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1 Introduction

In this paper, we investigate affine, prime, Z-graded algebras R = ⊕i∈ZRi , which are
generated by elements with degrees 1,−1 and 0, and with finite-dimensional R0. This class
contains all N-graded, affine, prime algebras generated in degree one.

One of the main objects of interest to ring theorists is the Jacobson radical of a ring.
This is equal to the intersection of all (right) primitive ideals of R. In Sections 2 and 3, we
investigate the semiprimitivity of affine graded prime algebras and the primitivity of graded
algebras. The main result of Section 2 is Theorem 1, and the main result of Section 3 is
Theorem 13.

By Bergman’s Gap Theorem, a finitely generated algebra cannot have a GK dimen-
sion strictly between 1 and 2. In Section 4, we prove Theorem 14, which can be seen as
a counterpart of Bergman’s Gap Theorem for ideals. This section is the most technical in
the paper, but with thorough analysis of the proofs we can quite clearly see the structure of
homogeneous ideals of the considered algebras.

In Section 5, we study chains of prime ideals in graded domains of GK dimension 3
(see Theorem 25). This investigation was inspired by Artin’s proposed classification of
domains with GK dimension 3 (see [2]). A brief, and slightly simplified, description of this
classification for non-specialists can be found in [9] (Introduction, and page 4). We also
study chains of prime ideals in graded prime algebras with quadratic growth. In particular,
here we consider graded algebras with quadratic growth, instead of PI algebras (though our
result was inspired by Schelter’s theorem for PI algebras). Recall that Schelter’s theorem
says that ascending chains of prime ideals in affine PI algebras are finite. We do not know
if our result also holds for ungraded affine algebras with quadratic growth. In the context
of the material contained in Section 5, let us also mention the reference [10], where Bell
proved that if A is a finitely generated prime Goldie algebra over an uncountable field K ,
and A has quadratic growth, then either A is primitive or A satisfies a polynomial identity
(this answers a question by Lance Small in the affirmative). Some interesting related results
can also be found in [12].

Recall that a ring R is said to be Brown-McCoy radical if it cannot be homomorphi-
cally mapped onto a simple ring with identity. It is well known that if R is a Jacobson
radical ring then R is Brown-McCoy radical. In [26] it was proved that if R is a nil ring
then the polynomial ring R[x] in one variable is Brown-McCoy radical. Then, Beidar et al.
showed that R[x] cannot be even mapped onto a ring with a nonzero idempotent. In [26],
the question was posed as to whether for every n and a nil ring R the polynomial ring
in n commuting indeterminates over R is Brown-McCoy radical. In [30] Smoktunowicz
showed that if R[x] is Jacobson radical then R[x, y] is Brown-McCoy radical. Another
interesting result obtained in [11] says that if R is a nil ring with pR = 0 for some prime
p then the polynomial ring R[x, y] in two commuting indeterminates is Brown-McCoy
radical.

Recall that a graded ring is called graded-nil if every homogeneous element r of
R is nilpotent. Recently, Smoktunowicz (see [32]) showed that if R is a ring graded
by the additive semigroup of positive integers and R is graded-nil, then R is Brown-McCoy
radical. Then, in [20], Lee and Puczyłowski proved that every Z-graded ring which is
graded-nil is Brown-McCoy radical. Motivated by these results related to Brown-McCoy
radical, we will consider in Section 6 the tensor product of two algebras over a field such
that one of them is an affine Brown-McCoy radical algebra with Gelfand-Kirillov dimension
less than 3.

In the final section we present some open questions.
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If a ring R satisfies a polynomial identity, as usual we say that R is PI. We recall that the
Jacobson radical in Z-graded rings is homogeneous. If A and B are algebras over a field K ,
then, where it does not cause confusion, we will abbreviate A ⊗K B by A ⊗ B. If R is a
ring and I an ideal of R then (if needed) we use bar notation a for the image of an element
a ∈ R in R/I .

For information about the GK dimension and the growth of algebras we refer the reader
to Krause and Lenagan [16].

All rings in this paper are associative, but do not necessarily have unity. Recall that
a ring R is Z-graded (for short, graded) if there exist additive subgroups Ri of R,
such that R = ⊕

i∈Z Ri and RiRj ⊆ Ri+j for any i, j . If r ∈ Ri for some i, then we say
that r is an homogeneous element of R.

