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Abstract The Drinfel’d double D(A) of a finite-dimensional Hopf algebra A is a Hopf
algebraic counterpart of the monoidal center construction. Majid introduced an important
representation of D(A), which he called the Schrödinger representation. We study this rep-
resentation from the viewpoint of the theory of tensor categories. One of our main results is
as follows: If two finite-dimensional Hopf algebras A and B over a field k are monoidally
Morita equivalent, i.e., there exists an equivalence F : AM → BM of k-linear monoidal
categories, then the equivalence D(A)M ≈ D(B)M induced by F preserves the Schrödinger
representation. Here, AM for an algebra A means the category of left A-modules. As an
application, we construct a family of invariants of finite-dimensional Hopf algebras under
the monoidal Morita equivalence. This family is parameterized by braids. The invariant
associated to a braid b is, roughly speaking, defined by “coloring” the closure of b by
the Schrödinger representation. We investigate what algebraic properties this family have
and, in particular, show that the invariant associated to a certain braid closely relates to the
number of irreducible representations.
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1 Introduction

Drinfel’d doubles of Hopf algebras [4] are one of the most important objects in not only
Hopf algebra theory, but also in other areas including category theory and low-dimensional
topology. Let A be a finite-dimensional Hopf algebra over a field k, and (D(A),R) be its
Drinfel’d double. Due to Majid [21], it is known that there is a canonical representation of
D(A) on A, which is called the Schrödinger representation (or the Schrödinger module).
This representation is an extension of the adjoint representation of A, and originates from
quantum mechanics as explained in Majid’s book [21, Examples 6.1.4 & 7.1.8] (see Sec-
tion 2 for the precise definition of the Schrödinger representation). The Schrödinger module
is also addressed by Fang [9] as an algebra in the Yetter-Drinfel’d category A

AYD via the
Miyashita-Ulbrich action.

In this paper, we study the Schrödinger module over the Drinfel’d double from the
viewpoint of the theory of tensor categories. We say that two finite-dimensional Hopf alge-
bras A and B over the same field k are monoidally Morita equivalent if AM and BM are
equivalent as k-linear monoidal categories, where HM for an algebra H is the category of
H -modules. One of our main results is that the Schrödinger module is an invariant under
the monoidal Morita equivalence in the following sense: If F : AM → BM is an equiv-
alence of k-linear monoidal categories, then the equivalence D(A)M ≈ D(B)M induced by
F preserves the Schrödinger modules. To prove this result, we introduce the notion of the
Schrödinger object for a monoidal category by using the monoidal center construction. It
turns out that the Schrödinger module over D(A) is characterized as the Schrödinger object
for AM. Once such a characterization is establishe d, the above result easily follows from
general arguments.

As an application of the above category-theoretical understanding of the Schrödinger
module, we construct a new family of monoidal Morita invariants, i.e., invariants of finite-
dimensional Hopf algebras under the monoidal Morita equivalence. Some monoidal Morita
invariants have been discovered and studied; see, e.g., [6–8, 15, 24, 25, 32, 34]. Our family
of invariants is parametrized by braids. Roughly speaking, the invariant associated with a
braid b is defined by “coloring” the closure of b by the Schrödinger module. Since the
categorical dimension (in the sense of Majid [21]) of the Schrödinger module is a special
case of our invariants, we call the invariant associated with b the braided dimension of the
Schrödinger module associated with b. We investigate what algebraic properties this family
of invariants have and, in particular, show that the invariant associated to a certain braid
closely relates to the number of irreducible representations.

This paper organizes as follows: In Section 2, we recall the definition of the Schrödinger
module over the Drinfel’d double D(A) of a finite-dimensional Hopf algebra A. We also
describe the definition of another Schrödinger representation of D(A) on A∗cop, which is
introduced by Majid, and is called co-Schrödinger representation [21, Proposition 6.2.7].
We refer the left D(A)-module as the co-Schrödinger module. Following [12] we also
describe the definition of Radford’s induction functors and those properties. It is shown that
the Schrödinger module and the co-Schödinger module are isomorphic to the images of the
trivial left A-module and the trivial right A-comodule under Radford’s induction functors,
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respectively. Furthermore, we examine the relationship between the Schrödinger module
over D(A∗) and the co-Schrödinger module over D(A).

In Section 3, we study the categorical aspects of the Schrödinger module and the co-
Schrödinger module. We introduce a Schrödinger object for a monoidal category C as the
object ofZ(C) representing the functor HomC(�(−), I), whereZ(C) is the monoidal center
of C, � : Z(C) → C is the forgetful functor, and I is the unit object of C. By using
the properties of Radford’s induction functor, we show that the Schrödinger module over
D(A) is a Schrödinger object for AM under the identification Z(AM) ≈ D(A)M. Once this
characterization is obtained, the invariance of the Schrödinger module (stated above) is
easily proved. A similar result for the co-Schrödinger module is also proved.

In Section 4, based on our category-theoretical understanding of the Schrödinger mod-
ule, we introduce a family of monoidal Morita invariants parameterized by braids. We give
formulas for the invariants associated with a certain series of braids and give some applica-
tions. Note that some monoidal Morita invariants, such as ones introduced in [6] and [32],
factor through the Drinfel’d double construction. Our invariants have an advantage that they
do not factor through that. On the other hand, our invariants have a disadvantage in the non-
semisimple situation: For any braid b, the braided dimension of the Schrödinger module of
D(A) associated with b is zero unless A is cosemisimple. From this result, we could say
that our invariants are not interesting as monoidal Morita invariants for non-cosemisimple
Hopf algebras. However, endomorphisms on the Schödinger module induced by braids are
not generally zero and thus may have some information about A. To demonstrate, we give
an example of a morphism induced by a braid, which turns out to be closely related to the
unimodularlity of A.

2 Preliminaries

2.1 Hopf Algebras

For the basic theory of Hopf algebras, we refer the reader to Abe [1], Montgomery [23]
and Sweedler [33]. We first fix some notations: Throughout this paper, k is an arbitrary
field and all vector spaces, algebras, coalgebras, etc., are assumed to be over k. For vector
spaces X and Y (over k), their tensor product over k is denoted by X ⊗Y . There is a natural
isomorphism

TX,Y : X ⊗ Y −→ Y ⊗ X, x ⊗ y �→ y ⊗ x (x ∈ X, y ∈ Y ).

Given a coalgebraC, we denote the comultiplication and the counit ofC respectively by�C

and εC (or simply by � and ε if there is no confusion). To express the comultiplication, we
use the Sweedler notation such as �(c) = c(1) ⊗ c(2). Recall that the opposite algebra Aop

of an algebra A is obtained by reversing the order of the multiplication of A. The opposite
coalgebra Ccop is obtained from C by replacing its comultiplication with �cop := TC,C ◦�.
These notations are also used for a bialgebra. The antipode of a bialgebra B is denoted by
SB (or by S) if it exists (i.e., if B is a Hopf algebra).

The dual space of X is denoted by X∗ = Homk(X, k). For f ∈ X∗ and x ∈ X, we
often write f (x) as 〈f, x〉. If C is a coalgebra, then C∗ is an algebra with the multiplication
defined by 〈pq, c〉 = 〈p, c(1)〉〈q, c(2)〉 for p, q ∈ C∗ and c ∈ C. If A is a finite-dimensional
algebra, then A∗ is a coalgebra with the comultiplication determined by 〈p(1), a〉〈p(2), b〉 =
〈p, ab〉 for p ∈ A∗ and a, b ∈ A. We note that if B is a finite-dimensional bialgebra, then
B∗ is. If, moreover, B is a Hopf algebra, then B∗ is also a Hopf algebra with antipode S∗

B .



1626 K. Shimizu, M. Wakui

2.2 Monoidal Categories

For the basic theory of monoidal categories, we refer the reader to Mac Lane [20], Kassel
[17] and Joyal and Street [14]. Here we fix related notations: Given a (strict) monoidal
category C = (C,⊗, I) with tensor product ⊗ and unit object I, we denote by Crev =
(C,⊗rev, I) the category C with the ‘reversed’ tensor product given by X ⊗rev Y = Y ⊗ X.
By a left dual of X ∈ C, we mean a triple (X∗, eX, nX) consisting of an object X∗ ∈ C and
morphisms

eX : X∗ ⊗ X −→ I (the evaluation) and nX : I −→ X ⊗ X∗ (the coevaluation)

such that (idX ⊗ eX) ◦ (nX ⊗ idX) and (eX ⊗ idX∗) ◦ (idX∗ ⊗ nX) are the identities. The
monoidal category C is said to be left rigid if every object of C has a left dual. A rigid
monoidal category is a monoidal category C such that both C and Crev are left rigid.

