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Abstract We show that if two Hopf algebras are monoidally equivalent, then their cate-
gories of bicovariant differential calculi are equivalent. We then classify, for q ∈ C

∗ not
a root of unity, the finite dimensional bicovariant differential calculi over the Hopf alge-
bra Oq(SL2). Using a monoidal equivalence between free orthogonal Hopf algebras and
Oq(SL2) for a given q, this leads us to the classification of finite dimensional bicovariant
differential calculi over free orthogonal Hopf algebras.
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1 Introduction

The notion of differential calculus over a Hopf algebra has been introduced by Woronowicz
in [15], with the purpose of giving a natural adaptation of differential geometry over groups,
in the context of quantum groups. An important question in this topic, is the classification
of bicovariant differential calculi over a given Hopf algebra, see for example [2, 9] or [7].

The aim of the present paper is to classify the finite dimensional (first order) bicovariant
differential calculi over an important class of Hopf algebras, namely the free orthogonal
Hopf algebras, also called Hopf algebras associated to non-degenerate bilinear forms [5].
Given an invertible matrix E ∈ GLn(C) with n � 2, the free orthogonal Hopf algebra
B(E) associated with E is the universal Hopf algebra generated by a family of elements
(aij )1�i,j�n submitted to the relations:

E−1atEa = In = aE−1atE,
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where a is the matrix (aij )1�i,j�n. Its coproduct, counit and antipode are defined by:

�(aij ) =
n∑

k=1

aik ⊗ akj , ε(a) = In, S(a) = E−1atE.

The Hopf algebraB(E) can also be obtained as an appropriate quotient of the FRT bialgebra
associated to Yang-Baxter operators constructed by Gurevich [6].

If EE = λIn, with λ ∈ R
∗, there exists an involution ∗ on B(E) defined by a∗

ij =(
E−1atE

)
ji
, endowing B(E) with a Hopf ∗-algebra structure. This Hopf ∗-algebra cor-

responds to a free orthogonal compact quantum group as defined in [14] or [1], and is
generally denoted by Ao((E

t )−1). This justifies the term “free orthogonal Hopf algebra”
for B(E).

The starting point of our classification is a result of [3], which states that if q ∈ C
∗ satis-

fies q2 + tr(E−1Et)q + 1 = 0, then the Hopf algebras B(E) and Oq(SL2) are monoidally
equivalent, i.e. their categories of comodules are monoidally equivalent. The proof of [3],
is based on a deep result of Schauenburg [12], and gives an explicit description of the
correspondence between B(E)-comodules and Oq(SL2)-comodules. We use here similar
arguments to show that if two Hopf algebras are monoidally equivalent, then their categories
of bicovariant differential calculi are equivalent (Theorem 3.2). This theorem generalizes
a result of [10], where the two monoidally equivalent Hopf algebras are assumed to be
related by a cocycle twist. Applying Theorem 3.2 to the Hopf algebras B(E) andOq(SL2),
the study of bicovariant differential calculi over the Hopf algebra B(E) is simplified, and
therefore reduces to the study of bicovariant differential calculi overOq(SL2).

This classification has been made over Oq(SL2) in [7] for transcendental values of q

(which is not the case here since q has to satisfy q2 + tr(E−1Et)q + 1 = 0). Our classifi-
cation uses a different approach than in [7], and is based on the classification of the finite
dimensionalOq(SL2)-Yetter-Drinfeld modules made in [13].

The paper is organized as follows. We gather in Section 2 some known results about
bicovariant differential calculi over Hopf algebras, and their formulation in terms of Yetter-
Drinfeld modules. Furthermore, we show that if the category of Yetter-Drinfeld modules
over a Hopf algebra H is semisimple, then the bicovariant differential calculi over H are
inner. In Section 3, using the language of cogroupoids [4], we prove that two monoidally
equivalent Hopf algebras have equivalent categories of bicovariant differential calculi. We
finally classify in Section 4 the finite dimensional bicovariant differential calculi over the
Hopf algebraOq(SL2) for q ∈ C

∗ not a root of unity, using the fact that by [13] the category
of finite dimensional Yetter-Drinfeld modules over Oq(SL2) is semisimple. This allows to
classify the finite dimensional bicovariant differential calculi over B(E), provided that the
solutions of the equation q2 + tr(E−1Et)q + 1 = 0 are not roots of unity.

1.1 Notations and Conventions

Let H be a Hopf algebra. Its comultiplication, antipode and counit will respectively be
denoted by �, S and ε. A coaction of a left (respectively right) H -comodule will generally
be denoted by λ (respectively ρ).

We will use Sweedler’s notations:�(x) = ∑
x(1)⊗x(2) for x ∈ H , and ρ(v) = ∑

v(0)⊗
v(1) for v in a right comodule V .
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2 Bicovariant Differential Calculi

We start this section by recalling the definition of a bicovariant differential calculus, and
of the equivalent notion, expressed in terms of Yetter-Drinfeld modules (called reduced
differential calculus in this paper). We then prove some basic lemmas which will be useful
in the sequel. The main result of this section states that if the category of (finite dimensional)
Yetter-Drinfeld modules over a Hopf algebra H is semisimple, then the (finite dimensional)
bicovariant differential calculi over H are inner.

We refer to [8] for background material on Hopf algebras and comodules.

Definition 2.1 Let H be a Hopf algebra. A Hopf bimodule M over H is an H -bimodule
together with a left comodule structure λ : M → H ⊗ M and a right comodule structure
ρ : M → M ⊗ H such that:

• ∀x, y ∈ H, ∀v ∈ M , λ(x.v.y) = �(x).λ(v).�(y),
• ∀x, y ∈ H, ∀v ∈ M , ρ(x.v.y) = �(x).ρ(v).�(y),
• (idH ⊗ ρ) ◦ λ = (λ ⊗ idH ) ◦ ρ.

The category of Hopf bimodules over H , whose morphisms are the maps which are right
and left linear and colinear over H , is denoted by H

HMH
H .