2 On the Semiprimitivity of Z-Graded Algebras

In this section, we investigate the semiprimitivity of Z-graded algebras. Our aim is to prove
the following.

Theorem 1 Let R = ⊕
i∈Z Ri be an affine, prime, Z-graded algebra over a field K . Sup-

pose that R0 is finite-dimensional, and that R is generated in degrees 1,−1 and 0. Suppose
that Rk �= 0, for almost all k. Then R has no nonzero graded-nil ideals. In particular, the
Jacobson radical of R is zero, so R is semiprimitive. Moreover, R0 is semiprimitive.

The proof of Theorem 1 will be presented later in this section, but first we introduce
some lemmas.

Lemma 2 Let R = ⊕
i∈Z Ri be an affine algebra over a field K , generated by elements

with degrees 1, −1 and 0, and such that R0 is finite-dimensional. Then for every i, j >

0, we have Ri+j = RiRj and R−i−j = R−iR−j . Moreover, all linear spaces Ri are
finite-dimensional.

Proof Let V ⊆ R−1 + R0 + R1 be a generating space of R. We show, by induction,
that for any k ≥ 1 and for any i > 0, Ri ∩ V k ⊆ Ri

1. For k = 1, this is clear. Let
k > 1 and consider c = c1 · · · ck ∈ Ri ∩ V k , with c1, . . . , ck ∈ R−1 ∪ R0 ∪ R1. If
c1 ∈ R−1 then by the induction hypothesis, c2 · · · ck ∈ Ri+1 ∩ V k−1 ⊆ Ri+1

1 . Hence
c = c1 · · · ck ∈ R−1R

i+1
1 ⊆ Ri

1. When c1 ∈ R0 or c1 ∈ R1, a similar argument works and
we conclude that, for any i ≥ 1, monomials and hence also elements from Ri belong to Ri

1.

Now, if i, j > 0 we have Ri+j = R
i+j

1 = Ri
1R

j

1 = RiRj . The similar formulas for negative
indices are proved in the same way.

The second part follows because, by the above, Ri = Ri
1, R−i = Ri

−1, and R0 is finite-
dimensional.

Lemma 3 Let R = ⊕
i∈Z Ri be an affine, prime algebra over a field K generated by

elements with degrees 0, −1 and 1, with R0 finite-dimensional. If RkR−k = 0 for some
k �= 0, then either R4k = 0 or R−4k = 0.

Proof Suppose on the contrary that R4k �= 0 and R−4k �= 0. By Lemma 2, R4k = R4
k , and

R−4k = R4−k , and since R is prime R4kRsR−4k is not zero for some integer s (notice also
that RkRsR−k �= 0).
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Using Lemma 2, we first want to show that −|k| ≤ s ≤ |k|. To do so, consider the case
k > 0. If s > k, then RsR−k = Rs−kRkR−k = 0, which is impossible. Similarly, if s < −k,
then RkRs = RkR−kRs+k = 0, and we get a contradiction. So we must have −k ≤ s ≤ k.
Similarly, in the case k < 0 we get k ≤ s ≤ −k.

Observe that R4kRsR−4k �= 0 implies R4
kRsR−k �= 0. Moreover, R4

kRsR−k ⊆
RkRs′R−k , where s′ = s + 3k. By the same argument as above (applied for s′ instead of
s), we get that RkRs′R−k �= 0 implies −|k| ≤ s′ ≤ |k|. Consider the case k > 0. Since
s′ = s + 3k, we get s + 3k ≤ k, so s < −k, a contradiction. If k < 0, for s′ = s + 3k we
get k ≤ s′ = s + 3k so −2k ≤ s, a contradiction since k < 0. Thus we conclude that either
R−4k = 0 or R4k = 0.

Lemma 4 Let R = ⊕
i∈Z Ri be an affine, prime algebra over a field K generated by

elements with degrees 0,−1 and 1, with R0 finite-dimensional. Suppose that Rk �= 0 for
almost all k ∈ Z. Then RkR−k �= 0 for every k �= 0.

