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Abstract In this paper, we construct a Lie 2-algebra associated to every Leibniz algebra
via the skew-symmetrization.
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The notion of a Leibniz algebra was introduced by Loday in [4, 5], which is a vector space
g, endowed with a linear map [·, ·]g : g ⊗ g −→ g satisfying

[
x, [y, z]g

]
g

= [[x, y]g, z
]
g

+ [
y, [x, z]g

]
g

, ∀ x, y, z ∈ g. (1)

The left center is given by

Z(g) = {
x ∈ g| [x, y]g = 0, ∀y ∈ g

}
. (2)

It is obvious that Z(g) is an ideal and the quotient Leibniz algebra g/Z(g) is actually a Lie
algebra since [x, x]g ∈ Z(g), for all x ∈ g.
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A Lie 2-algebra is a categorification of a Lie algebra, which is equivalent to a 2-term
L∞-algebra (see [1, 8] for more details).

Definition 1 A Lie 2-algebra is a graded vector space G = g1 ⊕ g0, together with linear
maps {lk : ∧kG −→ G, k = 1, 2, 3} of degrees deg(lk) = k − 2 satisfying the following
equalities:

(a) l1l2(x, a) = l2(x, l1(a)),
(b) l2(l1(a), b) = l2(a, l1(b)),
(c) l2(x, l2(y, z)) + c.p. = l1l3(x, y, z),
(d) l2(x, l2(y, a)) + l2(y, l2(a, x)) + l2(a, l2(x, y)) = l3(x, y, l1(a)),
(e) l3(l2(x, y), z, w) + c.p. = l2(l3(x, y, z), w) + c.p.,

for all x, y, z, w ∈ g0, a, b ∈ g1, where c.p. means cyclic permutations.

Given a Leibniz algebra
(
g, [·, ·]g

)
, introduce the following skew-symmetric bracket on

g:

�x, y� = 1

2

([x, y]g − [y, x]g
)
, ∀x, y ∈ g, (3)

and denote by Jx,y,z the corresponding Jacobiator, i.e.

Jx,y,z = �x, �y, z�� + �y, �z, x�� + �z, �x, y�� . (4)

Proposition 2 Let (g, [·, ·]g) be a Leibniz algebra.

(i) For all x, y, z ∈ g, we have

Jx,y,z = 1

4

([[z, y]g, x]g + [[x, z]g, y]g + [[y, x]g, z]g
)
. (5)

(ii) Jx,y,z ∈ Z(g), i.e. Jx,y,z is in the left center of (g, [·, ·]g).
(iii) For all x, y, z,w ∈ g, we have

�x, Jy,z,w� − �y, Jx,z,w� + �z, Jx,y,w� − �w, Jx,y,z�

−J�x,y�,z,w + J�x,z�,y,w−J�x,w�,y,z−J�y,z�,x,w + J�y,w�,x,z−J�z,w�,x,y = 0. (6)

Proof The first conclusion is obtained by straightforward computations. For any w ∈ g, by
Eq. 1 and the fact that for all x ∈ g, [x, x]g ∈ Z(g), we have

[
Jx,y,z, w

]
g

= 1

4

([[[z, y]g, x]g + [[x, z]g, y]g + [[y, x]g, z]g, w]g
)

= 1

4

([[z, [y, x]g]g − [y, [z, x]g]g − [[z, x]g, y]g + [[y, x]g, z]g, w]g
)

= 0,
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which implies that Jx,y,z ∈ Z(g). At last, since the bracket �·, ·� given by Eq. 4 is skew-
symmetric, we have

�x, Jy,z,w� − �y, Jx,z,w� + �z, Jx,y,w� − �w, Jx,y,z�

−J�x,y�,z,w + J�x,z�,y,w − J�x,w�,y,z − J�y,z�,x,w + J�y,w�,x,z − J�z,w�,x,y

= �x, Jy,z,w�− �y, Jx,z,w�
︸ ︷︷ ︸

+�z, Jx,y,w� − �w, Jx,y,z�

− ��x, y� , �z, w�� − �z, �w, �x, y��� − �w, ��x, y� , z��

+ ��x, z� , �y,w�� + �y, �w, �x, z���
︸ ︷︷ ︸

+�w, ��x, z� , y��

− ��x,w� , �y, z��− �y, �z, �x,w���
︸ ︷︷ ︸

−�z, ��x,w� , y��

− ��y, z� , �x,w��− �x, �w, �y, z��� − �w, ��y, z� , x��

+ ��y,w� , �x, z�� + �x, �z, �y, w��� + �z, ��y, w� , x��

− ��z, w� , �x, y��− �x, �y, �z, w���− �y, ��z, w� , x��
︸ ︷︷ ︸

= − ��x, y� , �z, w�� + ��x, z� , �y, w�� − ��x,w� , �y, z��

− ��y, z� , �x,w�� + ��y, w� , �x, z�� − ��z, w� , �x, y��

= 0.

The proof is finished.

