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Abstract n-recollements of triangulated categories and n-derived-simple algebras are
introduced. The relations between the n-recollements of derived categories of algebras
and the Cartan determinants, homological smoothness and Gorensteinness of algebras
respectively are clarified. As applications, the Cartan determinant conjecture is reduced
to 1-derived-simple algebras, and the Gorenstein symmetry conjecture is reduced to
2-derived-simple algebras.
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1 Introduction

Throughout k is a fixed field and all algebras are associative k-algebras with iden-
tity unless stated otherwise. Recollements of triangulated categories were introduced by
Beilinson, Bernstein and Deligne [3], and play an important role in algebraic geometry and
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representation theory. Here, we focus on the recollements of derived categories of algebras
which are the generalization of derived equivalences and provide a useful reduction tech-
nique for some homological properties such as the finiteness of global dimension [1, 21,
32], the finiteness of finitistic dimension [9, 17] and the finiteness of Hochschild dimen-
sion [15], some homological invariants such as K-theory [1, 8, 25, 29, 30, 35], Hochschild
homology and cyclic homology [19] and Hochschild cohomology [15], and some homo-
logical conjectures such as the finitistic dimension conjecture [9, 17] and the Hochschild
homology dimension conjecture [14].

In a recollement, two functors in the first layer always preserve compactness, i.e., send
compact objects to compact ones, but other functors are not the case in general. If a rec-
ollement is perfect, i.e., two functors in the second layer also preserve compactness, then
the Hochschild homologies, cyclic homologies and K-groups of the middle algebra are the
direct sum of those of outer two algebras respectively [1, 8, 19]. Moreover, in this situ-
ation, the relations between recollements and the finitistic dimensions of algebras can be
displayed very completely [9]. In order to clarify the relations between recollements and the
homological smoothness and Gorensteinness of algebras respectively, we need even more
layers of functors preserving compactness, which leads to the concept of n-recollement of
triangulated categories inspired by that of ladder [4], and further n-derived-simple algebra.
In terms of n-recollements, the relations between recollements and the Cartan determi-
nants, homological smoothness and Gorensteinness of algebras respectively are expressed
as follows.

Theorem I. Let A, B and C be finite dimensional algebras, and D(ModA) admit an n-
recollement relative to D(ModB) and D(ModC) with n ≥ 2. Then det C(A) = det C(B) ·
det C(C).

Theorem II. LetA,B andC be algebras, andD(ModA) admit an n-recollement relative
to D(ModB) and D(ModC).

(1) n = 1: if A is homologically smooth then so is B;
(2) n = 2: if A is homologically smooth then so are B and C;
(3) n ≥ 3: A is homologically smooth if and only if so are B and C.

Theorem III. Let A, B and C be finite dimensional algebras, and D(ModA) admit an
n-recollement relative to D(ModB) and D(ModC).

(1) n = 3: if A is Gorenstein then so are B and C;
(2) n ≥ 4: A is Gorenstein if and only if so are B and C.

As applications of Theorem I and Theorem III, we will show that the Cartan determinant
conjecture and the Gorenstein symmetry conjecture can be reduced to 1-derived-simple
algebras and 2-derived-simple algebras respectively.

The paper is organized as follows: In Section 2, we will introduce the concepts of
n-recollement of triangulated categories and n-derived-simple algebra, and provide some
typical examples, constructions and existence criteria of n-recollements of derived cat-
egories of algebras. In Section 3, Theorem I is obtained and the Cartan determinant
conjecture is reduced to 1-derived-simple algebras. In Section 4, we will prove Theorem II.
In Section 5, Theorem III is shown and the Gorenstein symmetry conjecture is reduced to
2-derived-simple algebras.
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2 n-Recollements and n-Derived-Simple Algebras

In this section, we will introduce the concepts of n-recollement of triangulated categories
and n-derived-simple algebra, and provide some typical examples, constructions and exis-
tence criteria of the n-recollements of derived categories of algebras. As we will see, the
language of n-recollements is very convenient for us to observe the relations between
recollements and certain homological properties, especially the Gorensteinness of algebras.

2.1 n-Recollements of Triangulated Categories

Definition 1 (Beilinson-Bernstein-Deligne [3]) Let T1, T and T2 be triangulated categories.
A recollement of T relative to T1 and T2 is given by

such that

(R1) (i∗, i∗), (i!, i!), (j!, j !) and (j∗, j∗) are adjoint pairs of triangle functors;
(R2) i∗, j! and j∗ are full embeddings;
(R3) j !i∗ = 0 (and thus also i!j∗ = 0 and i∗j! = 0);
(R4) for each X ∈ T , there are triangles

j!j !X → X → i∗i∗X →
i!i!X → X → j∗j∗X →

where the arrows to and from X are the counits and the units of the adjoint pairs respectively.

Definition 2 Let T1, T and T2 be triangulated categories, and n a positive integer. An
n-recollement of T relative to T1 and T2 is given by n + 2 layers of triangle functors

such that every consecutive three layers form a recollement, and denoted by
(T1,T ,T2, i1, i2, · · · , in+2, j1, j2, · · · , jn+2).

Obviously, a 1-recollement is nothing but a recollement. Moreover, if T admits an n-
recollement relative to T1 and T2, then it must admit a p-recollement relative to T1 and T2

for all 1 ≤ p ≤ n and a q-recollement relative to T2 and T1 for all 1 ≤ q ≤ n − 1.

Remark 1 Let T be a skeletally small k-linear triangulated category with finite dimen-
sional Hom-sets and split idempotents. If T has a Serre functor and admits a recollement
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relative to T1 and T2 then it admits an n-recollement relative to T1 and T2 (resp. T2 and T1)
for all n ∈ Z

+ by [18, Theorem 7].

