3.2, we also obtain the following formula for the limit of the (normalized)
characters of minimal affinizations.

Corollary 3.5 Let J be a subset of I , and suppose that λ1, λ2, . . . is an infinite sequence of
elements of P+ such that

lim
n→∞〈α∨

i , λn〉 = ∞ for all i ∈ J and 〈α∨
i , λn〉 = 0 for all i /∈ J, n ∈ Z>0.

Let m1,m2, . . . be an infinite sequence of elements of P+ such that Lq(mn) is a minimal
affinization of Vq(λn). Then limn→∞ e−λnch Lq(mn) exists, and

lim
n→∞ e−λnch Lq(mn) =

∏

α∈�+

(
1

1 − e−α

)max j∈J 〈ω∨
j ,α〉

.

Proof This result follows from Theorem 3.2, and the proof is the same as one given in
[23, Corollary 4.13].

This corollary, together with [21, Corollary 5.6], yields the character formula of the least
affinizations of generic parabolic Verma modules of type G2 conjectured by Mukhin and
Young [21, Conjecture 6.3].
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4 Proof of Theorem 3.2

Throughout the rest of this paper, we fix λ = kω1 + lω2 ∈ P+ and set r ∈ Z+ and s ∈
{0, 1, 2} to be such that l = 3r + s. Let m be one of the monomials in Eq. 2.1 with a ∈ C

×.
In this section, we shall prove one by one the existence of three surjective homomorphisms

M(λ) � L(m), L(m) � T (λ), T (λ) � M(λ),

which completes the proof of Theorem 3.2.

4.1 Proof of M(λ) � L(m)

Let vm be a highest �-weight vector of Lq(m), and W = Uq(g)vm ⊆ Lq(m) the
simple Uq(g)-submodule generated by vm . It follows from [1, Proposition 5.5] that⊕

μ≥λ−α1−α2
Lq(m)μ ⊆ W , where Lq(m)μ denotes the weight space with weightμ. Hence

we have
x−
α1,1

vm ∈ W, x−
α2,1

vm ∈ W, [x−
α1,1

, x−
α2,0

]vm ∈ W.

Then it is proved from the definition of the graded limit that the vector v̄m = vm ⊗A 1 ∈
L(m) satisfies

( fα1 ⊗ t)v̄m = ( fα2 ⊗ t)v̄m = ( fα1+α2 ⊗ t)v̄m = 0

(see [23, Subsection 4.1]). The other relations in Eq. 3.2 are easily checked from the
construction. Hence M(λ) � L(m) follows.

4.2 Proof of L(m) � T(λ)

Here we only consider the case where the monomial m is of the form
∏k−1

i=0 Y1,aq6i ·
∏l−1

i=0 Y2,aq6k+2i+1 . The proof of the other case is similar.
Set

m1 =
k−1∏

i=0

Y1,aq6i , m2 =
l−1∏

i=0

Y2,aq6k+2i+1 .

By [3, Theorem 5.1] (or more precisely, the dualized statement of it), there exists an injective
homomorphism

Lq(m) ↪→ Lq(m1) ⊗ Lq(m2)

mapping a highest �-weight vector to the tensor product of highest �-weight vectors. Then
by the definition of graded limits, we obtain a g[t]-module homomorphism

L(m) → L(m1) ⊗ L(m2)

mapping a highest weight vector to the tensor product of highest weight vectors. Now the
existence of a surjection L(m) � T (λ) is proved from the following lemma.

Lemma 4.1 (i) L(m1) is isomorphic to D
(
k(−ω1 + �0)

)
as a g[t]-module.

(ii) L(m2) is isomorphic to D
(
r(−3ω2 + �0)

)
(resp. D

(
r(−3ω2 + �0), −sω2 + �0

)
) if

s = 0 (resp. s = 1, 2) as a g[t]-module.

Proof The graded limit L(m1) is isomorphic to the Kirillov-Reshetikhin module K R(kω1)

for g[t] defined in [4, 5], which is proved from the facts that there exists a surjection
K R(kω1) � L(m1) (see Section 4.1) and the characters of two modules are the same
(see [5, 12, 14]). Hence the assertion (i) follows from [10, Theorem 4]. Similarly L(m2)
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is isomorphic to K R(lω2), and hence by [5, Corollary 2.3] it is isomorphic to the g[t]-
submodule of K R(3rω2) ⊗ K R(sω2) generated by the tensor product of highest weight
vectors. Now K R(3rω2) ∼= D

(
r(−3ω2 + �0)

)
follows from [10, Theorem 4], and

K R(sω2) ∼= D(−sω2 + �0) is verified by the Demazure character formula (see [10]).
Hence the assertion (ii) is proved.

