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Abstract For a finite dimensional K-algebra Λ over an algebraically closed field K and
for a basic Λ-module M , we study M with its natural structure as a module over the
endomorphism ring EndΛ(M).
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1 Introduction

Artin algebras have the property, which distinguishes them from artin rings, that endomor-
phism rings of finitely generated modules are again artin algebras. These examples of artin
algebras are very important, since many algebras that are studied in representation the-
ory are described as endomorphism rings of appropriate modules. For example, Auslander
algebras, tilted algebras, cluster tilted algebras, among others.

Also, endomorphism rings are used in processes of induction on the number of pairwise
non-isomorphic simple modules of the algebra. In fact, if Λ has l pairwise non-isomorphic
simple modules and P is the sum of the projective covers of l − 1 of them, then the
endomorphism ring of P has l − 1 pairwise non-isomorphic simple modules.
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In this paper, for an artin algebra Λ we denote by mod(Λ) the category of finitely gen-
erated left Λ-modules. Moreover, if M is a Λ-module then M is a Γ = EndΛ(M)-module
when we define f · m = f (m) for m ∈ M and f ∈ Γ , and therefore M is a right
Γ op-module. The categories mod(Λ) and mod(Γ op) can be compared through the pair of
adjoint functors, F = Hom�(M,−) : mod(Λ) → mod(Γ op) and G = ΛMΓ op ⊗Γ op − :
mod(Γ op) → mod(Λ). These functors induce equivalences between appropriate subcate-
gories of mod(Λ) and mod(Γ op). For example, add(M) and proj(Γ op), where add(M) is
the full subcategory of mod(Λ) consisting of the direct summands of direct sums of copies
of M , and proj(Γ op) is the full subcategory of mod(Γ op) consisting of the finitely generated
projective Γ op-modules. If M is a tilting module then F and G induce inverse equivalences
between τ( ΛM) and Dτ(MΓ op ), where τ( ΛM) is the torsion class induced by M . In [1]
M. Auslander considered the full subcategory CM

1 of mod(Λ) consisting of the modules X

having a presentation M1 → M0 → X → 0 with Mi ∈ add(M), and such that the induced
sequence F(M1) → F(M0) → F(X) → 0 is exact in mod(Γ op). Then F induces an
equivalence between CM

1 and the image of the restriction of the functor F to CM
1 .

Thus, for a Λ-module M it is interesting to study and describe the Γ -module M , and
answer some elementary questions, at least in some cases. For example, how to describe
the composition factors of Γ M , or the indecomposable summands of Γ M . We will assume
that Λ is given as a factor of the path algebra of a quiver Q modulo an admissible ideal I .
This is, � � KQ/I .

If M is a basic module in mod(Λ), we begin by explaining how to get the ordinary quiver
of Γ = EndΛ(M) and its relations, from the knowledge of the Auslander-Reiten quiver of
Λ. Then, with this data, and given the representation associated to the Λ-module M , we
obtain the representation associated to M as a module over Γ (Theorem 1).

We describe a family of l summands M ′
k of M in mod(Γ ), where l is the number of pair-

wise non-isomorphic simple modules of Λ. We study conditions for these summands to be
all non-zero and for them to be indecomposable and pairwise non-isomorphic modules. For
example, we prove that M has the first property if and only if it is sincere, and it has the
second one provided ΛMΓ op is a faithfully balanced bimodule. Thus, when M is a basic
tilting module, we prove that the M ′

k are precisely the indecomposable summands of Γ M .
Also we describe the summands of Γ M in the case in that M is a � -module (in the sense
defined by Colpi in [2]), and when M is a generator or a cogenerator of mod(Λ). In particu-
lar, if M is simultaneously a generator and a cogenerator of mod(Λ) then the summands M ′

k

of Γ M are a complete set of pairwise non-isomorphic indecomposable projective injective
modules of mod(Γ ).

Finally, in the last section of this work we consider the functors F = HomΛ(−, M) :
mod(Λ) → mod(Γ ) and G = HomΓ (−, M) : mod(Γ ) → mod(Λ), and we describe the
representations associated to F(X) and F(X), for a Λ-module X, and the representations
associated to G(Y) and G(Y), for a Γ -module Y .

Throughout this paper algebra means finite-dimensional K-algebra, where K is an
algebraically closed field. When Λ is an algebra the term ‘Λ-module’ will mean finitely
generated left Λ-module. The full subcategory of finitely generated projective Λ-modules
is denoted by proj(Λ).

2 The Γ -module M

Let M = ⊕n
i=1 Mi , where the Mi’s are pairwise non-isomorphic indecomposable Λ-

modules. We start by showing how to obtain the ordinary quiver of Γ op = EndΛ(M)op and
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its relations, from the knowledge of the Auslander-Reiten quiver of Λ (Proposition 1 and
Remark 4). Let i be the vertex corresponding to the projective module Pi = HomΛ(M,Mi).
We will see that the arrows from the vertex i to the vertex j in the ordinary quiver of Γ op

are in bijective correspondence with a basis of ‘the irreducible morphisms in add(M)’ from
Mj to Mi , in the sense that will be explained in Remark 2.