Given a braided monoidal category B with braiding c, we denote by Bmir the braided
monoidal category obtained from B by replacing its braiding with the ‘mirror’ braiding
cmir defined by cmir

X,Y = c−1
Y,X. We always regard the monoidal category Brev as a braided

monoidal category with braiding crev given by

crevX,Y : X ⊗rev Y = Y ⊗ X
cY,X−−−−−−→ X ⊗ Y = Y ⊗rev X (X, Y ∈ B).

Now let B be a bialgebra. Then the category BM of left B-modules and the category MB

of right B-comodules are k-linear monoidal categories (here, a k-linear monoidal category
means a monoidal category C such that HomC(X, Y ) is a vector space for all objects X, Y ∈
C, and the composition and the tensor product of morphisms in C are linear in each variable).
We note that there is an isomorphism of monoidal categories

BcopM ∼= (BM)rev. (2.1)

If B is finite-dimensional, there are also isomorphisms of monoidal categories

BM ∼= MB∗
and B∗M ∼= MB. (2.2)

If B is a quasitriangular bialgebra with universal R-matrix R ∈ B ⊗B, then BM is a braided
monoidal category with the braiding given by

cR
M,N : M ⊗ N → N ⊗ M, m ⊗ n �→ TM,N(R · (m ⊗ n)) (m ∈ M,n ∈ N) (2.3)

for M,N ∈ BM. We always regard Bcop and Bop as quasitriangular bialgebras with univer-
salR-matrix R21 := TB,B(R). By our convention, the category isomorphism (2.1) preserves
the braidings. Also, the antipode of B (if it exists) induces an isomorphism SB : Bop →
Bcop of quasitriangular Hopf algebras (note that the antipode of a quasitriangular Hopf
algebra is always bijective [28]).

2.3 The Center Construction

The center of a (strict) monoidal category C = (C,⊗, I), denoted by Z(C), is a braided
monoidal category defined as follows: An object of Z(C) is a pair (V , c−,V ) consisting of
an object V ∈ C and a natural isomorphism c−,V : (−) ⊗ V −→ V ⊗ (−) such that

cX⊗Y,V = (cX,V ⊗ idX) ◦ (idX ⊗ cY,V )
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for all X, Y ∈ C. A morphism f : (V , c−,V ) → (W, c−,W ) in Z(C) is a morphism f :
V → W in C compatible with c−,V and c−,W , and the composition of morphisms in Z(C)

is defined by the composition of morphisms in C. Thus there is a functor

�C : Z(C) → C, (V , c−,V ) �→ V,

called the forgetful functor. The categoryZ(C) is a braided monoidal category such that �C
is a strict monoidal functor; see [17, XIII.4] for details.

Since the center construction is described purely in terms of monoidal categories, it is
natural to expect that equivalent monoidal categories have equivalent centers. We omit to
give a proof of the following well-known fact, since the proof is easy but quite long.

Lemma 2.1 For a monoidal equivalence F : C −→ D between monoidal categories C
and D, there exists a braided monoidal equivalence Z(F ) : Z(C) −→ Z(D) such that
�D ◦ Z(F ) = F ◦ �C as monoidal functors.

We note that if C is a k-linear monoidal category, then so is Z(C) in such a way that
the functor �C is a k-linear functor. If F : C −→ D is a k-linear monoidal equivalence
between k-linear monoidal categories, then the functor Z(F ) is k-linear.

2.4 The Yetter-Drinfel’d Category

Let A be a Hopf algebra. A (left-right) Yetter-Drinfel’d A-module is a triple (M, ·, ρ) such
that (M, ·) is a left A-module, (M, ρ) is a right A-comodule, and the Yetter-Drinfel’d
condition

(a(1) · m(0)) ⊗ (a(2)m(1)) = (a(2) · m)(0) ⊗ (a(2) · m)(1)a(1) (2.4)

is satisfied for all a ∈ A andm ∈ M (where the coaction ρ is denoted by ρ(m) = m(0)⊗m(1)

in Sweedler’s notation). The Yetter-Drinfel’d category over A, denoted by AYDA, is the
category whose objects are the Yetter-Drinfel’d A-modules and whose morphisms are the
A-linear and A-colinear maps between them. For M,N ∈ AYDA, their tensor product
M ⊗ N ∈ AYDA is defined to be the tensor product A-module M ⊗ N with coaction

m ⊗ n �→ m(0) ⊗ n(0) ⊗ n(1)m(1) (m ∈ M,n ∈ N).

The category AYDA is a k-linear monoidal category with this operation. Moreover, it has
the braiding c given by

cM,N(m ⊗ n) = n(0) ⊗ n(1)m (M,N ∈ AYDA,m ∈ M,n ∈ N).

It is known that there is an isomorphism of k-linear braided monoidal categories

AYDA ∼= Z(AM). (2.5)

To describe this isomorphism, we let RA : AYDA → AM denote the functor forgetting the

comodule structure. Then (2.5) is given byM �−→
(
RA(M), c′−,M

)
, where c′

X,M(x⊗m) =
m(0) ⊗ m(1)x (m ∈ M,x ∈ X ∈ AM).

There is also an isomorphism of k-linear braided monoidal categories

AYDA ∼= Z
(
MA

)rev
(2.6)
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given as follows. Let RA : AYDA → MA be the functor forgetting the A-module structure
(we remark that RA is not a monoidal functor since the tensor product of AYDA extends
that of MAop

). The isomorphism (2.6), say F : AYDA −→ Z
(
MA

)rev
, is then given by

F(M) =
(
RA(M), c′′−,M

)
,

where c′′
X,M(x ⊗ m) = x(1)m ⊗ x(0)

(
m ∈ M,x ∈ X ∈ MA

)
. The monoidal structure

F(M) ⊗rev F(N) ∼= F(M ⊗ N) is given by TN,M .

3 The Schrödinger Module of the Drinfel’d Double

3.1 The Drinfel’d Double

LetA be a finite-dimensional Hopf algebra (thus SA is invertible [27]). TheDrinfel’d double
D(A) of A [4] is a Hopf algebra such that D(A) = A∗cop ⊗ A as a coalgebra. For p ∈ A∗
and a ∈ A, we write p ⊗ a ∈ D(A) as p � a. Then the unit, the multiplication and the
antipode of D(A) are given respectively by 1D(A) = εA � 1A,

(p � a) · (
p′ � a′) =

〈
p′

(1), S
−1
A (a(3))

〉 〈
p′

(3), a(1)

〉
pp′

(2) � a(2)a
′,

SD(A)(p � a) = 〈
p(1), a(3)

〉 〈
S−1

A∗ (p(3)), a(1)

〉
S−1

A∗
(
p(2)

) � SA

(
a(2)

)

for all p, p′ ∈ A∗ and a, a′ ∈ A. The Hopf algebra D(A) is quasitriangular with the
universal R-matrix given by R = ∑d

i=1(εA � ei) ⊗ (
e∗
i � 1A

) ∈ D(A) ⊗ D(A), where

{ei}di=1 is a basis of A and
{
e∗
i

}d

i=1 is its dual basis.
For a finite-dimensional vector space V , we denote by ιV : V −→ V ∗∗ the canonical

isomorphism. As shown by Radford [29, Theorem 3], there is an isomorphism

τ : D(A) −→ D(Aop cop∗)op, p � a �→ ιA(a) � p (p ∈ A∗, a ∈ A)

of quasitriangular Hopf algebras. Note that an isomorphism f : A −→ B of finite-
dimensional Hopf algebras induces an isomorphism

D(f ) :=
(
f −1

)∗ ⊗ f : D(A) −→ D(B)

of quasitriangular Hopf algebras. Now we define φA to be the composition

φA : D(A)
τ−−−−→ D(Aopcop∗)op

D
(
S−1

A∗
)op

−−−−−−−−−→ D(A∗)op
SD(A∗)−−−−−−−→ D(A∗)cop. (3.1)

By definition, φA(p � a) = (ιA(1A) � p) · (ιA(a) � εA) for p ∈ A∗ and a ∈ A. Since
each arrow in Eq. 3.1 is an isomorphism of quasitriangular Hopf algebras, so is φA. We note
the following property of φA:

Lemma 3.1 φA∗ ◦ φA = D(ιA).

Proof As is well-known, ιA∗ =
(
ι−1
A

)∗
. Hence, for all a ∈ A and p ∈ A∗,

(φA∗ ◦ φA)(p � a) = φA∗(ιA(1A) � p) · φA∗(ιA(a) � εA)

= (ιA∗(p) � ιA(1A)) · (ιA∗(εA) � ιA(a)) = D(ιA)(p � a).
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The category D(A)M is isomorphic to the Yetter-Drinfel’d category AYDA as a k-linear
braided monoidal category; see, e.g., [17, IX.5]. To describe the isomorphism, we note that
A and A∗cop can be regarded as Hopf subalgebras of D(A) by

A−→D(A), a �→a � ε (a ∈ A) and A∗cop−→D(A), p �→1 � p (p ∈ A∗),

respectively. Since D(A) is generated by the subalgebras A and A∗cop (= Aop∗), we can
view a left D(A)-module M as a left A-module M endowed with a left Aop∗-module struc-
ture (with some compatibility conditions). The isomorphism D(A)M ∼= AYDA is the functor
that leaves the underlying A-modules fixed and translates the left Aop∗-module structure
into a right Aop-comodule structure via (2.2).