4.3 Proof of T (λ) � M(λ)

First we introduce the following notation, as in [23, 24]. Assume that V is a ĝ-module and
D is a b̂-submodule of V . For i ∈ Î let p̂i denote the parabolic subalgebra b̂ ⊕ f̧i ⊆ ĝ, and
set Fi D = U (̂pi )D ⊆ V to be the p̂i -submodule generated by D. It is easily seen that, if
ξ1, . . . , ξp ∈ Ŵ (P̂+) satisfy 〈α∨

i , ξ j 〉 ≥ 0 for all 1 ≤ j ≤ p, then

Fi D(ξ1, . . . , ξp) = D(siξ1, . . . , siξp) (4.1)

(see [23, Lemma 2.4]).
Let �̂re = � + Zδ be the set of real roots of ĝ, and �̂re+ = �+ � (� + Z>0δ) the set of

positive real roots. For γ = α + pδ ∈ �̂re, set

γ ∨ = α∨ + 6p

(α, α)
K ,

and define a number ρ(γ ) by

ρ(γ ) = max
{
0,−〈γ ∨, k(ω1 +�0)〉

}+max
{
0,−〈γ ∨, r(3ω2 +�0)〉

}+max
{
0, −〈γ ∨, sω2 +�0〉

}
.

The explicit values of ρ(γ ) for γ ∈ �̂re+ are given as follows:

ρ
( − (α1 + 2α2) + δ

) = 3r + δs2,

ρ
( − (α1 + 3α2) + δ

) = 2r + δs2,

ρ
( − (2α1 + 3α2) + δ

) = k + 2r + δs2,

ρ
( − (α1 + 3α2) + 2δ

) = ρ
( − (2α1 + 3α2) + 2δ) = r,

and ρ(γ ) = 0 for all the other γ ∈ �̂re+. Here δs2 denotes the Kronecker’s delta. For
α + pδ ∈ �̂re set xα+pδ = eα ⊗ t p .

Recall that vξ denotes an extremal weight vector in V̂ (�) with weight ξ , where � ∈ P̂+
is the element satisfying ξ ∈ Ŵ�. Let vT ∈ T (λ) be the tensor product of the extremal
weight vectors:

vT =
{

vk(ω1+�0) ⊗ vr(3ω2+�0) s = 0,
vk(ω1+�0) ⊗ vr(3ω2+�0) ⊗ vsω2+�0 s = 1, 2.

Note that T (λ) is generated by vT as a g[t]-module. Throughout the rest of this paper, we
will abbreviate X ⊗ t p as Xt p to shorten the notation.

Lemma 4.2 We have

AnnU (̂n+)(vT ) = U (̂n+)
( ⊕

γ∈�̂re+

x̧ρ(γ )+1
γ + f̧α1+3α2 t

2( fα1+2α2 t)
3r−2 + th[t]

)
,

where f̧α1+3α2 t
2( fα1+2α2 t)

3r−2 is omitted if r = 0.

Proof First assume that s = 0, and set � = r(−2ω1 + 3ω2 + �0). Note that

F0D(k�0, �) ∼= D
(
k(ω1 + �0), r(3ω2 + �0)

)( = U (̂b)vT
)
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holds by Eq. 4.1, and we have

AnnU (̂n+)(vk�0 ⊗ v�) = AnnU (̂n+)(v�)

since n̂+ acts trivially on vk�0 . We shall check that D(k�0, �) satisfies the conditions (i) –
(iii) (for T ) in [23, Lemma 5.3]. Note that the condition (iii) holds by [15, Theorem 5]. By
[17, Lemma 26], we have

AnnU (̂n+)(v�) = U (̂n+)
( ⊕

γ∈�̂re+

x̧max{0,−�(γ ∨)}+1
γ + th[t]

)

= U (̂n+)e0 +U (̂n+)
( ⊕

γ∈�̂re+\{α0}
x̧max{0,−�(γ ∨)}+1
γ + th[t]

)
.

It follows that

max{0, −�(γ ∨)} =

⎧
⎪⎪⎨

⎪⎪⎩

3r γ = α1 + α2,

2r γ = α1,

r γ = α1 + δ or 2α1 + 3α2,

0 otherwise.

Let n̂0 be the Lie subalgebra
⊕

γ∈�̂re+\{α0} x̧γ ⊕ th[t] of n̂+, and define a left U (̂n0)-ideal I
by

I = U (̂n0)
( ⊕

γ∈�̂re+\{α0}
x̧max{0,−�(γ ∨)}+1
γ + ȩα1

te3r−2
α1+α2

+ th[t]
)
.