We start the section by using the well known fact that a map between indecomposable
projective modules h : P → Q such that Im(h) ⊆ rQ, satisfies that Im(h) � r2Q if
and only it is ‘irreducible in add(Λ)’. We state this more precisely in the following lemma,
where radΛ(X, Y ) denotes the radical of HomΛ(X, Y ) (see [3], Chapter V, Section 7).

Lemma 1 Let h : P → rQ be a morphism of indecomposable projective Λ-modules. Then
Im(h) � r2Q if and only if the induced morphism h : P → Q satisfies h �= g ◦ f for all
f ∈ rad�(P,Q′), g ∈ radΛ(Q′, Q) and Q′ projective.

Lemma 2 Let Λ be a basic finite dimensional K-algebra and 1 = e1 + e2 + . . . + el

a decomposition of 1 into a sum of primitive orthogonal idempotents. Let Pi = Λei and
Si = Pi/rPi for i = 1, . . . , l. Let QΛ be the ordinary quiver of Λ and let i be the vertex of
Q� corresponding to the simpleΛ-module Si . Then the following conditions are equivalent.

(a) There exist at least t arrows α from the vertex i to the vertex j in QΛ.
(b) There exist ω1, . . . , ωt in HomΛ(Pj , Pi) which are not isomorphisms, and such

that the relation
∑t

s=1 asωs = g ◦ f with a1, . . . , at ∈ K , f ∈ radΛ(Pj ,Q),
g ∈ radΛ(Q,Pi) and Q projective, implies as = 0 for s = 1, . . . , t .

Proof We know that the number of arrows α from the vertex i to the vertex j coincides
with dimK(Ext1�(Si, Sj )), and this number is equal to dimK(Hom�(Pj , rPi/r2Pi)) (see
[3], Chapter III, Proposition 1.14).

If ω : Pj → Pi is not an isomorphism, then Im(ω) ⊆ rPi . In this case we denote by ω

the morphism induced Pj → rPi/r2Pi . The equivalence between (a) and (b) follows from
the next remarks.

Let ϕ1, . . . , ϕt ∈ HomΛ(Pj , rPi/r2Pi) and ω1, . . . , ωt ∈ Hom�(Pj , Pi) such that ωs =
ϕs for all 1 ≤ s ≤ t . If a1, . . . , at ∈ K , then a1ϕ1 + . . .+atϕt = 0 in Hom�(Pj , rPi/r2Pi),
if and only if Im(a1ω1 + . . . + atωt ) ⊆ r2Pi . By Lemma 1 we know that this last condition
is equivalent to saying that there exist morphisms f ∈ radΛ(Pj , Q), g ∈ radΛ(Q,Pi) with
Q projective such that a1ω1 + . . . + atωt = g ◦ f .

Remark 1 Let A and B be �-modules such that B = �m
j=1Bj , and f =

⎛

⎜
⎝

f1
...

fm

⎞

⎟
⎠ : A →

�m
j=1Bj . We recall that f ∈ radΛ(A,B) if and only if fj ∈ radΛ(A,Bj ) for all j . More-

over, if A and Bj are indecomposable for all j then f ∈ radΛ(A,B) if and only if fj is not
an isomorphism for all j .

Proposition 1 Let Λ be a basic finite dimensional K-algebra, l the number of pairwise
non-isomorphic simple Λ-modules and M = ⊕n

i=1 Mi , where the Mi’s are pairwise non-
isomorphic indecomposable Λ-modules. Let Γ op = EndΛ(M)op and let Si be the simple
Γ op-module corresponding to the projective module Pi = HomΛ(M,Mi). Let QΓ op be the
ordinary quiver of Γ op and i the vertex of QΓ op corresponding to the simple Γ op-module
Si. The following conditions are equivalent.
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(a) There exist t arrows α from the vertex i to the vertex j in QΓ op .
(b) There exist f1, . . . , ft ∈ HomΛ(Mj ,Mi) such that, if a1, . . . , at ∈ K are non-zero

then
∑t

s=1 asfs �= g ◦ h, with h =
⎛

⎜
⎝

h1
...

hr

⎞

⎟
⎠ : Mj → ⊕r

k=1 Mik , g = (g1 · · · gr) :
⊕r

k=1 Mik → Mi where Mik ∈ {M1, . . . , Mn} and hk , gk are non-isomorphisms for
k = 1, . . . , r .

Proof We apply Lemma 2 to the projective Γ op-modules Pi = HomΛ(M,Mi). The propo-
sition follows from Remark 1 and the equivalence of categories HomΛ(M,−) : add(M) →
proj(Γ op).

Remark 2 From the above proposition we obtain that there is a bijection between the set
of arrows from the vertex i to the vertex j in QΓ op , and a maximal set of morphisms from
Mj to Mi satisfying (b) in Proposition 1. Equivalently, morphisms that define a basis of the
space of ‘the irreducible morphisms in add(M)’, that is, a basis of HomΛ(Mj ,Mi) modulo

the morphisms Mj → Mi which can be written as a composition Mj
g→ M ′ h→ Mi with

M ′ ∈ add(M), where g is not a split epimorphism and h is not a split monomorphism.

Remark 3 Given a presentation (QΓ , IΓ ) of Γ = EndΛ(M), we are interested in describing
the representation of (QΓ , IΓ ) associated to Γ M .