2.2 n-Recollements of Derived Categories of Algebras

Let A be an algebra. Denote by ModA the category of right A-modules, and by modA,
ProjA, projA and injA its full subcategories consisting of all finitely generated modules,
projective modules, finitely generated projective modules and finitely generated injec-
tive modules, respectively. For ∗ ∈ {nothing,−, +, b}, denote by D∗(ModA) the derived
category of (cochain) complexes of objects in ModA satisfying the corresponding bound-
edness condition. Denote by Kb(projA) (resp. Kb(ProjA)) the homotopy category of
bounded complexes of objects in projA (resp. ProjA). If A is finite dimensional then we
denote by Db(modA) the derived category of bounded complexes of objects in modA

and by Kb(injA) the homotopy category of bounded complexes of objects in injA.
Up to isomorphism, the objects in Kb(projA) are precisely all the compact objects in
D(ModA). For convenience, we do not distinguish Kb(projA) from the perfect derived
category Dper(A) of A, i.e., the full triangulated subcategory of DA consisting of all
compact objects, which will not cause any confusion. Moreover, we also do not distin-
guish Kb(injA),Db(ModA),Db(modA),D−(ModA) and D+(ModA) from their essential
images under the canonical full embeddings into D(ModA). Usually, we just write DA

instead of D(ModA).
In this paper, we focus on the n-recollements of derived categories of algebras, i.e., all

three triangulated categories in an n-recollement are the derived categories of algebras.
Clearly, in an n-recollement, the upper n layers of functors have right adjoints preserving
direct sums, thus they preserve compactness.

Now we provide some typical examples of n-recollements.

Example 1 (1) Stratifying ideals [11]. Let A be an algebra, and e an idempotent of A

such that AeA is a stratifying ideal, i.e., Ae ⊗L
eAe eA ∼= AeA canonically. Then DA

admits a 1-recollement relative to D(A/AeA) and D(eAe).
(2) Triangular matrix algebras [1, Example 3.4]. Let B and C be algebras, M a C-

B-bimodule, and A =
[

B 0
M C

]
. Then DA admits a 2-recollement relative to

DB and DC. Furthermore, DA admits a 3-recollement relative to DC and DB if

CM ∈ Kb(projCop), and DA admits a 3-recollement relative to DB and DC if
MB ∈ Kb(projB). What is more, DA admits a 4-recollement relative to DC and DB

if CM ∈ Kb(projCop) and MB ∈ Kb(projB). Note that the algebras A,B and C here
need not be finite dimensional.

(3) Let A be a finite dimensional algebra of finite global dimension and DA admit a
recollement relative to DB and DC. Then this recollement can be extended to an
n-recollement for all n ∈ Z

+ (Ref. [1, Proposition 3.3]).
(4) A derived equivalence induces a trivial n-recollement, i.e., an n-recollement whose

left term or right term is zero, for all n ∈ Z
+.

Next we provide two constructions of n-recollements from a given n-recollement by
tensor product algebras and opposite algebras, which generalize [15, Theorem 1 and
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Theorem 2]. For this, we need to introduce the concept of standard n-recollement which
generalizes that of standard recollement [15, Definition 1].

Definition 3 Let B, A and C be algebras. An n-recollement (DB,DA,DC,

i1, i2, · · · , in+2, j1, j2, · · · , jn+2) is said to be standard and defined by Y ∈ D(Aop ⊗ B)

and X ∈ D(Cop ⊗ A) if i1 ∼= −⊗L
AY and j1 ∼= −⊗L

CX.

Remark 2 Let B, A and C be algebras, and (DB,DA,DC, i1, i2, · · · , in+2, j1, j2, · · · ,

jn+2) a standard n-recollement defined by Y ∈ D(Aop ⊗ B) and X ∈ D(Cop ⊗ A). Since
the right adjoint functor is unique up to natural isomorphism, we know two functors in the
first layer are isomorphic to derived tensor product functors, two functors in the p-th layer
are isomorphic to both derived Hom functors and derived tensor product functors for all
2 ≤ p ≤ n + 1, and two functors in the last layer are isomorphic to derived Hom functors.
More precisely, denote X∗A = RHomA(X,A), then

i1 ∼= −⊗L
AY, j1 ∼= −⊗L

CX,

i2 ∼= −⊗L
BY ∗B , j2 ∼= −⊗L

AX∗A,

i3 ∼= −⊗L
AY ∗B∗A, j3 ∼= −⊗L

CX∗A∗C ,

i4 ∼= −⊗L
BY ∗B∗A∗B , j4 ∼= −⊗L

AX∗A∗C∗A,
...

...

in+1 ∼= −⊗L
BY ∗B(∗A∗B)

n−1
2

, jn+1 ∼= −⊗L
AX∗A(∗C∗A)

n−1
2

, if n is odd,

in+1 ∼= −⊗L
AY (∗B∗A)

n
2
, jn+1 ∼= −⊗L

CX(∗A∗C)
n
2
, if n is even,

in+2 ∼= RHomA(Y ∗B(∗A∗B)
n−1

2
,−), jn+2 ∼= RHomC(X∗A(∗C∗A)

n−1
2

,−), if n is odd,

in+2 ∼= RHomB(Y (∗B∗A)
n
2
,−), jn+2 ∼= RHomA(X(∗A∗C)

n
2
, −), if n is even.

In particular, every consecutive three layers of a standard n-recollement form a standard
recollement.

Proposition 1 Let A, B and C be algebras. If DA admits an n-recollement relative to DB

and DC then it admits a standard n-recollement relative to DB and DC.

Proof If n = 1 then the proposition is just [15, Proposition 3]. If n ≥ 2 then
we assume that (DB,DA,DC, i1, i2, · · · , in+2, j1, j2, · · · , jn+2) is an n-recollement.
It follows from [15, Proposition 3] and its proof that there is a standard recollement(
DB,DA,DC, i′1, i′2, i′3, j ′

1, j
′
2, j

′
3

)
such that i′1 ∼= −⊗L

AY and j ′
1

∼= −⊗L
CX for some

Y ∈ D(Aop ⊗ B) and X ∈ D(Cop ⊗ A), and j ′
1C

∼= j1C. Since (j1, j2) and
(
j ′

1, j
′
2

)
are

adjoint pairs and j ′
1C

∼= j1C, we have Hp
(
j ′

2A
) ∼= Hp(j2A) for all p ∈ Z. By [1, Lemma

2.7], we know j ′
2A, j2A ∈ Db(ModA). Hence j ′

2A
∼= j2A. Since j2 restricts to Kb(proj),

so is j ′
2. Thus the standard recollement

(
DB,DA,DC, i′1, i′2, i′3, j ′

1, j
′
2, j

′
3

)
can be extended

one step downwards by [1, Proposition 3.2 (a)], and we obtain a standard 2-recollement(
DB,DA,DC, i′1, i′2, i′3, i′4, j ′

1, j
′
2, j

′
3, j

′
4

)
. Inductively, we get a standard n-recollement(

DB,DA,DC, i′1, i′2, · · · i′n+2, j
′
1, j

′
2, · · · , j ′

n+2

)
.