In what follows, we identify D(A)M with AYDA. Then the category-theoretical meaning
of the isomorphism φA is explained as follows: We consider the composition

AYDA (2.6)−−−−−−→ Z
(
MA

)rev (2.2)−−−−−−→ Z (A∗M)rev
(2.5)−−−−−−→

(
A∗YDA∗)rev

(3.2)

of isomorphisms of k-linear braided monoidal categories. The isomorphism (3.2) only trans-
lates the left A-module structure and the right A-comodule structure of an object of AYDA

into a right A∗-comodule structure and a left A∗-module structure, respectively.

Lemma 3.2 The isomorphism φ
	
A : D(A)∗copM → D(A)M induced by φA coincides with the

following composition of isomorphisms of k-linear braided monoidal categories:

D(A∗)copM
(2.1)−−−−−−→ (

D(A∗)M
)rev ==

(
A∗YDA∗)rev (3.2)−−−−−−→ AYDA == D(A)M. (3.3)

Proof Since φ
	
A and Eq. 3.3 are strict monoidal functors being the identity on morphisms, it

is sufficient to check the claim on the level of objects. LetM be a leftD(A∗)cop-module. We
denote by 
 and m �→ m[0] ⊗ m[1] the action and the coaction of A∗ on the Yetter-Drinfel’d
A∗-module corresponding to M , respectively. The left D(A)-module corresponding to M

via (3.3) is the vector space M with the action given by

(p � a) · m = p 
 m[0]〈m[1], a〉 (p ∈ A∗, a ∈ A,m ∈ M).

On the other hand, the action of D(A∗) on M is expressed by

(ξ � p) · m = (p 
 m)[0]〈ξ, (p 
 m)[1]〉 (ξ ∈ A∗∗, p ∈ A∗,m ∈ M).

Hence, for p � a ∈ D(A) and m ∈ M , we compute

φA(p � a) · m = (ιA(1A) � p) · (ιA(a) � εA) · m = p 
 m[0]〈m[1], a〉.
This means that the left D(A)-module φ

	
A(M) coincides with the left D(A)-module

corresponding to M via the isomorphism (3.3).

3.2 Schrödinger Modules

Let A be a finite-dimensional Hopf algebra. The Drinfel’d double D(A) has two canon-
ical representations, which are called the (co)-Schrödinger representation as described in
Majid’s book [21, Examples 6.1.4, 7.1.8, Proposition 6.2.7]. The Schrödinger representa-
tion is obtained by unifying the left adjoint action of A and the right A∗-action ↼, and
the co-Schrödinger representation is formally obtained from the Schrödinger representation
by replacing A with A∗ and ‘left’ with ‘right’, respectively (See below (3.8) and (3.9) for
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precise definition). It is generalized to quasi-Hopf case by Bulacu and Torrecillas [2, Sec-
tion 3], and to the Drinfel’d double of a generalized Hopf pairing by Fang [9, Section 2].
Specializing in our setting, we will describe these representations below.

There are four actions defined as follows.

a � c = a(1)cS(a(2)) (a, c ∈ A), (3.4)

a ↼ p = 〈a(1), p〉a(2) (p ∈ A∗, a ∈ A), (3.5)

q � p = S(p(1))qp(2) (p, q ∈ A∗), (3.6)

a ⇀ q = q(1)〈a, q(2)〉 (q ∈ A∗, a ∈ A). (3.7)

By using these actions two left actions • of D(A) on A and A∗ can be defined by

(p � a) • b = (a � b) ↼ S−1(p), (3.8)

(p � a) • q = (a ⇀ q) � S−1(p) (3.9)

for all a, b ∈ A∗ and p, q ∈ A∗. We call SchA := (A, •) and SchA := (A∗, •) the
Schrödinger module and the co-Schrödinger module of D(A), respectively.

Recall that we have identified D(A)M with AYDA. The Yetter-Drinfel’d module corre-
sponding to SchA is the vector space A with the action � and the coaction

SchA → SchA ⊗ A, a �→ a(2) ⊗ S−1 (
a(1)

)
(a ∈ SchA).

The Yetter-Drinfel’d module corresponding to the co-Schrödinger module SchA is the vector
space A∗ with the action ⇀ and the coaction q �→ q(0) ⊗ q(1) determined by

〈
q(0), a

〉
q(1) = 〈

q, a(2)
〉
S−1 (

a(3)
)
a(1)

(
q ∈ SchA, a ∈ A

)
.

Indeed, for all p ∈ A∗, q ∈ SchA and a ∈ A, we have

〈q(0), a〉〈p, q(1)〉 = 〈q, a(2)〉
〈
p(1), S

−1(a(3))
〉
〈p(2), a(1)〉 =

〈
p(2)qS−1(p(1)), a

〉
=

〈
q � S−1(p), a

〉
.

Note that SchA ∈ AYDA can be defined for a not necessarily finite-dimensional Hopf
algebra A with bijective antipode. Thus the same symbol will be used for such a Hopf
algebra. On the other hand, the finiteness of A seems to be needed to define SchA.

3.3 Radford’s Induction Functors and Schrödinger Modules

Let A be a bialgebra over k such that Aop has antipode S. For a left A-module L ∈ AM, the
vector space IA(L) := L ⊗ A is a Yetter-Drinfel’d module with the action and the coaction
given respectively by

h · (l ⊗ a) = (
h(2) · l

) ⊗ h(3)aS(h(1)), and ρ(l ⊗ a) = (
l ⊗ a(1)

) ⊗ a(2)

for h, a ∈ A and l ∈ L. The assignmentL �→ IA(L) is a right adjoint functor of the forgetful
functor RA : AYDA −→ AM (Radford [30, Proposition 2], Hu and Zhang [12, Lemma
2.1]). The adjunction is given by

Hom
AM(RA(M), V ) � f �−→ ϕ(f ) ∈ Hom

AYDA(M, IA(V )),(
ϕ(f )

)
(m) = f (m(0)) ⊗ m(1) (m ∈ M)

(3.10)
for V ∈ AM and M ∈ AYDA.
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Remark 3.3 Let F : C → D and F̃ : C̃ → D̃ be equivalences of categories, and let U and
U ′ be functors such that the following diagram commutes up to isomorphism:

It is easy to see that ifU has a left (right) adjoint I , then the functor I ′ := F̃ ◦I ◦F , where
F is a quasi-inverse of F , is a left (right) adjoint of U ′. Now let A be a finite-dimensional
Hopf algebra. Applying the above observation to the forgetful functor U = RA and the
restriction functor U ′ = ResD(A)

A , we may say that the functor IA is right adjoint to ResD(A)
A

under the identification D(A)M ∼= AYDA.

The functor IA will be referred to as Radford’s induction functor. The following
proposition expresses the Yetter-Drinfel’d module SchA by Radford’s induction functor:

Proposition 3.4 Let A be a Hopf algebra over k with bijective antipode. Then, the k-linear
map � : SchA −→ IA(k) defined by �(a) = 1 ⊗ S−1(a) for all a ∈ A is an isomorphism
of Yetter-Drinfel’d A-modules. Here, k in IA(k) means the trivial left A-module.

Proof We identify IA(k) with A as a vector space via 1⊗a ↔ a. Then the Yetter-Drinfel’d
module IA(k) is the vector space A with the left action h  a = h(2)aS−1(h(1)) (h, a ∈ A)
and the right coaction a �→ a(1) ⊗ a(2) (a ∈ A). The claim follows from the fact that S is an
anti-algebra and anti-coalgebra map.

There is also a comodule-version of Radford’s induction functor: Let A be a bialgebra
over k, and suppose that Aop has an antipode S. For a right A-comodule N , the vector space
IA(N) = A ⊗ N is a Yetter-Drinfel’d A-module by

h · (a ⊗ n) = ha ⊗ n and ρ(h ⊗ n) = (h(2) ⊗ n(0)) ⊗ h(3)n(1)S(h(1))

for all h, a ∈ A and n ∈ N . The functor defined by N �→ IA(N) is in fact a left adjoint
functor of the forgetful functor AYDA → MAop

(Radford [30, Proposition 1], Hu and Zhang
[12, Remark 2.2]), and thus we may say that IA is left adjoint to ResD(A)

A∗cop under the iden-
tification AYDA ∼= D(A)M if A is finite-dimensional (cf. Remark 3.3). Moreover, since
MA = MAop

as categories, we may view IA as a left adjoint of RA : AYDA −→ MA of
Section 2.4. We also call IA Radford’s induction functor. The co-Schrödinger module is
expressed by using IA as follows:

Proposition 3.5 Let A be a finite-dimensional Hopf algebra over k. Then, the k-linear map
� : SchA −→ (IA(k))∗ defined by �(q) = S−1(q)⊗1 for all q ∈ SchA is an isomorphism
of Yetter-Drinfel’d A-modules. Here, k in IA(k) means the trivial right A-comodule.