Definition 2.2 Let H be a Hopf algebra. A (right) Yetter-Drinfeld module over H is a right
H -module and a right H -comodule V such that:

∀x ∈ H,∀v ∈ V,
∑

(v.x)(0) ⊗ (v.x)(1) =
∑

v(0).x(2) ⊗ S(x(1))v(1)x(3).

The category of Yetter-Drinfeld modules over H , whose morphisms are the maps which are
both linear and colinear over H , is denoted by YD(H). The category of finite dimensional
Yetter-Drinfeld modules over H is denoted by YDf (H).

Example 2.1 Let H be a Hopf algebra. We denote by Cε the Yetter-Drinfeld module whose
base-space is C, with right coaction λ �→ λ ⊗ 1 and right module structure defined by
λ 	 x = λε(x) for λ ∈ Cε and x ∈ H .

We recall from [11] the correspondence between Yetter-Drinfeld modules and Hopf
bimodules.

Theorem 2.1 ([11, Theorem 5.7]) Let H be a Hopf algebra. The categories H
HMH

H and
YD(H) are equivalent.

We describe for convenience the equivalence of categories involved in the previous
theorem.

Let M be a Hopf bimodule over H , with right coaction ρ and left coaction λ. The space
invM = {v ∈ M ; λ(v) = 1 ⊗ v} of left-coinvariant elements of M has a Yetter-Drinfeld
module structure defined as follows. We have ρ(invM) ⊂ invM ⊗H , and the right coaction
of invM is just the restriction of ρ to invM . The right module structure is defined by w	x =∑

S(x(1)).w.x(2).
Conversely, given a Yetter-Drinfeld module V , then the space H ⊗ V can be equipped

with a Hopf bimodule structure, with left and right actions given by:

x.(y ⊗ v).z =
∑

xyz(1) ⊗ v 	 z(2),
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and the right (ρ) and left (λ) coactions given by:

ρ(x ⊗ v) =
∑

x(1) ⊗ v(0) ⊗ x(2)v(1),

λ(x ⊗ v) =
∑

x(1) ⊗ x(2) ⊗ v.

We then have for M ∈ H
HMH

H , M ∼= H ⊗ invM and for V ∈ YD(H), V ∼= inv(H ⊗V ).
The equivalence of categories between H

HMH
H and YD(H) is then:

F :HHMH
H → YD(H)

M �→ invM,

with quasi-inverse G :YD(H)→ H
HMH

H

V �→ H ⊗ V.

A morphism f : M → N in H
HMH

H automatically satisfies f (invM) ⊂ invN , and F(f ) :
invM → invN is just the restriction of f . Conversely, if f : V → W is a morphism of
Yetter-Drinfeld modules, then G(f ) = idH ⊗ f .

Definition 2.3 Let H be a Hopf algebra. A (first order) bicovariant differential calculus
(M, d) over H is a Hopf bimodule M together with a left and right comodule mor-
phism d : H → M such that ∀x, y ∈ H, d(xy) = x.d(y) + d(x).y and such that
M = span{x.d(y) ; x, y ∈ H }.

A bicovariant differential calculus (M, d) is said inner if there exists a bi-coinvariant
element θ ∈ M (i.e. satisfying ρ(θ) = θ ⊗ 1 and λ(θ) = 1 ⊗ θ) such that ∀x ∈ H, d(x) =
θ.x − x.θ .

The dimension of a bicovariant differential calculus (M, d) is the dimension of the vector
space invM .

A morphism of bicovariant differential calculi f : (M, dM) → (N, dN) is a morphism
of Hopf bimodules such that f ◦ dM = dN .

We denote by DC(H) the category of bicovariant differential calculi over H .

Bicovariant differential calculi were introduced by Woronowicz in [15]. An overview
is given in [8, Part IV.]. The notion of bicovariant differential calculus has the following
interpretation in terms of Yetter-Drinfeld modules.

Definition 2.4 Let H be a Hopf algebra. A reduced differential calculus over H is a Yetter-
Drinfeld module V together with a surjective map ω : H → V satisfying:

∀x, y ∈ H, ω(xy) = ω(x).y + ε(x)ω(y) and
∑

ω(x)(0) ⊗ ω(x)(1) =
∑

ω(x(2)) ⊗ S(x(1))x(3).

A morphism of reduced differential calculi f : (V , ωV ) → (W,ωW ) is a morphism of
Yetter-Drinfeld modules such that f ◦ ωV = ωW .

We denote byRDC(H) the category of reduced differential calculi over H .

Lemma 2.1 The equivalence of categories of Theorem 2.1 induces an equivalence between
the categories DC(H) andRDC(H):

F :DC(H)→ RDC(H)

(M, d) �→ (invM,ωd)

with quasi-inverse G :RDC(H)→ DC(H)

(V, ω) �→ (H ⊗ V, dω)

where for x ∈ H , ωd(x) = ∑
S(x(1))d(x(2)) and dω(x) = ∑

x(1) ⊗ ω(x(2)).
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Proof The one-to-one correspondence between bicovariant differential calculi and reduced
differential calculi is described in [8, Section 14]. We may now focus on the functoriality of
this correspondence.

If f : (M, dM) → (N, dN) is a morphism of bicovariant differential calculi, then the
restriction of f , F(f ) : invM → invN satisfies for all x ∈ H ,

F(f ) ◦ ωdM
(x) =

∑
f

(
S(x(1))dM(x(2))

) =
∑

S(x(1))f (dM(x(2))) =
∑

S(x(1))dN (x(2)) = ωdN
(x).

Hence F(f ) is a morphism of reduced differential calculi.
Conversely, if f : (V , ωV ) → (W,ωW ) is a morphism of reduced differential calculi,

then

(idH ⊗ f ) ◦ dωV
(x) =

∑
x(1) ⊗ f (ωV (x(2))) =

∑
x(1) ⊗ ωW (x(2)) = dωW

(x).