Note that, from Remark 2 and Proposition 1 applied to the algebra Γ , we get that there is
a bijection between the set of arrows from the vertex i to the vertex j in QΓ and a maximal
set of morphisms from Mi to Mj satisfying (b) in Proposition 1.

In the sequel, fα denotes the morphism associated to the arrow α : i → j under this
bijection. We regard fα : Mi → Mj as an element of Γ in the natural way: we identify fα

with the composition M
πi→ Mi

fα→ Mj

ιj→ M , where πi and ιj are the canonical projection
and inclusion, respectively. In this way, the family {f α : α ∈ QΓ } is a basis of radΓ/rad2Γ .

Let ei be the composition M
πi→ Mi

ιi→ M . Then, by Theorem 1.9 in Chapter III in [3], the
fα’s together with a complete set e1, e2, . . . , en of primitive ortogonal idempotents generate
the algebra Γ .

From now on, we consider the corresponding presentation (QΓ , IΓ ) of Γ . If X =
(X(i), ϕα)li=1 is a representation of (QΓ , IΓ ), we write Γ X for the associated Γ -module.

That is, Γ X = ⊕l
i=1 X(i) with the structure of Γ -module given by

fα � xi = ϕα(xi), et � xi = δti xi

for xi ∈ X(i), α : i → j in QΓ , and 1 ≤ t ≤ n, where δti is the Kronecker delta.

Remark 4 For a path γ = αr ...α1 in QΓ , we define fγ = fαr ◦ ... ◦ fα1 . Let a1, ..., at ∈
K and γ1, ..., γt in QΓ . From Proposition 1 we get that

∑t
s=1 asγs ∈ IΓ if and only if∑t

s=1 asHomΛ(M, fγs ) = 0 in Γ . Moreover, this is the case if and only if
∑t

s=1 asfγs = 0,
as we see using the equivalence of categories HomΛ(M,−) : add(M) → proj(Γ op).

Our next theorem describes a family of l direct summands M ′
k of the Γ -module M ,

where l is the number of pairwise non-isomorphic simple modules of Λ. For α : i → j
in QΓ , we have the family of morphisms {fα(k) : Mi(k) → Mj(k)}lk=1 associated to the
morphism fα : Mi → Mj . Here Mi(k) = HomΛ(Pk, Mi) and Mj(k) = HomΛ(Pk,Mj )



Modules Over Endomorphism Rings 1581

are the vector spaces corresponding to the vertex k in the representations associated to Mi

and Mj , respectively, and fα(k)(ϕ) = fα ◦ ϕ for each ϕ ∈ Mi(k).

Theorem 1 Let Λ be a basic finite dimensional K-algebra, ΛM = ⊕n
i=1 Mi , where

the Mi’s are pairwise non-isomorphic indecomposable Λ-modules. Let (QΓ , IΓ ) be the
presentation of Γ = EndΛ(M) defined in Remark 3 and let Mi(k) = HomΛ(Pk,Mi)

be the vector space corresponding to the vertex k in the representation associated to
ΛMi . Then the representation of (QΓ , IΓ ) associated to M is (Mi, fα)ni=1. Moreover,

M ′
k = (Mi(k), fα(k))ni=1 is a representation of (QΓ , IΓ ) and Γ M � ⊕l

k=1 Γ M ′
k .

Proof We know that the operation · that defines M as a Γ -module is given by f ·m = f (m)

for f ∈ Γ and m ∈ M . On the other hand, the Γ -module associated to the representation
(Mi, fα)ni=1 is the abelian group M = ⊕n

i=1 Mi with the operation � defined in Remark
3. So we only need to show that f (m) = f � m for each m ∈ M and each f ∈ Γ . Since
ΛM = ⊕n

i=1 Mi , it is sufficient to show that f (ms) = f � ms for each ms ∈ Ms and each
f ∈ Γ .

As we observed in Remark 3, the fα’s together with the complete set e1, e2, ..., en of
primitive ortogonal idempotents generate the algebra Γ . Then, it only remains to prove that
ei(ms) = ei � ms and, for α : s → r in QΓ , that fα(ms) = fα � ms for each ms ∈ Ms and
each fα : Ms → Mr . This holds due to Remark 3.

Now, M ′
k = (Mi(k), fα(k))ni=1 is a representation of QΓ . The fact that the linear maps

fα(k) satisfy the relations in IΓ is a direct consequence of the fact that the fα’s do so, as we
observed in Remark 4. Then M ′

k is a representation of (QΓ , IΓ ). Moreover, we have that

l⊕

k=1

M ′
k =

(
l⊕

k=1

Mi(k),

l⊕

k=1

fα(k)

)n

i=1

= (Mi, fα)ni=1 .

So the modules
⊕l

k=1 Γ M ′
k and Γ M are isomorphic. This completes the proof of the

theorem.

Keeping the above notations, we obtain that in the diagram

the rows describe the summands of ΛM , and the columns describe the summands M ′
k of

Γ M given in the previous theorem, for any arrow β : k → t in QΛ.