Remark 3 Two n-recollements (T1,T ,T2, i1, i2, · · · , in+2, j1, j2, · · · , jn+2)

and
(
T ′

1 ,T ′,T ′
2 , i′1, i′2, · · · , i′n+2, j

′
1, j

′
2, · · · , j ′

n+2

)
are said to be equivalent if
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Imi2p = Imi′2p and Imj2p−1 = Imj ′
2p−1 for all p. By [18, Theorem 3.6], we have

(Imj1, Imi2, Imj3, Imi4, · · · ) = (Tria(j1C), (j1C)⊥, (j1C)⊥⊥, (j1C)⊥⊥⊥, · · · ) =(
Tria

(
j ′

1C
)
,
(
j ′

1C
)⊥

,
(
j ′

1C
)⊥⊥

,
(
j ′

1C
)⊥⊥⊥

, · · ·
)

= (
Imj ′

1, Imi′2, Imj ′
3, Imi′4, · · ·

)
where for a class X of objects in a triangulated category T with direct sums, TriaX
denotes the smallest full triangulated subcategory of T containing X and closed under
direct sums, and X⊥ denotes the full triangulated subcategory of T consisting of all
objects T ∈ T satisfying HomT (X[p], T ) = 0 for all X ∈ X and p ∈ Z. Namely,
the new constructed n-recollement in Proposition 1 is equivalent to the original given
one.

Proposition 2 Let A,B, C and E be algebras, and Y ∈ D(Aop ⊗B) and X ∈ D(Cop ⊗A)

define a standard n-recollement ofD(A) relative toD(B) andD(C). ThenE⊗Y andE⊗X

define a standard n-recollement ofD(E⊗A) relative toD(E⊗B) andD(E⊗C). Moreover,
the triangle functors in both n-recollements are isomorphic to the derived functors of the
same forms.

Proof It follows from Remark 2 and [15, Theorem 1].

Proposition 3 Let A,B and C be algebras, and Y ∈ D(Aop ⊗ B) and X ∈
D(Cop ⊗ A) define a standard n-recollement of D(A) relative to D(B) and D(C).

If n is odd then Y ∗B(∗A∗B)
n−1

2 and X∗A(∗C∗A)
n−1

2 define a standard n-recollement
(D(Bop),D(Aop),D(Cop), i1, i2, · · · , in+2, j1, j2, · · · , jn+2) with

i1 ∼= Y ∗B(∗A∗B)
n−1

2 ⊗L
A−, j1 ∼= X∗A(∗C∗A)

n−1
2 ⊗L

C−,
...

...

in−2 ∼= Y ∗B∗A∗B ⊗L
A−, jn−2 ∼= X∗A∗C∗A⊗L

C−,

in−1 ∼= Y ∗B∗A⊗L
B−, jn−1 ∼= X∗A∗C ⊗L

A−,

in ∼= Y ∗B ⊗L
A−, jn

∼= X∗A⊗L
C−,

in+1 ∼= Y⊗L
B−, jn+1 ∼= X⊗L

A−,

in+2 ∼= RHomAop(Y,−), jn+2 ∼= RHomCop(X,−).

If n is even then X(∗A∗C)
n
2 and Y (∗B∗A)

n
2 define a standard n-recollement

(D(Cop),D(Aop),D(Bop), i1, i2, · · · , in+2, j1, j2, · · · , jn+2) with

i1 ∼= X(∗A∗C)
n
2 ⊗L

A−, j1 ∼= Y (∗B∗A)
n
2 ⊗L

B−,
...

...

in−2 ∼= X∗A∗C∗A⊗L
C−, jn−2 ∼= Y ∗B∗A∗B ⊗L

A−,

in−1 ∼= X∗A∗C ⊗L
A−, jn−1 ∼= Y ∗B∗A⊗L

B−,

in ∼= X∗A⊗L
C−, jn

∼= Y ∗B ⊗L
A−,

in+1 ∼= X⊗L
A−, jn+1 ∼= Y⊗L

B−,

in+2 ∼= RHomCop(X,−), jn+2 ∼= RHomAop(Y,−).
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Proof It follows from Remark 2 and [15, Theorem 2].

Usually we pay more attention to the n-recollements of derived categories of finite
dimensional algebras. In this situation, we have some useful existence criteria of n-
recollements.

Lemma 1 Let A and B be finite dimensional algebras, and the triangle functor F : DA →
DB left adjoint to G : DB → DA. Then:

(1) F restricts to Kb(proj) if and only if G restricts to Db(mod);
(2) F restricts to Db(mod) if and only if G restricts to Kb(inj).

Proof (1) follows from [1, Lemma 2.7], and (2) is proved with an argument entirely dual to
(1).

Lemma 2 Let A, B and C be finite dimensional algebras, and

a recollement. Then the following statements hold:

(1) i∗ and j! restrict to Kb(proj);
(2) i∗ and j ! restrict to Db(mod);
(3) i! and j∗ restrict to Kb(inj).

Proof (1) is clear. (2) and (3) follow from Lemma 1.

Lemma 3 Let A, B and C be finite dimensional algebras, and

a recollement. Then the following statements are equivalent:

(1) The recollement (R) can be extended one-step downwards;
(2) i∗ or/and j ! restricts to Kb(proj);

(2’) i∗B ∈ Kb(projA) or/and j !A ∈ Kb(projC);
(3) i! or/and j∗ restricts to Db(mod);
(4) The recollement (R) restricts to D−(Mod).

Proof (1) ⇔ (2): It follows from [1, Proposition 3.2 (a)].
(2) ⇔ (2’): It follows from [1, Lemma 2.5].
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(2) ⇔ (3): It follows from Lemma 1.
(4) ⇔ (2’): It follows from [1, Proposition 4.11].

Lemma 4 Let A, B and C be finite dimensional algebras, and

a recollement. Then the following statements are equivalent:

(1) The recollement (R) can be extended one-step upwards;
(2) i∗ or/and j ! restricts to Kb(inj);

(2’) i∗(DB) ∈ Kb(injA) or/and j !(DA) ∈ Kb(injC) where D = Homk(−, k);
(3) i∗ or/and j! restricts to Db(mod);
(4) The recollement (R) restricts to D+(Mod).