Thus G(f ) = idH ⊗ f is a morphism of bicovariant differential calculi.
Since F and G are quasi-inverse to each other between the categories YD(H) and

H
HMH

H , it only remains to check that the natural transformation providing the equivalence
F ◦ G ∼= id (respectively G ◦ F ∼= id) consists of morphisms of reduced (respectively
bicovariant) differential calculi. Let (V , ω) be a reduced differential calculus over H . The
isomorphism of Yetter-Drinfeld modules

θ :F ◦ G(V ) = inv(H ⊗ V )→ V

x ⊗ v �→ ε(x)v

satisfies for x ∈ H ,

θ ◦ ωdω (x) = θ
(∑

S(x(1))dω(x(2))
)

= θ
(∑

S(x(1))x(2) ⊗ ω(x(3))
)

= θ(1 ⊗ ω(x)) = ω(x).

Thus θ is an isomorphism of reduced differential calculi.
Conversely, let (M, d) be a bicovariant differential calculus over H . The isomorphism

of Hopf bimodules

γ :G ◦ F(M) = H ⊗ invM → M

x ⊗ v �→ x.v

satisfies for x ∈ H ,

γ ◦ dωd
(x) = γ

(∑
x(1) ⊗ ωd(x(2))

)
= γ

(∑
x(1) ⊗ S(x(2))d(x(3))

)
=

∑
ε(x(1))d(x(2)) = d(x).

Hence γ is a morphism of bicovariant differential calculi, which ends the proof.

Remark 2.1 Let V be a Yetter-Drinfeld module, and let ω : H → V be a map satisfying all
the axioms of a reduced differential calculus, except the surjectivity condition. Then Im(ω)

is a Yetter-Drinfeld submodule of V . Indeed, we have ω(x).y = ω(xy) − ε(x)ω(y) =
ω(xy−ε(x)y) ∈ Im(ω) for all x, y ∈ H , thus Im(ω) is a submodule of V , and

∑
ω(x)(0)⊗

ω(x)(1) = ∑
ω(x(2)) ⊗ S(x(1))x(3) ∈ Im(ω) ⊗ H , thus Im(ω) is a subcomodule of V .

Definition 2.5 A reduced differential calculus (V , ω) is said inner if there exists a coin-
variant element θ ∈ V (i.e. satisfying ρ(θ) = θ ⊗ 1) such that ∀x ∈ H, ω(x) =
θ.x − ε(x)θ .
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A reduced differential calculus ω : H → V is said simple if V is a simple Yetter-
Drinfeld module. That is to say, if there is no non-trivial subspace W ⊂ V , which is both a
submodule and a subcomodule of V .

Let (V , ω), (W1, ω1), (W2, ω2) be reduced differential calculi. We say that (V , ω) is
the direct sum of (W1, ω1) and (W2, ω2) and we write (V , ω) = (W1, ω1) ⊕ (W2, ω2), if
V = W1 ⊕ W2 and if for all x ∈ H , ω(x) = (ω1(x), ω2(x)).

Note that the direct sum of reduced differential calculi is not always well defined. The
problem is that if (V , ωV ) and (W,ωW ) are reduced differential calculi over a Hopf algebra
H , then the map

ω :H → V ⊕ W

x �→ (ωV (x), ωW (x))

can fail to be surjective. We give in the next lemma a necessary and a sufficient condition
for the existence of the direct sum of simple reduced differential calculi.

Lemma 2.2 Let (V1, ω1), . . . , (Vn, ωn) be simple reduced differential calculi over a Hopf
algebra H . We set

ω :H → V =
n⊕

i=1
Vi

x �→ (w1(x), . . . , wn(x))

.

If the Vi’s are two-by-two non isomorphic as Yetter-Drinfeld modules, then (V , ω) is a
reduced differential calculus.

Conversely, if (V , ω) is a reduced differential calculus, then the reduced differential
calculi (Vi, ωi) are two-by-two non-isomorphic.

Proof The map ω clearly satisfies all the axioms of a reduced differential calculus, except
the surjectivity condition. In order to prove the lemma, we thus have to examine under
which conditions ω is onto. Assume that the Vi’s are two-by-two non-isomorphic (as Yetter-
Drinfeld modules). According to Remark 2.1, the image of ω is a Yetter-Drinfeld submodule
of V . There is therefore a subset I ⊂ {1, . . . , n} such that there exists an isomorphism of
Yetter-Drinfeld modules f : Im(ω) → ⊕

i∈I
Vi . For k ∈ {1, . . . , n}, we denote by πk : V →

Vk the canonical projection. The map πk ◦ω = ωk is onto, thus the restriction of πk to Im(ω)

is also onto. This means that πk induces a non-zero morphism of Yetter-Drinfeld modules⊕
i∈I

Vi → Vk , hence an isomorphism of Yetter-Drinfeld modules Vl
∼= Vk , with l ∈ I . Since

by hypothesis the Vi’s are two-by-two non-isomorphic, we have k = l, hence k ∈ I . Thus
I = {1, . . . , n}, Im(ω) = V , and we conclude that ω : H → V is a reduced differential
calculus.

Assume now that there is an isomorphism f : (Vj , ωj ) → (Vi, ωi) with i = j . We
denote by η : H → Vi ⊕ Vi the map defined by the composition

The map η is clearly not surjective, since η(x) = (ωi(x), f ◦ ωj (x)) = (ωi(x), ωi(x)).
This implies that ω is not surjective, since πi ⊕ πj and id ⊕ f are both surjective.

Lemma 2.3 Let V be a simple Yetter-Drinfeld module over a Hopf algebra H , admitting
a non-zero right-coinvariant element θ ∈ V . If V is not isomorphic to the Yetter-Drinfeld
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module Cε (of Example 2.1), then the map

ωθ :H → V

x �→ θ.x − ε(x)θ

defines a reduced differential calculus over H .

Proof We have for x ∈ H ,

ωθ(x).y + ε(x)ωθ (y) = (θ.x − ε(x)θ).y + ε(x)(θ.y − ε(y)θ)

= (θ.x).y − ε(x)ε(y)θ = ωθ(xy)

and

ρ ◦ ωθ(x) = ρ(θ.x) − ε(x)θ ⊗ 1

=
∑

θ.x(2) ⊗ S(x(1)).1.x(3) − ε(x)θ ⊗ 1

=
∑

θ.x(2) ⊗ S(x(1))x(3) −
∑

ε(x(2))θ ⊗ S(x(1))x(3)

=
∑

ωθ(x(2)) ⊗ S(x(1))x(3).

