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Abstract We refine a well-known theorem of Auslander and Reiten about the extension
closedness of nth syzygies over noether algebras. Applying it, we obtain the converse of
a celebrated theorem of Evans and Griffith on Serre’s condition (Sn) and the local Goren-
steiness of a commutative ring in height less than n. This especially extends a recent result
of Araya and Iima concerning a Cohen–Macaulay local ring with canonical module to an
arbitrary local ring.
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1 Introduction

In this paper we are interested in the following theorem.
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Theorem 1.1 (Evans–Griffith, Araya–Iima) Let n ≥ 0 be an integer. Let R be a
commutative noetherian ring satisfying Serre’s condition (Sn). Consider the following
conditions.

(1) One has �n(modR) = Sn(R).
(2) The local ring Rp is Gorenstein for all p ∈ SpecR with ht p < n.

Then the implication (2) ⇒ (1) holds. The opposite implication (1) ⇒ (2) holds if R is a
Cohen–Macaulay local ring with canonical module.

Let us explain some notation. For a right noetherian ring �, we denote by mod� the
category of finitely generated right �-modules, and by �n(mod�) the full subcategory of
nth syzygies. For a commutative noetherian ringR, we denote by Sn(R) the full subcategory
of modR consisting of modules satisfying Serre’s condition (Sn). The first assertion of the
theorem is a celebrated result of Evans and Griffith [7, Theorem 3.8], while the second
assertion has recently been shown by Araya and Iima [1, Theorem 2.2].

It is natural to ask whether the implication (1) ⇒ (2) in Theorem 1.1 holds for arbitrary
commutative noetherian rings, and the main purpose of this paper is to give an answer
to this question. Since Sn(R) is an extension closed subcategory of modR, the equality
�n(modR) = Sn(R) implies the extension closedness of �n(modR). We thus study when
the subcategory �n(modR) is extension closed, rather than when one has �n(modR) =
Sn(R).

A noether algebra is by definition a module-finite algebra of a commutative noetherian ring.
(Thus a noether algebra is a two-sided noetherian ring.) The extension closedness of syzy
gies has been investigated over a noether algebra by Auslander and Reiten [5, Theorem 0.1].

Theorem 1.2 (Auslander–Reiten) Let � be a noether algebra. Then the following are
equivalent for each nonnegative integer n.

(1) �i(mod�) is extension closed for all 1 ≤ i ≤ n.
(2) grade� Exti�op(M,�) ≥ i for all 1 ≤ i ≤ n and M ∈ mod�op.

The first condition of this theorem is too strong for our purpose in that it requires the
extension closedness of ith syzygies for all integers i with 1 ≤ i ≤ n, while it is the
extension closedness of nth syzygies that we want to deal with.

Our first main result is the following theorem on not-necessarily-commutative rings. This
in fact provides a refinement of the implication (1) ⇒ (2) in Theorem 1.2.

Theorem A Let � be a noether algebra such that �n(mod�) is extension closed. Let M

be a finitely generated �op-module with grade� Exti�op(M,�) ≥ i − 1 for all 1 ≤ i ≤ n.
Then grade� Extn�op(M,�) ≥ n.

This theorem enables us to achieve our main purpose stated above; applying it to com-
mutative rings, we can prove the following theorem, which is the second main result of this
paper. This extends Theorem 1.1 to arbitrary commutative noetherian local rings.

Theorem B Let R be a commutative noetherian local ring satisfying (Sn). The following
are equivalent.

(1) �n(modR) is extension closed.
(2) �n(modR) = Sn(R).
(3) Rp is Gorenstein for all p ∈ SpecR with ht p < n.
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The organization of this paper is as follows. The next Section 2 is devoted to introducing
several notions and basic properties that are necessary in the later sections. In Section 3, we
consider extension closedness of syzygies. We prove Theorem A, and apply it to commuta-
tive rings to get a sufficient condition for local Gorensteinness in height n − 1. In the final
Section 4, we study local Gorensteinness of commutative rings. For each integer t ≥ 0 we
show the equivalence of local Gorensteinness in height equal to t and local Gorensteinness
in height at most t . Combining this with a result obtained in Section 3, we finally give a
proof of Theorem B.

