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Abstract We define alternating cyclotomic Hecke algebras in higher levels as subalgebras
of cyclotomic Hecke algebras under an analogue of Goldman’s hash involution. We com-
pute the rank of these algebras and construct a full set of irreducible representations in the
semisimple case, generalising Mitsuhashi’s results Mitsuhashi (J. Alg. 240 535–558 2001,
J. Alg. 264 231–250 2003).
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1 Introduction

Cyclotomic Hecke algebras have a significant presence in the literature because of their deep
connections to the representation theory of symmetric groups, quantum groups, and Lie
theory. Recently, profound connections to the theory of Khovanov-Lauda-Rouquier (KLR)
algebras have also been discovered.

When one uncovers a result concerning symmetric groups and their representations, it is
natural to ask what are the consequences for the alternating group, the index-2 subgroup of
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Sn. In a similar way, Mitsuhashi introduced subalgebras of Iwahori-Hecke algebras, which
function as q-analogues of alternating groups. Continuining in this way leads naturally to
a family of algebras we call alternating cyclotomic Hecke algebras, a subfamily of which
were studied by Ratliff [20].

In this paper we extend this natural line of investigation and study the semisimple
representation theory of alternating cyclotomic Hecke algebras in detail. We start by con-
sidering cyclotomic Hecke algebras, which grew via generalisation from the symmetric
and hyperoctahedral groups, as well as their Iwahori-Hecke algebras. We also discuss
the seminormal form theory of these algebras, which dates back to Young [21] in the
symmetric group case, and is due to Hoefsmit [7] and Ariki-Koike [2] in general for
cyclotomic Hecke algebras – we follow the more recent approach of Hu and Mathas
[9]. We then define alternating cyclotomic Hecke algebras for arbitrary level as fixed-
point subalgebras of cyclotomic Hecke algebras under the hash involution. There is a
clear analogy here to symmetric group algebras and the sign map. In the final section we
give a classification of irreducible representations for semisimple alternating cyclotomic
Hecke algebras, including a dimension formula. This gives a significant improvement on
the existing proof for levels one [16] and two [17] by Mitsuhashi, while extending it to
arbitrary level.

The family of algebras defined in this paper are further studied in [4], where a graded
isomorphism theorem is proved, providing a firm link between the alternating cyclotomic
Hecke algebras and the world of quiver Hecke algebras in the spirit of Brundan and
Kleshchev [5]. Specifically, it is shown in [4] that for � = �0, the alternating cyclotomic
Hecke algebra is isomorphic to a homogeneous subalgebra of the cyclotomic quiver Hecke
algebra. In particular this gives a Z-grading on the modular group algebras of alternating
groups.

2 Notation and Definitions

In this chapter we give the definition of cyclotomic Hecke algebras as abstract algebras with
a presentation by generators and relations. These are the objects we will be considering
subalgebras of in this paper. In order to do this we need some notation. Throughout this
paper, let Z be a unital integral domain. If k ∈ Z and ξ ∈ Z×, define the quantum integer
[k]ξ by

[k]ξ =
{

(1 + ξ + · · · + ξk−1), if k ≥ 0,
−(ξ−1 + ξ−2 + · · · + ξk), if k < 0.

We write [k] for [k]ξ when there is no confusion over the quantum parameter; by the

geometric series formula, [k] = ξk−1
ξ−1 provided ξ �= 1 (if ξ = 1, [k] = k).

We can now define cyclotomic Hecke algebras. Our definition follows Ariki-Koike,
although our algebras comprise a subfamily of those considered in [2].

Definition 2.1 (Cyclotomic Hecke algebras [2]) Let ξ ∈ Z× and let κ = (κ1, κ2, . . . , κ�)

be an �-tuple of elements in Z. The cyclotomic Hecke algebra Hn = Hn,�(Z, ξ, κ) is the
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unital associative Z-algebra generated by L1, L2, . . . , Ln, T1, T2, . . . , Tn−1 subject to the
relations

�∏
i=1

(L1 − [κi]ξ ) = 0

(Tr + 1)(Tr − ξ) = 0

LrLs = LsLr

TrTs = TsTr , if |r − s| > 1 (2.1)

TrTr+1Tr = Tr+1TrTr+1

TrLs = LsTr , if s �= r, r + 1

Lr+1(Tr − ξ + 1) = TrLr + 1.

The �-tuple (κ1, . . . , κ�) ∈ Z
� is called the multicharge of Hn and is closely related to a

dominant weight � = �(κ) of a Kac-Moody algebra. The quantum integers [κi] for 1 ≤
i ≤ � are the cyclotomic parameters. The elements L1, L2, . . . , Ln are called Jucys-Murphy
elements. � is called the level of the algebra.

Definition 2.2 For a cyclotomic Hecke algebra Hn, let e be the quantum characteristic of
ξ in Z , that is,

e = min{k > 0 | 1 + ξ + ξ2 + . . . + ξk−1 = 0},
or e = ∞ if no such k exists. Note that if ξ = 1 and Z = F is a field of positive charac-
teristic, e = char(F ). If ξ �= 1 and ξ is a root of unity then e is the multiplicative order of
ξ .

The following basis theorem of Ariki-Koike gives the first indication that cyclotomic
Hecke algebras are interesting objects of study: their rank depends only on � and n (i.e. it is
independent of the choices of parameters). Most importantly, this rank does not depend on
the choice of ξ or its quantum characteristic.

Theorem 2.3 (Ariki-Koike [2]) The cyclotomic Heckes algebra Hn,�(Z, ξ, κ) is a free
Z-module with basis {

L
γ1
1 L

γ2
2 · · · Lγn

n Tω | 0 ≤ γi < � and ω ∈ Sn

}
,

where Tω = Ti1Ti2 · · · Tik if si1si2 · · · sik is any reduced expression for ω. In particular its
rank as a Z-module is

rkZ (Hn,�(Z, ξ, κ)) = �nn!.