By Remark 2.1, the image of ωθ is thus a Yetter-Drinfeld submodule of V . Since V is sim-
ple, the image of ωθ is either V , in which case ωθ is indeed a reduced differential calculus,
or Im(ωθ ) = (0). In that case, since θ is coinvariant and θ.x = ε(x)θ for all x ∈ H , the map
μ : Cε → V given by μ(λ) = λθ is a non-zero morphism between simple Yetter-Drinfeld
modules, hence an isomorphism.

The end of this section is devoted to the proof of the following lemma.

Lemma 2.4 Let H be a Hopf algebra such that the category YDf (H) is semisimple (i.e.
each finite dimensional Yetter-Drinfeld module over H can be decomposed into a direct
sum of simple Yetter-Drinfeld modules). Then each finite dimensional reduced differential
calculus over H is inner.

Definition 2.6 Let (V , ω) be a reduced differential calculus. We denote by Vω the Yetter-
Drinfeld module over H defined as follows. As a right comodule, Vω = V ⊕ C (where the
H -comodule structure on C is the canonical one: λ → λ ⊗ 1). Its right module structure is
defined for v ∈ V , λ ∈ C and x ∈ H by: (v, λ).x = (v.x + λω(x), λε(x)). Let us check
that this formula defines an H -module structure on V ⊕ C. We have

((v, λ).x).y = (v.x + λω(x), λε(x)).y = ((v.x + λω(x)).y + λε(x)ω(y), λε(x)ε(y))

= (v.(xy) + λω(xy), λε(xy)) = (v, λ).(xy),

and the other axioms of a right module are clearly satisfied. Before checking that the Yetter-
Drinfeld condition is satisfied on Vω, let us note that, denoting by j : V → V ⊕ C the
canonical injection, and by p : V ⊕C → Cε the canonical projection, then clearly j and p

are both module and comodule maps, and the short sequence:
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is exact. Since V is a Yetter-Drinfeld module and j : V → Vω is a module and comodule
morphism, the Yetter-Drinfeld condition:

∀x ∈ H, ρ(w.x) =
∑

w(0).x(2) ⊗ S(x(1))w(1)x(3)

is automatically satisfied for w ∈ j (V ). Hence it only remains to check that the Yetter-
Drinfeld condition is also satisfied on C, that is, that for all x in H , ρ((0, 1).x) =∑

(0, 1).x(2) ⊗ S(x(1))x(3). We have for x ∈ H
∑

(0, 1).x(2) ⊗ S(x(1))x(3) =
∑

(ω(x(2)), ε(x(2))) ⊗ S(x(1))x(3)

= (j ⊗ id)
(∑

ω(x(2)) ⊗ S(x(1))x(3)

)
+ (0, 1) ⊗ ε(x)

= (j ⊗ id) ◦ ρ(ω(x)) + (0, 1) ⊗ ε(x)

= ρ(j (ω(x))) + ρ(0, ε(x)) = ρ(ω(x), ε(x)) = ρ((0, 1).x),

hence Vω is indeed a Yetter-Drinfeld module, and

is a short exact sequence of Yetter-Drinfeld modules.

Lemma 2.5 A reduced differential calculus (V , ω) is inner if and only if the short exact
sequence of Yetter-Drinfeld modules

splits.

Proof Assume first that (V , ω) is inner. Let θ ∈ V be a right-coinvariant element such that
ω = x �→ θ.x − ε(x)θ . We set

r : Vω → V

(v, λ) �→ v + λθ.

It is a comodule morphism since for v ∈ V , λ ∈ C,

(r ⊗ id) ◦ ρ(v, λ) = (r ⊗ id) ◦ ρ ◦ j (v) + (r ⊗ id)((0, λ) ⊗ 1)

= ((r ◦ j) ⊗ id) ◦ ρ(v) + λθ ⊗ 1

= ρ(v) + λρ(θ) = ρ ◦ r(v, λ).

And we have for v ∈ V , λ ∈ C and x ∈ H ,

r((v, λ).x)=r(v.x+λω(x), λε(x))=v.x+λθ.x−λε(x)θ+λε(x)θ =(v+λθ).x =r(v, λ).x.

Hence r is a Yetter-Drinfeld module morphism satisfying r ◦ j = idV , so that the above
sequence splits.

Assume conversely that the short exact sequence of Yetter-Drinfeld modules associated
to (V , ω) splits:

We set θ = r(0, 1). Then ρ(θ) = ρ ◦r(0, 1) = (r ⊗ id)◦ρ(0, 1) = θ ⊗1 and for x ∈ H ,

θ.x−ε(x)θ = r((0, 1).x)−r(0, ε(x))=r ((ω(x), ε(x))−(0, ε(x))) = r(j (ω(x))) = ω(x).
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Hence the result.

Lemma 2.4 follows immediately.

3 Monoidal Equivalence

We show in this section that if two Hopf algebras are monoidally equivalent, then their
categories of bicovariant differential calculi are also equivalent. In order to describe the
equivalence between the categories DC(H) and DC(L), when H and L are monoidally
equivalent Hopf algebras, we will need some definitions and results about cogroupoids,
which we recall here. We refer to [4] for a survey on the subject.

Definition 3.1 A cocategory C consists of:

• a set of objects ob(C),
• for all X, Y ∈ ob(C), an algebra C(X, Y ),
• for all X, Y,Z ∈ ob(C), algebra morphisms �Z

X,Y : C(X, Y ) → C(X,Z) ⊗ C(Z, Y )

and εX : C(X,X) → C such that for all X, Y,Z, T ∈ ob(C), the following diagrams
commute:

A cocategory is said to be connected if for all X, Y ∈ ob(C), C(X, Y ) is a non-zero algebra.

Definition 3.2 A cogroupoid C is a cocategory equipped with linear maps SX,Y :
C(X, Y ) → C(Y,X) such that for all X, Y ∈ ob(C), the following diagrams commute:

where m denotes the multiplication and u the unit.