Proof Let M be a finite-dimensional Yetter-Drinfel’d A-module. Then its left dual module
M∗ is the dual vector space of M with the action ⇁ and the coaction determined by

〈a ⇁ p,m〉 = 〈p, S(a)m〉 and 〈p(0), m〉p(1) = 〈p, m(0)〉S−1(m(1)),
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respectively, for p ∈ M∗, a ∈ A and m ∈ M (since M ⊗N for M, N ∈ AYDA is the tensor
product right Aop-comodule, we need to use SAop = S−1

A to define the coaction of A on
M∗). Now we identify IA(k) with A as a vector space. Then (IA(k))∗ is the vector space
A∗ with the action ⇁ and the coaction q �→ q(0) ⊗ q(1) determined by

〈a ⇁ p, b〉 = 〈p, S(a)b〉 and 〈q(0), b〉q(1) = 〈p, b(2)〉S−2(b(1))S
−1(b(3))

for a, b ∈ A and p ∈ (
IA(k)

)∗
. As in Proposition 3.4, the proof now follows from the fact

that the antipode is an anti-algebra and anti-coalgebra map.

3.4 The Tensor Product of Schrödinger Modules

In this subsection, we compute the tensor product of Schrödinger modules by using
Propositions 3.4 and 3.5. We first note the following properties of Radford’s induction:

Lemma 3.6 Let A be a Hopf algebra over k with bijective antipode. Then:

(1) There is a natural isomorphism of Yetter-Drinfel’d modules

� : IA(V ) ⊗ M −→ IA(V ⊗ RA(M))
(
V ∈ AM,M ∈ AYDA

)

given by �(v ⊗ a ⊗ m) = v ⊗ m(0) ⊗ m(1)a for v ∈ V , a ∈ A and m ∈ M .
(2) There is a natural isomorphism of Yetter-Drinfel’d modules

� : IA(RA(M) ⊗ V ) −→ IA(V ) ⊗ M
(
V ∈ MA, M ∈ AYDA

)

given by �(a ⊗ m ⊗ v) = a(1) ⊗ v ⊗ a(2)m for v ∈ V , a ∈ A and m ∈ N .

Proof It is routine to check that the map � is a morphism in AYDA. Instead of doing the
computation, it can be also confirmed by observing that � arises as the composition

IA(V )⊗M
η−→ IARA(IA(V )⊗M) = IA(RAIA(V )⊗RA(M))

IA(ε⊗id)−−−−−−→ IA(V ⊗RA(M)),

where η and ε are the unit and the counit of the adjunction (3.10), respectively. It is easy to
see that the inverse of � is given by �−1(v ⊗ m ⊗ a) = v ⊗ S(m(1))a ⊗ m(0) for a ∈ A,
v ∈ V and m ∈ M . Hence (1) is proved. Part (2) can be proved in a similar way.

For a Hopf algebra A, we denote by AdjA the adjoint representation of A, i.e., the vector
space A endowed with the left A-action � given by Eq. 3.4.

Proposition 3.7 Let A be a Hopf algebra over k with bijective antipode, and let n ≥ 1

be an integer. Then there is an isomorphism Sch⊗n
A

∼= IA

(
Adj⊗(n−1)

A

)
of Yetter-Drinfel’d

A-modules.

Proof By Proposition 3.4 and Lemma 3.6,

Sch⊗n
A

∼= IA(k) ⊗ Sch⊗(n−1)
A

∼= IA

(
k ⊗ RA(SchA)⊗(n−1)

) ∼= IA

(
Adj⊗(n−1)

A

)
.

The following result is a non-semisimple generalization of a part of [3, Proposition 4].
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Proposition 3.8 If A is a finite-dimensional Hopf algebra over k, then there is an
isomorphism of left D(A)-modules SchA ⊗ SchA ∼= D(A).

Proof Let, in general, H be a finite-dimensional Hopf algebra. For a left H -module X, we
denote by X0 the vector space X with left H -action h · x = ε(h)x (h ∈ H , x ∈ X). Then
there are natural isomorphisms H ⊗ X ∼= H ⊗ X0 ∼= X ⊗ H of left H -modules. It is also
known that the left H -module H ∈ HM is self-dual. Using these facts, we obtain natural
isomorphisms

HomH (X ⊗ H, Y ) ∼= Homk(X, Y ) ∼= HomH (X, Y ⊗ H) (X, Y ∈ HM) (3.11)

of vector spaces. Now we give a proof of the claim: Since (RA ◦ IA)(k) ∼= A as left A-
modules, we have natural isomorphisms

HomD(A)

(
X, SchA ⊗ SchA

) ∼= HomD(A)

(
X, IA(k) ⊗ IA(k)∗

)

∼= HomD(A)

(
X ⊗ IA(k), IA(k)

)

∼= HomA

(
RA(X ⊗ IA(k)), k

)

∼= HomA(RA(X) ⊗ A, k)

∼= Homk(X, k) (by (3.11))

for X ∈ D(A)M. On the other hand, HomD(A)(X,D(A)) ∼= Homk(X, k) again by Eq. 3.11.
Hence the result follows from Yoneda’s lemma.

3.5 Categorical Aspects of the Schrödinger Module

Let C be a monoidal category. A Schrödinger object for C is an object S ∈ Z(C) such that
there exists a natural isomorphism HomC

(
�C(X), IZ(C)

) ∼= HomZ(C)(X, S) forX ∈ Z(C).
Note that such an object is unique up to isomorphism by Yoneda’s lemma (if it exists). The
following lemma is obvious from the definition:

Lemma 3.9 Let C and D be monoidal categories.

(1) Suppose that �C : Z(C) −→ C has a right adjoint functor IC : C −→ Z(C). Then
the object IC(I) is a Schrödinger object for C.

(2) Suppose that SC is a Schrödinger object for C, and there exists an equivalence F :
C −→ D of monoidal categories. Then Z(F )(SC) is a Schrödinger object for D.

Recall that there is an isomorphism AYDA ∼= Z(AM). By interpreting Lemmas 2.1 and
3.9 in terms of the Yetter-Drinfel’d category through this isomorphism, we obtain:

Theorem 3.10 Let A and B be Hopf algebras over k with bijective antipodes. Suppose that
there is an equivalence F : AM −→ BM of k-linear monoidal categories. Then:

(1) There exists an equivalence F̃ : AYDA −→ BYDB of k-linear braided monoidal
categories such that RB ◦ F̃ = F ◦ RA as monoidal functors.

(2) The equivalence F̃ satisfies IB ◦ F ∼= F̃ ◦ IA.
(3) SchA ∈ AYDA is a Schrödinger object for AM under Z(AM) ∼= AYDA.
(4) The equivalence F̃ preserves the Schrödinger modules, i.e., F̃ (SchA) ∼= SchB .
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Proof The following functor F̃ satisfies the conditions required in Part (1):

F̃ : AYDA (2.5)−−−−−−→ Z(AM)
Z(F )−−−−−−→ Z(BM)

(2.5)−−−−−−→ BYDB.

Part (2) follows from Remark 3.3. Parts (3) and (4) are obtained by translating Lemma 3.9
through the isomorphism (2.5).

Remark 3.11 An equivalence AYDA ≈ BYDB of k-linear braided monoidal categories
does not preserve the Schrödinger module in general.

Remark 3.12 As Masuoka pointed out to us, the above theorem can be also derived from
the point of view of cocycle deformations by using the action given in [22, Proposition 5.1].

3.6 Categorical Aspects of the Co-Schrödinger Module

We have explored categorical aspects of the Schrödinger module. There is a similar result
for the co-Schrödinger module:

Theorem 3.13 Let A and B be Hopf algebras over k with bijective antipodes. Suppose that
there is an equivalence F : MA −→ MB of k-linear monoidal categories. Then:

(1) There exists an equivalence F̃ : AYDA −→ BYDB of k-linear braided monoidal
categories such that RB ◦ F̃ = F ◦ RA as monoidal functors.

(2) The equivalence F̃ satisfies IB ◦ F ∼= F̃ ◦ IA.
(3) Suppose that A and B are finite-dimensional. Then the equivalence F̃ preserves the

co-Schrödinger module, i.e., F̃
(
SchA

) ∼= SchB .

Proof The following functor F̃ satisfies the conditions required in Part (1):

F̃ : AYDA (2.6)−−−−−−→ Z(MA)rev
Z(F )rev−−−−−−−−→ Z(MB)rev

(2.6)−−−−−−→ BYDB.