2 Preliminaries

We start by stating our conventions.

Convention 2.1 Throughout the rest of this paper, let � be a two-sided noetherian ring, and
let R be a commutative noetherian ring. We assume that all modules are finitely generated
right ones, and that all subcategories are full ones.

Denote by mod� the category of (finitely generated right) �-modules, and by proj�
the subcategory of projectivemodules. Define the functor (−)∗: mod�→mod�op by (−)∗ =
Hom�(−,�). A subcategory X of mod� is said to be extension closed provided that for
each exact sequence 0 → L → M → N → 0 in mod�, if L and N are in X , then so is M .

We recall the definitions of minimal morphisms and approximations.

Definition 2.2 Let C be a category, and let X be a subcategory of C. Let φ : C → X be a
morphism in C with X ∈ X . We say that:

(1) φ is left minimal if all endomorphisms f : X → X with φ = f φ are automorphisms.

(2) φ is a left X -approximation if all morphisms from C to objects in X factor through φ.

A right minimal morphism and a right X -approximation are defined dually.

A left (respectively, right) X -approximation is sometimes called an X -preenvelope
(respectively, X -precover), and a left (respectively, right) minimal one an X -envelope
(respectively, X -cover). A homomorphism φ : M → P of �-modules with P projective is
a left proj�-approximation if and only if the �-dual map φ∗ : P ∗ → M∗ is surjective. For
the details of minimal morphisms and approximations, see [3, Section 1] for instance.

Next we recall the definitions of an adjoint pair, a unit and a counit.

Definition 2.3 Let S : C → D and T : D → C be functors between categories C and D.
Suppose that for all X ∈ C and Y ∈ D there is a functorial isomorphism

�XY : HomD(SX, Y )
∼=−→ HomC(X, T Y ).

Then we say that (S, T ) : C → D (or more precisely, (S, T , �) : C → D) is an adjoint
pair. Taking �X,SX(1SX) and �−1

T Y,Y (1T Y ), one obtains natural transformations

u : 1C → T S, c : ST → 1D,

which are called the unit and counit of the adjunction, respectively.
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For each X ∈ C, every morphism X → T Y with Y ∈ D uniquely factors through
uX : X → T SX. Dually, for each Y ∈ D, every morphism SX → Y with X ∈ C uniquely
factors through cY : ST Y → Y . In paricular, uX and cY are a left Im(T )-approximation
and a right Im(S)-approximation, respectively. (Here, for a functor F : X → Y we denote
by Im(F ) the essential image of F , namely, the subcategory of Y consisting of objects N

such that N ∼= FM for some M ∈ X .) Also, the equalities �XY (f ) = Tf · uX and
�−1

XY (g) = cY · Sg hold for all morphisms f : SX → Y and g : X → T Y . Furthermore,

the compositions of natural transformations S
Su−→ ST S

cS−→ S and T
uT−→ T ST

T c−→ T are
both identities. The details can be found in [11, Theorem IV.1.1].

Let us recall the definitions of syzygies, transposes and stable categories.

Definition 2.4 (1) Let M be a �-module. Let · · · → Pn
∂n−→ Pn−1 → · · · → P1

∂1−→
P0 → M → 0 be a projective resolution of M .

(a) The nth syzygy �nM of M is defined as the image of the map ∂n : Pn → Pn−1.
(b) The transpose TrM of M is defined to be the cokernel of the map ∂∗

1 : P ∗
0 → P ∗

1 .

(2) For �-modules M and N , let Hom�(M,N) be the quotient of Hom�(M, N) by the
�-homomorphisms M → N factoring through some projective �-modules. The
residue class in Hom�(M,N) of an element f ∈ Hom�(M,N) is denoted by f .