We will use Sweedler notations for cogroupoids:

for aX,Y ∈ C(X, Y ), �Z
X,Y (aX,Y ) =

∑
a

X,Z
(1) ⊗ a

Z,Y
(2) .
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Theorem 3.1 ([4, Proposition 1.16 and Theorem 6.1]) Let H and L be two Hopf alge-
bras such that there exists a linear monoidal equivalence between their categories of
right comodules MH and ML. Then there exists a linear monoidal equivalence between
YD(H) and YD(L), inducing an equivalence between the categories of finite dimensional
Yetter-Drinfeld modules YDf (H) and YDf (L).

Let us recall the construction of this equivalence. As a consequence of [12], restated
in the context of cogroupoids, the existence of a linear monoidal equivalence between the
categoriesMH andML is equivalent to the existence of a connected cogroupoid C and two
objects X, Y ∈ ob(C) such that H ∼= C(X,X) and L ∼= C(Y, Y ) (see [4, Theorem 2.10]).
Then the equivalence between the categories YD(H) and YD(L) is given by the functor:

FY
X :YD(C(X,X))→ YD(C(Y, Y ))

V �→ V �
C(X,X)

C(X, Y ),

where V �
C(X,X)

C(X, Y ) is the space:

{
∑

i

vi ⊗ a
X,Y
i ∈ V ⊗ C(X, Y ) ;

∑
vi(0) ⊗ v

X,X
i(1) ⊗ a

X,Y
i =

∑
vi ⊗ a

X,X
i(1) ⊗ a

X,Y
i(2)

}
.

The right L ∼= C(Y, Y )-module structure of V �
C(X,X)

C(X, Y ) is given by:

(
∑

i

vi ⊗ a
X,Y
i

)
	 bY,Y =

∑

i

vi .b
X,X
(2) ⊗ SY,X(b

Y,X
(1) )a

X,Y
i b

X,Y
(3)

and its right comodule structure is given by the map idV ⊗ �Y
X,Y . The quasi-inverse of FY

X

is the functorFX
Y . By [4, Proposition 1.16], the functorFY

X induces an equivalence between
the categories of finite dimensional Yetter-Drinfeld modules YDf (H) and YDf (L).

Lemma 3.1 Let C be a cogroupoid and let X, Y be in ob(C) such that C(Y,X) = (0). Let
ω : C(X,X) → V be a reduced differential calculus over C(X,X). The map

ω :C(Y, Y )→ V �
C(X,X)

C(X, Y )

aY,Y �→ ∑
ω(a

X,X
(2) ) ⊗ SY,X(a

Y,X
(1) )a

X,Y
(3)

is a reduced differential calculus over C(Y, Y ).

Proof We already know, by the previous theorem, that V �
C(X,X)

C(X, Y ) is a Yetter-

Drinfeld module over C(Y, Y ). We firstly have to check that the map ω is well defined,
which is to say, we have to check that

∑
ω(a

X,X
(2) )(0)⊗ω(a

X,X
(2) )(1)⊗SY,X(a

Y,X
(1) )a

X,Y
(3) =

∑
ω(a

X,X
(2) )⊗�X

X,Y

(
SY,X(a

Y,X
(1) )a

X,Y
(3)

)
.

On the one hand, we have:
∑

ω(a
X,X
(2) )(0) ⊗ ω(a

X,X
(2) )(1) ⊗ SY,X(a

Y,X
(1) )a

X,Y
(3) =

∑
ω(a

X,X
(3) ) ⊗SX,X(a

X,X
(2) )a

X,X
(4) ⊗ SY,X(a

Y,X
(1) )a

X,Y
(5) .
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And on the other hand,

�X
X,Y

(
SY,X(aY,X)bX,Y

)
= �X

X,Y (SY,X(aY,X))�X
X,Y (bX,Y )

=
∑(

SX,X(a
X,X
(2) ) ⊗ SY,X(a

Y,X
(1) )

) (
b

X,X
(1) ⊗ b

X,Y
(2)

)

=
∑

SX,X(a
X,X
(2) )b

X,X
(1) ⊗ SY,X(a

Y,X
(1) )b

X,Y
(2)

so that
∑

ω(a
X,X
(2) ) ⊗ �X

X,Y

(
SY,X(a

Y,X
(1) )a

X,Y
(3)

)
=

∑
ω(a

X,X
(3) )⊗SX,X(a

X,X
(2) )a

X,X
(4) ⊗SY,X(a

Y,X
(1) )a

X,Y
(5)

which shows that ω : C(Y, Y ) → V �
C(X,X)

C(X, Y ) is well defined.

We have

ω(aY,Y ) 	 bY,Y =
∑(

ω(a
X,X
(2) ) ⊗ SY,X(a

Y,X
(1) )a

X,Y
(3)

)
	 bY,Y

=
∑

ω(a
X,X
(2) ).b

X,X
(2) ⊗ SY,X(b

Y,X
(1) )SY,X(a

Y,X
(1) )a

X,Y
(3) b

X,Y
(3) .

Consequently, we have

ω(aY,Y bY,Y ) =
∑

ω(a
X,X
(2) b

X,X
(2) ) ⊗ SY,X(a

Y,X
(1) b

Y,X
(1) )a

X,Y
(3) b

X,Y
(3)

=
∑

ω(a
X,X
(2) ).b

X,X
(2) ⊗ SY,X(a

Y,X
(1) b

Y,X
(1) )a

X,Y
(3) b

X,Y
(3)

+
∑

εX(a
X,X
(2) )ω(b

X,X
(2) ) ⊗ SY,X(a

Y,X
(1) b

Y,X
(1) )a

X,Y
(3) b

X,Y
(3)

= ω(aY,Y ) 	 bY,Y +
∑

ω(b
X,X
(2) ) ⊗ SY,X(b

Y,X
(1) )SY,X(a

Y,X
(1) )a

X,Y
(2) b

X,Y
(3)

= ω(aY,Y ) 	 bY,Y + εY (aY,Y )ω(bY,Y ).