Proof This lemma is proved with an argument entirely dual to Lemma 3.

Proposition 4 Let A, B and C be finite dimensional algebras. Then the following
conditions are equivalent:

(1) DA admits a 2-recollement relative to DB and DC;
(2) DA admits a recollement relative to DB and DC in which two functors in the second

layer restrict to Kb(proj);
(3) DA admits a recollement relative to DB and DC in which two functors in the third

layer restrict to Db(mod);
(4) D−(ModA) admits a recollement relative to D−(ModB) and D−(ModC);
(5) DA admits a recollement relative to DC and DB in which two functors in the first

layer restrict to Db(mod);
(6) DA admits a recollement relative to DC and DB in which two functors in the second

layer restrict to Kb(inj);
(7) D+(ModA) admits a recollement relative to D+(ModC) and D+(ModB).

Proof (1) ⇔ (2) ⇔ (3) ⇔ (4): By [1, Proposition 4.1], any D−(Mod)-recollement can be
lifted to a D(Mod)-recollement. Then it follows from Lemma 3.

(1) ⇔ (5) ⇔ (6) ⇔ (7): Analogous to [1, Proposition 4.1], any D+(Mod)-recollement
can be lifted to a D(Mod)-recollement as well. Then it follows from Lemma 4.

Proposition 5 Let A, B and C be finite dimensional algebras. Then the following
conditions are equivalent:

(1) DA admits a 3-recollement relative to DB and DC;
(2) DA admits a recollement relative to DB and DC in which all functors restrict to

Kb(proj);
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(3) Db(modA) admits a recollement relative to Db(modC) and Db(modB);
(4) DA admits a recollement relative to DB and DC in which all functors restrict to

Kb(inj);
(5) Db(ModA) admits a recollement relative to Db(ModC) and Db(ModB).

Proof (1) ⇔ (2) ⇔ (3) : It follows from [1, Proposition 4.1] and Lemma 3.
(1) ⇔ (3) ⇔ (4) : It follows from [1, Proposition 4.1] and Lemma 4.
(3) ⇔ (5) : It follows from [1, Proposition 4.1 and Corollary 4.9].

2.3 n-Derived-Simple Algebras

For any recollement of derived categories of finite dimensional algebras, the Grothendieck
group of the middle algebra is the direct sum of those of the outer two algebras [1,
Proposition 6.5]. Thus the process of reducing homological properties, homological invari-
ants and homological conjectures by recollements must terminate after finitely many steps.
This leads to derived simple algebras, whose derived categories admit no nontrivial recolle-
ments any more. This definition dates from Wiedemann [32], where the author considered
the stratifications of bounded derived categories. Later on, recollements of unbounded and
bounded above derived categories attract considerable attention, and so do the correspond-
ing derived simple algebras [1]. When we consider the stratifications along n-recollements,
n-derived-simple algebras are defined naturally.

Definition 4 A finite dimensional algebra A is said to be n-derived-simple if its derived
category DA admits no nontrivial n-recollements.

Clearly, an n-derived-simple algebra must be indecomposable/connected. Note that
1-derived-simple algebras are just the D(Mod)-derived simple algebras. For finite dimen-
sional algebras, by Proposition 4 and Proposition 5, 2 (resp. 3)-derived-simple algebras are
exactly D−(Mod) (resp. Db(mod))-derived simple algebras in the sense of [1]. Moreover,
n-derived-simple algebras must be p-derived-simple for all p ≥ n, and it is worth noting
that for a finite dimensional algebra A of finite global dimension, the n-derived-simplicity
of A does not depend on the choice of n.

Although it is difficult to find out all the n-derived-simple algebras, there are still some
known examples.

Example 2 (1) Finite dimensional local algebras, blocks of finite group algebras and
indecomposable representation-finite symmetric algebras are 1-derived-simple [23,
32];

(2) Some finite dimensional two-point algebras of finite global dimension are n-derived-
simple for all n ∈ Z

+ (Ref. [16, 24]);
(3) Indecomposable symmetric algebras are 2-derived-simple [23];
(4) There exist 2-derived-simple algebras which are not 1-derived-simple [1, Example

5.8], 3-derived-simple algebras which are not 2-derived-simple [1, Example 5.10],
and 4-derived-simple algebras which are not 3-derived-simple [1, Example 4.13],
respectively.
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Let’s end this section by listing some known results on reducing homological conjec-
tures via recollements. First, the finitistic dimension conjecture, which says that every finite
dimensional algebra has finite finitistic dimension, was reduced to 3-derived-simple alge-
bras by Happel [17]. Recently, Chen and Xi extended his result by reducing the finitistic
dimension conjecture to 2-derived-simple algebras [9]. Second, it follows from [19, Propo-
sition 2.9(b)] and [1, Proposition 2.14] that the Hochschild homology dimension conjecture,
which states that the finite dimensional algebras of finite Hochschild homology dimen-
sion are of finite global dimension [14], can be reduced to 2-derived-simple algebras. Last
but not least, both vanishing conjecture and dual vanishing conjecture can be reduced to
3-derived-simple algebras [34].

3 n-Recollements and Cartan Determinants

In this section, we will observe the relations between n-recollements and the Cartan deter-
minants of algebras, and reduce the Cartan determinant conjecture to 1-derived-simple
algebras.

Let E be a skeletally small exact category, F the free abelian group generated by the
isomorphism classes [X] of objects X in E , and F0 the subgroup of F generated by [X] −
[Y ] + [Z] for all conflations 0 → X → Y → Z → 0 in E . The Grothendieck group K0(E)

of E is the factor group F/F0. The Grothendieck group of a skeletally small triangulated
category is defined similarly by replacing conflations with triangles.

Let A be a finite dimensional algebra and {P1, · · · , Pr } a complete set of pairwise non-
isomorphic indecomposable projective A-modules. Then their tops {S1, · · · , Sr } form a
complete set of pairwise non-isomorphic simple A-modules. The map CA : K0(projA) →
K0(modA), [P ] �→ [P ], is called the Cartan map of A, which can be extended to
CA : K0(K

b(projA)) → K0(Db(modA)), [X] �→ [X]. The matrix of the Cartan map CA

with respect to the Z-basis {[P1], · · · , [Pr ]} of K0(projA) and the Z-basis {[S1], · · · , [Sr ]}
of K0(modA) is called the Cartan matrix of A, and denoted by C(A). Namely, C(A)

is the r × r matrix whose (i, j)-th entry cij is the multiplicity of Si in Pj . Obvi-
ously, cij equals to the composition length of the EndA(Pi)-module HomA(Pi, Pj ), or
dimkHomA(Pi, Pj )/dimkEndA(Si).