(3) We denote bymod� the stable category ofmod�. The objects ofmod� are precisely
the (finitely generated right) �-modules, and the hom-set from a �-module M to a
�-module N is given by Hom�(M,N).

The modules �M and TrM are uniquely determined by M up to projective summands.
The assignments M 	→ �M and M 	→ TrM give rise to additive functors

� : mod� → mod�, Tr : mod� → mod�op.

Moreover, Tr is a duality, i.e., one has TrTrM ∼= M in mod� for each M ∈ mod�. We
define the functor Dn : mod� → mod�op by Dn = �nTr; one has D2M ∼= M∗ in mod�op

for each M ∈ mod�. We denote by �n(mod�) the subcategory of mod� consisting of
nth syzygies X, that is, modules X admitting an exact sequence 0 → X → Pn−1 → · · · →
P1 → P0 of �-modules with each Pi projective. Also, �n(mod�) denotes the essential
image of the functor �n : mod� → mod�, which coincides with the essential image of
�n(mod�) by the canonical functor mod� → mod�. We refer the reader to [2, Section
2] for the details of syzygies, transposes and stable categories.

Finally, we recall the definitions of grade, depth and Serre’s condition.

Definition 2.5 (1) The grade of a �-module M , denoted by grade� M , is defined to be
the infimum of nonnegative integers i such that Exti�(M,�) 
= 0.

(2) The grade of an ideal I of R is defined by grade I = gradeR(R/I).

(3) When R is a local ring with maximal ideal m, the depth of an R-module M ,
denoted by depthR M , is defined as the infimum of nonnegative integers i with
ExtiR(R/m, M) 
= 0.
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(4) Let n be a nonnegative integer. An R-module M is said to satisfy Serre’s condition
(Sn) if the inequality depthRp

Mp ≥ inf{n, ht p} holds for all prime ideals p of R.

The maximal regular sequences on R in I (respectively, on M in m) have the same
length, and this common length is equal to grade I (respectively, depthR M). If R satisfies
(Sn), then ht p = grade p for all prime ideals p with ht p ≤ n. We denote by Sn(R) the
subcategory of modR consisting of modules satisfying (Sn). This is an extension closed
subcategory. See [6, Sections 1 and 2] for the details of grade and depth, and [7] for Serre’s
condition (Sn).

3 Extension Closedness of Syzygies

Let X, Y be �-modules. Let · · · → P1 → P0 → TrX → 0 and · · · → Q1 → Q0 → Y →
0 be projective resolutions. Let f : Tr�nTrX → Y be a homomorphism of �-modules. We
extend f to a chain map of complexes as in the left below, and make a commutative diagram
with exact rows as in the right below.

Thus we get a homomorphism φ(f ) : X → �nY of �-modules. Conversely, let g : X →
�nY be a homomorphism of �-modules. First, extend g to a commutative diagram with
exact rows as in the left below, whose rows are finite projective presentations. Second,
extend h0 := g∗

1 and h1 := g∗
0 to a chain map as in the middle below. Third, make a

commutative diagram with exact rows as in the right below.

Thus we get a homomorphism ψ(g) : Tr�nTrX → Y of �-modules. The following lemma

holds; see [5, Corollary 3.3].

Lemma 3.1 With the notation above, the assignments � : f 	→ φ(f ) and � : g 	→ ψ(g)

make functorial isomorphisms

� : Hom�(Tr�nTrX, Y ) � Hom�(X,�nY ) : �

which are mutually inverse. In particular, one has an adjoint pair (Tr�nTr, �n) : mod� →
mod�. (The corresponding statement for �op also holds.)

Remark 3.2 Let X be a subcategory of mod�. Let f : M → X be a homomorphism of
�-modules with X ∈ X . Let N be the image of f . We have an inclusion map g : N → X

and a natural surjection h : M → N , and f is the composition of these two maps. It is
straightforward that the following statements hold.