Proof Aiming for a contradiction, suppose that RkR−k = 0, for some k > 0. Then,
by Lemma 3 either R4k = 0 or R−4k = 0. By Lemma 2, for any j > 4k we have
Rj = Rj−4kR4k = 0 in the first case and R−j = R−j+4kR−4k = 0 if the latter holds, a
contradiction. We arrive at the same conclusion when we consider the case k < 0.

Lemma 5 Let R = ⊕
i∈Z Ri be an affine, prime algebra over a field K generated by

elements with degrees 0,−1 and 1, with R0 finite-dimensional. Suppose that Rk �= 0 for
almost all k ∈ Z; then there is i > 0 such that RiR−i = RjR−j and R−iRi = R−jRj for
every j > i. Moreover, RiR−i �= 0 and R−iRi �= 0.

Proof We let Cj denote the product RjR−j for j > 1. Observe that Cj ⊆ Ci for
i < j . Indeed, by Lemma 2, Rj = RiRj−i and R−j = R−j+iR−i , so RjR−j =
RiRj−iR−j+iR−i ⊆ RiR0R−i ⊆ RiR−i . As C1, C2, . . . form a descending chain of
linear subspaces of a finite-dimensional space R0, we get that there exists i such that
Ci = Ci+1 = . . .. Therefore, RiR−i = RjR−j for j ≥ i, as required.

To prove the second assertion, consider the sets Cj = R−jRj for j = 1, 2 . . . and
proceed in the same way. The last statement follows from the previous lemma.

Lemma 6 Let R = ⊕
i∈Z Ri be an affine, prime algebra over a field K generated by

elements with degrees 0,−1 and 1, with R0 finite-dimensional. Moreover, let Rk �= 0 for
almost all k ∈ Z, and let i be the positive integer produced in the previous lemma. Let I

be the ideal generated in R by RiR−i and let I ′ be the ideal generated in R by R−iRi .
Then I ⊆ RsR ∩ RR−s and I ′ ⊆ RRs ∩ R−sR for any s > 0. Moreover, II ′ ⊆ RsR and
II ′ ⊆ RRs , for any s ∈ Z.

Proof Firstly, we show that I ⊆ RsR∩RR−s and I ′ ⊆ RRs ∩R−sR, for any s > 0. In fact,
we present only a proof of I ⊆ RsR for any s > 0; the remaining facts are similarly proved.

Observe that

I ⊆
∑

j∈Z
RjRiR−iR.

Fix an integer j , and let p > max{i, s − j, j}. Then p = s − j + t for some t > 0. By the
previous lemma, RiR−i = RpR−p and we get

RjRiR−iR = RjRs−j+tR−s+j−tR ⊆ Rs+tR−s+j−tR = RsRtR−s+j−tR ⊆ RsR
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by Lemma 2. Therefore I ⊆ RsR, as required.
Now we will show that II ′ ⊆ RsR, for any s ∈ Z. Notice that if s > 0 the result follows

by what was shown above. On the other hand if s ≤ 0 then II ′ ⊆ R1RI ′ ⊆ R1I
′ ⊆

R1R−1+sR ⊆ RsR. Inclusion II ′ ⊆ RRs holds for any s by the same arguments.

Lemma 7 Let R = ⊕
i∈Z Ri be an affine, prime algebra over a field K generated by

elements with degrees 0, −1 and 1, with R0 finite-dimensional. Moreover, let Rk �= 0 for
almost all k ∈ Z. If P is an ideal of R containing a nonzero homogeneous element u, then
P ∩ Rl �= 0 for any l ∈ Z.

Proof Let I, I ′ be as in Lemma 6. We first show that (u) ∩ R0 �= 0. Without loss of
generality we can assume that u ∈ ⊕

i≥0 Ri . Taking t , which is the smallest nonnegative
integer such that Rt ∩(u) �= 0, we have some nonzero v ∈ Rt ∩(u). We will show that t = 0.
Indeed if t > 0 then we have vR−1 = 0 so also vR−k = vRk

−1 = 0 for any k > 0. Consider
any nonzero element vw ∈ (v) ⊆ (u) such that w ∈ Rf . Then f ≥ 0 and for h = −f − 1
by Lemma 6 we have II ′ ⊆ RhR. Thus vwII ′ ⊆ vRf R−f −1R ⊆ vR−1R = 0 which
implies (v)II ′ = 0, a contradiction, as R is prime. Thus we have v ∈ R0.