Now we study the relation between n-recollements and the Cartan determinant of alge-
bras. For convenience, we define det C(0) = 1. The following theorem is just Theorem I.

Theorem 1 Let A′, A and A′′ be finite dimensional algebras, and DA admit an n-
recollement relative to DA′ and DA′′ with n ≥ 2. Then det C(A) = det C(A′) ·
det C(A′′).

Proof It follows from Proposition 4 and Lemma 2 that DA admits a recollement

such that i∗, i∗, j! and j ! restrict to Kb(proj), and i∗, i!, j ! and j∗ restrict to Db(mod).
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Let {P ′
1, · · · , P ′

r ′ } (resp. {P1, · · · , Pr }, {P ′′
1 , · · · , P ′′

r ′′ }) be a complete set of pairwise
non-isomorphic indecomposable projective A′-modules (resp. A-modules, A′′-modules).
Then their tops {S′

1, · · · , S′
r ′ } (resp. {S1, · · · , Sr }, {S′′

1 , · · · , S′′
r ′′ }) form a complete set of

pairwise non-isomorphic simple A′-modules (resp. A-modules, A′′-modules). By [8, Theo-
rem 1.1] or [1, Proposition 6.5], we have r ′ + r ′′ = r .

Consider the triangles j!j !Pu → Pu → i∗i∗Pu → for all 1 ≤ u ≤ r .
Since Pu ∈ Kb(projA), we have j !Pu ∈ Kb(projA′′) = tria

{
P ′′

1 , · · · , P ′′
r ′′

} ⊆
DA′′ and i∗Pu ∈ Kb(projA′) = tria{P ′

1, · · · , P ′
r ′ } ⊆ DA′. Here, for a

class X of objects in a triangulated category T , triaX denotes the smallest strict
full triangulated subcategory of T containing X . Furthermore, we have j!j !Pu ∈
tria{j!P ′′

1 , · · · , j!P ′′
r ′′ } ⊆ DA and i∗i∗Pu ∈ tria{i∗P ′

1, · · · , i∗P ′
r ′ } ⊆ DA.

Hence Pu ∈ tria{i∗P ′
1, · · · , i∗P ′

r ′ , j!P ′′
1 , · · · , j!P ′′

r ′′ } ⊆ DA, and Kb(projA) =
tria{P1, · · · , Pr } = tria{i∗P ′

1, · · · , i∗P ′
r ′ , j!P ′′

1 , · · · , j!P ′′
r ′′ } ⊆ DA. Therefore, BP :=

{[i∗P ′
1], · · · , [i∗P ′

r ′ ], [j!P ′′
1 ], · · · , [j!P ′′

r ′′ ]} is a Z-basis of K0(K
b(projA)).

Consider the triangles i∗i!Su → Su → j∗j !Su → for all 1 ≤ u ≤ r . Since
Su ∈ Db(modA), we have i!Su ∈ Db(modA′) = tria{S′

1, · · · , S′
r ′ } ⊆ DA′ and

j !Su ∈ Db(modA′′) = tria{S′′
1 , · · · , S′′

r ′′ } ⊆ DA′′. Furthermore, we have i∗i!Su ∈
tria{i∗S′

1, · · · , i∗S′
r ′ } ⊆ DA and j∗j !Su ∈ tria{j∗S′′

1 , · · · , j∗S′′
r ′′ } ⊆ DA. Hence Su ∈

tria{i∗S′
1, · · · , i∗S′

r ′ , j∗S′′
1 , · · · , j∗S′′

r ′′ } ⊆ DA, and Db(modA) = tria{S1, · · · , Sr } =
tria{i∗S′

1, · · · , i∗S′
r ′ , j∗S′′

1 , · · · , j∗S′′
r ′′ } ⊆ DA. So BS := {[i∗S′

1], · · · , [i∗S′
r ′ ], [j∗S′′

1 ], · · · ,

[j∗S′′
r ′′ ]} is a Z-basis of K0(Db(modA)).

Let C(A′) = (c′
pq) and C(A′′) = (c′′

st ). Then [P ′
q ] = ∑r ′

p=1 c′
pq [S′

p] in K0(Db(modA′))
for all 1 ≤ q ≤ r ′ and [P ′′

t ] = ∑r ′′
s=1 c′′

st [S′′
s ] in K0(Db(modA′′)) for all 1 ≤ t ≤ r ′′.

Since the functor i∗ is triangle, we have [i∗P ′
q ] = ∑r ′

p=1 c′
pq [i∗S′

p] for all 1 ≤ q ≤ r ′.
Assume that [j!P ′′

t ] = ∑r ′
p=1 xp,r ′+t [i∗S′

p] + ∑r ′′
s=1 xr ′+s,r ′+t [j∗S′′

s ] in K0(Db(modA))

with xp,r ′+t , xr ′+s,r ′+t ∈ Z for all 1 ≤ t ≤ r ′′. Since the functor j ! is triangle and

j !i∗ = 0, we have [P ′′
t ] = [j !j!P ′′

t ] = ∑r ′
p=1 xp,r ′+t [j !i∗S′

p] + ∑r ′′
s=1 xr ′+s,r ′+t [j !j∗S′′

s ] =∑r ′′
s=1 xr ′+s,r ′+t [S′′

s ] in K0(Db(modA′′)). Thus xr ′+s,r ′+t = c′′
st for all 1 ≤ s, t ≤ r ′′.