(1) If f is a left X -approximation in mod�, then so is g.

(2) If f is left minimal in mod�, then so is g.
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Now we prove the following theorem, which is the main result of this section.

Theorem 3.3 ( = Theorem A) Let � be a noether algebra, M a module over �op,
and n a nonnegative integer. Suppose that �n(mod�) is an extension closed sub-
category of mod�. If grade� Exti�op(M,�) ≥ i − 1 for all 1 ≤ i ≤ n, then
grade� Extn�op(M,�) ≥ n.

Proof The assertion is trivial for n = 0, and follows from Theorem 1.2 for n = 1. So assume
n ≥ 2. We use the notation of the part preceding Lemma 3.1. Set X := TrM , Y := Tr�nTrX,
Q0 := P ∗

n+1, Q1 := P ∗
n and let f be the identity map of Y . We get a chain map as in the

left below and a commutative diagram as in the right below.

These diagrams induce a chain map

where we put ρ := φ(f ), V := �nY = �nTr�nTrX and W := �2Tr�nTrX. Note that
for each 1 ≤ i ≤ n the ith homology Hi (A) of the cochain complex A is isomorphic to
Exti�op(TrX,�), while B is an exact complex. Take the mapping cone of the chain map ξ . It
is easy to see that it is quasi-isomorphic to a complex

with Hi (C) ∼= Exti+1
�op(TrX,�) ∼= Exti+1

�op(M,�) for 0 ≤ i ≤ n − 1.

By Lemma 3.1 we have an adjoint pair (S, T ) : mod� → mod� with S = Tr�nTr and
T = �n. Let u : 1 → T S be the unit of the adjunction. Then the morphism ρ is nothing but
uX. We establish several claims.

Claim 1 The morphism
(
ρ
η

) : X → V ⊕ P ∗
2 in mod� is a left �n(mod�)-approximation.

Proof of Claim As ρ = uX, the morphism ρ in mod� is a left �n(mod�)-approximation.

We have β = ηπ , and the complex P ∗∗
2

β∗
−→ P ∗∗

1
α∗−→ P ∗∗

0 is exact, since it is isomorphic
to the complex P2 → P1 → P0. It is observed from this that the map η∗ : P ∗∗

2 → X∗ is
surjective, which implies that the morphism η in mod� is a left proj�-approximation. The
claim can now easily be shown.

Claim 2 If Exti�op(TrX,�) = 0 for all 1 ≤ i ≤ n (i.e., X is n-torsionfree),
then uX is an isomorphism in mod�. (The corresponding statement for �op is
also true.)
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Proof of Claim The assumption implies that the complex P ∗
0 → P ∗

1 → · · · → P ∗
n+1 →

Tr�nTrX → 0 is exact. Hence we can take Qi := P ∗
n+1−i and fi := 1P ∗

n+1−i
for every

0 ≤ i ≤ n + 1. It follows that uX is an isomorphism.

Claim 3 The morphism uDnX : DnX→ D3
nX in mod� is an isomorphism.

Proof of Claim Combining the assumption of the theorem with [2, Proposition (2.26)]
yields that DnX = �nM is n-torsionfree. The assertion follows from Claim 2.

Claim 4 The equality 1DnZ = DnuZ · uDnZ holds for all Z ∈ mod�. (The corresponding
statement for �op is also true.)

Proof of Claim Let c : ST → 1 stand for the counit of the adjunction. The composition T c·
uT of natural transformations is an identity. It is straightforward to verify that c coincides
with the composition TruTr. The assertion is now easily deduced.

Claim 5 The morphism ρ : X → V in mod� is left minimal.