Now consider a nonzero element v ∈ (u)∩R0. We will show that vRk �= 0 and vR−k �= 0
for any k > 0. Clearly it is enough to show the first fact. Suppose for a contradiction that
there exists k > 0 such that vRk = 0. As Ri+j = RiRj for any i, j > 0 we have vRp = 0
for any p ≥ k. Let q ∈ Rl for some l, and let h > k + |l|. Then II ′ ⊆ RhR and finally
vqII ′ = 0 which implies (v)II ′ = 0, a contradiction.

The following Lemma 8 coincides with Theorem 22.6 on page 225 in [23]. We present a
different proof of this result below.

Lemma 8 (Theorem 22.6, [23]) Let R = ⊕
i∈Z Ri be a Jacobson radical, Z-graded

algebra over a field K , with R0 finite-dimensional. Then R is graded-nil.

Proof First we will show that R0 is a Jacobson radical ring. Consider any a ∈ R0. Then
there exists b = ∑n

k=m bk ∈ R with bk ∈ Rk and m, n ∈ Z such that a + b − ab = 0 =
a+b−ba. Now considering degrees of components we get a+b0−ab0 = 0 = a+b0−b0a,
so b0 is the quasi-inverse of a in R0. As R0 is finite-dimensional it follows that it is nilpotent.

Consider an element a ∈ Rs for some s > 0 and injective homomorphism of rings
ψ : R → R[[x, x−1]] (here, R[[x, x−1]] is the Laurent power series ring over R) given by
the rule ψ(rk) = rkx

k , where rk is an homogeneous element of R of degree k.
Let b = ∑n

k=m bk with bk ∈ Rk be the quasi-inverse of a. Then a + b − ab = 0 =
a + b − ba. Thus using ψ we get

axs +
n∑

k=m

bkx
k − axs ·

n∑

k=m

bkx
k = 0 = axs +

n∑

k=m

bkx
k −

n∑

k=m

bkx
k · axs.

As also for f = ∑∞
i=1(−1)i(axs)i ∈ R[[x, x−1]] we have axs + f − axsf = 0 =

axs + f − f axs , we get
∑n

k=m bkx
k = f , and it follows that a is nilpotent. Since in the

same way we can show that for any s < 0 an element a ∈ Rs is nilpotent, the proof is
complete.

Now we are almost ready to prove the main result of this section. We need only mention
the following result by Posner, which we will use several times.
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Lemma 9 ([24, Corollary]) If R is an algebra satisfying a polynomial identity and such
that every element of R is a sum of nilpotent elements, then R is nil.

Proof of Theorem 1. Part 1 - R is semiprimitive. Suppose that Rk �= 0 for almost all k. Let
N be a graded-nil ideal in R. Observe that N ∩ R0 is finite-dimensional and nil, hence it
is nilpotent. Let n be such that (N ∩ R0)

n = 0. Let I, I ′ be as in Lemma 6. We will first
show that (II ′NII ′)n = 0. Let c1, c2, . . . , cn ∈ II ′NII ′ be homogeneous elements, where
ci ∈ Rpi

. By Lemma 6, we get c1 ∈ NII ′ ⊆ NRRp1 , and by considering the gradation on
both sides of this inclusion we get that c1 ∈ (N∩R0)Rp1 . Similarly, by Lemma 6 we get that
for every i, ci ∈ II ′NII ′ ⊆ R−p1−p2−...−pi−1RNRRp1+p2+...+pi

, and by comparing the
degrees we get that ci ∈ R−p1−p2−...−pi−1(N∩R0)Rp1+p2+...+pi

. Thus we obtain
∏n

i=1 ci ∈∏n
i=1 R−p1−p2−...−pi−1(N ∩ R0)Rp1+p2+...+pi

⊆ (∏n
i=1 N ∩ R0

)
Rp1+...+pn = 0. Since R

is prime and (II ′NII ′)n = 0, and I, I ′ �= 0 by Lemmas 5 and 6, we get N = 0, as required.
As stated in the Introduction, the Jacobson radical of a Z-graded ring is homogeneous.

Thus, using Lemma 8 we can see that the Jacobson radical of R must be graded-nil, so R is
semiprimitive, by the above.