Part (2) follows from Remark 3.3. Part (3) follows from Proposition 3.5 and the fact that an
equivalence of monoidal categories preserves the left duals.

We have introduced the notion of a Schrödinger object to explain categorical nature of the
Schrödinger module. There is a bit technical way to understand the co-Schrödinger object
in terms of a Schrödinger object:

Theorem 3.14 Let �A : (
AYDA

)rev −→ Z(MA) be the isomorphism of k-linear braided
monoidal categories given in (2.6). If A is finite-dimensional, then �A

(
SchA

) ∈ Z
(
MA

)
is

a Schrödinger object for MA.

Proof For X ∈ AYDA, we have

Hom
AYDA

(
X,SchA

) ∼= Hom
AYDA

(
X ⊗ IA(k), k

)
(by Proposition 3.5)

∼= Hom
AYDA

(
IARA(X), k

)
(by Lemma 3.6)

∼= HomMA

(
RA(X), k

)
.
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Since �MA ◦ �A = RA as functors, HomZ(MA)

(
X, �A(SchA)

) ∼= HomMA

(
�MA(X), k

)
,

that is �A

(
SchA

)
is a Schrödinger object for MA.

Recall from Section 3.1 that there is an isomorphism φA : D(A) → D(A∗)cop of quasi-
triangular Hopf algebras. The following theorem may be proved in a more direct way, but
we prefer to prove it by emphasizing the role of the notion of the Schrödinger object:

Theorem 3.15 There are isomorphisms of left D(A)-modules

φ
	
A(SchA∗) ∼= SchA and φ

	
A

(
SchA∗) ∼= SchA

where φ
	
A : D(A∗)copM → D(A)M is the functor induced by φA.

Proof By Lemma 3.2, we have the following commutative diagram:

(we omit ‘rev’ since the monoidal structure is not needed here). We chase SchA∗ ∈ D(A∗)copM
around this diagram. By Lemma 3.9 and Theorem 3.10, the object inZ

(
MA

)
corresponding

to SchA∗ is a Schrödinger object for MA. On the other hand, by Theorem 3.14, the object
in Z(MA) corresponding to SchA ∈ D(A)M is also the Schrödinger object for MA. Since the
Schrödinger object is unique up to isomorphism, we have an isomorphism

φ
	
A(SchA∗) ∼= SchA.

Applying this result to A∗, we obtain φ
	
A∗(SchA∗∗) ∼= SchA∗

. Now let ψ
	
A : D(A∗∗)M →

D(A)M be the isomorphism induced by the isomorphism ψA = D(ιA) of quasitriangular
Hopf algebras appeared in Lemma 3.1. By that lemma, we have

φ
	
A

(
SchA∗) ∼= φ

	
Aφ

	
A∗(SchA∗∗) ∼= ψ

	
A(SchA∗∗) ∼= SchA.

4 Applications

Motivated by the construction of quantum representations of the n-strand braid group Bn

due to Reshetikhin and Turaev [31], a family of monoidal Morita invariants of a finite-
dimensional Hopf algebra, which is indexed by braids, can be obtained from the Schrödinger
module.

Let A be a finite-dimensional Hopf algebra. It turns out that the invariant associated
with the identity element 1 ∈ B1 is equal to the categorical dimension of the Schrödinger
module SchA in the sense of Majid [21], and thus equal to Tr

(
S2

)
by [21, Example 9.3.8]

(see Bulacu and Torrecillas [2] for the case of quasi-Hopf algebras). As is well-known,
Tr

(
S2

)
has the following representation-theoretic meaning: Tr

(
S2

) �= 0 if and only if A
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is semisimple and cosemisimple [26]. In this section, we show that the invariants derived

from other braids, like involve further interesting results connecting with representation

theory.
The invariant associated with a braid b is, roughly speaking, defined by “coloring” the

closure of b by the Schrödinger module as if we were computing the quantum invariant of a
(framed) link. Such an operation is not allowed in general since D(A)M may not be a ribbon
category. So we will use the (partial) braided trace, introduced below, to define invariants.

4.1 Partial Traces in Braided Monoidal Categories

From now on, all monoidal categories are assumed to be strict although almost all
definitions and results do not need this assumption.

Let B be a left rigid braided monoidal category with braiding c. We choose a left dual
(X∗, eX, nX) for each object X ∈ B. Let f : X ⊗ Y −→ X ⊗ Z be a morphism in B. Then
the following composition Trl,XB (f ) : Y −→ Z can be defined:

Y = I ⊗ Y
nX⊗idY−−−−−→ X ⊗ X∗ ⊗ Y

c−1
X∗,X

⊗idY−−−−−−−→ X∗ ⊗ X ⊗ Y

id⊗f−−−−→ X∗ ⊗ X ⊗ Z
eX⊗idZ−−−−−→ I ⊗ Z = Z.

We frequently write Trl,X(f ) for simplicity. The morphism Trl,X(f ) : Y −→ Z is said to
be the left partial braided trace of f on X. Similarly, for a morphism f : Y ⊗X −→ Z⊗X,
the right partial braided trace Trr,X(f )

(= Trr,XB (f )
)
is defined by

Y = Y ⊗ I
idY ⊗nX−−−−−→ Y ⊗ X ⊗ X∗ f ⊗id−−−−→ Z ⊗ X ⊗ X∗

id⊗cX,X∗−−−−−−→ Z ⊗ X∗ ⊗ X
idZ⊗eX−−−−−→ Z ⊗ I = Z,

see Fig. 1.
The left and right partial braided traces on X do not depend on the choice of left duals

of X, and they have the following properties. For morphisms f : X ⊗ Y −→ X ⊗ Z,
g : Y ′ −→ Y, h : Z −→ Z′,

Trl,X
(
(idX ⊗ h) ◦ f ◦ (idX ⊗ g)

) = h ◦ Trl,X(f ) ◦ g : Y −→ Z. (4.1)

Fig. 1 The left and right partial traces (the diagrams are read upwards)
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For an endomorphism f : X −→ X in B, the left braided trace Trl,X(f ) and the
right braided trace Trr,X(f ) are defined by Trl,X(f ) := Trl,X(f ⊗ idI) and Trr,X(f ) :=
Trr,X(idI ⊗ f ). They coincide with the following compositions, respectively.

Trl,X(f ) : I nX−−→ X ⊗ X∗ c−1
X∗,X−−−→ X∗ ⊗ X

id⊗f−−−→ X∗ ⊗ X
eX−−→ I,

Trr,X(f ) : I nX−−→ X ⊗ X∗ f ⊗id−−−→ X ⊗ X∗ cX,X∗−−−→ X∗ ⊗ X
eX−−→ I.

The left and right partial traces are related as follows. Let B be a left rigid braided
monoidal category chosen left duals (X∗, eX, nX) for all objects X in B. Then, for two
objects X, Y in B there is a natural isomorphism jX,Y : Y ∗ ⊗ X∗ −→ (X ⊗ Y )∗ such that
eX⊗Y ◦ (jX,Y ◦ idX⊗Y ) = eY ◦ (idY ∗ ⊗ eX ⊗ idY ) [11]. For any morphism f : X −→ Y

in B, there is a unique morphism tf : Y ∗ −→ X∗ in B, which is characterized by
eX ◦ (tf ⊗ idX) = eY ◦ (idY ∗ ⊗ f ). Then:

Lemma 4.1 For any morphism f : X ⊗ Y −→ X ⊗ Z in B,

Trr,X
∗

B

(
j−1
X,Y ◦ tf ◦ jX,Z

)
= t

(
Trl,XBmir(f )

)
.

Proof The equation of the lemma is obtained from a graphical calculus depicted as in Fig. 2.

Lemma 4.2 Let B and B′ be left rigid braided monoidal categories, and (F, φ, ω) : B −→
B′ be a braided monoidal functor. Then for any morphism f : X ⊗ Y −→ X ⊗ Z in B

F
(
Trl,X(f )

) = Trl,F (X)
(
φ−1

X,Z ◦ F(f ) ◦ φX,Y

)
. (4.2)

Proof For each X ∈ B we choose a left dual (X∗, eX, nX). Then
(
F(X∗), e′

F(X), n
′
F(X)

)

is a left dual of F(X), where

e′
F(X) := ω−1 ◦ F(eX) ◦ φX∗,X : F(X∗) ⊗ F(X) −→ I

′,

n′
F(X) := φ−1

X,X∗ ◦ F(nX) ◦ ω : I′ −→ F(X) ⊗ F(X∗).

By using this left dual of F(X) and computing the partial braided trace Trl,F (X)
(
φ−1

X,Z ◦
F(f ) ◦ φX,Y

)
, we have the desired Eq. 4.2.