In order to discuss the representation theory, semisimple and otherwise, of cyclotomic
Hecke algebras, we need to introduce the combinatorial framework of (multi-) partitions
and (multi-) tableaux.

Definition 2.4 A partition of n ≥ 0 is a weakly decreasing sequence λ = (λ1, λ2, . . .)

of non-negative integers which sum to n. An �-multipartition of n is an �-tuple λ =
(λ(1), λ(2), . . . , λ(�)) of partitions whose total sum is n. When writing multipartitions,
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we omit trailing zeroes, group repeated integers with exponents and separate components
with bars. We write Pn for the set of partitions of n; λ � n means λ ∈ Pn. We write P�

n for
the set of �-multipartitions of n; λ �� n means λ ∈ P�

n .

We usually visualise a multipartition using its diagram; we abuse notation frequently
and identify multipartitions with their diagrams. The diagram of a partition is the set of
left-aligned square boxes, starting with λ1 boxes, then λ2 boxes underneath, and so on. The
diagram of a multipartition is its sequence of constituent diagrams.

Definition 2.5 For a multipartition λ ∈ P�
n , a λ-tableau is a bijective filling of the boxes of

λ with the numbers 1, 2, . . . , n. A λ-tableau is standard if the entries increase along rows
and down columns within each constituent diagram. The collection of standard tableaux
with n boxes is written Std(P�

n); the collection of those of shape λ (i.e. those tableaux such
that deleting all the numbers from the diagram recovers the diagram of the multipartition λ)
is written Std(λ).

Definition 2.6 We define the dominance order onP�
n by writing λ�μ, read as λ dominates

μ, if
r−1∑
k=1

∣∣∣λ(k)
∣∣∣+

i∑
j=1

λ
(r)
j ≥

r−1∑
k=1

∣∣∣μ(k)
∣∣∣+

i∑
j=1

μ
(r)
j

for all 1 ≤ r ≤ � and i ≥ 1. This is a partial order which gives (P�
n,�) the structure of

a poset. We can extend the dominance ordering to the set Std(P�
n) by defining s � t if

sh(s↓m) � sh(t↓m) for all 1 ≤ m ≤ n, where by sh(u) we mean the shape of the tableau
u, and by u ↓k we mean the tableau with k boxes obtained from u by deleting entries
k + 1, k + 2, . . . , n.

There are two special tableaux for each multipartition λ ∈ P�
n which are used frequently:

the initial λ-tableau tλ which contains the entries 1, 2, 3, . . . , n increasing along rows start-
ing from λ(1), and the final λ-tableau tλ which contains the same entries increasing down
columns, starting from λ(�).

For example, below are the initial and final tableaux for the 2−multipartition (2 | 12):

Definition 2.7 For λ ∈ Pn, the conjugate partition λ′ is the partition with

λ′
j = #{i ≥ 1 | λi ≥ j}.

In terms of diagrams, λ′ is the diagram of λ with rows and columns swapped. The conjugate
λ′ of a multipartition λ = (λ(1), . . . , λ(�)) ∈ P�

n is

λ′ = (λ(�) ′, . . . , λ(1) ′).

For tableaux, conjugation t 
→ t′ is defined by reflecting the diagram of t through its
diagonal, so the rows of t become the columns of t′; the conjugate of the multitableau
t = (t(1), . . . ,t(r)) is t′ = (t(�)′, . . . ,t(1)′). Notice that

(tλ)′ = tλ′ . (2.2)



Representations of Alternating Cyclotomic Hecke Algebras 239

The following lemma gives the important relationship between the dominance ordering
and the conjugation involution; a proof in the � = 1 case is given in [12, (1.11)]; the general
case follows from this.

Lemma 2.8 [12, (1.11)] Conjugation reverses the dominance order on multipartitions and
multitableaux, that is, λ � μ if and only if μ′ � λ′ and s� t if and only if t′ � s′.

Definition 2.9 For a choice of multicharge κ ∈ Z
�, and for t ∈ Std(λ), where λ ∈ P�

n , the
content of k in t, for 1 ≤ k ≤ n, is the number

ck(t) = κl + c − r,

where k appears in component l in column c and row r of t; the content sequence of t is
the n-tuple

c(t) = (c1(t), c2(t), . . . , cn(t)).

The e-residue of k in t is the element

resk(t) = ck(t) + eZ

of Z/eZ and the residue sequence of t is the n-tuple

it = (res1(t), res2(t), . . . , resn(t)) ∈ (Z/eZ)n.

Finally, for i ∈ (Z/eZ)n, Std(i) is the set {t ∈ Std(P�
n) | it = i}. Note that all these

quantities depend on the choice of κ .

Using the Jucys-Murphy elements and the notation from this section, we may produce
a full set of mutually orthogonal idempotents for the Hecke algebras. For t ∈ Std(λ) for
λ ∈ P�

n , define

Ft =
n∏

k=1

∏
s∈Std(λ)

resk(s)�=resk(t)

Lk − [resk(s)]ξ
[resk(t)]ξ − [resk(s)]ξ . (2.3)

By Eq. 2.1, the Jucys-Murphy elements commute so there is no ambiguity in the order
of factors in Eq. 2.3.

Proposition 2.10 (Ariki’s semisimplicity criterion [1]) LetHn = Hn,�(F, ξ, κ) be a cyclo-
tomic Hecke algebra with e > 2, where F is a field. Then Hn is a semisimple F -algebra if
and only if the element

PH = PH (F, ξ, κ) = [1]ξ [2]ξ · · · [n]ξ
∏

1≤r<s≤�

∏
−n<d<n

[κr + d − κs]ξ (2.4)

is nonzero. Moreover, if PH is nonzero then the collection {Ft | t ∈ Std(P�
n)} is a complete

set of pairwise orthogonal idempotents for Hn.