It is directly checked for every p ∈ Z+ that

ad(e0)(e
p
α1+α2

) ∈ C
×ep−1

α1+α2
fα1+2α2 t + C

×ep−2
α1+α2

fα2 t + C
×ep−3

α1+α2
eα1 t,

where we set eqα1+α2
= 0 if q < 0. Using this we see that I is ad(e0)-invariant, and

AnnU (̂n+)(v�) = U (̂n+)e0 +U (̂n+)I.

Now the assertion (for s = 0) follows by [23, Lemma 5.3].
The case s = 1 is easily proved from the case s = 0 since n̂+ acts trivially on vω2+�0

and hence

AnnU (̂n+)

(
vk(ω1+�0) ⊗ vr(3ω2+�0) ⊗ vω2+�0

) = AnnU (̂n+)(vk(ω1+�0) ⊗ vr(3ω2+�0)

)
.

For the case s = 2, notice by Eq. 4.1 that

D
(
r(3ω2 + �0), 2ω2 + �0

) ∼= F0F1F2F1F0D(r�0, ω2 + �0).

Then this is isomorphic to

F0F1F2F1F0D
(
ω2 + (r + 1)�0

) ∼= D
(
(3r + 2)ω2 + (r + 1)�0

)

since the ĝ-submodule of V̂ (r�0)⊗ V̂ (ω2 +�0) generated by the tensor product of highest
weight vectors is isomorphic to V̂

(
ω2 + (r + 1)�0

)
. Hence we have

D
(
k(ω1 + �0), r(3ω2 + �0), 2ω2 + �0

) ∼= D
(
k(ω1 + �0), (3r + 2)ω2 + (r + 1)�0

)
.

Using this isomorphism, the assertion for s = 2 is proved in almost the same way with the
case s = 0.

Now Lemma 4.2 and the following proposition yield a (h⊕ n̂+)-module homomorphism
from U (h ⊕ n̂+)vT to M(λ) sending vT to vM since their weights are both λ, and then
the existence of a surjection T (λ) � M(λ) is proved by the same argument with [23, two
paragraphs below Lemma 5.2].
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Proposition 4.3 The vector vM ∈ M(λ) satisfies the relations

xρ(γ )+1
γ vM = 0 for γ ∈ �̂re+, th[t]vM = 0, fα1+3α2 t

2( fα1+2α2 t)
3r−2vM = 0,

where the last one is omitted when r = 0.

The rest of this subsection is devoted to prove Proposition 4.3. For simplicity we assume
that s = 0 in the rest of this subsection, and prove the proposition only in this case. The
proof of the other cases are almost the same. Note that the relations xγ vM = 0 for

γ /∈ {−(α1 + 2α2)+ δ, −(α1 + 3α2)+ δ, −(2α1 + 3α2)+ δ, −(α1 + 3α2)+ 2δ, −(2α1 + 3α2)+ 2δ}
and th[t]vM = 0 are easily proved from the definition. For example when γ = −(α1 +
2α2) + 2δ, xγ vM = 0 follows since [x−(α1+α2)+δ, x−α2+δ]vM = 0.

For computational convenience, we assume from now on that the root vectors are
normalized so that

[
eα2 , fα1+3α2

] = fα1+2α2 ,
[
eα2 , fα1+2α2

] = fα1+α2 ,
[
eα2 , fα1+α2

] = fα1 ,[
fα1+α2 , fα1+2α2

] = 6 f2α1+3α2 .

For an element X in an algebra and p ∈ Z+ denote by X (p) the divided power X p/p!, and
set X (p) = 0 if p < 0.

Lemma 4.4 (i) For q ∈ Z+, we have

eα2 f
(q)

α1+2α2
≡ 3 f2α1+3α2 f

(q−2)
α1+2α2

mod U (g)
(
ȩα2

⊕ f̧α1 ⊕ f̧α1+α2
).

(ii) For p, q ∈ Z+, we have

e(p)
α2

f (q)

α1+3α2
≡

∑

i

f (i)
2α1+3α2

f (q−p+i)
α1+3α2

f (p−3i)
α1+2α2

mod U (g)
(
ȩα2

⊕ f̧α1 ⊕ f̧α1+α2
),

where i runs over the set of integers such that max{0, p − q} ≤ i ≤ p/3.