Proof of Claim We have ρ = uX and V = D2
nX. Let us prove that uX : X→ D2

nX

is left minimal. Let h : D2
nX→ D2

nX be an endomorphism in mod� such that uX =
h · uX. Then DnuX = DnuX · Dnh. By Claims 3 and 4 the morphism DnuX is an
isomorphism. Hence Dnh is an automorphism, and so is D2

nh. Using Claim 4 again,
we have 1D2

nX = DnuDnX · uD2
nX. Applying Claim 3 again implies that DnuDnX

is an isomorphism. Hence uD2
nX is also an isomorphism. It follows from the equality

D2
nh · uD2

nX = uD2
nX · h that h is an automorphism. Therefore, the morphism uX is

left minimal.

Let E be the cokernel of the map
(
ρ
η

)
. By virtue of [4, Corollary 1.8], the subcate-

gory �n(mod�) of mod� is covariantly finite. Recall our assumption that � is a noether
algebra and �n(mod�) is extension closed. In view of Claim 1, Claim 5 and Remark
3.2, all the assumptions of the result [5, Lemma 4.5], which is an analogue of Waka-
matsu’s lemma, are satisfied, and therefore we obtain Ext1�(E,�n(mod�)) = 0. In
particular, Ext1�(E,�) = 0.

Decomposing the complex C into short exact sequences

0 → Bi pi

−→ Zi → Hi → 0, 0 → Zi qi

−→ Ci → Bi+1 → 0 (0 ≤ i ≤ n − 1) (3.1)

with Hi = Hi (C) ∼= Exti+1
�op(M,�). The assumption of the theorem implies grade� Hi ≥ i

for all 0 ≤ i ≤ n − 1.
What we want to prove is that grade� Hn−1 ≥ n. Making the pushout diagram of the

maps p1 and q1, we get an exact sequence 0 → H 1 → E → B2 → 0. When n = 2,
we have B2 = 0 and H 1 = E. Hence Ext1�(H 1,�) = 0, which implies grade� H 1 ≥ 2
and we are done. Let n ≥ 3. The functor (−)∗ gives an exact sequence 0 = (H 1)∗ →
Ext1�(B2,�) → Ext1�(E,�) = 0, which shows Ext1�(B2, �) = 0. Let 2 ≤ i ≤ n − 2 be an
integer. From Eq. 3.1 we get an exact sequence 0 = Exti−1

� (Hi,�) → Exti−1
� (Zi,�) →

Exti−1
� (Bi, �) and an isomorphism Exti−1

� (Zi,�) ∼= Exti�(Bi+1,�) sinceCi is a projective
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module. Therefore we have an injection Exti�(Bi+1,�) ↪→ Exti−1
� (Bi,�). Thus we obtain

a chain
Extn−2

� (Bn−1,�) ↪→ · · · ↪→ Ext2(B3,�) ↪→ Ext1�(B2,�)

of injections. Since Ext1�(B2,�) vanishes, so does Extn−2
� (Bn−1,�). The exact sequence

0 → Bn−1 → Cn−1 → Hn−1 → 0 and the projectivity of the module Cn−1 imply
Extn−1

� (Hn−1,�) = 0. Now we conclude grade� Hn−1 ≥ n.

Remark 3.4 Theorem 3.3 is regarded as a strong version of the implication (1) ⇒ (2) in
Theorem 1.2. In fact, one can deduce this implication from Theorem 3.3, as follows. We use
induction on n; the case n = 0 is trivial. Let n ≥ 1, and assume that �i(mod�) is extension
closed for all 1 ≤ i ≤ n. The induction hypothesis yields grade� Exti�op(M,�) ≥ i for each
1 ≤ i ≤ n−1 and eachM ∈ mod�op. We have grade� Extn�op(M,�) ≥ n−1: this is trivial
for n = 1, and for n ≥ 2 the isomorphism Extn�op(M,�) ∼= Extn−1

�op (�M,�) implies it. By
virtue of Theorem 3.3, we obtain grade� Extn�op(M,�) ≥ n. Thus grade� Exti�op(M, �) ≥
i for all 1 ≤ i ≤ n and all M ∈ mod�op.

The following result is a consequence of Theorem 3.3, which is used in the proof of
Theorem 4.4 stated later.