Part 2 - R0 is semiprimitive. To show that R0 is semiprimitive, let J0 be the Jacobson
radical of R0. As R0 is finite-dimensional, J0 is nilpotent. Let n be such that J n

0 = 0.
Consider the ideal J = R1J0R

1 (here, R1 denotes the usual extension with an identity
of the ring R) of R and subalgebra J ∩ R0 of R0, which is clearly finite-dimensional.
Notice that every element of J ∩ R0 is a sum of elements from RkJ0R−k for some
k ∈ Z. Clearly, (RkJ0R−k)

n+1 = 0, since J0R−kRk ⊆ J0. Thus it follows that every ele-
ment in J ∩ R0 is a sum of nilpotent elements. As J ∩ R0 is finite-dimensional it is PI,
so using Lemma 6 we get the information that J ∩ R0 is nil, and finally J ∩ R0 is nilpotent
and (J ∩ R0)

m = 0, for some m.
Let I, I ′ be as in Lemma 6. Consider homogeneous elements c1, c2, . . . , cm ∈ II ′J II ′

with ci ∈ Rpi
. Since J is an ideal in R, similarly as in the first part of the proof we get that

c1c2 . . . cm ∈ ∏m
i=1 R−p1−...−pi−1(J ∩ R0)Rp1+p2+...+pi

= 0, because (J ∩ R0)
m = 0.

Therefore (II ′J II ′)m = 0, but R is prime and I, I ′ �= 0 by Lemmas 5 and 6, so J =
RJ0R = 0, and the proof is complete.

3 On the Primitivity of Z-Graded Algebras

Recall that a right ideal Q of a ring R is modular if and only if there exists an element a ∈ R,
such that r − ar ∈ Q, for any r ∈ R. If an ideal P is the maximal two-sided ideal contained
in Q for some modular maximal right ideal Q of R, then we say that P is (right) primitive.
In the case where 0 is a right primitive ideal of R, we say that R is a (right) primitive ring.

Using the main result of the previous section, we want to show that Z-graded algebras
satisfying certain additional conditions are either PI or primitive.

We first recall Lemma 3.1 and Corollary 3.2 from [8], and, since their proofs hold also
for Z-graded algebras (whereas in [8] N-graded algebras were considered), we state it as
follows.

Lemma 10 ([8, Lemma 3.1]) Let K be a field, let R = ⊕
i∈Z Ri be a graded prime K-

algebra, and let Z denote the extended centre of R. Suppose that I is an ideal in R that does
not contain a nonzero homogeneous element, and z ∈ Z, x, y ∈ R are such that:
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1. x is a nonzero homogeneous element;
2. y is a sum of homogeneous elements of degree smaller than the degree of x;
3. x + y ∈ I ;
4. zx = y.

Then z is not algebraic over K .

Proof The proof is the same as the one of [8, Lemma 3.1].

Lemma 11 ([8, Corollary 3.2]) Let K be a field, and let R = ⊕
i∈Z Ri be a finitely gener-

ated prime graded K-algebra of quadratic growth. If P is a nonzero prime ideal of R, then
either P is homogeneous or R/P is PI.

Proof The proof is the same as the proof of [8, Corollary 3.2] when we use Lemma 10
instead of Lemma 3.1, [8].

Using [7, Corollary 1.2] and reformulating a sentence that is contained in the proof of
Lemma 11 we can see that the following holds.

Lemma 12 Let K be a field, and let R = ⊕
i∈Z Ri be an affine, prime, graded

K-algebra of GK dimension less than 3. Assume also that R has no nonzero locally nilpo-
tent ideals. If P is a nonzero prime ideal of R which does not contain nonzero homogeneous
elements, then R/P is PI.

We now present the main result of this section.

Theorem 13 Let R = ⊕
i∈Z Ri be an affine, prime, Z-graded algebra. Suppose that

R0 is finite-dimensional, and that R is generated in degrees 1, −1, 0. Suppose that
Rk �= 0, for almost all k. If R has GK dimension less than 3, then either R is primitive
or R satisfies a polynomial identity.

Proof Assuming that R is not PI, we will show that R is primitive. By Theorem 1, we know
that R and R0 are semiprimitive algebras. As the Jacobson radical is zero, then the intersec-
tion of all primitive ideals in R is zero. Therefore, to show that zero is a primitive ideal (and
hence R is primitive) it suffices to show that the intersection of all nonzero primitive ideals
in R is nonzero.