Fig. 2 A graphical calculus for the proof of Lemma 4.1
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Let M be an object in B. For each endomorphism f ∈ End(M⊗n) and each positive
integer k (1 ≤ k ≤ n), we set Trl,k(f ) := Trl,M

⊗k
(f ), Trr,k(f ) := Trr,M

⊗k
(f ), and

T̃r
l
(f ) :=

n︷ ︸︸ ︷(
Trl,1 ◦ · · · ◦ Trl,1

)
(f ), T̃r

r
(f ) :=

n︷ ︸︸ ︷(
Trr,1 ◦ · · · ◦ Trr,1

)
(f ). (4.3)

The modified traces (4.3) are preserved by a braided monoidal functor. More precisely:

Proposition 4.3 Let B and B′ be left rigid braided monoidal categories, and (F, φ, ω) :
B −→ B′ be a braided monoidal functor. Let M be an object in B, and k be a positive
integer, and define the isomorphism φ(k) : F(M)⊗k −→ F

(
M⊗k

)
in B′ by

φ(1) := idF(M), φ(k) := φM,M⊗(k−1) ◦
(
idF(M) ⊗ φ(k−1)

)
(k ≥ 2).

Then for an endomorphism f on M⊗n in B, the following equations hold.

T̃r
l(

(φ(n))−1 ◦ F(f ) ◦ φ(n)
) = ω−1 ◦ (

F
(
T̃r

l
(f )

)) ◦ ω, (4.4)

T̃r
r(

(φ(n))−1 ◦ F(f ) ◦ φ(n)
) = ω−1 ◦ (

F
(
T̃r

r
(f )

)) ◦ ω. (4.5)

Proof We set g := (
φ(n)

)−1 ◦ F(f ) ◦ φ(n). By Eq. 4.1 and Lemma 4.2 we have

Trl,1(g) =
(
φ(n−1)

)−1 ◦
(
Trl,1

(
φ−1

M,M⊗(n−1) ◦ F(f ) ◦ φM,M⊗(n−1)

)) ◦ φ(n−1)

=
(
φ(n−1)

)−1 ◦ F
(
Trl,1(f )

) ◦ φ(n−1).

The same arguments for f1 := Trl,1(f ) and g1 := Trl,1(g) provide the equation

Trl,1
(
Trl,1(g)

) =
(
φ(n−2)

)−1 ◦ F
(
Trl,1

(
Trl,1(f )

)) ◦ φ(n−2).

By repeating the same arguments, the equation

n−1︷ ︸︸ ︷(
Trl,1 ◦ · · · ◦ Trl,1

)
(g) = F

(
n−1︷ ︸︸ ︷

(Trl,1 ◦ · · · ◦ Trl,1)(f )
)

(4.6)

is obtained. Setting fn−1 :=
n−1︷ ︸︸ ︷(

Trl,1 ◦ · · · ◦ Trl,1
)
(f ) and applying Trl,1 to the Eq. 4.6, we

have the desired equation

T̃r
l
(g) = Trl,1

(
F

(
fn−1

)) = ω−1 ◦ F
(
Trl,1(fn−1)

) ◦ ω = ω−1 ◦ F
(
T̃r

l
(f )

) ◦ ω.

As in a similar way, the Eq. 4.5 can be shown by using φ(k) = φM⊗(k−1),M ◦ (φ(k−1) ⊗
idF(M)).

As the same manner of the proof of the above proposition with help from Lemma 4.1 we
have:

Proposition 4.4 Let B be a left rigid braided monoidal category. Let M be an object in B,
and k be a positive integer, and define the isomorphism j (k) : (M∗)⊗k −→ (

M⊗k
)∗

in B by

j (1) := idM∗ , j (k) := jM⊗(k−1),M ◦
(
idM∗ ⊗ j (k−1)

)
(k ≥ 2).
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Then for an endomorphism f on M⊗n in B, the following equation holds

T̃r
r

B

(
(j (n))−1 ◦ tf ◦ j (n)

)
= T̃r

l

Bmir(f ). (4.7)

4.2 Construction of Monoidal Morita Invariants

In this subsection we introduce a family of monoidal Morita invariants of a finite-
dimensional Hopf algebra by using partial braided traces.

Let B be a left rigid braided monoidal category with braiding c, and M be an object
in B. Then there is a representation ρM : Bn −→ Aut(M⊗n) of the n-strand braid group
Bn such that each positive crossing and negative crossing correspond to cM,M and c−1

M,M ,
respectively [31]. For each b ∈ Bn we set

b - diml
B(M) := T̃r

l

B
(
ρM(b)

)
, b - dimr

B(M) := T̃r
r

B
(
ρM(b)

)
.

For simplicity we write b - dim instead of b - dimB. If b is the identity element 1 ∈ B1, then

1 - dimr (M) = (the categorical dimension of M) (4.8)

in the sense of [21, Subsection 9.3].

Lemma 4.5 Let M and N be two objects in B.
(1) If M and N are isomorphic, then b - diml (M) = b - diml (N), b - dimr (M) =

b - dimr (N).
(1) b - dimr

B(M∗) = b - diml
Bmir(M).

Proof (1) Let ϕ : M −→ N be an isomorphism. The map ϕ⊗n : M⊗n −→ N⊗n is
also an isomorphism. Let ρM : Bn −→ Aut(M⊗n) and ρN : Bn −→ Aut(N⊗n) be the
representations induced from the braiding c. Since cN,N ◦ (ϕ ⊗ ϕ) = (ϕ ⊗ ϕ) ◦ cM,M from
naturality of c, the endomorphisms f := ρM(b) and g := ρN(b) satisfy g ◦ϕ⊗n = ϕ⊗n ◦f .
Thus, g is expressed as g = (ϕ⊗n) ◦ f ◦ (ϕ⊗n)−1, and it follows from Proposition 4.3 that

b - diml (N) = T̃r
l
(g) = T̃r

l
(f ) = b - diml (M). The equation b - dimr (M) = b - dimr (N)

is also shown by the same argument.
(2) By the definition of the natural isomorphism jM,N : N∗ ⊗ M∗ −→ (M ⊗ N)∗, it is

easy to see that jM,N ◦ cM∗,N∗ = t(cM,N) ◦ jN,M . It follows that the representation ρM∗ :
Bn −→ Aut((M∗)⊗n) induced from the braiding c satisfies j (n)◦ρM∗(b) = t

(
ρM(b)

)◦j (n),
where j (n) is the isomorphism defined in Proposition 4.4. Thus we have b - dimr

B(M∗) =
T̃r

r

B
(
(j (n))−1 ◦ t

(
ρM(b)

) ◦ j (n)
) = T̃r

l

Bmir

(
ρM(b)

) = b - diml
Bmir(M).

In what follows, we only consider k-linear (braided) monoidal categories such that
End(I) ∼= k. In this case the braided traces of endomorphisms can be regarded as elements
in k. By Proposition 4.3, if (F, φ, ω) : B −→ B′ is a k-linear braided monoidal functor
between left rigid braided monoidal categories, then for an endomorphism f on M⊗n in B,

T̃r
l(

(φ(n))−1 ◦ F(f ) ◦ φ(n)
) = T̃r

l
(f ), T̃r

r(
(φ(n))−1 ◦ F(f ) ◦ φ(n)

) = T̃r
r
(f ) (4.9)

as elements in k.
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Let C be a k-linear monoidal category such that End(I) ∼= k. Suppose that it has a
Schrödinger object S ∈ Z(C), and there is a left dual of S. Then, one can define b -Sdiml (C),
b -Sdimr (C) ∈ k by

b -Sdiml (C) = b -diml
Z(C)(S), b -Sdimr (C) = b -dimr

Z(C)(S). (4.10)

Theorem 4.6 b -Sdiml (C) and b -Sdimr (C) are invariant under k-linear monoidal equiva-
lences.

Proof Let F : C −→ D be a k-linear monoidal equivalence, and SC and SD are
Schrödinger objects for C andD, respectively. By Lemma 3.9,

(
Z(F )

)
(SC) ∼= SD as objects

in Z(D). It follows from Eq. 4.9 and Lemma 4.5 that b -Sdiml (C) = b - diml
Z(C)(SC) =

b - diml
Z(C)(SD) = b -Sdiml (D). The right version can be proved by the same argu-

ment.

Applying the above theorem to the module category over a finite-dimensional Hopf
algebra, we have:

Corollary 4.7 Let A and B be finite-dimensional Hopf algebras over k. If AM and BM are
equivalent as k-linear monoidal categories, then b - diml (SchA) = b - diml (SchB) for all
b ∈ Bn. The same statement holds for b - dimr .

By using Theorem 3.15 we see that the monoidal Morita invariants b - diml and b - dimr

of the co-Schrödinger modules SchA and SchA∗
are computable from the monoidal Morita

invariants of the Schrödinger modules SchA∗ and SchA, respectively.