Hence the matrix of the Cartan map CA : K0(K
b(projA)) → K0(Db(modA)) with

respect to the Z-basis BP of K0(K
b(projA)) and the Z-basis BS of K0(Db(modA)) is the

block-decomposed matrix

[
C(A′) ∗

0 C(A′′)

]
. Since the matrix of the Cartan map CA with

respect to the Z-basis {[P1], · · · , [Pr ]} of K0(K
b(projA)) and the Z-basis {[S1], · · · , [Sr ]}

of K0(Db(modA)) is C(A), there are invertible integer matrices U,V ∈ GLr(Z) such that

U · C(A) · V =
[

C(A′) ∗
0 C(A′′)

]
. The determinant of an invertible integer matrix is ±1,

thus det C(A) = ± det C(A′) · det C(A′′).
On the other hand, we can define a Z-bilinear form

〈−, −〉 : K0(K
b(projA)) × K0(K

b(projA)) → Z

by

〈[X], [Y ]〉 :=
∑
l∈Z

(−1)l dimkHomKb(projA)(X, Y [l]),

for all X, Y ∈ Kb(projA).
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Since i∗ and j! are full embeddings and j !i∗ = 0, we have

〈
[
i∗P ′

p

]
,
[
i∗P ′

q

]
〉 = dimkHomA′(P ′

p, P ′
q), p, q = 1, · · · , r ′;

〈[j!P ′′
s

]
,
[
i∗P ′

p

]
〉 = 0, s = 1, · · · , r ′′; p = 1, · · · , r ′;

〈[j!P ′′
s

]
,
[
j!P ′′

t

]
)〉 = dimkHomA′′(P ′′

s , P ′′
t ), s, t = 1, · · · , r ′′.

Thus the matrix of 〈−, −〉 with respect to the Z-basis BP of K0(K
b(projA))

is

[
D′ · C(A′) ∗

0 D′′ · C(A′′)

]
where D′ = diag{c′

1, · · · , c′
r ′ } with c′

p =
dimkEndA′(S′

p) for all p = 1, · · · , r ′ and D′′ = diag{c′′
1 , · · · , c′′

r ′′ } with
c′′
s = dimkEndA′′(S′′

s ) for all s = 1, · · · , r ′′.
Let D = diag{c1, · · · , cr } with cu = dimkEndA(Su) for all u = 1, · · · , r .

Since the matrix of 〈−, −〉 with respect to the Z-basis {[P1], · · · , [Pr ]} of
K0(K

b(projA)) is D · C(A), there exists an invertible integer matrix T ∈ GLr(Z)

such that D · C(A) = T t ·
[

D′ · C(A′) ∗
0 D′′ · C(A′′)

]
· T . It follows that det C(A) and

det C(A′) · det C(A′′) have the same sign since det D′, det D′′ and det D are strictly positive
integers. Thus det C(A) = det C(A′) · det C(A′′).

Next we study the Cartan determinant conjecture. In 1954, Eilenberg showed that if A

is a finite dimensional algebra of finite global dimension then det C(A) = ±1 (Ref. [12]).
After that, the following conjecture was posed:

Cartan Determinant Conjecture. Let A be an artin algebra of finite global dimension.
Then det C(A) = 1.

The Cartan determinant conjecture remains open except for some special classes of
algebras, such as the algebras of global dimension two [37], the positively graded alge-
bras [33], the Cartan filtered algebras [13], the left serial algebras [7], the quasi-hereditary
algebras [6], and the artin algebras admitting a strongly adequate grading by an aperiodic
commutative monoid [28].

Applying Theorem 1 to the trivial 2-recollement in Example 4 (4), we can obtain the
following corollary which generalizes [5, Proposition 1.5] to an arbitrary base field.

Corollary 1 IfA andB are derived equivalent finite dimensional algebras then det C(A) =
det C(B). In particular, one of them satisfies the Cartan determinant conjecture if and only
if so does the other.

Proposition 6 Let A′, A and A′′ be finite dimensional algebras, and DA admit a recolle-
ment relative toDA′ andDA′′. If both A′ andA′′ satisfy the Cartan determinant conjecture,
then so does A. In particular, the Cartan determinant conjecture is true for all finite dimen-
sional algebras if and only if it is true for all 1-derived-simple algebras of finite global
dimension.

Proof If A is of finite global dimension then so are A′ and A′′ by [1, Proposition 2.14]. Thus
det C(A′) = det C(A′′) = 1 by the assumption and the recollement induces a 2-recollement,
see Example 1 (3). By Theorem 1, we have det C(A) = det C(A′) · det C(A′′) = 1.
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For any finite dimensional algebra A, by [1, Proposition 6.5], DA admits a finite strat-
ification of derived categories along recollements with 1-derived-simple factors. Thus the
second statement holds.

Although Proposition 6 provides a reduction technique, the Cartan determinant con-
jecture seems far from being settled, because it is still a problem to deal with all the
1-derived-simple algebras of finite global dimension. Nonetheless, for the known examples
described in Example 2 (1) and (2), the Cartan determinant conjecture holds true [16, 24].

Let’s end this section by pointing out that Theorem 1 can be applied to prove the n-
derived-simplicity of certain algebras as well.

Remark 4 A finite dimensional two-point algebra A with det C(A) ≤ 0 must be 2-derived-
simple: Otherwise, DA admits a non-trivial 2-recollement relative to DB and DC. Then
both B and C are finite dimensional local algebras since A has only two simple modules
up to isomorphism. Therefore, det C(B) > 0 and det C(C) > 0. By Theorem 1, we get
det C(A) > 0. It is a contradiction. The examples of this kind of 2-derived-simple algebras
include:

(1)

(2)
(3) Let A be one of the algebras in (1) and (2), and B an arbitrary finite dimensional

elementary local algebra. Then the tensor product algebra A ⊗k B is again 2-derived-
simple by the same reason.

Remark 5 A representation-finite selfinjective two-point algebra A with det C(A) ≤ 0
must be 1-derived-simple. Indeed, for a representation-finite selfinjective algebra A, if
DA admits a recollement relative to DB and DC, this recollement must be perfect
[23, Proposition 4.1]. Therefore, the 2-derived-simplicity of these algebras implies the
1-derived-simplicity. For example, the algebras in Remark 4 (1) are 1-derived-simple.

4 n-Recollements and Homological Smoothness

In this section, we will observe the relation between n-recollements and the homological
smoothness of algebras.

Let A be an algebra and Ae := Aop ⊗k A its enveloping algebra. The algebra A is said to
be smooth if the projective dimension of A as an Ae-module is finite, i.e., A is isomorphic
in D(Ae) to an object in Kb(ProjAe) (Refs. [31]). The algebra A is said to be homologically
smooth if A is compact in D(Ae), i.e., A is isomorphic in D(Ae) to an object in Kb(projAe)

(Ref. [22]). Clearly, all homologically smooth algebras are smooth. Moreover, if A is a
finite dimensional algebra then the concepts of smoothness and homological smoothness
coincide. However, they are different in general. For example, the infinite Kronecker algebra
is smooth but not homologically smooth [15, Remark 4].