3 The Seminormal Form

Young [21] introduced the seminormal form for symmetric group algebras to give a par-
ticularly elegant description of their ordinary representation theory (i.e. over a field of
characteristic zero). We will see the seminormal form arise as a basis of simultaneous eigen-
vectors for the Jucys-Murphy elements. As we will see, this basis, which is intimately
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linked to the semisimple representation theory of cyclotomic Hecke algebras, is particularly
well-adapted to the computations we will perform in later chapters.

The following lemma states the well-known result that tableaux are uniquely determined
by their content sequences (which are the same as their residue sequences for e > n) in the
semisimple case.

Recall that if t ∈ Std(P�
n) and 1 ≤ r ≤ n then cr (t) ∈ Z is the content of r in t.

Lemma 3.1 [14, Lemma 3.34] Suppose that s,t ∈ Std(P�
n) and that PH is nonzero. Then

s = t if and only if [cr (s)] = [cr (t)], for 1 ≤ r ≤ n. In particular s = t if and only if
is = it.

Definition 3.2 Define the integer ρr(t) ∈ Z by

ρr(t) = cr (t) − cr+1(t). (3.1)

ρr(t) is called the axial distance from r + 1 to r in t.

The following definition makes precise the freedom allowed when choosing the coeffi-
cients in Young’s seminormal form.

Definition 3.3 (Hu-Mathas [9, Section 3]) A ∗-seminormal coefficient system is a set of
scalars α = {αr(s) | 1 ≤ r < n and s ∈ Std(P�

n)} in Z such that

(i) for t ∈ Std(P�
n) with sk · t and sm · t standard we have

αk(t)αm(sk · t) = αm(t)αk(sm · t) (3.2)

for 1 ≤ k,m < n if |k − m| > 1
(ii) for t ∈ Std(P�

n) and 1 ≤ r ≤ n − 2 such that sr sr+1 · t is standard we have

αr(sr+1srt)αr+1(srt)αr(t) = αr+1(sr sr+1t)αr(sr+1t)αr+1(t) (3.3)

(iii) for t ∈ Std(P�
n) and 1 ≤ r < n and v = sr · t then αr(s) = 0 if v /∈ Std(P�

n) and
otherwise

αr(t)αr(v) = [1 + ρr(t)][1 + ρr(v)]
[ρr(t)][ρr(v)] . (3.4)

As noted in [9, Section 3], examples of seminormal coefficient systems for the symmetric
groups date back to Young in 1901 [21]. For example, we can take αr(t) = [1+ρr (t)]

[ρr (t)] ,

whenever t, sr · t ∈ Std(P�
n). This is the choice made by James in [11]. We give another

example now, to motivate the particular choice we will make in later chapters.

Example 3.4 Suppose that Z = K is a field which contains ξ ∈ K×,
√

ξ and square roots√−1 and
√[h]ξ , for 1 ≤ |h| ≤ n, such that

√[−h]ξ = √−1(
√

ξ)h
√[h]ξ , for 1 < h ≤ n.

Define

αr(t) =
{ √−1

√[1+ρr (t)]√[1−ρr (t)]
[ρr (t)] if sr · t ∈ Std(P�

n) and cr (t) > 0
−√−1

√[1+ρr (t)]√[1−ρr (t)]
[ρr (t)] if sr · t ∈ Std(P�

n) and cr (t) < 0

and αr(t) = 0 if sr · t is not standard. One can easily check that these scalars satisfy the
requirements of a seminormal coefficient system.

Definition 3.5 Let ∗ be the unique involutive anti-automorphism of Hn which fixes the
generators L1, T1, . . . , Tn−1.
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Definition 3.6 A basis {fst | s,t ∈ Std(λ) for λ ∈ P�
n} of Hn = Hn,�(Z, ξ, κ) is a

seminormal basis if

Lkfst = [ck(s)]fst and fstLk = [ck(t)]fst,
for all s,t ∈ Std(λ) with λ ∈ P�

n and 1 ≤ k ≤ n. The above basis is a ∗-seminormal basis
if in addition f ∗

st = fts, for all s,t ∈ Std(λ) with λ ∈ P�
n .

We can use seminormal coefficient systems to provide a complete description of the
semisimple representation theory of cyclotomic Hecke algebras. Recall that the element
PH from Proposition 2.10 gives us a criterion for semisimplicity.

Theorem 3.7 ( The Seminormal Form [9, Theorem 3.14]) Suppose thatK is a field in which
PH is nonzero and which contains a seminormal coefficient system α for Hn(K). Then

(i) Hn(K) has a ∗-seminormal basis {fst | s,t ∈ Std(λ) for λ ∈ P�
n}, such that

Trfst = αr(s)fut − 1

[ρr(s)]fst,
where u = sr · s (and fut = 0 if u is not standard);

(ii) there exist non-zero scalars γt ∈ K, for t ∈ Std(P�
n) such that

fstfuv = δtuγtfsv;
(iii)

{
1
γt

ftt | t ∈ Std(P�
n)
}
is a complete set of pairwise orthogonal primitive idempo-

tents for Hn(K), and
(iv) the ∗-seminormal basis {fst | s,t ∈ Std(λ) for λ ∈ P�

n} is uniquely determined by
the ∗-seminormal coefficient system α together with the scalars {γtλ | λ ∈ P�

n}.

Finally, we will need the following identity relating the α and γ coefficients.

Corollary 3.8 [9, Corollary 3.17] Suppose that t ∈ Std(P�
n) is such that u = sr · t ∈

Std(P�
n), where 1 ≤ r < n. Then αr(u)γt = αr(t)γu.

By Theorem 3.7, if t ∈ Std(P�
n) then Ft = 1

γt
ftt is a primitive idempotent in Hn.