Corollary 3.5 Let n be a nonnegative integer. Let R be a commutative noetherian ring
satisfying Serre’s condition (Sn−1). If �n(modR) is extension closed, then the local ring
Rp is Gorenstein for all prime ideals p of R with height n − 1.

Proof Let p be a prime ideal of R with ht p = n − 1. We have

gradeR ExtiR(R/p, R) = grade(annR ExtiR(R/p, R)) ≥ grade p = n − 1 ≥ i − 1

for each 1 ≤ i ≤ n. Here, the first inequality is shown by the fact that the ideal
annR ExtiR(R/p, R) contains p, and the second equality follows from the assumption that R
satisfies (Sn−1). Applying Theorem 3.3, we obtain gradeR ExtnR(R/p, R) ≥ n, and therefore
Extn−1

R (ExtnR(R/p, R), R) = 0. Localization at p yields Extn−1
Rp

(ExtnRp
(κ(p), Rp), Rp) =

0. Suppose that ExtnRp
(κ(p), Rp) is nonzero. Then it contains κ(p) as a direct sum-

mand, and Extn−1
Rp

(κ(p), Rp) is a direct summand of Extn−1
Rp

(ExtnRp
(κ(p), Rp), Rp), which

is zero. If follows that Extn−1
Rp

(κ(p), Rp) = 0, but this contradicts the fact that
Rp has depth n − 1. (In fact, Rp is a Cohen–Macaulay local ring of dimension
n − 1.) Therefore ExtnRp

(κ(p), Rp) = 0, which implies that Rp is Gorenstein; see
[8, Theorem (1.1)].

We close this section by posing a naive question.

Question 3.6 Under the assumption of Corollary 3.5, is Rp a Gorenstein local ring for all
prime ideals p with height less than (or equal to) n − 1 ?

4 Local Gorensteinness of Commutative Rings

We begin with proving the following theorem.
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Theorem 4.1 Let n > t > 0 be integers. Let R be a commutative noetherian local ring of
dimension d ≥ t satisfying Serre’s condition (Sn). Then the following are equivalent.

(1) Rp is Gorenstein for all p ∈ SpecR with ht p = t .
(2) Rp is Gorenstein for all p ∈ SpecR with ht p ≤ t .

Proof It suffices to prove that (1) implies (2). It is enough to show that Rp is Gorenstein
for all p ∈ SpecR with ht p = t − 1. Suppose that this statement is not true, and con-
sider the counterexample where d = dimR is minimal. There exists a prime ideal q with
height t − 1 such that Rq is not Gorenstein. If t > 1, then grade q = t − 1 > 0 and
there is an R-regular element x in q. We have n − 1 > t − 1 > 0 and d − 1 ≥ t − 1.
The residue ring R/xR is a (d − 1)-dimensional local ring that satisfies (Sn−1) and is
locally Gorenstein in height t − 1. The prime ideal q/xR of R/xR has height (t − 1) − 1,
and (R/xR)q/xR is non-Gorenstein. This contradicts the minimality of d, and we must
have t = 1.

Let 0 = ⋂
p∈AssR L(p) be a primary decomposition of the zero ideal 0 of R. Let A be

the set of associated primes p such that Rp is not Gorenstein, and set B = AssR \ A. As
q has height t − 1 = 0, it belongs to A. Take a prime ideal r of height t . The assumption
(1) shows that Rr is Gorenstein. Choosing a minimal prime s contained in r, we see that s
belongs to B. Thus both A and B are nonempty. Put I = ⋂

p∈A L(p) and J = ⋂
p∈B L(p).