Proposition 4.8 Let A be a finite-dimensional Hopf algebra over k. For any b ∈ Bn, the
following equations hold.

(1) b - diml
(
SchA∗) = b - diml (SchA), b - dimr

(
SchA∗) = b - dimr (SchA).

(2) b - diml (SchA∗) = b - diml
(
SchA

)
, b - dimr (SchA∗) = b - dimr

(
SchA

)
.

Proof (1) Let φ
	
A : (

D(A∗)M
)rev −→ D(A)M be the equivalence of braided monoidal cat-

egories defined in Theorem 3.15. Setting M := SchA∗
, we have b - diml

R

(
φ

	
A(M)

)
=

b - diml
R′(M) from the proof of Theorem 4.6. Since φ

	
A(M) and SchA are isomor-

phic as left D(A)-modules by Theorem 3.10(4), it follows from Lemma 4.5(1) that

b - diml
R

(
φ

	
A(M)

)
= b - diml

R(SchA). Thus, the first equation is obtained. Similarly, the

rest equations of Parts (1) and (2) can be also proved.

4.3 Examples

In this subsection we show several applications and examples of our invariants.
Given a quasitriangular Hopf algebra (A,R), we use the notation T̃rR for the modified

braided trace T̃r in the left rigid braided category
(
AMfd, cR

)
, where AMfd is the full subcat-

egory of AM whose objects are finite-dimensional. For computation the following example
is useful.
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Example 4.9 Let A be a quasitriangular Hopf algebra with universal R-matrix R =∑
j αj ⊗ βj , and let u = ∑

j S(βj )αj be the Drinfel’d element of it. As is well-known,
∑
j

S(αj ) ⊗ βj = R−1 =
∑
j

αj ⊗ S−1(βj ), (S ⊗ S)(R) = R, u−1 =
∑
j

βjS
2(αj ),

(4.11)
and S2(a) = uau−1 for all a ∈ A [5, 28].

Let M be a finite-dimensional left A-module. For any a ∈ A the action of a on M is
denoted by aM . Then for any A-module endomorphism f on M⊗n the following formulas
hold:

T̃r
l

R(f ) = Tr
((

u−1
M ⊗ · · · ⊗ u−1

M

)
◦ f

)
, (4.12)

T̃r
r

R(f ) = Tr
((

uM ⊗ · · · ⊗ uM

) ◦ f
)
, (4.13)

where Tr in the right-hand side stands for the usual trace on linear transformations.

Proof Here, we only prove the first equation since the second equation can be proved by
the same argument. The Eq. 4.12 can be shown by induction on n as follows.

Let {ei}di=1 be a basis forM . For any a ∈ A, a·ei is expressed as a·ei = ∑d
i′=1 Mi′,i (a) ei′

for some Mi′,i (a) ∈ k. Then T̃r
l
(f ) = Trl,1(f ) = ∑

Mi′,i (βj )Mk,i′(f )Mi,k

(
S2(αj )

) =∑
Mi′,i′

(
u−1

M ◦ f
)

= Tr
(
u−1

M ◦ f
)
.

Next, assume that the equation T̃r
l
(g) = Tr

(
(u−1

M )⊗(n−1) ◦ g
)
holds for any A-module

endomorphism g on M⊗(n−1). Let f be an A-module endomorphism on M⊗n. Then g :=
Trl,1(f ) is an A-module endomorphism on M⊗(n−1). Applying the induction hypothesis,

we have T̃r
l
(f ) = T̃r

l
(g) = Tr

(
(u−1

M )⊗(n−1) ◦ g
) = Tr

(
(u−1

M )⊗n ◦ f
)
.

Let A be a finite-dimensional Hopf algebra. In view of Example 4.9, it is important to
know the action of the Drinfel’d element u ∈ D(A) on a given D(A)-module M to compute
the braided dimension of M . Below we give formulas for the actions of u and S(u) on the
Schrödinger module SchA.

Recall that a left integral in A is an element � ∈ A such that a� = ε(a)� for all a ∈ A.
A right integral in A is a left integral in Aop. It is known that a non-zero left integral � ∈ A

always exists (under our assumption that A is finite-dimensional), and is unique up to a
scalar multiple. Hence one can define α ∈ A∗ by �a = 〈α, a〉� for a ∈ A. The map α is in
fact an algebra map, and does not depend on the choice of �. We call α the distinguished
grouplike element of A∗. The Hopf algebra A is said to be unimodular if the distinguished
grouplike element α ∈ A∗ is the counit of A, or, equivalently, � ∈ A is central.

Lemma 4.10 With the above notations, we have

u • a = S2(a(1))
〈
α−1, a(2)

〉
and S(u) • a = S−2(a)

for all a ∈ SchA, where α−1 = α ◦ S.

Proof Let {ei} be a basis of A, and let {e∗
i } be the dual basis. Recall that the universal R-

matrix of D(A) is given by R = ∑
i αi ⊗ βi , where αi = ε � ei and βi = e∗

i � 1. We
first compute the action of S(u). By Eq. 4.11, we have

S(u) =
∑

i

S(S(βi)αi) =
∑

i

S(αi)S
2(βi) =

∑
i

αiS(βi).
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Hence, for all a ∈ SchA, we have

S(u) • a =
∑

i

(ε � ei) • SD(A)(e
∗
i � 1) • a

=
∑

i

ei � a(2)

〈
e∗
i , S

−2(a(1))
〉

= S−2 (
a(1)

)
� a(2)

(
by

∑
i

ei〈e∗
i , x〉 = x

)

= S−2 (
a(1)

)
a(3)S

(
S−2(a(2))

)
= S−2(a).

Next, we compute the action of u. Fix a non-zero right integral λ ∈ A∗, and define g ∈ A

to be the unique element such that pλ = 〈p, g〉λ for all p ∈ A∗ (i.e., the distinguished
grouplike element of (Acop)∗∗ = (A∗ op)∗ regarded as an element of A). Radford showed
that D(A) is unimodular and α � g is the distinguished grouplike element [29, Theorem
4(a) and Corollary 7]. Hence, by [28, Theorem 2], we have u = S(u) · (α � g) in D(A).
Using this formula and Radford’s formula of the fourth power of the antipode [27], we
compute, for all a ∈ SchA,

u • a = S(u) • ((α � g) • a)

= S−2
(
〈α−1, ga(1)g

−1〉ga(2)g
−1

)
= S−2

(
S4(α−1 ⇀ a)

)
= S2 (

a(1)
) 〈

α−1, a(2)
〉
.

Combining Example 4.9 and Lemma 4.10, we obtain the following proposition:

Proposition 4.11 Let A be a finite-dimensional Hopf algebra over k. If A is involutory (i.e.
the square of the antipode is the identity) and unimodular, then we have

b - diml (SchA) = b - dimr (SchA) = Tr(ρ(b))

for all b ∈ Bn, where ρ : Bn −→ Aut((SchA)⊗n) is the braid group action.

We denote by σi ∈ Bn (i = 1, . . . , n − 1) the braid of n strands with only one positive
crossing between the i-th and the (i + 1)-st strands. For integers p and q with p ≥ 2, the
braid

tp,q := (σ1σ2 · · · σp−1)
q ∈ Bp

is called the (p, q)-torus braid, as its closure is the (p, q)-torus link. The below is an
example of the computation of the braided dimension associated with b = t2,q .

Lemma 4.12 Let (A,R) be a quasitriangular Hopf algebra over k, and u be the Drinfel’d
element of it. For each non-negative integer m and finite-dimensional left A-module X,

t2,q - dim
lX =

⎧⎨
⎩

Tr
(
um−1(u−m)(1)

X
)Tr

(
um−1(u−m)(2)

X

)
if q = 2m,

Tr
((

um−1 ⊗ um−1
)
�(u−m)R21

X⊗X
◦ TX,X

)
if q = 2m + 1,

t2,q - dim
r X =

⎧
⎨
⎩

Tr(um+1(u−m)(1)
X
)Tr

(
um+1(u−m)(2)

X

)
if q = 2m,

Tr((um+1 ⊗ um+1)�(u−m)R21X⊗X
◦ TX,X) if q = 2m + 1.
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Here, for elements a, b ∈ A the notation a ⊗ b
X⊗X

stands for the left action on X ⊗ X

defined by x ⊗ y �−→ (a · x) ⊗ (b · y) for all x, y ∈ X, and t2,q - dimlX, t2,q - dimrX are

the braided dimensions in the case of B = (
AM, cR

)
.

Proof The formula for t2,q - diml X can be obtained as follows. Let {es}ds=1 be a basis for

X, and {e∗
s }ds=1 be its dual basis. Let R

(q) be the element in A ⊗ A defined by

R(q) =
{

(R21R)m if q = 2m,

(R21R)mR21 if q = 2m + 1.