As we saw in Eq. (2.3), there is an explicit formula for this idempotent which in particular
is independent of the choice of seminormal basis. Again by Theorem 3.7, as an (L ,L )-
bimodule Hn decomposes as

Hn =
⊕
λ∈P�

n
s,t∈Std(λ)

Hst, (3.5)

where Hst = Kfst, and where L is the commutative subalgebra of Hn generated by the
Jucys-Murphy elements. Equivalently,

Hst = {h ∈ Hn | Lkh = [ck(s)]h and hLk = [ck(t)]h for 1 ≤ k ≤ n},
for s,t ∈ Std(λ) with λ ∈ P�

n .
The following easy corollary of Theorem 3.7 is the mechanism by which we perform

many of the computations in this paper. It allows us to prove identities in cyclotomic
Hecke algebras by comparing coefficients of their actions on the seminormal basis.
Importantly, we can also use it prove identities in the non-semisimple versions of these
algebras.
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Corollary 3.9 In the cyclotomic Hecke algebra Hn(K), the identity element 1 ∈ Hn

decomposes as

1 =
∑

t∈Std(P�
n)

1

γt
ftt.

4 Cyclotomic Hecke Algebras with Symmetric Multicharges

In this section we define the particular subfamily of cyclotomic Hecke algebras in
which we are interested. This subfamily allows for the definition of an involution whose
fixed-point subalgebra is our main topic. This construction will generalise the con-
struction of the alternating group algebra as a fixed-point subalgebra of the symmetric
group algebra.

Recall the Jucys-Murphy elements from Eq. 2.1. For k = 1, 2, . . . , n, let

L̃k = ξ1−kTk−1Tk−2 · · · T2T1L1T1T2 · · · Tk−2Tk−1.

These may be referred to as the affine Jucys-Murphy elements in Hn. If ξ �= 1, it follows
by induction on k that the two different definitions are related by

Lk = L̃k − 1

ξ − 1
. (4.1)

Definition 4.1 For a multicharge κ = (κ1, κ2, . . . , κ�), the multicharge κ ′ is defined by
(−κ�,−κ�−1, . . . , −κ1).

The involution we are interested in is the hash map, originally defined by Gold-
man, which we now define. Unlike the sign map for symmetric group algebras, it is not
immediately obvious that the map we want is a homomorphism.

Proposition 4.2 Let Z be a unital integral domain and let Hn,�(Z, ξ, κ) be a cyclotomic
Hecke algebra. Then there is a unique algebra homomorphism

# : Hn,�(Z, ξ, κ) → Hn,�(Z, ξ, κ ′)

satisfying

Ti 
→ −ξT −1
i for i = 1, 2, . . . , n − 1.

and
L1 
→ −L1, if ξ = 1

L̃1 
→ L̃1
−1

, if ξ �= 1

Proof We prove the result for the algebra H̃n = Hn,�(Z, ξ, κ), where Z = Z[ξ, ξ−1, κ]; it
is clear by Definition 2.1 that we can then base-change to our arbitrary integral domain O
by Hn(O) ∼= Hn(Z) ⊗

Z
O to obtain the result in general.

Note that {L̃1, T1, T2, . . . , Tn−1} is also a generating set for the algebra H̃n when ξ �= 1.
Indeed, Ariki-Koike give such a presentation for Hn in [2, Definition 3.1] which, for now
ignoring the first relation, has all the same relations as in Definition 2.1 but with the final
relation replaced with the relation

T1L̃1T1L̃1 = L̃1T1L̃1T1.
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Using this presentation, the fact that # preserves all relations in Eq. (2.1) except the L1
eigenvalue relation is a quick check that we leave to the reader. For the remaining relation
we split into two cases. First suppose ξ = 1. Then

( �∏
i=1

(L1 − κi)
)# =

�∏
i=1

(−L1 − κi) = 0

since κi appears the same number of times in κ = κ ′ as −κi does. On the other hand, if
ξ �= 1, let K be the field of fractions of Z(ξ) and let

{
fst | s,t ∈ Std(λ) for λ ∈ P�

n

}
be a

seminormal basis for the semisimple K-algebra H̃n(K). Then L̃1 = (ξ − 1)L1 + 1 and so
for a standard tableau t, L̃1ftt = ξc1(t)ftt = ξκi ftt if 1 appears in component i of t.
So, working in H̃n(K),

( �∏
i=1

(L1 − [κi])
)#

ftt =
[

�∏
i=1

(
L̃1 − 1

ξ − 1
− [κi]

)]#
ftt

= 1

(ξ − 1)�

(
�∏

i=1

(L̃1 − ξκi )

)#

ftt

= 1

(ξ − 1)�

�∏
i=1

(L̃1
−1 − ξκi )ftt

= 0

since κ = κ ′ and L̃1
−1

ftt = ξ−κi ftt if 1 appears in component i of t. The result now
follows from Corollary 3.9 since Hn(Z) ↪→ H̃n(K).

Definition 4.3 The map # : Hn,�(Z, ξ, κ) → Hn,�(Z, ξ, κ ′) from Proposition 4.2 is
called the hash map.

Remark 4.4 The hash map was originally defined by Goldman [10, Theorem 5.4] in level
one; we have extended the definition to higher levels.

In the same way that the alternating group algebra may be considered as the subalgebra
of the symmetric group algebra of point fixed by the sign map, our goal now is to use the
hash map we have just defined to give an analogous construction for cyclotomic Hecke
algebras with symmetric parameters. In order to proceed, we will need to perform a number
of calculations, computing the images of various elements we have defined so far under the
hash involution from Definition 4.3.

Lemma 4.5 For 1 ≤ k ≤ n we have L̃k
# = L̃k

−1
.

Proof From the definition of L̃r , we have an inductive formula for L̃r+1 as

L̃r+1 = ξ−1TrL̃rTr .
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Hence

L̃k
# =

(
ξ−1Tk−1L̃k−1Tk−1

)#

= ξ−1ξ2T −1
k−1L̃k−1

−1
T −1

k−1

= L̃k
−1

by induction.