Proof We have

eα2 f
(q)

α1+2α2
≡ 1

q!
q∑

i=1

f i−1
α1+2α2

fα1+α2 f
q−i
α1+2α2

≡ 1

q!
q∑

i=1

6(q − i) f2α1+3α2 f
q−2
α1+2α2

= 1

q! · 3q(q − 1) f2α1+3α2 f
q−2
α1+2α2

= 3 f2α1+3α2 f
(q−2)
α1+2α2

,

and the assertion (i) holds. The assertion (ii) with p = 1 is immediate. Then we have by
induction and (i) that

(p + 1)e(p+1)
α2

f (q)

α1+3α2
≡ eα2

∑

i

f (i)
2α1+3α2

f (q−p+i)
α1+3α2

f (p−3i)
α1+2α2

≡
∑

i

f (i)
2α1+3α2

(
f (q−p+i−1)
α1+3α2

fα1+2α2 f
(p−3i)
α1+2α2

+ 3 f2α1+3α2 f
(q−p+i)
α1+3α2

f (p−3i−2)
α1+2α2

)

=
∑

i

(p − 3i + 1) f (i)
2α1+3α2

f (q−p+i−1)
α1+3α2

f (p−3i+1)
α1+2α2

+
∑

i

3(i + 1) f (i+1)
2α1+3α2

f (q−p+i)
α1+3α2

f (p−3i−2)
α1+2α2

= (p + 1)
∑

i

f (i)
2α1+3α2

f (q−p+i−1)
α1+3α2

f (p−3i+1)
α1+2α2

.



966 J. -R. Li, K. Naoi

Hence the assertion (ii) holds.

By Lemma 4.4 (ii), we also see that

e(p)
α2

( fα1+3α2 t)
(q) ≡

�p/3�∑

i=max{0,p−q}
( f2α1+3α2 t

2)(i)( fα1+3α2 t)(q−p+i)( fα1+2α2 t)
(p−3i)(4.2)

mod U (g)
(
ȩα2

⊕ f̧α1 t ⊕ f̧α1+α2
t).

Lemma 4.5 The relations ( fα1+3α2 t)
2r+1vM = 0 and ( f2α1+3α2 t)

k+2r+1vM = 0 hold.

Proof We have
〈
α∨
2 ,wt

(
( fα1+3α2 t)

2r+1vM
)〉 = 〈α∨

2 , λ − (2r + 1)(α1 + 3α2)〉 = −(3r + 3).

On the other hand, it follows from Eq. 4.2 that

e3r+3
α2

( fα1+3α2 t)
2r+1vM = 0,

and hence we have ( fα1+3α2 t)
2r+1vM = 0 since M(λ) is an integrable g-module. Now it is

an elementary fact that this relation and f k+1
α1

vM = 0 imply ( f2α1+3α2 t)
k+2r+1vM = 0 (for

example, see [22, Lemma 4.5]).

Lemma 4.6 The relations ( f2α1+3α2 t
2)r+1vM = 0 and ( fα1+3α2 t

2)r+1vM = 0 hold.

Proof By Lemma 4.5 and Eq. 4.2, we have

0 = e(3r+3)
α2

( fα1+3α2 t)
(2r+2)vM = ( f2α1+3α2 t

2)(r+1)vM ,

and hence ( f2α1+3α2 t
2)r+1vM = 0 follows. From this we see that

0 = er+1
α1

( f2α1+3α2 t
2)r+1vM = c( fα1+3α2 t

2)r+1vM

with some nonzero c. Hence ( fα1+3α2 t
2)r+1vM = 0 also holds.

Lemma 4.7 The relation ( fα1+2α2 t)
3r+1vM = 0 holds.

Proof By Lemma 4.5 and Eq. 4.2, we have for p ≥ 2r + 1 that

0 = e(p)
α2

( fα1+3α2 t)
(p)vM =

�p/3�∑

i=0

1

(p − 3i)! ( f2α1+3α2 t
2)(i)( fα1+3α2 t)

(i)( fα1+2α2 t)
p−3ivM .

When 2r + 1 ≤ p ≤ 3r + 1, by multiplying ( fα1+2α2 t)
3r+1−p to this we obtain r linear

relations
�p/3�∑

i=0

1

(p − 3i)! ( f2α1+3α2 t
2)(i)( fα1+3α2 t)

(i)( fα1+2α2 t)
3r+1−3ivM = 0.