Denoting ρ = idV ⊗�Y
X,Y the C(Y, Y )-comodule structure of V �

C(X,X)
C(X, Y ), we have

for all aY,Y ∈ C(Y, Y ),

ρ ◦ ω(aY,Y ) =
∑

ω(a
X,X
(2) ) ⊗ �Y

X,Y

(
SY,X(a

Y,X
(1) )a

X,Y
(3)

)

=
∑

ω(a
X,X
(3) ) ⊗ SY,X(a

Y,X
(2) )a

X,Y
(4) ⊗ SY,Y (a

Y,Y
(1) )a

Y,Y
(5)

=
∑

ω(a
Y,Y
(2) ) ⊗ SY,Y (a

Y,Y
(1) )a

Y,Y
(3) .

Now, in order to prove the lemma, it only remains to check that ω is onto. Let
∑
i

vi⊗a
X,Y
i

be in V �
C(X,X)

C(X, Y ) and let ϕ : C(Y,X) → C be a linear map satisfying ϕ(1) = 1. We

have
∑

i

vi(0) ⊗ v
X,X
i(1) ⊗ a

X,Y
i =

∑

i

vi ⊗ a
X,X
i(1) ⊗ a

X,Y
i(2)

since
∑
i

vi ⊗ a
X,Y
i is in V �

C(X,X)
C(X, Y ). Applying idV ⊗ �Y

X,X ⊗ idC(X,Y ) on both sides,

we find
∑

i

vi(0) ⊗ v
X,Y
i(1) ⊗ v

Y,X
i(2) ⊗ a

X,Y
i =

∑

i

vi ⊗ a
X,Y
i(1) ⊗ a

Y,X
i(2) ⊗ a

X,Y
i(3) .



842 M. T. de Chanvalon

This shows that
∑

i

ϕ
(
v

Y,X
i(2) SX,Y (a

X,Y
i )

)
vi(0) ⊗ v

X,Y
i(1) =

∑

i

ϕ
(
a

Y,X
i(2) SX,Y (a

X,Y
i(3) )

)
vi ⊗ a

X,Y
i(1)

=
∑

i

εY (a
Y,Y
i(2))vi ⊗ a

X,Y
i(1) =

∑

i

vi ⊗ a
X,Y
i .

Since ω : C(X,X) → V is onto, there exists b
X,X
i ∈ C(X,X) such that ω(b

X,X
i ) = vi .

We have then
∑

vi(0) ⊗ v
X,X
i(1) =

∑
ω(b

X,X
i )(0) ⊗ ω(b

X,X
i )(1) =

∑
ω(b

X,X
i(2) ) ⊗ SX,X(b

X,X
i(1) )b

X,X
i(3) ,

so that
∑

vi(0) ⊗ v
X,Y
i(1) ⊗ v

Y,X
i(2) = ∑

ω(b
X,X
i(3) ) ⊗ SY,X(b

Y,X
i(2) )b

X,Y
i(4) ⊗ SX,Y (b

X,Y
i(1) )b

Y,X
i(5) .

We have therefore
∑

i

vi ⊗ a
X,Y
i =

∑

i

ϕ
(
v

Y,X
i(2) SX,Y (a

X,Y
i )

)
vi(0) ⊗ v

X,Y
i(1)

=
∑

i

ϕ
(
SX,Y (b

X,Y
i(1) )b

Y,X
i(5) SX,Y (a

X,Y
i )

)
ω(b

X,X
i(3) ) ⊗ SY,X(b

Y,X
i(2) )b

X,Y
i(4)

=
∑

i

ϕ
(
SX,Y (b

X,Y
i(1) )b

Y,X
i(3) SX,Y (a

X,Y
i )

)
ω(b

Y,Y
i(2))

which allows to conclude that ω is onto.

Remark 3.1 If ω : C(X,X) → V is an inner reduced differential calculus, let θ ∈ V be
a right-coinvariant element such that ∀aX,X ∈ C(X,X), ω(aX,X) = θ.aX,X − εX(aX,X)θ .
We then have

∀aY,Y ∈ C(Y, Y ), ω(aY,Y ) =
∑

ω(a
X,X
(2) ) ⊗ SY,X(a

Y,X
(1) )a

X,Y
(3)

=
∑

(θ.a
X,X
(2) − εX(a

X,X
(2) )θ) ⊗ SY,X(a

Y,X
(1) )a

X,Y
(3)

=
∑

θ.a
X,X
(2) ⊗ SY,X(a

Y,X
(1) )a

X,Y
(3) − θ ⊗ εY (aY,Y )

= (θ ⊗ 1) 	 aY,Y − εY (aY,Y )(θ ⊗ 1).

Consequently, ω is an inner reduced differential calculus, whose corresponding right-
coinvariant element is θ ⊗ 1.

Combining the previous lemma with Theorem 3.1, we obtain the main result of this
section. It generalizes a result of [10], where the two monoidally equivalent Hopf algebras
are assumed to be related by a cocycle twist.

Theorem 3.2 Let H and L be two Hopf algebras such that there exists a linear monoidal
equivalence between their categories of right comodules MH and ML. Then there exists
an equivalence between the categories:

• of bicovariant differential calculi DC(H) and DC(L),
• of finite dimensional bicovariant differential calculi DCf (H) and DCf (L).

Proof Let C be a connected cogroupoid such that there exist X, Y ∈ ob(C) satisfying
C(X,X) ∼= H and C(Y, Y ) ∼= L. We consider the functor induced by Theorem 3.1 and the
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previous lemma:

FY
X :RDC(H)→ RDC(L)

(V, ω) �→ (V �
H
C(X, Y ), ω)

which sends a morphism f : V → W inRDC(H), to FY
X(f ) = f ⊗ id : V �

H
C(X, Y ) →

W �
H
C(X, Y ). It is known to be a morphism of Yetter-Drinfeld modules, and one easily

checks that it is a morphism of reduced differential calculi.
Since FY

X is an equivalence between the categories of Yetter-Drinfeld modules over
H and L, with quasi-inverse FX

Y , we only have to check that the natural transformation
providing the equivalence FY

X ◦ FX
Y

∼= id consists of morphisms of reduced differential
calculi. In other words, we have to check that, for all (V , ω) ∈ RDC(H), the morphism of
Yetter-Drinfeld modules:

θV :V → (V �
H
C(X, Y ))�

L
C(Y,X)

v �→ ∑
v(0) ⊗ v

X,Y
(1) ⊗ v

Y,X
(2)

is a morphism of reduced differential calculi. We have for aX,X ∈ H ∼= C(X,X),

θV ◦ ω(aX,X) =
∑

(id ⊗ �Y
X,X)

(
ω(a

X,X
(2) ) ⊗ SX,X(a

X,X
(1) )a

X,X
(3)

)

=
∑

ω(a
X,X
(3) ) ⊗ SY,X(a

Y,X
(2) )a

X,Y
(4) ⊗ SX,Y (a

X,Y
(1) )a

Y,X
(5)

=
∑

ω(a
Y,Y
(2) ) ⊗ SX,Y (a

X,Y
(1) )a

Y,X
(3) = ω(aX,X).