For the remainder of this section we need to be more careful with our choices of rings
and fields. The following definition gives us the freedom to use the seminormal form to
make meaningful statements for our algebras in general.

Definition 4.6 [9, Definition 4.1] Let K be a field in which PH is nonzero. Let O be a
subring of K and t ∈ O×. Then (O, t) is an e-idempotent subring of K if the following
hold:

(i) [k]t is invertible inO whenever k �≡ 0 (mod e) for k ∈ Z; and
(ii) [k]t ∈ J (O) whenever k ∈ eZ,

where J (O) is the Jacobson radical of O, i.e. the intersection of all its maximal ideals.

Let F be an arbitrary field with ξ ∈ F× such that the quantum characteristic of ξ in F is
e > 2, and let (O, t) be an e-idempotent subring of a field K such that

(i) K contains a seminormal coefficient system for Hn; and
(ii) F = O/m for some maximimal ideal m ofO and ξ = t + m.

Remark 4.7 It is shown in [8, Example 4.2] that e-idempotent subrings exist. Note that by
(ii) above,Hn(F ) ∼= Hn(O)⊗OF and, sinceO is a subring ofK,Hn(K) ∼= Hn(O)⊗OK.

Definition 4.8 (Cyclotomic Hecke algebra with symmetric multicharge) We say the
cyclotomic Hecke algebra Hn,�(Z, ξ, κ) has symmetric multicharge if κ = κ ′.

For the rest of this section, let us fix the notation from Definition 3.7, to-
gether with a seminormal basis
and a seminormal coefficient system     . In particular, for the remainder of this

for

section, Let us also fix a multicharge

for

We now perform a number of calculations in the semisimple cyclotomic Hecke algebra
Hn(K). It is clear from Proposition 4.2 that if Hn is a cyclotomic Hecke algebra with
multicharge κ such that κ = κ ′, then # is an involution of Hn. We use this assumption
implicitly in many calculations below.

Lemma 4.9 Suppose that κ = κ ′, that 1 ≤ k ≤ n and s ∈ Std(P�
n). Then

L#
kfss = [ck(s

′)]fss.
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Proof We give a proof if ξ �= 1; the proof when ξ = 1 is easier and we leave it to the reader.
By Theorem 3.7, Lkfst = [ck(s)]fss, so L̃kfss = ξck(s)fss by Eq. 4.1. By Definition 4.3
then, L̃#

k = L̃−1
k . Therefore,

L#
kfss = L̃#

k−1
ξ−1 fss

= L̃−1
k −1
ξ−1 fss

= ξ−ck (s)−1
ξ−1 fss

= [ck(s′)]fss,
where the last equality follows because ck(s′) = −ck(s) by Definitions 2.7 and 2.9.

Lemma 4.10 Suppose that κ = κ ′ and s ∈ Std(P�
n). Then F #

s = Fs′ .

Proof Since Fs = 1
γs

fss, applying Lemma 4.9 gives

LkF
#
s = (L#

kFs)
# = ([ck(s

′)Fs)
# = [ck(s

′)]F #
s

since the # map is an automorphism. Similarly F #
sLk = [ck(s′)]Lk . Therefore, F #

s ∈ Hs′s′
in the decomposition of Eq. 3.5. As Fs is an idempotent, and # is an algebra isomorphism,
it follows that F #

s = Fs′ since this is the unique idempotent in Hs′s′ = KFs′ .

Corollary 4.11 Suppose that κ = κ ′ and s ∈ Std(P�
n). Then

f #
ss = γs

γs′
fs′s′ .

Proof Using Theorem 3.7 and Lemma 4.10, f #
ss = 1

γs
F #
s = 1

γs
Fs′ = γs′

γs
fs′s′ .

The symmetry of the multicharge which allowed us to perform the calculations above
also gives us the following useful combinatorial lemma.

Lemma 4.12 For a cyclotomic Hecke algebra Hn with symmetric multicharge, resk(t) ≡
− resk(t′) mod e for all t ∈ Std(λ) for λ ∈ P�

n and 1 ≤ k ≤ n.

Proof Let λ ∈ Pr
n . Then for t ∈ Std(λ) and 1 ≤ k ≤ n, we have

resk(t) = κ� + rk(t) − ck(t)

≡ −κr−�+1 − rk(t
′) + ck(t

′)
= −(κr−�+1 + rk(t

′) − ck(t
′))

= − resk(t
′).

as required.

Remark 4.13

(i) Although our algebras H do not themselves depend on the choice of multicharge
(only on the residues modulo e), the choice of seminormal coefficient system, and
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therefore the algebra H O , does depends on this choice. Our notation reflects this
dependence on κ .

(ii) The reader may notice that for the proof of Proposition 4.2, we could have made the
slightly weaker assumption that if κi appears the same number of times in κ = κ ′
as −κi does for i = 1, 2, . . . , �; it is for Lemma 4.12 that we need the multicharge
to be symmetric in the particular sense of Definition 4.8. This leads to the slightly
uncomfortable reality that κ = (0, 1, 2) is not a symmetric 3-multicharge, but κ =
(1, 0, 2) is.

We want to study the subalgebra of a cyclotomic Hecke algebra Hn with a symmetric
multicharge consisting of elements fixed by the hash involution; the study of these algebras
will occupy the rest of this paper.

Definition 4.14 (Alternating cyclotomic Hecke algebras) LetZ be a unital integral domain
such that 2 is invertible in Z . Fix ξ �= −1 in Z . The alternating cyclotomic Hecke
algebra H #

n = Hn,�(Z, ξ, κ)# of type (�, n) with Hecke parameter ξ and symmetric
cyclotomic parameters κ = κ ′ is the fixed-point subalgebra of Hn,�(Z, ξ, κ) under the
# involution.