We claim that the ideal I + J is m-primary, where m stands for the maximal ideal of
R. Indeed, assume that there exists a nonmaximal prime ideal P containing I + J . Then P

contains some prime ideals P1 ∈ A and P2 ∈ B. Set e := dimRP . We have e < d , and
the fact that P1 
= P2 implies e ≥ 1 = t . The local ring RP satisfies (Sn) and is locally
Gorenstein in height t . Also, (RP )P1RP

= RP1 is non-Gorenstein, and htP1RP = htP1 =
0 = t − 1, since R satisfies (S1) and the equality AssR = MinR holds. We thus get a
contradiction to the minimality of d, and the claim follows.

Let X = SpecR \ {m} be the punctured spectrum, and let V1 = V(I ) ∩ X and V2 =
V(J ) ∩ X be closed subsets of X. For each i = 1, 2 the set Vi is nonempty since it contains
Pi , while V1∩V2 is empty. ThusX is disconnected, and Hartshorne’s connectedness theorem
[9, Proposition 2.1] implies thatR has depth at most 1. SinceR satisfies (S1) and d ≥ t > 0,
it is a Cohen–Macaulay local ring of dimension 1. Our assumption (1) implies that R = Rm

is Gorenstein, and so is Rq, which is a contradiction.

As is seen in the following example, the conclusion of Theorem 4.1 does not necessarily
hold if one removes the assumption that R is local.

Example 4.2 Let A and B be commutative noetherian local rings with dimA ≥ 1 and
dimB = 0. Assume that A is locally Gorenstein in height one and that B is non-Gorenstein.
Let R = A × B be a product ring. Then R is locally Gorenstein in height one, but not so in
height zero.

Indeed, let p be a prime ideal of R with height one. Then p = P × B for some prime
ideal P of A with height one. Hence Rp = AP is Gorenstein. Set q = A × Q, where Q is
the maximal ideal of B. Then q is a minimal prime of R, and Rq = B is not Gorenstein.

For a commutative noetherian ring R of Krull dimension d we denote by AsshR the
set of prime ideals p of R such that dimR/p = d. Note that one has inclusions AsshR ⊆
MinR ⊆ AssR. The next example says that the assertion of Theorem 4.1 is not necessarily
true if n = t .
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Example 4.3 Let S be a regular local ring of dimension 3 with regular system of parameters
x, y, z. Then R = S/(x) ∩ (y, z)2 is a local ring of dimension 2 satisfying (S1). The ring R

is locally Gorenstein in height 1, but not so in height 0.
In fact, set p = xS and q = (y, z)S. We have AssR = MinR = {pR, qR} � {pR} =

AsshR. Hence R has dimension 2, depth 1 and satisfies (S1). Let P be a prime ideal of R

with height 1. Write P = Q/p ∩ q2 for some prime ideal Q of S containing p ∩ q2. If Q

contains q, then (y, z)S � Q � (x, y, z)S, which gives a contradiction. Thus Q does not
contain q but contains p, and the ring RP = SQ/xSQ is regular, whence Gorenstein. On the
other hand, RqR = Sq/q

2Sq is an artinian local ring of type 2, whence non-Gorenstein.

Now we prove the following theorem, which is the main result of this section. We should
remark that this theorem extends Theorem 1.1 on Cohen–Macaulay local rings with canon-
ical module to arbitrary commutative noetherian local rings. Compare with Corollary 3.5
the implication (1) ⇒ (3) in this theorem.

Theorem 4.4 ( = Theorem B) Let n be a nonnegative integer. Let R be a commutative
noetherian local ring satisfying Serre’s condition (Sn). The following are equivalent.

(1) The subcategory �n(modR) of modR is extension closed.
(2) The equality �n(modR) = Sn(R) holds.
(3) The local ring Rp is Gorenstein for all prime ideals p of R with height less than n.

Proof It is shown in [7, Theorem 3.8] (see also [10, Lemma 1.3]) that (3) implies (2). It
is straightforward to check that (2) implies (1). Let us show that (1) implies (3). Thanks to
Corollary 3.5, R is locally Gorenstein in height n − 1. We may assume n > 1. Applying
Theorem 4.1 to t := n − 1 yields that R is locally Gorenstein in height at most n − 1.
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