By Example 4.9, we see that

t2,q - dim
l X =

⎧⎨
⎩

Tr
(
(u−1 ⊗ u−1)R(q)

X⊗X

)
if q is even,

Tr
(
(u−1 ⊗ u−1)R(q)

X⊗X
◦ TX,X

)
if q is odd.

(4.14)

Since R21R = �(u−1)(u ⊗ u) = (u ⊗ u)�(u−1) [5], it follows that (R21R)m = (um ⊗
um)�(u−m). Substituting this equation to Eq. 4.14 we obtain the formula for t2,q - diml X

in the lemma. By a similar consideration, the formula for t2,q - dimr X can be obtained.

In the case where A is semisimple, the braided dimension of the Schrödinger module
associated with t2,2 has the following representation-theoretic meaning:

Theorem 4.13 Suppose that k is an algebraically closed field of characteristic zero. If A is
a finite-dimensional semisimple Hopf algebra over k, then

t2,2- dim
l (SchA) = t2,2- dim

r (SchA) = dim(A) 	Irr(A),

where 	Irr(A) is the number of isomorphism classes of irreducible A-modules.

Proof It is sufficient to show t2,2- diml (SchA) = dim(A) 	Irr(A) in view of Proposition
4.11. By the assumption, Radford’s induction functor IA : AM −→ D(A)M is isomorphic to
the functor D(A) ⊗A (−) by [13, Lemma 2.3]. Combining this fact with Proposition 3.6,
we have

SchA ⊗ SchA
∼= IA(AdjA) ∼= D(A) ⊗A AdjA.

Hence, by Lemma 4.12,

t2,2- dim
l (SchA) = Tr

(
(u−1)(1)SchA

)
Tr

(
(u−1)(2)SchA

)

= Tr
(
u−1

SchA⊗SchA

)
= Tr

(
u−1

D(A)⊗AAdjA

)
. (4.15)

We use some results on the Frobenius-Schur indicator [19]. Let V be a finite-dimensional
left A-module. The “third formula” [16, Section 6.4] of the n-th Frobenius-Schur indicator
νn(V ) (n = 1, 2, . . .) expresses νn(V ) by using the Drinfel’d element, as

νn(V ) = 1

dim(A)
Tr

(
un

D(A)⊗AV

)
.

Since u is of finite order [6], dim(A) νn(V ) ∈ Z[ξ ] (⊂ k), where ξ ∈ k is a root of unity of
the same order as u. Hence, if we denote by z �→ z the ring automorphism of Z[ξ ] defined
by ξ �→ ξ−1, then we have

Tr
(
u−n

D(A)⊗AV

) = dim(A) νn(V ).
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On the other hand, the “first formula” [16, Section 2.3] yields ν1(V ) = dim
(
HomA(k, V )

)
.

Considering the case where V is the adjoint representation AdjA, we obtain

Tr
(
u−1

D(A)⊗AAdjA

)
= dim(A) · ν1(AdjA) = dim(A) · dim(

Hom(k,AdjA)
) = dim(A) 	Irr(A).

Now the result follows Eq. 4.15.

As this theorem suggests, the Schrödinger module SchA has much information about
the category of A-modules, at least, in the semisimple case. However, the computation of
the braided dimension is not easy in general. Fortunately, if A is a group algebra, then the
braided dimension of SchA closely relates to the link group of the closure of the braid, and
can be computed in the following way:

Theorem 4.14 Let b ∈ Bn. If A = k[G] is the group algebra of a finite group G, then

b - diml (SchA) = b - dimr (SchA) = 	Hom(π1(R
3 \ b̂),G)

in k, where b̂ is the link obtained by closing the braid b, and π1 means the fundamental
group.

Proof Set X = SchA for simplicity. Then the braiding cX,X is given by

cX,X(g ⊗ h) = h ⊗
(
h−1 � g

)
= h ⊗ h−1gh (g, h ∈ G).

Let Bn act on Gn by

�(σi)(g1, . . . , gn) =
(
g1, . . . , gi−1, gi+1, g

−1
i+1gigi+1, gi+2, . . . , gn

)
(g1, . . . , gn ∈ G).

By Proposition 4.11, b - diml (SchA) and b - dimr (SchA) are equal to the number of fixed
points of �(b) regarded as an element of k. On the other hand, the number of fixed points of
�(b) has been studied by Freyd and Yetter [10] in relation with link invariants arising from
crossed G-sets. The claim of this theorem follows from [10, Proposition 4.2.5].

Example 4.15 We consider the case where A = k[G] is the group algebra of a finite group
G. If k is an algebraically closed field of characteristic zero, then we obtain

t2,2 - diml (SchA) = t2,2 - dimr (SchA) = |G| · 	Conj(G),

t2,2 - diml (SchA∗) = t2,2 - dimr (SchA∗) = |G|2 (4.16)

by Theorem 4.13, where Conj(G) is the set of conjugacy classes of G. In particular,

t2,2 - dim
l (SchA) �= t2,2 - dim

l (SchA∗)

whenever G is non-abelian. This result is interesting from the viewpoint that some other
monoidal Morita invariants, such as ones introduced in [6] and [32], are in fact invariants of
the braided monoidal category of the representations of the Drinfel’d double.

In topology, the link t̂2,2 is known as the Hopf link. Since π1
(
R
3 \ t̂2,2

)
is the free

abelian group of rank two, we have

t2,2 - dim
l (SchA) = t2,2 - dim

r (SchA) = 	Comm(G) (4.17)

by Theorem 4.14, where Comm(G) = {(x, y) ∈ G × G | xy = yx}. Comparing Eq. 4.16
with Eq. 4.17, we get |G| · 	Conj(G) = 	Comm(G). Although this formula itself is well-
known in finite group theory, we expect that some non-trivial formulas for finite groups (or,
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more generally, for finite-dimensional semisimple Hopf algebras) would be obtained via the
investigation of the braided dimension.

By Eq. 4.8 and [21, Example 9.3.8], we have 1 - dimr (SchA) = Tr
(
S2

A

)
(see [2] for the

quasi-Hopf case). In particular, 1 - dimr (SchA) = 0 whenever A is not cosemisimple by
[18, Theorem 2.5(b)]. More strongly, we have the following theorem:

Theorem 4.16 Let A be a finite-dimensional Hopf algebra. If A is not cosemisimple, then
we have b - diml (SchA) = b - dimr (SchA) = 0 for all braids b.

Proof Let, in general, X be a finite-dimensional Hopf algebra, let � ∈ X \ {0} be a left
integral, and let λ ∈ X∗ be the right integral such that 〈λ, �〉 = 1. By [26, Proposition 2
(a)],

Tr
(
X −→ X; x �→ S2 (

x(2)
) 〈p, x(1)〉

)
= 〈λ, 1〉〈p, �〉

for all p ∈ X∗. By the Maschke theorem, the right-hand side is identically zero if X is not
cosemisimple. Thus, applying the above formula to X = Acop and X = Aop cop, we have

Tr
(
A −→ A; a �→ S±2 (

a(1)
) 〈p, a(2)〉

)
= 0 (4.18)

for all p ∈ A∗.
Now, let b ∈ Bn be a braid. By Eq. 4.6, b - diml (SchA) = Trl

(
f̃

)
, where

f̃ =
⎛
⎜⎝

n−1︷ ︸︸ ︷
Trl,1 ◦ · · · ◦ Trl,1

⎞
⎟⎠ (ρ(b)).

Let f : AdjA −→ k be the A-linear map corresponding to f̃ under the isomorphism

given by Eq. 3.10 and Proposition 3.4. Then we have f̃ (a) = 〈f, a(2)〉 a(1) for all a ∈ SchA,
and therefore b - diml (SchA) is equal to the trace of the linear map

SchA −→ SchA; a �→ u−1 • f̃ (a) = S−2 (
a(1)

) 〈α, a(2)〉〈f, a(3)〉 (a ∈ SchA)

by Lemma 4.10. Hence, b - diml (SchA) = 0 by Eq. 4.18. The equation b - dimr (SchA) = 0
is proved in a similar way.

By this theorem, we could say that the braided dimension of the Schrödinger module is
not interesting as a monoidal Morita invariant for non-cosemisimple Hopf algebras. How-
ever, the endomorphism of SchA induced by a braid, such as f̃ in the above proof, is not
generally zero, and thus may have some information about A. For example, let us consider
the map

zM := Trr,1(ρM(σ1)) : M −→ M (4.19)
for finite-dimensional M ∈ D(A)M, where ρM : B2 −→ Aut

(
M⊗2

)
is the action of B2. One

can check that zM is given by the action of z := uS(u) on M . Hence, if M = SchA, then

zM(a) = z • a = a(1)〈α−1, a(2)〉 (a ∈ SchA) (4.20)

by Lemma 4.10, where α ∈ A∗ is the distinguished grouplike element. Therefore this
map has the following information: zM for M = SchA is the identity if and only if A is
unimodular.
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