Remark 5 Let M be a Λ-module such that Γ M � ⊕l
k=1 Γ M ′

k , with the notations used in
Theorem 1. Then Γ M ′

k � HomΛ(Pk,M) � DHomΛ(M, Ik). In fact, the first isomorphism
holds because

Γ M ′
k � ⊕n

i=1Mi(k) � ⊕n
i=1HomΛ(Pk,Mi) � HomΛ(Pk,M) � ekM.

The second isomorphism is a well known fact (see [4], Chapter III, Lemma 2.11).

The next example illustrates Theorem 1.
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Example 1 Let � be the path algebra of the quiver

QΛ : ◦
1

−→ ◦
2

−→ ◦
3
.

Consider the Λ-module M = ⊕3
i=1 Mi , with M1 = 3, M2 = 1 and M3 = 1

2
3

. In this case,

the algebra Γ = EndΛ(M) is given by the quiver

QΓ : ◦
1

ε−→ ◦
3

μ−→ ◦
2

with the relation με = 0.
We want to give a description of M as Γ -module. In the next diagram the rows represent

the summands of ΛM , and the vertical arrows correspond to the morphisms between the
Mi’s associated to the arrows ε and μ in the quiver of Γ .

Here, the columns represent the summands of Γ M . That is,

Γ M = 3
2 ⊕ 3 ⊕ 1

3 .

In this case, these summands are indecomposable.

In the following example we show that the summands that appear in the description of
M as Γ -module are not always indecomposable.

Example 2 Let � be the path algebra of the quiver

and consider the Λ-module M = M1 ⊕ M2, where M1 = 2 and M2 = 1 1
2 2 2 . In this

case, the algebra Γ = EndΛ(M) is defined by the quiver

In what follows, we describe M as Γ -module.
In the next diagram the rows represent the summands of ΛM , and the vertical arrows

correspond to the morphism between the Mi’s which determine the arrows in the quiver of
Γ .
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where h1 =
(

1 0
0 1
0 0

)
, h2 =

(
0 0
1 0
0 1

)
and ιj is the inclusion map in the j -th coordinate for

j = 1, 2, 3. Here, the columns represent the summands of Γ M . That is

Γ M = ( 2 ⊕ 2 ) ⊕ 1
2 2 2 .

In this case, we obtain that the first summand Γ M1 = 2 ⊕ 2 is not indecomposable.

Diverse questions arise from Theorem 1, among them: when are the M ′
k’s all indecom-

posable modules?, when are they all non-zero?, when are they pairwise non-isomorphic?
We next remind the reader of some necessary concepts to answer these questions (see [5]
and [4]).

Let S and T be rings. For a left S-module M we have a canonical map

λ : S → EndT op (M)

such that for s ∈ S and m ∈ M , λ(s) : m → sm. And for a right T -module M we have a
canonical map

ρ : T → EndS(M)

such that for m ∈ M and t ∈ T , ρ(t) : m → mt .
The module SM (respectively, MT ) is faithful if and only if λ (respectively, ρ) is

injective.
For a bimodule SMT the maps λ and ρ are ring homomorphisms. Then SMT is said to

be a balanced bimodule, if both λ and ρ are surjective. If λ and ρ are isomorphisms then
SMT is called a faithfully balanced bimodule.

Also we recall that a Λ-module M is sincere if every simple Λ-module is a composition
factor of M . This is the case if and only if HomΛ(P,M) �= 0 for all projective Λ-modules
P �= 0.

Proposition 2 Let ΛM = ⊕n
i=1 Mi , where the Mi’s are pairwise non-isomorphic inde-

composableΛ-modules, and let l be the number of pairwise non-isomorphic simple modules
of Λ. Let Γ = EndΛ(M) and let Γ M � ⊕l

k=1 M ′
k be the decomposition given in Theorem

1. Then:

(a) ΛM is sincere if and only if Γ M ′
k �= 0 for all k = 1, ..., l.

(b) If ΛMΓ op is a faithfully balanced bimodule, then the Γ -modules M ′
k are pairwise

non-isomorphic and indecomposable.

Proof We recall that M ′
k = (Mi(k), fα(k))ni=1.

(a) Suppose that M is sincere and that there exists s ∈ {1, ..., l} such that M ′
s = 0. Then

Mi(s) = 0 for all i = 1, ..., n. That is, 0 = esM = HomΛ(Ps,M), which contradicts the
sincerity of M . Thus, Γ M ′

k �= 0 for all k = 1, ..., l.
Now, suppose that Γ M ′

k �= 0 for all k = 1, ..., l. Then, for each k = 1, ..., l, there exists
i ∈ {1, ..., n} such that Mi(k) �= 0. That is, for each k = 1, ..., l, there exists i ∈ {1, ..., n}
such that HomΛ(Pk,Mi) �= 0. Hence, HomΛ(Pk,M) �= 0 for all k = 1, ..., l, which proves
that M is sincere.

(b) Next, we assume that ΛMΓ op is a faithfully balanced bimodule. In particular, ΛM

is faithful. Then, M is a sincere Λ-module and then, by (a), it follows that Γ M ′
k �= 0

for all k = 1, ..., l. Since we assume that ΛMΓ op is a faithfully balanced bimodule,
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we have an algebra isomorphism Λ � EndΓ ( Γ M) = �. So the number of pairwise
non-isomorphic simple modules of � is l. Since Λ is basic, � is also basic. Thus the
l projective summands HomΓ (M ′

1,M), HomΓ (M ′
2, M), ..., HomΓ (M ′

l ,M) of � are pair-
wise non-isomorphic. Then these are all the indecomposable projective modules. Finally,
from the duality between add( Γ M) and proj(�) we get that M ′

1,M
′
2, ..., M ′

l are pairwise
non-isomorphic and indecomposable.