Remark 4.15

(i) Mitsuhashi first studied alternating cyclotomic Hecke algebras in [16], and called
them alternating Iwahori-Hecke algebras by analogy with existing terminology for
the � = 1 case. For q ∈ C

× with q �= −1, Mitsuhashi [16, Definition 4.1]
defines a subalgebra of the Iwahori-Hecke algebra Hq(Sn) = Hn,1(C, q, 0),
denoted by Hq(An), which satisfies H1(An) ∼= CAn. His definition is not by the
hash involution, but can be shown to be equivalent to ours. A description of its
representation theory is obtained for generic q [16, Theorem 5.5], as well as a pre-
sentation by generators and relations which is a q-analogue of the presentation for
CAn [16, Section 4].

(ii) Mitsuhashi also studied the case � = 2 when κ = (1, e − 1) [17] (using a Clifford
theory approach similar to [4, Section 1]). His algebra is isomorphic to our algebra
Hn,2(C, q, (1, −1))# and his results give explicit generators and relations for this
family of alternating cyclotomic Hecke algebras [17, Proposition 3.2].

Our next goal is to determine the dimension of H #
n over a field. First we need some

lemmas and some additional notation. For i ∈ In, define

fO
i =

∑
t∈Std(P�

n)
res(t)=i

Ft. (4.2)

These idempotents will be very important in later chapters, as they appear in a different
guise when we study these algebras through a different looking glass. The following stan-
dard result shows that, despite ostensibly belonging toHn(K), the idempotents fO

1 actually
belong to the O-form of the algebra, justifying their notation.

Lemma 4.16 [9, Lemma 4.5], [18] For i ∈ In, fO
1 ∈ Hn(O).

These elements generalise Proposition 2.10 in the following sense.
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Proposition 4.17 [6, 13] If the element PH (F, ξ, κ) is zero, then Hn(F ) is a non-
semisimple F -algebra and the collection {fO

i ⊗O 1F | i ∈ In} is a complete set of pairwise
orthogonal idempotents for Hn(F ).

We now compute the image of the idempotent fO
1 under the hash map. Given i ∈ In,

define −i ∈ In by
− i = (−i1,−i2, . . . , −in). (4.3)

Lemma 4.18 Suppose that i ∈ In. Then (fO)# = fO−1 in Hn(O).

Proof First observe that s ∈ Std(i) if and only if s′ ∈ Std(−i) by Lemma 4.12. Then by
Lemma 4.10,

(fO
1 )# =

∑
s∈Std(i)

F #
s =

∑
s∈Std(i)

Fs′ = fO−1

as claimed.

We want to work with equivalence classes of In under the involution on residue
sequences defined in Eq. 4.3. More precisely, for i, j ∈ In let ∼ be the equivalence relation
on In generated by i ∼ j if i = −j. From this we obtain a partition of the set In into equiv-
alence classes of size 1 or 2; we denote the equivalence class containing a sequence i by [i],
noting that, since e > 2,

[i] =
⎧⎨
⎩

{i}, if i = (0, 0, . . . , 0)︸ ︷︷ ︸
n zeroes

{i,−i}, otherwise

We denote the set of equivalence classes by In∼ and in each equivalence class we choose a
representative i+ ∈ [i].

We now give a dimension formula for alternating cyclotomic Hecke algebras.

Theorem 4.19 Suppose that F is a field of characteristic greater than two, and suppose
that κ = κ ′ is such that ∣∣{j | κj ≡ 0 mod e}∣∣ < n.

Then the alternating cyclotomic Hecke algebra Hn(F )# has dimension
rnn!
2

.

Proof Choose a seminormal coefficient system in a field K with an e-idempotent subring
O such that K ⊃ O → F as on p10. Define an element

ε =
∑

[i]∈In∼|[i]|=2

(
fO
i+ − fO

−i+
)

and note that, since e > 2 and since the condition on κ disallows the sequence (0, 0, . . . , 0),
|[i]| = 2 for all [i] ∈ In∼. Then H #

n
∼= εH #

n as O-modules, since ε2 = 1 and ε# = −ε by
Lemma 4.18. Writing fO

[i] for fO
i+ +fO

−i+ , we see Hn
∼= H #

n ⊕εH #
n , which gives the result

by Theorem 2.3 since any x ∈ Hn may be written as x = ∑
i∈In xfO

i = ∑
[i]∈In∼ xfO

[i] and
so we can write

x = 1

2

∑
[i]∈In∼

(x + x#)fO
[i] + 1

2
ε
∑

[i]∈In∼

(x − x#)fO
[i]

provided 1
2 ∈ O. The result now follows by tensoring with the field F .
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5 Semisimple Representations of Alternating Cyclotomic Hecke Algebras

In this section we construct the semisimple representations of alternating cyclotomic Hecke
algebras using the seminormal form from Section 3.4. Our goal is to construct a full set of
pairwise non-isomorphic irreducible modules for Hn(K)# for certain fields K. This gen-
eralises results in [16] and [17]. To begin with, we need to place some more restrictive
conditions on our seminormal coefficient system α.

Definition 5.1 An alternating coefficient system is a ∗-seminormal coefficient system α =
{αr(s) | 1 ≤ r ≤ n and s ∈ Std(Pr

n)} such that αr(s) = −αr(s′), for all 1 ≤ r < n and
s ∈ Std(Pr

n).

Remark 5.2 Example 3.4 shows that alternating seminormal coefficient systems exist.

For the remainder of this section, fix a field      with              with quantum
characteristic           and such that        is nonzero in      a symmetric multicharge

a seminormal basis for for and  an
alternating seminormal coefficient system

Remark 5.3 Since we will need these coefficients explicitly later, we now compute αr(t)

for some particularly important r and t. Note that by Eq. 3.4, if t is any tableau with 2 in
the first row and 3 in the first column,

α2(t)α2(s2 · t) = [3][−1]
[2][−2] = −t−1[3][1]

−t−2[2]2 = t[3]
[2]2 .