Hence in order to prove ( fα1+2α2 t)
3r+1vM = 0, it is enough to show that the matrix A =

(ai j )0≤i, j≤r with

ai j =
{ 1

(3r+1−3i− j)! if 3r + 1 − 3i − j ≥ 0,
0 otherwise
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is invertible. Assume that v0, v1, . . . , vr satisfy
∑

i ai jvi = 0 for all j , and consider the
polynomial

f (x) = v0

(3r + 1)! x
3r+1 + v1

(3r − 2)! x
3r−2 + · · · + vi

(3r + 1 − 3i)! x
3r+1−3i + · · · + vr

1! x .

Then d j f
dx j (1) = 0 holds for all 0 ≤ j ≤ r , which implies that f (x) is divisible by (x−1)r+1.

Since f (ζ x) = ζ f (x) holds where ζ is a third primitive root of unity, we see that f (x) is
divisible by (x3 − 1)r+1. By the degree consideration we have f (x) = 0, and the proof is
complete.

Now the following lemma completes the proof of Proposition 4.3.

Lemma 4.8 The relation fα1+3α2 t
2( fα1+2α2 t)

3r−2vM = 0 holds when r �= 0.

Proof Let p ≥ 2r − 1. By Lemma 4.5, we have

0 = eα1+3α2 ( fα1+3α2 t)
(p+2)vM = 1

(p + 2)!
p+1∑

i=0

( fα1+3α2 t)
p−i+1(α1 + 3α2)

∨t ( fα1+3α2 t)
ivM

= 1

(p + 2)!
p+1∑

i=0

−2i( fα1+3α2 t)
p fα1+3α2 t

2vM = −( fα1+3α2 t)
(p) fα1+3α2 t

2vM . (4.3)

We easily see that all the elements eα2 , fα1 t, fα1+α2 t annihilate the vector fα1+3α2 t
2vM ,

and hence we have from Eqs. 4.2 and 4.3 that

0 = e(p)
α2

( fα1+3α2 t)
(p) fα1+3α2 t

2vM

=
�p/3�∑

i=0

1

(p − 3i)! fα1+3α2 t
2( f2α1+3α2 t

2)(i)( fα1+3α2 t)
(i)( fα1+2α2 t)

p−3ivM .

Now the lemma is proved by a similar argument as in the proof of Lemma 4.7.

5 Proof of Theorem 3.3

5.1 A Basis of the Space of Highest Weight Vectors

For a = (a1, a2, a3, a4, a5) ∈ Z
5+, set

fa = ( f2α1+3α2 t
2)(a5)( fα1+3α2 t

2)(a4)( fα1+3α2 t)
(a3)( fα1+2α2 t)

(a2)( f2α1+3α2 t)
(a1),

and

wt(a) = (2a1 + a2 + a3 + a4 + 2a5)α1 + (3a1 + 2a2 + 3a3 + 3a4 + 3a5)α2

= (a1 − a3 − a4 + a5)ω1 + (a2 + 3a3 + 3a4)ω2 ∈ Q+.

Note that wt( fa) = −wt(a). In this section, we denote by v a highest weight vector of
L(m). Since L(m) ∼= M(λ), we easily see from Proposition 4.3 and the PBW theorem that

L(m) =
∑

a∈Z5+

U (g) fav.
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Let α ∈ Q+, and set L(m)>λ−α = ⊕
μ>λ−α L(m)μ. The g-submodule U (g)L(m)>λ−α

of L(m) coincides with the sum of simple g-submodules whose highest weights are larger
than λ−α. Hence we see that the multiplicity of V (λ−α) in L(m) is equal to the dimension

of the weight space of the quotient g-module L(m)
/
U (g)L(m)>λ−α with weight λ − α,

that is [
L(m) : V (λ − α)

]
= dim

(
L(m)

/
U (g)L(m)>λ−α

)

λ−α
.

Therefore, in order to prove Theorem 3.3 it suffices to show the following proposition,
which is proved in the next subsections.

Proposition 5.1 For every α ∈ Q+, the projection images of { fav | a ∈ Sλ, wt(a) = α}
form a basis of

(
L(m)

/
U (g)L(m)>λ−α

)

λ−α
.

5.2 The Space is Spanned by the Vectors

For α ∈ Q+, set

Z
5+[α] = {a ∈ Z

5+ | wt(a) = α}, Sλ[α] = Sλ ∩ Z
5+[α].

In this subsection, we shall show the following.

Lemma 5.2 For every α ∈ Q+, the projection images of { fav | a ∈ Sλ[α]} span the space(
L(m)

/
U (g)L(m)>λ−α

)

λ−α
.