Let A and B be two derived equivalent algebras. Then, by [27, Proposition 2.5], there
is a triangle equivalence functor from D(Ae) to D(Be) sending AAe to BBe . Since the
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equivalence functor can restrict to Kb(Proj) and Kb(proj), both the smoothness and the
homological smoothness of algebras are invariant under derived equivalences. Moreover,
the relations between recollements and the smoothness of algebras have been clarified in
[15]:

Proposition 7 (See [15, Theorem 3]) Let A, B and C be algebras, and DA admit a
recollement relative to DB and DC. Then A is smooth if and only if so are B and C.

However, Proposition 7 is not correct for homological smoothness any more. Here is an
example:

Example 3 (See [15, Remark 4]) Let A be the infinite Kronecker algebra

[
k 0

k(N) k

]
.

Then by Example 1 (2), DA admits a 2-recollement relative to Dk and Dk, but A is not
homologically smooth.

Due to Example 3, even though DA admits a 2-recollement relative to DB and DC,
the homological smoothness of B and C can not imply the homological smoothness of A.
Nonetheless, we have the following theorem which is just Theorem II.

Theorem 2 Let A, B and C be algebras, and DA admit an n-recollement relative to DB

and DC.

(1) n = 1: if A is homologically smooth then so is B;
(2) n = 2: if A is homologically smooth then so are B and C;
(3) n ≥ 3: A is homologically smooth if and only if so are B and C.

Proof (1) See [20, Proposition 3.10 (c)].
(2) If A is homologically smooth then B is also homologically smooth by (1). Since n = 2,

we have a recollement of DA relative to DC and DB, and thus C is also homologically
smooth by (1) again.

(3) Assume DA admits a 3-recollement relative to DB and DC. Consider the recollement
formed by the middle three layers. By [15, Proposition 3], we may assume that it is of
the form

where X ∈ D(Bop ⊗ A) and Y ∈ D(Aop ⊗ C). Clearly, AY and Y
∗C

A are compact
since the recollement can be extended one step upwards and one step downwards
respectively [1, Proposition 3.2 and Lemma 2.8].
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By [15, Theorem 1] and [15, Theorem 2], a recollement of derived categories of algebras
induces those of tensor product algebras and opposite algebras respectively. Thus we have
the following three recollements induced by the recollement (R′):

where L1 ∼= Y ∗C ⊗L
A−, F1 ∼= Y⊗L

C−, L2 ∼= −⊗L
AY , F2 ∼= −⊗L

CY ∗C , L3 ∼= −⊗L
BX,

F3 ∼= −⊗L
AX∗A , L4 ∼= X∗A⊗L

B− and F4 ∼= X⊗L
A−. Consider the canonical triangle

L3F3A −→ A −→ F2L2A −→ in D(Ae),

and note that F2L2A ∼= Y⊗L
CY ∗C ∼= F2F1C, L3F3A ∼= X∗A⊗L

BX ∼= L3L4B. Clearly, the
functors L3 and L4 preserve compactness, so are F1 and F2 since AY and Y

∗C

A are compact.
If B ∈ Kb(projBe) and C ∈ Kb(projCe) then F2F1C and L3L4B are compact, i.e., F2L2A

and L3F3A are compact. Applying these to the above triangle, we get A ∈ Kb(projAe).
Namely, the homological smoothness of B and C implies that of A.

According to Example 3 and the statement followed, we see that in Theorem 2 (3), the
requirement n ≥ 3 is optimal.

Applying Theorem 2 to triangular matrix algebras, we get the following corollary which
provides a construction of homologically smooth algebras.

Corollary 2 Let B and C be algebras, M a C-B-bimodule, and A :=
[

B 0
M C

]
.

(1) If A is homologically smooth, then so are B and C;
(2) If B and C are homologically smooth and CM ∈ Kb(projCop) or MB ∈ Kb(projB),

then A is also homologically smooth.

Proof It follows from Example 1(2) and Theorem 2.

5 n-Recollements and Gorensteinness

In this section, we will observe the relations between n-recollements and the Gorensteinness
of algebras, and reduce the Gorenstein symmetry conjecture to 2-derived-simple algebras.
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A finite dimensional algebra A is said to be Gorenstein if idAA < ∞ and idAopA < ∞.
Clearly, a finite dimensional algebra A is Gorenstein if and only if Kb(projA) = Kb(injA)

as strict full triangulated subcategories of DA. It is well-known that every derived equiv-
alent functor between the derived categories of finite dimensional algebras restricts to
Kb(proj),Kb(inj) and Db(mod). Thus the Gorensteinness of algebras is invariant under
derived equivalences. It is natural to consider the relation between recollements and the
Gorensteinness of algebras. In [26], Pan proved that the Gorensteinness of A implies the
Gorensteinness of B and C if there exists a recollement of Db(modA) relative to Db(modB)

and Db(modC). Now we complete it using the language of n-recollements. The following
theorem is just Theorem III.

Theorem 3 LetA,B andC be finite dimensional algebras, andDA admit an n-recollement
relative to DB and DC.

(1) n = 3: if A is Gorenstein then so are B and C;
(2) n ≥ 4: A is Gorenstein if and only if so are B and C.

Proof (1) It follows from Proposition 5 that Db(modA) admits a recollement relative to
Db(modC) and Db(modB). Therefore, the statement follows from Pan [26]. Here we pro-
vide another proof. Consider the following recollement consisting of the middle three layers
of functors of the 3-recollement:

By Lemma 2, i∗, i∗, j! and j ! restrict to Kb(proj), and i∗, i!, j ! and j∗ restrict to Kb(inj).
If A is Gorenstein then Kb(projA) = Kb(injA).

Note that DC := Homk(C, k). Thus DC ∼= i∗i∗(DC) ∈ i∗i∗(Kb(injC)) ⊆
i∗(Kb(injA)) = i∗(Kb(projA)) ⊆ Kb(projC). Thus, pdC(DC) < ∞, equivalently,
idCopC < ∞. On the other hand, C ∼= i!i∗C ∈ i!i∗Kb(projC) ⊆ i!Kb(projA) =
i!Kb(injA) ⊆ Kb(injC). Thus, idCC < ∞. Therefore, C is Gorenstein.