Let P be a nonzero primitive ideal in R. We will first show that P ∩ R0 is
nonzero. Since R is not PI, if R/P is PI an argument of Small (see proof of [8,
Lemma 2.6]) shows that P has a nonzero homogeneous element. On the other hand,
if R/P is not PI, then by Lemma 12 the ideal P contains a nonzero homoge-
neous element. Thus, in each case there exists nonzero c ∈ Rt ∩ P for some t .
By Lemma 7 we have P ∩ R0 �= 0.

Observe that P ∩R0 is an ideal in R0 (nonzero by above). Since R0 is finite-dimensional
and semiprimitive, R0 has only a finite number of nonzero ideals P1, P2, . . . , Pn. Let 0 �=
ci ∈ Pi . Then Rc1Rc2 . . . cnR �= 0 and Rc1Rc2 . . . cnR ⊆ P , since ci ∈ Pi = P ∩ R0 for
some i. Therefore the intersection of all nonzero primitive ideals is nonzero and contains
the ideal Rc1Rc2 . . . cnR.
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4 Analogue of Bergman’s Gap Theorem for Ideals

Recall that, by Bergman’s result, algebras with growth less than n(n − 1)/2 have linear
growth. The main result for this chapter is closely related to this fact. We also note that this
result generalizes [8, Theorem 1.3].

Theorem 14 Let R be a prime algebra with quadratic growth, Z-graded and finitely
generated in degrees 1, −1 and 0. We write R = ⊕

i∈Z Ri , and assume that R0 is finite-
dimensional. Let u �= 0 be an homogeneous element of R, and let (u) denote the ideal
generated by u in R. Then there is a number m, such that

dimK

(

(u) ∩
(

n⊕

i=−n

Ri

))

≥ (n − m)(n − m − 1)

2

for all sufficiently large n.

To prove this theorem, we first present some supporting lemmas and generalize some
results from [8] to the case of Z-graded rings.

Let K be a field. We denote by K(X) = K{xi,j , x−i,j }i,j>0 the field of rational functions
in commuting variables xi,j , x−i,j . We now reword [8, Theorem 1.3].

Lemma 15 ([8, Theorem 1.3]) Let R = ⊕∞
i=1 Ri be an algebra with quadratic growth

and finitely generated by elements of degree 1. Let u be an homogeneous element in R. Let
a1, a2, . . . , an be a basis of R1. For any i > 0, let

ci =
n∑

j=1

xi,j aj , di =
n∑

j=1

x−i,j aj ,

S = {c1c2 . . . ciudj dj−1 . . . d1 : i, j > 0}.
Then we have the following:

(i) If elements of S are linearly independent over K(X), then there is m > 0 such that

dimK

(

(u) ∩
n⊕

k=1

Rk

)

≥ (n − m)(n − m − 1)

2
,

for almost all n.
(ii) If elements of S are linearly dependent over K(X), then there are integers pu and ku

such that
dimK

∑

i+j<n

Ri+kuuRj+ku < pun,

for every n > 0.
(iii) Moreover, if S is the set of linearly dependent elements over K(X), there exists an

integer tu, such that the ideal generated by u in R is contained in

∞∑

k=1

(Rku + uRk) +
∞∑

j=1

tu∑

i=1

(RiuRj + RjuRi).

Proof Part (i) is the same as the first part of the proof of [8, Theorem 1.4]: we observe that
dimK(X) K(X)S ≥ (n−m)(n−m−1)

2 , hence dimK KS ≥ (n−m)(n−m−1)
2 .
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Although the proof of (ii) is done in the second part of the proof of [8, Theorem 1.3], we
present a slightly different, more detailed approach showing at the same time (iii).