We denote by ≤ the lexicographic order on Z
5+, that is, (a1, . . . , a5) < (b1, . . . , b5) if

and only if there exists i such that a j = b j for j < i and ai < bi . Fix α ∈ Q+. Following
[5, Subsection 3.5], we define a finite sequence r1, . . . , rt of elements of Z5+[α] inductively
as follows. Set r1 to be the least element (with respect to the lexicographic order) of Z5+[α]
such that fr1v /∈ U (g)L(m)>λ−α . Assume that r1, . . . , rp are defined. We set rp+1 to be
the least element of Z5+[α] such that

fr p+1v /∈
p∑

i=1

C fr iv +U (g)L(m)>λ−α

if such an element exists, and otherwise we set t = p.
Set K [α] = {r1, . . . , rt }. By the definition the projection images of { fav | a ∈ K [α]}

span
(
L(m)

/
U (g)L(m)>λ−α

)

λ−α
, and every r ∈ K [α] satisfies that

frv /∈
∑

a∈Z5+[α],
a<r

C fav +U (g)L(m)>λ−α. (5.1)

It is enough to show that every r = (r1, . . . , r5) ∈ K [α] satisfies
r1 ≤ k, r1 − r3 + r5 ≤ k, 2r2 + 3r3 + 3r4 ≤ l, 2r2 + 3r4 + 3r5 ≤ l,

since this implies K [α] ⊆ Sλ[α].
Fix r = (r1, . . . , r5) ∈ K [α], and first assume that r1 > k. The Lie subalgebra of g[t]
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spanned by fα1 , fα1+3α2 t , and f2α1+3α2 t is isomorphic to the 3-dimensional Heisenberg
algebra. Then [5, Lemma 1.5] and f k+1

α1
v = 0 imply that

( fα1+3α2 t)
r3( f2α1+3α2 t)

r1v ∈
∑

0<p,0≤q,0≤s≤k

f̧pα1( fα1+3α2 t)
q( f2α1+3α2 t)

sv.

From this we easily see that

frv ∈
∑

a∈Z5+[α],
a<r

C fav +U (g)L(m)>λ−α,

which contradicts (5.1).
Next assume that r1 − r3 + r5 > k. Let ei (1 ≤ i ≤ 5) denote the standard basis of Z5,

and set s = r − r4e4 + r4e5. We easily see that

er4α1 fsv ∈ C
× frv +

∑

a∈Z5+[α],
a<r

C fav. (5.2)

Note that

wt( fsv) = λ − α − r4α1 = (k − r1 + r3 − r4 − r5)ω1 + (l − r2 − 3r3)ω2,

and hence we have

s1wt( fsv) = λ − α + (r1 − r3 + r5 − k)α1 > λ − α,

which implies fsv ∈ U (g)L(m)>λ−α . Then this and (5.2) contradict (5.1).
The inequality 2r2 + 3r3 + 3r4 ≤ l is proved in the same way as in [5, Subsection 3.5].
Finally assume that 2r2 + 3r4 + 3r5 > l. Then r5 > r3 follows, since otherwise we have

2r2 + 3r4 + 3r5 ≤ 2r2 + 3r3 + 3r4 ≤ l. Set

s j = (r1, 0, r2 + r3 + 2r5 − 2 j, r4, j) for 0 ≤ j ≤ r3.

We have

wt( fs jv) = λ−α − (r2 +3r5 −3 j)α2, 〈wt( fs jv), α∨
2 〉 = l −3r2 −3r3 −3r4 −6r5 +6 j.

Then by a similar argument as in the proof of r1 − r3 + r5 ≤ k, we can show that

fs jv ∈ U (g)L(m)>λ−α for all 0 ≤ j ≤ r3. (5.3)

It follows from Eq. 4.2 that

e(r2+3r5−3 j)
α2

fs jv =
r5− j+�r2/3�∑

i=max{0,r5−r3− j}

(
i + j
j

)
f (r1, r2 + 3r5 − 3i − 3 j, r3 − r5 + i + j, r4, i + j)v

=
min{r5− j,r3}∑

i=−�r2/3�

(
r5 − i

j

)
f (r1, r2 + 3i, r3 − i, r4, r5 − i)v

∈
min{r5− j,r3}∑

i=0

(
r5 − i

j

)
f r + i(3e2 − e3 − e5)v +

∑

a∈Z5+[α],
a<r

C fav,
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and then by Eq. 5.3 we have for every 0 ≤ j ≤ r3 that

min{r5− j,r3}∑

i=0

(
r5 − i

j

)
f r + i(3e2 − e3 − e5)v ∈

∑

a∈Z5+[α],
a<r

C fav +U (g)L(m)>λ−α.