In order to satisfy the requirement of an alternating seminormal coefficient system, we make
the following choice for the sake of definiteness:

α2(t) =
{ √−1

√
t
√[3]

[2] , if 2 is in the first row of t

−
√−1

√
t
√[3]

[2] , if 2 is in the second row of t
(5.1)

This has the effect that α2(s) = α2(̃s) for any tableaux s, s̃ with s ↓3= s̃ ↓3.

The following lemma continues some calculations we began in the previous section.

Lemma 5.4 Suppose λ ∈ P�
n and s,u ∈ Std(λ) are standard tableaux such that u = sr ·s,

where 1 ≤ r < n. Then

f #
us = −αr(s′)γs

αr(s)γs′
fu′s′ .
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Proof By Theorem 3.7, fus = 1
αr (s)

(
Tr + 1

[ρr (s)]
)
fss. Hence, using Definition 4.3 and

Corollary 4.11 for the second equality,

f #
us = 1

αr(s)

(
Tr + 1

[ρr(s)]
)#

f #
ss

= γs

αr(s)γs′

(
−Tr + t − 1 + 1

[ρr(s)]
)

fs′s′

= − γs

αr(s)γs′

(
Tr − tρr (s)

[ρr(s)]

)
fs′s′

= − γs

αr(s)γs′

(
Tr + 1

[ρr(s′)]
)

fs′s′

since [ρr(s)] = −tρr (s)[−ρr(s)] = −tρr (s)[ρr(s′)]. Observe that u′ = srs′. Therefore,
the result follows by another application of Theorem 3.7.

By Theorem 3.7 any ∗-seminormal basis is uniquely determined by a seminormal coef-
ficient system and a choice of scalars {γtλ | λ ∈ P�

n}. We now determine these scalars for
the seminormal basis

{f #
st | s,t ∈ Std(λ) for λ ∈ P�

n}.

Proposition 5.5 The collection {f #
st | s,t ∈ Std(λ) for λ ∈ P�

n} is the seminormal basis
of Hn(K) determined by the seminormal coefficient system

{−αr(s) | s ∈ Std(λ), λ ∈ P�
n and 1 ≤ r < n}

together with the γ -coefficients {γtλ | λ ∈ P�
n}. That is, if s,t ∈ Std(λ) for λ ∈ P�

n and
1 ≤ r < n then

Trf
#
st = −αr(s)f #

ut − 1

[ρr(s′)]f
#
st,

where u = sr · s. Moreover, f #
stf

#
uv = δtuγtf

#
sv, for s,t,u,v ∈ Std(λ) for λ ∈ P�

n .

Proof Using Theorem 3.7, if s,t ∈ Std(λ) for λ ∈ P�
n we compute

Trf
#
st =

(
T #

r fst

)# =
(
(−Tr + t − 1)fst

)#

=
(

− αr(s)fut + (t − 1 + 1

[ρr(s)] )fst
)#

=
(

− αr(s)fut − 1

[ρr(s′)]fst
)#

= −αr(s)f #
ut − 1

[ρr(s′)]f
#
st.

Similarly, f #
stf

#
uv = (fstfuv)

# = δtuγtf
#
sv. By Theorem 4.9 f #

st ∈ Hs′t′ , so the α-
coefficient corresponding to f #

st is naturally indexed by s′ (and not by s). Similarly, the
labelling for the γ -coefficients involves conjugation because Ft = 1

γt′ f
#
t′t′ by Corollary

4.11. Hence, the result follows by Theorem 3.7.
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We now define Specht modules for semisimple cyclotomic Hecke algebras.

Definition 5.6 Let λ ∈ P�
n . The Specht module Sλ for the algebra Hn(K) is the vector

space with basis {ft | t ∈ Std(λ)} and with Hn(K)-action given by

Lkft = [ck(t)]ft
Trft = αr(t)fu − 1

[ρr(t)]ft
for 1 ≤ k ≤ n and 1 ≤ r < n, where u = sr · s (and αr(t) = 0 if u is not standard).

Example 5.7 Let us calculate the actions of the generators T1 and T2 on the Specht module
S(2,1) for the algebra H3,1(C, 1, 0) ∼= CS3, noting that C clearly contains the required
alternating seminormal coefficient system computed in Remark 5.3. Let a and b be the
standard tableaux

respectively. Then we see that on the basis {fa, fb}, T1 and T2 respectively act as the
matrices (

1 0
0 −1

)
,

(
− 1

2
−√

3i
2√

3i
2

1
2

)

which the reader can check square to the identity.

Theorem 5.8 [2] Let K be a field containing a seminormal coefficient system such that
PH is nonzero. Then for each λ ∈ P�

n , Sλ is an irreducible Hn(K)-module. Moreover,
the collection {Sλ | λ ∈ P�

n} is a complete list of irreducible modules for the semisimple
algebra Hn(K).

Definition 5.9 Let ∼ be the equivalence relation on P�
n generated by λ ∼ μ if μ = λ′. We

write [λ] for the equivalence class of λ ∈ P�
n under this equivalence relation, and (P�

n)∼ for
the set of all equivalence classes.

Define an equivalence relation ∼ on Std(P�
n) to be generated by s ∼ t if t = s′. Let

Std(P�
n)∼ denote the set of equivalence classes under this relation and in each equivalence

class [s], choose a representative s+. Define
Std(P�

n)+ = {s+ | [s] ∈ Std(P�
n)∼}

Std(P�
n)− = {s′ | s ∈ Std(P�

n)+}.
Since e > 2, is is always distinct from is′ and so Std(P�

n)+�Std(P�
n)− = Std(P�

n), both sets
have cardinality 1

2

∣∣Std(P�
n)
∣∣, and all equivalence classes [s] ∈ Std(P�

n)∼ contain two ele-
ments. For a particular multipartition, we write Std(λ)+ and Std(λ)− for Std(λ)∩Std(P�

n)+
and Std(λ) ∩ Std(P�

n)− respectively.