Since R(X) is a graded K(X) algebra and S is linearly dependent over K(X), there is in
fact some natural number q such that the elements c1c2...ciudj dj−1 . . . d1 with i + j = q

are linearly dependent over K(X). Hence there is some k with 0 ≤ k ≤ q such that

c1c2 . . . ckudq−kdq−k−1 . . . d1 ∈ c1 . . . ck

q−k−1∑

j=1

K(X)ck+1 . . . ck+j udq−k−j . . . d1. (1)

Let K ′ = K{xi,j }i,j>0 be the field of rational functions in commuting variables xi,j , and
let P = K ′[x−i,j ]i,j>0 be the polynomial ring in variables x−i,j over K ′ (for i ≥ 1). As
c1c2 . . . ckudq−kdq−k−1 . . . d1 ∈ P , it follows that

c1c2 . . . ckudq−kdq−k−1 . . . d1 ∈ L ∩ P,

where

L = c1 . . . ck

q−k−1∑

j=1

K(X)ck+1 . . . ck+j udq−k−j . . . d1.

Therefore,

c1c2 . . . ckudq−kdq−k−1 . . . d1 ∈ c1 . . . ck

q−k−1∑

j=1

Pck+1 . . . ck+j udq−k−j . . . d1. (2)

We claim that, for any α ≥ q − k, we have

c1c2 . . . ckuRα ⊆ (c1c2 . . . ck)

q−k−1∑

γ=1

K(X)ck+1 . . . cα+k−γ uRγ . (3)

For α = q − k this comes from Eq. 2 by evaluating some of the x−i,j in d1, . . . , dq−k

(note that evaluation is possible by Eq. 2). Indeed, we then get

c1c2 . . . ckuRq−k ⊆ (c1c2 . . . ck)

q−k−1∑

j=1

K(X)ck+1 . . . ck+j uRq−k−j , (4)

which is easily seen to coincide with the required Eq. 3 when α = q − k.
We now suppose that the Eq. 3 has been proved up to some α ≥ q − k. Using the

induction hypothesis, we have:

c1 . . . ckuRα+1 = (c1 . . . ck)uRαR1

⊂ (c1 . . . ck)
∑q−k−1

γ=1
K(X)ck+1 . . . cα−γ+kuRγ R1

⊆ (c1 . . . ck)
∑q−k−2

γ=1
K(X)ck+1 . . . cα−γ+kuRγ+1

+(c1 . . . ck)K(X)ck+1 . . . cα−q+2k+1uRq−k

⊆ (c1 . . . ck)
∑q−k−1

γ=2
K(X)ck+1 . . . c(α+1)−γ+kuRγ

+(c1 . . . ck)K(X)ck+1 . . . c(α+1)−q+2kuRq−k. (5)

For α ≥ q − k there exists a K-automorphism σ ∈ AutKR(X) that permutes
some of the ci’s as follows: σ(c1) = cα−q+k+2, σ (c2) = cα−q+k+3, . . . , σ (ck) =
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cα−q+2k+1, . . . , , σ (cq−γ ) = cα−γ+k+1 and σ(cα−γ+1) = c1 (this can be easily obtained
by using the ad-hoc permutation on the first indices of the indeterminates xij , and extending
this to R(X) = K(X) ⊗ R). Let us now apply this automorphism to the Eq. 4; we get

auRq−k ⊆ a

q−k−1∑

γ=1

K(X)bγ uRγ (6)

where a = cα−q+k+2 . . . cα−q+2k+1 and bγ = cα−q+2k+2 . . . cα−γ+k+1.
Multiplying the left side of this equation by c1c2 . . . cα−q+k+1, we get

c1c2 . . . cα−q+2k+1uRq−k ⊆ c1c2 . . . cα−q+2k+1

q−k−1∑

γ=1

K(X)bγ uRγ .

With this, the Eq. 5 can now be rewritten as

c1 . . . ckuRα+1 ⊆ (c1 . . . ck)
∑q−k−1

γ=2 K(X)ck+1 . . . cα+1−γ+kuRγ +
c1c2 . . . cα−q+2k+1

∑q−k−1
γ=1 K(X)cα−q+2k+2 . . . cα−γ+k+1uRγ .

(7)

This proves the claim.
Evaluating in Eq. 3 some of the xi,j in c1, . . . , ck (using an easy-to-formulate counterpart

of Eq. 2) we get

RkuRα ⊆
q−k−1∑

γ=1

K(X)Rkck+1 . . . cα−γ uRγ .