Next, for a Leibniz algebra (g, [·, ·]g), we consider the graded vector space G = Z(g)⊕g,
where Z(g) is of degree 1, g is of degree 0. Define a degree−1 differential l1 = i : Z(g) −→
g, the inclusion. Define a degree 0 skew-symmetric bilinear map l2 and a degree 1 totally
skew-symmetric trilinear map l3 on G by

⎧
⎪⎪⎨

⎪⎪⎩

l2(x, y) = �x, y� = 1
2

([x, y]g − [y, x]g
) ∀ x, y ∈ g,

l2(x, c) = −l2(c, x) = �x, c� = 1
2 [x, c]g ∀ x ∈ g, c ∈ Z(g),

l2(c1, c2) = 0 ∀ c1, c2 ∈ Z(g),

l3(x, y, z) = Jx,y,z ∀ x, y, z ∈ g.

(7)

The following theorem is our main result, which says that one can obtain a Lie 2-algebra
via the skew-symmetrization of a Leibniz algebra.

Theorem 3 Let
(
g, [·, ·]g

)
be a Leibniz algebra. Then (Z(g) ⊕ g, l1, l2, l3) is a Lie

2-algebra, where li are given by Eq. 7.

Proof By the definition of l1, l2 and l3, it is obvious that Conditions (a)–(d) in Definition
1 hold. By (iii) in Proposition 2, Condition (e) also holds. Thus, (Z(g)⊕g, l1, l2, l3) is a Lie
2-algebra.

Example 4 (Omni-Lie algebras) The notion of an omni-Lie algebra was introduced by
Weinstein in [10] to study the linearization of the standard Courant algebroid. An omni-Lie
algebra associated to a vector space V is a triple (gl(V ) ⊕ V, (·, ·)+, {·, ·}), where (·, ·)+ is
the V -valued pairing given by

(A + u,B + v)+ = Au + Bv, ∀ A + u,B + v ∈ gl(V ) ⊕ V, (8)
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and {·, ·} is the bilinear bracket operation given by
{A + u,B + v} = [A, B] + Av. (9)

It is straightforward to verify that (gl(V ) ⊕ V, {·, ·}) is a Leibniz algebra. Furthermore,
if we consider the skew-symmetric bracket �·, ·�, we have

�A + u,B + v� = 1

2
({A + u,B + v} − {B + v, A + u}) = [A, B]+ 1

2
(Av −Bu). (10)

The factor of 1
2 in Eq. 10 spoils the Jacobi identity. More precisely, we have

��A + u,B + v� , C + w� + c.p. = 1

4
([A, B]w + [B, C]u + [C, A]v)

� T (A + u,B + v, C + w) .

Thus, �·, ·� is not a Lie bracket. However, we can extend the omni-Lie algebra gl(V ) ⊕ V

to the Lie 2-algebra whose degree-0 part is gl(V ) ⊕ V ,
⎧
⎪⎪⎨

⎪⎪⎩

V
0+id−→ gl(V ) ⊕ V,

l2(e1, e2) = �e1, e2� , for e1, e2 ∈ gl(V ) ⊕ V,

l2(e, f ) = �e, f � , for e ∈ gl(V ) ⊕ V, f ∈ V,

l3(e1, e2, e3) = −T (e1, e2, e3), for e1, e2, e3 ∈ gl(V ) ⊕ V.

(11)

such that the Jacobiator is measured by a ternary bracket taking value in the degree-1 part
V . See [9] for details.

Example 5 (Courant algebroids) Courant algebroids were first introduced in [3] to study
the double of Lie bialgebroids (see [6] for an alternative definiton). See the review article
[2] for more details. The standard Courant algebroid associated to a manifold M is (T =
T M⊕T ∗M, (·, ·)+ , {·, ·}, ρ), where ρ : T −→ T M is the projection, the canonical pairing
(·, ·)+ is given by

(X + ξ, Y + η) = 1

2
(ξ(Y ) + η(X)) , ∀ X, Y ∈ X(M), ξ, η ∈ �1(M), (12)

the bracket {·, ·} is given by
{X + ξ, Y + η} � [X, Y ] + LXη − iY dξ. (13)

It is straightforward to verify that
(
X(M) ⊕ �1(M), {·, ·}) is a Leibniz algebra. Further-

more, if we consider the skew-symmetric bracket �·, ·�:

�X + ξ, Y + η� = 1

2
({X + ξ, Y + η} − {Y + η,X + ξ}) ,

we have

�X + ξ, Y + η� = [X, Y ] + LXη − LY ξ + 1

2
d(ξ(Y ) − η(X)). (14)

However, (X(M) ⊕ �1(M), �·, ·�) is not a Lie algebra. Instead, one can construct a Lie
2-algebra. More precisely, we have

��e1, e2� , e3� + c.p. = dT (e1, e2, e3), ∀ e1, e2, e3 ∈ �(T ), (15)
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where T (e1, e2, e3) ∈ C∞(M) is given by

T (e1, e2, e3) = 1

3

((
�e1, e2� , e3

)
+ + c.p.

)
. (16)

The associated Lie 2-algebra is given by
⎧
⎪⎪⎨

⎪⎪⎩

�1
cl(M)

0+id−→ �(T ),

l2(e1, e2) = �e1, e2� , for e1, e2 ∈ �(T ),

l2(e, ξ) = �e, ξ� , for e ∈ �(T ), ξ ∈ �1
cl(M),

l3(e1, e2, e3) = −dT (e1, e2, e3), for e1, e2, e3 ∈ �(T ),

where �1
cl(M) denotes the set of closed 1-forms. See [7] for the general construction of a

Lie 2-algebra from a Courant algebroid.
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