Example 3 The next example shows that the fact that a Λ-module is faithful does not guar-
antee that in its decomposition in direct sum of Γ -modules, the summands are pairwise
non-isomorphic.

Let Λ be the path algebra of the quiver

◦
1

−→ ◦
2

−→ . . . −→ ◦
l
.

and ΛM = ΛP1. Then M is a faithful Λ-module and, since Γ = EndΛ(M) � K , we have
that Γ M � Kl .

Example 4 Let Λ be the path algebra of the quiver

with the relation α3 = 0, and let us consider the Λ-module M = 1
1 . Here, the algebra

Γ = EndΛ(M) is given by the quiver

with the relation μ2 = 0. It is easy to check that Γ M = 1
1 . In this case Λ �� End( Γ M).

That is, ΛM is not faithfully balanced. From this, it may be conclude that the converse of
Proposition 2 (b) does not hold.

Let T be a basic tilting module. Then it is well known that ΛTΓ op is a faithfully balanced
bimodule. From Proposition 2 we have the following result.

Corollary 1 If ΛT = ⊕n
i=1 Ti is a basic tilting module, then in the decomposition

Γ T = ⊕n
k=1 T ′

k given in Theorem 1, the T ′
k are pairwise non-isomorphic indecomposable

modules.

In [4] (Chapter VI, Section 6) the authors find the composition factors of the indecom-
posable summands of Γ T with different techniques.

For a module ΛX we denote by Gen(X) the full subcategory of all modules Y in mod(Λ)

generated by X, that is, the modules Y such that there exists an integer d ≥ 0 and an
epimorphism Xd → Y of Λ-modules. Cogen(X) is defined dually. We notice that X is a
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generator of mod(Λ) if and only if Λ ∈ add(X), and X is a cogenerator of mod(Λ) if and
only if D(��) ∈ add(X). We recall that a Λ-module X is a � -module (as defined by Colpi
in [2]) if HomΛ(X,−) : Gen( ΛX) → Cogen(D Γ X) is an equivalence of categories. We
next describe Γ M when ΛM is a � -module.

Corollary 2 Let ΛM be a � -module and let Γ M � ⊕l
k=1 M ′

k be the decomposition given
in Theorem 1. Then:

(a) Γ M ′
k �= 0 if and only if Ann( ΛM).Sk = 0, where Sk = Λek/rΛek .

(b) The Γ -modules M ′
k that are non-zero, are pairwise non-isomorphic and indecompos-

able.

Proof Let Φ = Λ/Ann( ΛM). We know that Γ = EndΛ(M) = EndΦ(M). Since ΛM

is a � -module, ΦM is tilting (see [6], Corollary 2). Then, by Corollary 1, ΦM has m

pairwise non-isomorphic indecomposable summands, where m is the number of pairwise
non-isomorphic simple Φ-modules. Then (a) and (b) follow from the fact that the simple
Φ-modules are the simple Λ-modules S such that Ann( ΛM).S = 0.

We next give a description of the projective injective Γ op-modules when all the injective
Λ-modules are in add(M).

Proposition 3 Let M be a cogenerator of mod(Λ) and let Γ op = EndΛ(M)op . If
P is a projective injective Γ op-module then P � HomΛ(M, I) for some injective
Λ-module I .

Proof Since P is projective over Γ op, there exists a module X in add(M) such that
P � HomΛ(M,X). Let j : X → I be an injective envelope of X. Then the induced
monomorphism HomΛ(M, j) : HomΛ(M,X) → HomΛ(M, I) splits, because we assume
that the module HomΛ(M,X) � P is injective. That is, there exists t : HomΛ(M, I) →
HomΛ(M,X) such that t ◦ HomΛ(M, j) = idHomΛ(M,X). We chose X ∈ add(M) and,
since M is a cogenerator of mod(Λ), we know that I ∈ add(M). Using that the func-
tor HomΛ(M,−)|add(M) is full we find h : I → X such that t = HomΛ(M, h), and
using that it is a faithful functor we conclude that idX = h ◦ j . From this, the essential
monomorphism j splits and is thus an isomorphism. This proves that P � HomΛ(M, I),
as desired.

Remark 6 In the particular case when Λ is an artin algebra of finite representation type and
add(M) = mod(Λ), Proposition 3 and its converse are proven in [3] (Chapter VI, Lemma
5.3).

The converse in the above proposition is not true. If I is an injective Λ-module,
HomΛ(M, I) is not always an injective Γ op-module, even assuming that I is in add(M).
In fact, let us consider ΛM = D(Λ) and l the number of pairwise non-isomorphic simple
modules of Λ. We know that, for all k = 1, ..., l, the modules HomΛ(D(Λ), Ik) are pro-
jective over Γ op = End(D(Λ))op � Λ. If Λ is not selfinjective then not all of them are
injective.