Thus θV is a morphism of reduced differential calculi, and FY
X is an equivalence of cat-

egories. Gathering this with Lemma 2.1, we obtain an equivalence DC(H) ∼= RDC(H) ∼=
RDC(L) ∼= DC(L), inducing an equivalence DCf (H) ∼= RDCf (H) ∼= RDCf (L) ∼=
DCf (L).

4 Classification of Bicovariant Differential Calculi over free Orthogonal Hopf
Algebras

In this section, we gather the results of the previous sections in order to classify the finite
dimensional reduced differential calculi over the free orthogonal Hopf algebras. To this
end, we start by classifying the finite dimensional reduced differential calculi over the Hopf
algebra Oq(SL2), when q ∈ C

∗ is not a root of unity. This classification is based on the
classification of finite dimensional Oq(SL2)-Yetter-Drinfeld modules made in [13], and
Lemma 2.4.

Definition 4.1 Let q ∈ C
∗ be not a root of unity. Oq(SL2) is the Hopf algebra generated

by four elements a, b, c, d subject to the relations:
{

ba = qab , ca = qac , db = qbd , dc = qcd , bc = cb ,

ad − q−1bc = da − qbc = 1.

Its comultiplication, counit and antipode are defined by:

�(a) = a ⊗ a + b ⊗ c, �(b) = a ⊗ b + b ⊗ d, �(c) = c ⊗ a + d ⊗ c, �(d) = c ⊗ b + d ⊗ d,

ε(a) = ε(d) = 1, ε(b) = ε(c) = 0,
S(a) = d, S(b) = −qb, S(c) = −q−1c, S(d) = a.
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Definition 4.2 Let n be in N. We denote by Vn the simple right Oq(SL2)-comodule with

basis (v
(n)
i )0�i�n, and coaction ρn defined by:

ρn(v
(n)
i ) =

n∑

k=0

v
(n)
k ⊗

⎛

⎜⎜⎜⎜⎝

∑

r+s=k
0�r�i

0�s�n−i

(
i
r

)

q2

(
n − i

s

)

q2
q(i−r)sarbsci−rdn−i−s

⎞

⎟⎟⎟⎟⎠

where
(
n
k

)

q2
denotes the q2-binomial coefficient. That is to say:

(
n
k

)

q2
= qk(n−k) [n]q !

[n − k]q ![k]q ! with [k]q = qk − q−k

q − q−1
and [k]q ! = [1]q .[2]q . . . [k]q .

Definition 4.3 Let n,m be in N and let ε ∈ {−1, 1}. We denote by V ε
n,m the Oq(SL2)-

Yetter-Drinfeld module Vn ⊗ Vm equipped with its canonical right coaction, and with right
module structure defined by:

(v
(n)
i ⊗ v

(m)
j ).a = εq

m−n
2 +i−j v

(n)
i ⊗ v

(m)
j ,

(v
(n)
i ⊗ v

(m)
j ).b = −εq− n+m

2 +i+j+1(1 − q−2)[j ]qv
(n)
i ⊗ v

(m)
j−1,

(v
(n)
i ⊗ v

(m)
j ).c = εq

m+n
2 −i−j (1 − q−2)[n − i]qv

(n)
i+1 ⊗ v

(m)
j ,

(v
(n)
i ⊗ v

(m)
j ).d = εq

n−m
2 +j−i (v

(n)
i ⊗ v

(m)
j − q(1 − q−2)2[j ]q [n − i]qv

(n)
i+1 ⊗ v

(m)
j−1).

V ε
n,n will also be denoted by V ε

n .

Remark 4.1 By [13], every simple finite dimensional Oq(SL2)-Yetter-Drinfeld module is
of the form V ε

n,m, and each finite dimensional Oq(SL2)-Yetter-Drinfeld module can be
decomposed into a direct sum of simple Yetter-Drinfeld modules. To see that our description
of V ε

n,m coincides with the one given in [13, (6.4)], just consider the basis (vi,j ) 0�i�n
0�j�m

given

by

vi,j = 1

[n − i]q ![m − j ]q !v
(n)
n−i ⊗ v

(m)
j .

One can check that the vi,j ’s satisfy [13, (6.4)] and that the map

vi,j �→ 1

[n − i]q ![m − j ]q !v
(n)
n−i ⊗ v

(m)
j

is an isomorphism of Yetter-Drinfeld modules.

Remark 4.2 Let n,m be in N and ε be in {−1, 1}. The Clebsch-Gordan formula for the
decomposition of Vn ⊗Vm into simple comodules ensures that the space of right-coinvariant
elements of V ε

n,m is one-dimensional if n = m, and zero-dimensional otherwise. Hence if
n = m, there is no inner reduced differential calculus of the formω : Oq(SL2) → V ε

n,m, and
there is at most one (up to isomorphism) inner reduced differential calculus of the form ω :
Oq(SL2) → V ε

n . If (n, ε) = (0, 1), then V ε
n is not isomorphic to the Yetter-Drinfeld module

Cε , and by Lemma 2.3, there indeed exists such an inner reduced differential calculus,
which we denote by ωε

n : Oq(SL2) → V ε
n .
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As a direct consequence of Lemma 2.4, and the fact that by [13], the category
YDf (Oq(SL2)) is semisimple, we have the following result.

Proposition 4.1 Each finite dimensional bicovariant differential calculus overOq(SL2) is
inner.