Similarly, DB ∼= j !j∗(DB) ∈ j !j∗(Kb(injB)) ⊆ j !(Kb(injA)) = j !(Kb(projA)) ⊆
Kb(projB). Thus, pdB(DB) < ∞, equivalently, idBopB < ∞. On the other hand, B ∼=
j !j!B ∈ j !j!Kb(projB) ⊆ j !Kb(projA) = j !Kb(injA) ⊆ Kb(injB). Thus, idBB < ∞.
Therefore, B is Gorenstein.

(2) Let

be a 4-recollement. By Lemma 2, i∗, j!, i∗ and j ! restrict to both Kb(proj) and Kb(inj). If
both B and C are Gorenstein, then Kb(projB) = Kb(injB) and Kb(projC) = Kb(injC).

Consider the triangle j!j !(DA) → DA → i∗i∗(DA) →. We have j!j !(DA)

∈ j!j !Kb(injA) ⊆ j!Kb(injC) = j!Kb(projC) ⊆ Kb(projA) and i∗i∗(DA) ∈
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i∗i∗Kb(injA) ⊆ i∗Kb(injB) = i∗Kb(projB) ⊆ Kb(projA). Thus, DA ∈ Kb(projA), i.e.,
pdA(DA) < ∞. Hence, idAopA < ∞.

Similarly, consider the triangle j!j !A → A → i∗i∗A →. We have
j!j !A ∈ j!j !Kb(projA) ⊆ j!Kb(projC) = j!Kb(injC) ⊆ Kb(injA) and i∗i∗A
∈ i∗i∗Kb(projA) ⊆ i∗Kb(projB) = i∗Kb(injB) ⊆ Kb(injA). Thus, A ∈ Kb(injA), i.e.,
idAA < ∞. Therefore, A is Gorenstein.

Applying Theorem 3 to triangular matrix algebras, we get the following corollary (Ref.
[10, Theorem 3.3] and [36, Theorem 2.2 (iii)]), which imply the condition n ≥ 4 in
Theorem 3 (2) is optimal.

Corollary 3 Let B and C be finite dimensional algebras, M a finitely generated C-B-

bimodule, and A =
[

B 0
M C

]
. If two of the following conditions hold then so does the other

one:

(1) A is Gorenstein;
(2) B and C are Gorenstein;
(3) pdCopM < ∞ and pdBM < ∞.

Proof “(1)+(2) ⇒ (3)”: Assume that A is Gorenstein. Set e1 =
[

1 0
0 0

]
and e2 =

[
0 0
0 1

]
.

By [1, Example 3.4], there is a 2-recollement of the form

It follows from Lemma 2 that i! restricts to Kb(inj), and further restricts to Kb(proj) by
the Gorensteinness of A and B. Thus, i!A = B ⊕ MB ∈ Kb(projB). Hence, pdBM < ∞.
Similarly, it follows from Lemma 2 that j ! restricts to Kb(proj), and further restricts to
Kb(inj) by the Gorensteinness of A and C. By Lemma 1, j! restricts to Db(mod). Since
j! = −⊗L

Ce2A, this is equivalent to C(e2A) ∈ Kb(projCop) (Ref. [1, Lemma 2.8]). Note
that C(e2A) = C ⊕ CM , thus pdCopM < ∞.

“(2)+(3) ⇒ (1)” and “(1)+(3) ⇒ (2)”: Assume that pdCopM < ∞ and pdBM < ∞, then
by Example 1 (2), the above 2-recollement can be extended one step upwards and one step
downwards to a 4-recollement. By Theorem 3, A is Gorenstein if and only if B and C are
Gorenstein.

Next we study the Gorenstein symmetry conjecture.

Gorenstein symmetry conjecture Let A be an artin algebra. Then idAA < ∞ if and
only if idAopA < ∞.

This conjecture is listed in Auslander-Reiten-Smalø’s book [2, p.410, Conjecture (13)],
and it closely connects with other homological conjectures. For example, it is known that
the finitistic dimension conjecture implies the Gorenstein symmetry conjecture. But so far
all these conjectures are still open. As mentioned before, the finitistic dimension conjecture
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can be reduced to 2-derived-simple algebras. Now, let us utilize Theorem 3 to reduce the
Gorenstein symmetry conjecture to 2-derived-simple algebras.

Proposition 8 Let A, B and C be finite dimensional algebras, and DA admit a 2-
recollement relative to DB and DC. If both B and C satisfy the Gorenstein symmetry
conjecture, then so does A. In particular, the Gorenstein symmetry conjecture is true for all
finite dimensional algebras if and only if it is true for all 2-derived-simple algebras.

Proof Assume that

is a 2-recollement, and both B and C satisfy the Gorenstein symmetry conjecture.
If idAA < ∞, then Kb(projA) ⊆ Kb(injA). By Lemma 2, we have B ∼= i!i∗B ∈

i!i∗(Kb(projB)) ⊆ i!(Kb(projA)) ⊆ i!(Kb(injA)) ⊆ Kb(injB), i.e., idBB < ∞. Since B

satisfies the Gorenstein symmetry conjecture, we obtain that B is Gorenstein. By Lemma 2
again, we have i!A ∈ i!(Kb(projA)) ⊆ i!(Kb(injA)) ⊆ Kb(injB) = Kb(projB). Due to
Lemma 3, i!A ∈ Kb(projB) implies that the 2-recollement (R′′) can be extended one step
downwards. Therefore, we get a 2-recollement of DA relative to DC and DB. Analogous to
the above proof, we obtain that C is Gorenstein and the 2-recollement (R′′) can be extended
two steps downwards to a 4-recollement of DA relative to DB and DC. By Theorem 3, A

is Gorenstein. Thus idAopA < ∞.
Now we have two ways to prove that idAopA < ∞ implies idAA < ∞. One is to

mimic the paragraph above. The other is as follows: By Proposition 1 and Proposition 3,
DAop admit a 2-recollement relative to DCop and DBop. Since both B and C satisfy the
Gorenstein symmetry conjecture, so do Bop and Cop. By the conclusion of the paragraph
above, we know that idAopAop < ∞ implies idAAop < ∞, equivalently idAopA < ∞
implies idAA < ∞.

Remark 6 Note from Proposition 8 that the class of finite dimensional algebras which
satisfy the Gorenstein symmetry conjecture is invariant under derived equivalences.
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