Proposition 4 Let M be a Λ-module and let Γ M � ⊕l
k=1 Γ M ′

k be the decomposition
given in Theorem 1.
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(a) IfM is a generator of mod(Λ) thenM ′
1, ..., M ′

l are pairwise non-isomorphic projective
indecomposable Γ -modules. In particular, Γ M is projective.

(b) If M is a cogenerator of mod(Λ) then M ′
1, ..., M

′
l are pairwise non-isomorphic

injective indecomposable Γ -modules. In particular, Γ M is injective.

Proof By Remark 5 we know that Γ M ′
k � HomΛ(Pk,M) � DHomΛ(M, Ik), for all

k = 1, ..., l.
Suppose that M is a generator of mod(Λ). That is, all the projective �-modules are in

add(M). Then, using the duality between add(M) and proj(Γ ), we get that the Γ -modules
M ′

k � HomΛ(Pk, M) are projective indecomposable pairwise non-isomorphic.
Assume now that M is a cogenerator of mod(Λ). That is, all the injective Λ-modules

are in add(M). Then, from the equivalence between add(M) and proj(Γ op) it follows that
the Γ op-modules HomΛ(M, Ik) are projective indecomposable pairwise non-isomorphic.
That is, the Γ -modules M ′

k � DHomΛ(M, Ik) are injective indecomposable pairwise non-
isomorphic.

When ΛM is a generator and a cogenerator of mod(Λ) we obtain a stronger result: not
only Γ M is projective injective, but also any projective injective Γ -module is in add( Γ M),
as we state in the following corollary.

Corollary 3 Assume M is a generator and a cogenerator of mod(Λ). Then the Γ -modules
M ′

k in the decomposition Γ M = ⊕l
k=1 M ′

k given in Theorem 1 are a complete set of
pairwise non-isomorphic indecomposable projective injective modules of mod(Γ ).

Proof Since D(ΛΛ) ∈ add(M) and Λ ∈ add(M), from Proposition 4 we get that the Γ -
modules M ′

k are projective injective indecomposable pairwise non-isomorphic. Now let us
see that these are all. Suppose that N is a projective injective indecomposable Γ -module.
Thus D(N) is a projective injective indecomposable Γ op-module and, by Proposition 3,
D(N) � HomΛ(M, I) for some injective indecomposable Λ-module I . Hence, using
Remark 5, we get N � DHomΛ(M, I) � M ′

k for some 1 ≤ k ≤ l, which completes the
proof of the corollary.

We observe that, if we assume that Λ is a nonsemisimple artin algebra of finite repre-
sentation type and M is an additive generator for mod(Λ), then Γ

op
M = End( ΛM)op is

an Auslander algebra (see [3], Proposition 5.4 in Chapter VI), and the previous corollary
applies in this case.

Example 5 Let Λ be the path algebra of the quiver

with the relations βα = 0 and γα = 0. We consider M as the direct sum of all the inde-
composable Λ-modules. That is, M = ⊕8

i=1 Mi , where M1 = 3, M2 = 4, M3 = 2
3 4 ,

M4 = 2
4 , M5 = 2

3 , M6 = 2, M7 = 1
2 and M8 = 1. Then M is a additive generator for

mod(Λ).
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Here, the algebra Γ = EndΛ(M) is the opposite of the Auslander algebra of Λ, and is
given by the quiver

with the relations ηε = 0, μδ = 0, ξρ = 0 and νη = ωμ (which coincides with the
AR-quiver of Λ). The indecomposable projective injective modules over Γ are:

P7 = I8 = 7
8 , P3 = I7 =

3
4 5

6
7

, P1 = I5 = 1
3
5

and P2 = I4 = 2
3
4
.

Then, by Corollary 3,

Γ M = 7
8 ⊕

3
4 5

6
7

⊕ 1
3
5

⊕ 2
3
4
.

The following example shows that if we only assume that the Λ-module M is a cogener-
ator of mod(Λ), then the summands of M as Γ -module, which we know are injective, are
not necessarily projective.

Example 6 Let Λ be a non-selfinjective algebra and let ΛM = D(ΛΛ). Then Γ =
EndΛ(M) � Λop. In this case, since Λop is also not a selfinjective algebra, we know that
the summands of Γ M = ΛM are injective modules but not all of them are projective.

3 Some Particular Representations

Let M be a basic Λ-module. For Γ = End( ΛM), we consider the functors

mod(Λ)
F

�
G

mod(Γ op),

where F = HomΛ(M,−) and G = M ⊗Γ op −, and the functors

mod(Λ)
F

�
G

mod(Γ ),

where F = HomΛ(−,M) and G = HomΓ (−,M).
Note that,

G = M ⊗Γ op − � DHomΓ (M,D−) � DHomΓ (M,−)D

(see [7] p. 120). Then, we consider the functor H = HomΓ (M,−) : mod(Γ ) →
mod(Λop).

Our aim in this section is to describe the representations associated to the image of a
module under each of these functors.