From this we can show that

frv ∈
∑

a∈Z5+[α],
a<r

C fav +U (g)L(m)>λ−α

by a similar argument as in Lemma 4.7, in which we use a polynomial

f (x) = v0x
r5 + v1x

r5−1 + · · · + vr3x
r5−r3

instead. Now this contradicts (5.1).

5.3 Linearly Independence

Proposition 5.1 is proved from the following lemma, together with Lemma 5.2.

Lemma 5.3 For every α ∈ Q+, the images of { fav | a ∈ Sλ[α]} under the canonical
projection L(m) � L(m)/U (g)L(m)>λ−α are linearly independent.

Fix α ∈ Q+. Let L(m) = L(m)/U (g)L(m)>λ−α , and pr denote the canonical projection
L(m) � L(m). We shall show the lemma by the induction on k. The case k = 0 is proved
in [5].

Assume that k > 0, and a sequence {ca}a∈Sλ[α] of complex numbers satisfies
∑

a∈Sλ[α]
capr( fav) = 0. (5.4)

First we shall show that

ca = 0 for all a ∈ Sλ[α] such that a1 > 0. (5.5)

Let L1 and L2 be the graded limits of minimal affinizations of Vq(ω1) and Vq(λ − ω1)

respectively, and v1, v2 be respective highest weight vectors. Set λ2 = λ−ω1. It follows that

L(m) ∼= T (λ) ↪→ T (kω1) ⊗ T (lω2) ↪→ T (ω1) ⊗ T
(
(k − 1)ω1

) ⊗ T (lω2),

and from this we see that L(m) ∼= U (g[t])(v1 ⊗ v2) ⊆ L1 ⊗ L2. It is known that

L1 = U (g)v1 ⊕U (g) f e1v1 ∼= V (ω1) ⊕ V (0)

as a g-module, and fav1 = 0 if a /∈ {0, e1}.
Let pr1 : L1 � V (0) be the projection with respect to the g-module decomposition, and

pr2λ−α : L2 � L2/U (g)(L2)>λ−α the canonical projection. Since

(L1 ⊗ L2)>λ−α =
⊕

μ∈P

(L1)μ ⊗ (L2)>λ−α−μ ⊆ V (0) ⊗ (L2)>λ−α ⊕ V (ω1) ⊗ L2,

we have
U (g)(L1 ⊗ L2)>λ−α ⊆ V (0) ⊗U (g)(L2)>λ−α ⊕ V (ω1) ⊗ L2.

Hence the composition

κ : L(m) ↪→ L1 ⊗ L2

pr1⊗pr2λ−α� V (0) ⊗
(
L2/U (g)(L2)>λ−α

) ∼= L2/U (g)(L2)>λ−α
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induces a g-module homomorphism κ : L(m) → L2/U (g)(L2)>λ−α . It is easily seen for
a = (a1, . . . , a5) that

fa(v1 ⊗ v2) =
{

v1 ⊗ fav2 + f e1v1 ⊗ fa − e1v2 if a1 > 0,
v1 ⊗ fav2 otherwise.

(5.6)

Hence we see from the definition of κ that (5.4) yields

0 = κ
( ∑

a∈Sλ[α]
capr( fav)

)
=

∑

a∈Sλ[α]
caκ( fav) =

∑

a∈Sλ[α]: a1>0

capr
2
λ−α( fa − e1v2).

Since λ − α = λ2 − (α − ω1) and {a − e1 | a ∈ Sλ[α], a1 > 0} ⊆ Sλ2 [α − ω1], Eq. (5.5)
follows from the induction hypothesis, as required.

Set

S0λ[α] = {a ∈ Sλ[α] | a1 = 0} and S0,kλ [α] = {a ∈ Sλ[α] | a1 = 0, −a3+a5 = k} ⊆ S0λ[α].
It is easily checked that

S0λ[α] = S0λ2 [α] � S0,kλ [α]. (5.7)

Next we would like to prove that

ca = 0 for all a ∈ S0λ2 [α], (5.8)

and in order to do that we will first prove that

fav2 ∈ C
× fα1 fa + (e4 − e5)v2 +U (g)(L2)>λ2−(α−α1) if a ∈ S0,kλ [α]. (5.9)

Assume that r = (0, r2, r3, r4, r3 + k) ∈ S0,kλ [α]. We see by a direct calculation that

er4α1 fr+r4(e5−e4)v2 ∈ C
× frv2 and er4+1

α1
fr+r4(e5−e4)v2 ∈ C

× fr+(e4−e5)v2. (5.10)