This allows to deduce the classification of finite dimensional reduced differential calculi
overOq(SL2).

Theorem 4.1 Every simple finite dimensional reduced differential calculus over Oq(SL2)

is of the form (V ε
n , ωε

n), with n ∈ N, ε ∈ {−1, 1} and (n, ε) = (0, 1).
Furthermore, each finite dimensional reduced differential calculus (V , ω) overOq(SL2)

can be decomposed into a direct sum:

(V , ω) ∼=
d⊕

i=1

(V εi
ni

, ωεi
ni

),

where (n1, . . . nd) ∈ N
d , (ε1, . . . , εd) ∈ {−1, 1}d satisfies (ni, εi) = (0, 1) for all i in

{1, . . . , d} and (ni, εi) = (nj , εj ) for all i = j .

Proof Since each finite dimensional reduced differential calculus over Oq(SL2) is inner,
and each simple finite dimensional Yetter-Drinfeld module over Oq(SL2) is of the form
V ε

n,m, we conclude by Remark 4.2 that the simple finite dimensional reduced differential
calculi overOq(SL2) are the (V ε

n , ωε
n) with (n, ε) = (0, 1). Now if (V , ω) is a finite dimen-

sional reduced differential calculus over Oq(SL2), by [13], we have an isomorphism of

Yetter-Drinfeld modules V ∼=
d⊕

i=1
Vi where each Vi is a simple Yetter-Drinfeld module.

One then easily checks that for i ∈ {1, . . . , d}, ωi = πi ◦ ω : Oq(SL2) → Vi (where
πi : V → Vi is the canonical projection) is a reduced differential calculus. We thus have

(Vi, ωi) ∼= (V
εi
ni

, ω
εi
ni

) for some (ni, εi) = (0, 1). Then (V , ω) ∼=
d⊕

i=1
(V

εi
ni

, ω
εi
ni

), and by

Lemma 2.2, we have (ni, εi) = (nj , εj ) when i = j .

In order to give the classification of finite dimensional reduced differential calculi over
free orthogonal Hopf algebras, we need the definition of the bilinear cogroupoid B. It will
provide an explicit description of the equivalence between the categories of reduced differ-
ential calculi over a free orthogonal Hopf algebra B(E) and Oq(SL2), for a well chosen
q.

Definition 4.4 The bilinear cogroupoid B is defined as follows:

• ob(B) = {E ∈ GLn(C) ; n � 1},
• For E,F ∈ ob(B), and m, n � 1 such that E ∈ GLm(C) and F ∈ GLn(C), B(E, F )

is the universal algebra generated by elements (aij )1�i�m
1�j�n

submitted to the relations:

F−1atEa = In and aF−1atE = Im,

where a = (aij )1�i�m
1�j�n

.
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• For E,F,G ∈ ob(B), �G
E,F : B(E, F ) → B(E,G) ⊗ B(G, F ), εE : B(E,E) → C

and SE,F : B(E, F ) → B(F,E) are characterized by:

�G
E,F (aij ) =

n∑

k=1

aik ⊗ akj ,where n � 1 is such that G ∈ GLn(C),

εE(aij ) = δij ,

SE,F (aij ) = (E−1atF )ij .

For E ∈ GLn(C), B(E,E) is a Hopf algebra, which will also be denoted by B(E), and
called the free orthogonal Hopf algebra associated with E.

Remark 4.3 One easily checks that Oq(SL2) = B(Eq), where

Eq =
(
0 1
−q−1 0

)
.

By [4, Corollary 3.5], for λ ∈ C, the subcogroupoid Bλ of B defined by

Bλ = {E ∈ GLm(C) ; n � 2, tr(E−1Et) = λ}

is connected (here “tr” denotes the usual trace).
In the following, E ∈ GLm(C) with m � 2, denotes a matrix such that any solution of

the equation q2 + tr(E−1Et)q + 1 = 0 is not a root of unity.
If q is a solution of this equation, we have tr(E−1

q Et
q) = −q − q−1 = tr(E−1Et), thus

E and Eq are in the connected cogroupoid Bλ, where λ = −q − q−1. The Hopf algebras
B(Eq) = Oq(SL2) and B(E) are thus monoidally equivalent, and by Theorem 3.2, we have
an equivalence between the categories of reduced differential calculi RDC(Oq(SL2)) and
RDC(B(E)) given by:

FE
Eq

:RDC(Oq(SL2))→ RDC(B(E))

(V , ω) �→ (V �
Oq (SL2)

B(Eq,E), ω).

Definition 4.5 For n in N and ε ∈ {−1, 1} such that (n, ε) = (0, 1), we denote by Wε
n

the B(E)-Yetter-Drinfeld module V ε
n �

Oq (SL2)
B(Eq,E). We fix a non-zero right-coinvariant

element θn ∈ Vn ⊗ Vn and we denote by ηε
n : B(E) → Wε

n the inner reduced differential
calculus defined by ηε

n(x) = (θn ⊗ 1) 	 x − ε(x)(θn ⊗ 1).

By Remark 3.1,FE
Eq

(V ε
n , ωε

n) is isomorphic to (Wε
n , ηε

n) for all n ∈ N and all ε ∈ {−1, 1}
such that (n, ε) = (0, 1). According to Theorems 3.2 and 4.1, we obtain the following
classification of finite dimensional reduced differential calculi over B(E).

Proposition 4.2 Each finite dimensional bicovariant differential calculus over B(E) is
inner.

Theorem 4.2 Every simple finite dimensional reduced differential calculus over B(E) is of
the form (Wε

n , ηε
n), with n ∈ N, ε ∈ {−1, 1} and (n, ε) = (0, 1).
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Furthermore, each finite dimensional reduced differential calculus (W, η) over B(E)

can be decomposed into a direct sum:

(W, η) ∼=
d⊕

i=1

(Wεi
ni

, ηεi
ni

),

where (n1, . . . nd) ∈ N
d , (ε1, . . . , εd) ∈ {−1, 1}d satisfies (ni, εi) = (0, 1) for all i in

{1, . . . , d} and (ni, εi) = (nj , εj ) for all i = j .
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