We know that F and G define inverse equivalences between add(M) and proj(Γ op),
and F and G define inverse dualities between add(M) and proj(Γ ). The following lemma
extends these results and will be useful in what follows. In the proof we use properties of
the trace trM(X) and the reject RejM(X) of M in a module X (see [5], Chapter II).
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Lemma 3 Let M ′ ∈ add(M), X ∈ mod(Λ) and Y ∈ mod(Γ ). Then:

(a) HomΓ op (F ( ΛM ′), F (X)) � HomΛ( ΛM ′, X).
(b) HomΛ(G( Γ M ′),G(Y )) � HomΓ (Y, Γ M ′).
(c) HomΓ (F ( ΛM ′), F (X)) � HomΛ(X, �M ′).
(d) HomΛop (H( Γ M ′),H(Y )) � HomΓ ( Γ M ′, Y ).

Proof Let X ∈ mod(Λ) and Y ∈ mod(Γ ). Let M ′ be a Λ-module such that M ′ ∈ add(M).
It is well known that

trM(X) ∈ Gen(M) and Y/RejM(Y ) ∈ Cogen(M);

and that

F(trM(X)) � F(X) and G(Y/RejM(Y )) � G(Y).

Hence, we are reduced to proving (a) and (b) for X ∈ Gen( ΛM) and Y ∈ Cogen( Γ M),
respectively.

Let X ∈ Gen( ΛM). We now prove that the morphism FM ′,X : HomΛ(M ′, X) →
HomΓ op (F (M ′), F (X)) induced by F is an isomorphism.

The proof that FM ′,X is an epimorphism follows using that F induces an equivalence
between add(M) and proj(Γ op), and from the well known fact that for X ∈ Gen( �M)

we can find an epimorphism f : Mr → X such that F(f ) : F(Mr) → F(X) is also an
epimorphism. To prove that FM ′,X is injective, let t : M ′ → X be such that FM ′,X(t) = 0.

Then any composition Ms g→ M ′ t→ M is zero. Since M ′ is in add(M) we can choose g to
be an epimorphism, and obtain then that t = 0.

Similar arguments applied to the case Y ∈ Cogen( Γ M) prove (b).
The proofs of (c) and (d) are analogous to the previous ones using that X/RejM(X) ∈

Cogen(M) in the first case, and that trM(Y ) ∈ Gen(M) in the other case.

Given a finite dimensional K-algebra A with bounded quiver (QA, IA) and an A-module
X, we will denote by VX = (VX(i), hX,α)i∈QA0 ,α∈QA1

the representation of the quiver
associated to X.

We assume again that l is the number of pairwise non-isomorphic simple modules over
the basic finite dimensional K-algebra Λ, and that M = ⊕n

i=1 Mi , where the Mi’s are
pairwise non-isomorphic indecomposable Λ-modules. Let Γ = End�(M). Then Q�0 =
{1, ..., l} and QΓ

op

0
= {1, ..., n}.

We use the notation established in Remark 3: fε : Mi → Mj is the morphism associated
to the arrow ε : i → j in QΓ1 .

Let α : i → j in QΛ1 and αop : j → i the corresponding arrow in QΛ
op

1
. We denote by

α . the left multiplication by α, which coincides with the right multiplication . αop by αop.

Proposition 5 Let X ∈ mod(Λ), Y ∈ mod(Γ ) and Z ∈ mod(Γ op). Then:

(a) VF(X) = (HomΛ(Mi,X), HomΛ(fε, X))ni=1, where ε ∈ QΓ
op

1
.

(b) VG(Y) = (HomΓ (Y,M ′
i ), HomΓ (Y, (α .)))li=1, where α ∈ QΛ1 .

(c) VF(X) = (HomΛ(X,Mi), HomΛ(X, fε))
n
i=1, where ε ∈ QΓ1 .

(d) VH(Y) = (HomΓ (Γ M ′
i , Y ), HomΓ ((. αop), Y ))li=1, where αop ∈ QΛ

op
1
.

(e) VG(Z) = (Γ M ′
i ⊗Γ op Z, (α .) ⊗Γ op Z)li=1, where α ∈ QΛ1 .
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Proof (a) The vertex of QΓ op associated to Pi = F(Mi) is i. We know that VF(X)(i) =
eiF(X). Here

eiF(X) � HomΓ op (Γ opei, F (X)) � HomΓ op (Pi, F (X)) =
= HomΓ op (F (Mi), F (X)) � HomΛ(Mi,X),

where the last isomorphism is a consequence of Lemma 3 (a). Hence, VF(X)(i) �
HomΛ(Mi,X).

On the one hand if ε : r → s is an arrow of (QΓ op , IΓ op ) we know that hF(X),ε :
erF(X) → esF(X) is the map induced by the left multiplication by ε, that is, hF(X),ε(t) =
ε.t for t ∈ erF(X) � HomΛ(Mr,X). We prove next that hF(X),ε coincides with the map
Hom�(fε,X) : HomΛ(Mr,X) −→ HomΛ(Ms, X). This follows from the fact that ms.ε =
fε(ms) for all ms ∈ Ms (see Remark 3). In fact, for t ∈ HomΛ(Mr, X) and ms ∈ Ms we
have

HomΛ(fε,X)(t)(ms) = (t ◦ fε)(ms) = t (fε(ms)) = t (ms.ε) = (ε.t)(ms).