Since
wt( fα1 fr + r4(e5 − e4)v2) = −(r4 + 3)ω1 + (l − r2 − 3r3 + 3)ω2,

it follows that

s1wt( fα1 fr + r4(e5 − e4)v2) = wt( frv2) + 2α1 > λ2 − (α − α1),

which implies fα1 fr + r4(e5 − e4)v2 ∈ U (g)(L2)>λ2−(α−α1). Hence it follows that

fα1e
r4+1
α1

fr + r4(e5 − e4)v2 = (er4+1
α1

fα1 + [ fα1 , er4+1
α1

]) fr + r4(e5 − e4)v2

∈ C
×er4α1 fr + r4(e5 − e4)v2 +U (g)(L2)>λ2−(α−α1),

which together with (5.10) imply (5.9). Let pr2λ2−α : L2 � L2/U (g)(L2)>λ2−α be the
canonical projection. Since U (g)(L1 ⊗ L2)>λ−α ⊆ L1 ⊗U (g)(L2)>λ2−α , the composition

L(m) ↪→ L1 ⊗ L2 � L1 ⊗ (
L2/U (g)(L2)>λ2−α

)

induces a g-module homomorphism L(m) → L1 ⊗ (
L2/U (g)(L2)>λ2−α

)
. We see from

Eq. 5.9 that pr2λ2−α( fav2) = 0 if a ∈ S0,kλ [α], and then Eqs. 5.5, 5.6, 5.7 and the induced
homomorphism yield

v1 ⊗
( ∑

a∈S0λ2 [α]
capr

2
λ2−α( fav2)

)
= 0.

By the induction hypothesis this implies (5.8), as required.
We have ∑

a∈S0,kλ [α]
capr( fav) = 0 (5.11)
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by Eqs. 5.4, 5.5 and 5.8. It remains to show that ca = 0 for a ∈ S0,kλ [α]. Fix r =
(r1, . . . , r5) ∈ S0,kλ [α], and set s = r + e4 − e5. We define a g-submodule L ′

2 of L2 by

L ′
2 =

∑

a∈Sλ2
wt(a)<α, a �=s

U (g) fav2.

We have (L2)>λ2−α ⊆ C fsv2 + L ′
2 by Lemma 5.2, and from this we see that

(L1 ⊗ L2)>λ−α = v̧1 ⊗ (L2)>λ2−α ⊕
⊕

β>0

(L1)ω1−β ⊗ (L2)>λ2−α+β

⊆ v̧1 ⊗ fsv2 + L1 ⊗ L ′
2,

which implies U (g)(L1 ⊗ L2)>λ−α ⊆ U (g)(v1 ⊗ fsv2)+ L1 ⊗ L ′
2. Hence the composition

ρ : L(m) ↪→ L1 ⊗ L2 � (L1 ⊗ L2)
/(

U (g)(v1 ⊗ fsv2) + L1 ⊗ L ′
2

)

induces a g-module homomorphism

ρ : L(m) → (L1 ⊗ L2)
/(

U (g)(v1 ⊗ fsv2) + L1 ⊗ L ′
2

)
.

If a ∈ S0,kλ [α] \ {r}, then we have a + e4 − e5 ∈ Sλ2 [α − α1] \ {s} and hence it follows by
Eq. 5.9 that

fa(v1 ⊗ v2) = v1 ⊗ fav2 ∈ L1 ⊗ L ′
2.

Hence we have from Eq. 5.11 that

0 = ρ
( ∑

a∈S0,kλ [α]
capr( fav)

)
=

∑

a∈S0,kλ [α]
caρ( fav) = crρ( frv).

Assume that cr �= 0, which implies ρ( frv) = 0. Let pr′2 denote the canonical projection
L2 → L2/L ′

2. We easily see that ρ( frv) = 0 is equivalent to

v1 ⊗ pr′2( frv2) ∈ U (g)
(
v1 ⊗ pr′2( fsv2)

)
. (5.12)

Note that pr′2( fsv2) �= 0 by the induction hypothesis, and this also implies pr′2( frv2) �= 0
since eα1pr

′
2( frv2) ∈ C

×pr′2( fsv2) by Eq. 5.10. Since

n+
(
v1 ⊗ pr′2( fsv2)

) = 0 and wt
(
v1 ⊗ pr′2( frv2)

) = wt
(
v1 ⊗ pr′2( fsv2)

) − α1,

Equation 5.12 implies

v1 ⊗ pr′2( frv2) ∈ f̧α1
(
v1 ⊗ pr′2( fsv2)

)
.

However this contradicts fα1v1 �= 0. Hence cr = 0 holds, as required.
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