Definition 5.10 Let λ ∈ P�
n be such that λ = λ′. Denote by Sλ+ the vector space with basis

{(ft+ft′) | t ∈ Std(λ)+} and by Sλ− the vector space with basis {(ft−ft′) | t ∈ Std(λ)+}.

Note that for the next proposition, it is important that we include the additional
assumption that K contains an alternating seminormal coefficient system.
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Proposition 5.11 Let n > 1 and let K be a field containing an alternating seminormal
coefficient system and such that PH is nonzero. Then for λ ∈ P�

n with λ = λ′, Sλ+ and Sλ−
are irreducible Hn(K)#-modules.

Proof Suppose we need to move from (ft±ft′) to (fu±fu′), where u = sr ·t is standard.
Then we compute, using Theorem 3.7 and Proposition 5.5,

(FuTr + Fu′T #
r ) · (ft ± ft′) = αr(t)

γu
(fu ± fu′)

using the fact that α is an alternating seminormal coefficient system.

If A is an O-algebra and B an O-subalgebra of A, for an A-module M we write M↓A
B

for the B-module obtained by restriction.

Proposition 5.12 LetK be a field containing a seminormal coefficient system and such that
PH is nonzero. Let λ ∈ P�

n be such that λ �= λ′. Then

Sλ ↓Hn(K)

Hn(K)#
∼= Sλ′ ↓Hn(K)

Hn(K)#

as Hn(K)#-modules.

Proof Define an map of vector spaces τ : Sλ → Sλ by vt 
→ vt′ ; this is clearly an
isomorphism of vector spaces since |Std(λ)| = ∣∣Std(λ′)

∣∣ by Lemma 2.8. Then by Proposi-
tion 5.5, τ(Trvt) = T #

r vt′ and by Lemma 4.9 Lkvt = L#
kvt′ so τ is an Hn(K)#-module

isomorphism between the restricted modules.

Definition 5.13 If λ ∈ P�
n is such that λ �= λ′, we write S[λ] for the Hn(K)#-module from

Proposition 5.12.

Corollary 5.14 Let K be a field containing a seminormal coefficient system and such
that PH is nonzero. Then for λ ∈ P�

n such that λ �= λ′, S[λ] is an irreducible
Hn(K)#-module.

Proof Similarly to the proof of Proposition 5.11, let v be a nonzero vector in S[λ] =
Sλ ↓Hn(K)

Hn(K)#
. Writing v = ∑

t∈Std(λ) rtvt as an arbitrary linear combination, we can surely

choose some t with rt �= 0. Then rtft = (Ft + Ft′)v ∈ H #
n v and so ft ∈ H #

n v. We
now observe that it is possible to move from any one basis vector to another by applying a
sequence of #-invariant elements; one can check that for t ∈ Std(λ) with u = sr · t stan-
dard, (FuTr + Fu′T #

r )ft = αr (t)
γu

fu. We are done since we can clearly move all the way
from the basis vector ftλ to the vector ftλ in such a way; the element we are acting by is
#-invariant by Lemma 4.10. So H #

n v = S[λ] and we are done.

Example 5.15 Continuing with Example 3.4, noting that C contains an alternating semi-
normal coefficient system, and that the generator for H3(C)# is T1T2, using the matrices
from Example 3.4 we obtain two one-dimensional modules on which T1T2 act by ω and ω2

respectively, where ω = 1
2 (1 + √−3) ∈ C is a cube root of unity.

Notice that we have the following immediate corollaries of the definitions of the
respective modules.
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Corollary 5.16 For n > 1, let λ ∈ P�
n and let K be a field of characteristic greater than 2.

(i) If λ �= λ′, dimK S[λ] = dimK Sλ = |Std(λ)|.
(ii) If λ = λ′, dimK Sλ+ = dimK Sλ− = 1

2 dimK Sλ = 1
2 |Std(λ)|.

We can now give a classification of irreducible representations for semisimple alternating
cyclotomic Hecke algebras.

Proposition 5.17 Let n > 1 and let K be a field of characteristic greater than 2 con-
taining an alternating seminormal coefficient system and such that PH is nonzero. Let∣∣{j | κj ≡ 0 mod e}∣∣ < n. Then the collection

{S[λ] | [λ] ∈ (P�)∼ with |[λ]| = 2} ∪ {Sλ+, Sλ− | [λ] ∈ (P�)∼ with |[λ]| = 1}
is a complete list of pairwise non-isomorphic irreducible modules for the semisimple
alternating cyclotomic Hecke algebra Hn(K)#.

Proof By Theorem 5.8,
∑

λ∈P�
n
|Std(λ)|2 = �nn!. Moreover, the modules S[λ] for λ �= λ′

and Sλ+ and Sλ− for λ = λ′ are clearly pairwise non-isomorphic by Lemma 3.1 and the
orthogonality of the idempotents {Ft | t ∈ Std(P�

n)}. Hence since
∑

[λ]∈(P�
n)∼

|[λ]|=2

|Std(λ)|2 +
∑

[λ]∈(P�
n)∼

|[λ]|=1

2
(1
2

|Std(λ)|
)2

=
∑

[λ]∈(P�
n)∼

|[λ]|=2

|Std(λ)|2 + 1

2

∑
[λ]∈(P�

n)∼
|[λ]|=1

|Std(λ)|2

= �nn!
2

,

we must have a full list of irreducible representations by Corollary 5.14, Proposition 5.11
and Proposition 4.19.

As a result we obtain the following corollary which again highlights the importance of
our seminormal coefficient system. The reader should compare this with the results in [15]
and [19].

Corollary 5.18 Let n > 1 and let K be a field of characteristic different from 2 containing
an alternating seminormal coefficient system and such that PH is nonzero. Then K is a
splitting field for Hn(K)#.

Proof The arguments given in this section work over any extension field ofK so the Specht
modules constructed in this section are irreducible over any such extension. Hence K is a
splitting field for H #

n .
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