Then, ε.t = t ◦ fε for all t ∈ HomΛ(Mr,X), which shows that hF(X),ε = HomΛ(fε,X).
Therefore, VF(X) = (HomΛ(Mi,X), HomΛ(fε, X))ni=1, where ε ∈ QΓ

op

1
.

(b) Prior to describing the representation of (QΛ, IΛ) associated to G(Y), let us recall
that M ′

k = (Mi(k), fα(k))ni=1 is a representation of (QΓ , IΓ ) and that Γ M � ⊕l
k=1 Γ M ′

k

(see Theorem 1).
The vertex of QΛ corresponding to the projective �-module Pi is i. We know that

VG(Y)(i) = eiG(Y ). Now, Γ M ′
i � eiM (see Remark 5), and a straightforward argu-

ment proves that eiG(Y ) = eiHomΓ (Y,M) = HomΓ (Y, eiM), so that VG(Y)(i) =
HomΓ (Y,M ′

i ).
Let α : r → s be an arrow in QΛ1 . Since αerG(Y )) = esαG(Y ) ⊂ esG(Y ), the K-linear

map hG(Y),α : erG(Y ) → esG(Y ) is the left multiplication by α. That is, hG(Y),α(t) =
α.t = (α .) ◦ t for all t ∈ erG(Y ) � HomΓ (Y,M ′

r ). Then, hG(Y),α = HomΓ (Y, (α .)).

Finally, VG(Y) = (HomΓ (Y,M ′
i ), HomΓ (Y, (α .)))li=1, where α ∈ QΛ1 .

The proof of (c) is analogous to (a) using (c) of Lemma 3.
(d) The vertex of QΛ corresponding to the projective �-module Pi is i. Since Γ M ′

i �
eiM , one can readily verify that VH(Y)(i) = e

op
i H(Y ) � H(Y)ei � HomΓ (Γ M ′

i , Y ).
The arrow αop : s → r in QΛ

op

1
correspond to the arrow α : r → s in QΛ1 . Then

the K-linear map hH(Y ),αop : H(Y)es → H(Y)er is the right multiplication by αop . That
is, hH(Y ),αop (t) = t ◦ (α .) = t ◦ (. αop) for all t ∈ H(Y)es � HomΓ ( Γ M ′

s , Y ). Then,
hH(Y ),αop = HomΓ ((. αop), Y ).

Hence, VH(Y) = (HomΓ ( Γ M ′
i , Y ), HomΓ ((. αop), Y ))li=1, where αop ∈ Q�

op

1
.

(e) Using the item (d), we can prove that for a Γ op-module Z the representation of
(QΛ, IΛ) associated to the Λ-module G(Z) � (DHD)(Z) is

VG(Z) = (DHomΓ ( Γ M ′
i , DZ),DHomΓ ((. αop),DZ))li=1 =

= ( Γ M ′
i ⊗Γ op Z, (α .) ⊗Γ op Z)li=1,

where α ∈ QΛ1 .

To illustrate the results in this section we use the algebra Λ given in Example 1. Then Λ

is the path algebra of the quiver

QΛ : ◦
1

α−→ ◦
2

β−→ ◦
3
,
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and we consider the Λ-module M = ⊕3
i=1 Mi , with M1 = 3, M2 = 1 and M3 = 1

2
3

. We

will give two examples. In the first one we choose a Λ-module X and find the representation
of (QΓ op , IΓ op ) associated to the Γ op-module F(X). In the second one we calculate the
representation of QΛop associated to the Λop-module H(Y), for a Γ -module Y .

Example 7 We know that the algebra Γ op = EndΛ(M)op is given by the quiver

QΓ op : ◦
1

ε←− ◦
3

μ←− ◦
2

with the relation εμ = 0.
Next, given the Λ-module X = S1, we want to describe the representation of

(QΓ op , IΓ op ) associated to the Γ op-module

F(X) = HomΛ(M,X) = Hom�(3 ⊕ 1 ⊕ 1
2
3
, 1).

By (a) of Proposition 5 we know that the representation associated to F(X) is
(HomΛ(Mi,X), HomΛ(fη,X))3

i=1, where η runs the set of arrows of QΓ op . Now,
HomΛ(M1, X) = HomΛ(3, 1) = 0, and HomΛ(Mi,X) � K for i = 1, 2. Then we get a
commutative diagram

Thus, F(X) = 2
3 .

Example 8 The algebra Γ = EndΛ(M) is given by the quiver

QΓ : ◦
1

ε−→ ◦
3

μ−→ ◦
2

with the relation με = 0. Moreover, Γ M = ⊕3
k=1 Γ M ′

k , where Γ M ′
1 = 3

2 , Γ M ′
2 = 3

and Γ M ′
3 = 1

3 (see Example 1).
Now we consider Γ Y = 1

3 . Our aim is to calculate the representation of QΛop associated
to the Λop-module

H(Y) = HomΓ (M, Y ) = HomΓ ( 3
2 ⊕ 3 ⊕ 1

3 , 1
3 ).

We know that it is (HomΓ ( Γ M ′
i , Y ), HomΓ ((. γ ), Y ))3

i=1, where γ runs the set of arrows
of QΛop . Since Hom( Γ M ′

i , Y ) � K for i = 1, 2, 3, we obtain the following commutative
diagram

Hence, H(Y) = 3
2
1

.
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