Therefore, for every α ≥ q − k we get

dimK(X) K(X)RkuRα ≤ (dimK(X) K(x)Rk)

⎛

⎝
q−k−1∑

γ=1

dimK(X) K(X)Rγ

⎞

⎠ ≤ c,

where c is a sufficiently large constant. This implies

dimK RkuRα ≤ c. (8)

Also, if we evaluate all xi,j , we get that for every α ≥ q − k

RkuRα ⊆
q−k−1∑

γ=1

Rα−γ+kuRγ . (9)

Observe now that if we apply the same arguments starting with Eq. 1, but with respect to
the left side instead of the right side, we will get some similar facts, as follows: for some k′
and for the same q (for every α > q − k′) we have

dimK RαuRk′ ≤
⎛

⎝
q−k′
∑

ξ=1

dimK(X) K(X)Rξ

⎞

⎠ (dimK(X) K(x)Rk′) ≤ c′, (10)

for sufficiently large constant c′, and

RαuRk′ ∈
q−k′
∑

γ=1

Rγ uRα−γ+k′ . (11)
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Observe now that, for any tu such that tu > max{k, q − k}, taking β > tu, σ > tu and using
Eqs. 9 and 11 we get

RβuRσ = Rβ−k(RkuRσ ) ⊆ Rβ−k

q−k∑

γ=1

Rσ−γ+kuRγ .

Therefore, the ideal generated by u in R is contained in

∞∑

k=1

(Rku + uRk) +
∞∑

j=1

tu∑

i=1

(RiuRj + RjuRi),

and from this and from Eqs. 8, 10 it follows that

dimK

∑

i+j<n

Ri+kuuRj+ku < pun,

for some constant pu not depending on n, and some ku.

Lemma 16 Let R = ⊕
i∈Z Ri be a prime, affine algebra over a field K generated in

degrees 1,−1, 0, with finite-dimensional R0. Let u be an homogeneous element of R. Let
(u) denote the ideal generated by u in R. If, for any m

dimK

(

(u) ∩
n⊕

i=−n

Ri

)

<
(n − m)(n − m − 1)

2

for infinitely many n, then there is a number su > 0 such that the ideal generated by u in R

is contained in
∑

p∈Z
(Rpu + uRp) +

∑

p∈Z

su∑

q=−su

(RquRp + RpuRq).

Proof We let a1, . . . , ar denote a K-basis for R−1, and b1, . . . , bs be a K-basis for R1, and
consider the following elements of R(X) = K(X) ⊗ R:

ci =
r∑

j=1

xij aj ; di =
s∑

j=1

x−i,j bj ; c′
i =

s∑

j=1

yi,j bj ; d ′
i =

s∑

j=1

y−i,j aj .

Let u be the fixed homogeneous element from the statement. We also denote

S = {c1 · · · ciudj · · · d1 | i, j > 0}, S′ = {c′
1 · · · c′

iud ′
j · · · d ′

1 | i, j > 0},
T = {c1 · · · ciud ′

j · · · d ′
1 | i, j > 0}, T ′ = {d1 · · · diuc′

j · · · c′
1 | i, j > 0}.

Case 1. Here we prove that, if any of the above family S, S′, T , T ′ is linearly indepen-
dent, then the lemma holds, since the assumption on dimension of (u) is not satisfied. This
is done in a similar way to the first part of the proof of [8, Theorem 1.3].

Case 2. Let V ⊆ R−1 + R0 + R1 be a generating space of R. Due to the first case we
may assume that the families S, S′, T , T ′ are each linearly dependent. We remark that

V nuV n =
∑

0≤i,j≤n

Ri
−1uR

j

1 +
∑

0≤i,j≤n

Ri
1uR

j

−1 +
∑

0≤i,j≤n

Ri
−1uR

j

−1 +
∑

0≤i,j≤n

Ri
1uR

j

1 . (12)

We will now treat the first term occurring above. Assume that the set

{c1 · · · ciudj · · · d1 | i, j ≥ 0}
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is linearly dependent. Let
∑

fi,j (X)c1 . . . ciudj . . . d1 = 0

be a non-trivial dependence relation. Since R(X) = K(X) ⊗ R is Z-graded, looking at
terms of the same degree in this relation we get that there exists an integer h, such that a
non trivial relation as the one above holds with j − i = h. Hence we get for some l

l∑

i=1

fi,h+i (X)c1 . . . ciudh+i . . . d1 = 0.

We may assume that fl,h+l �= 0, and hence

c1 . . . cludh+l . . . d1 ∈
l−1∑

i=1

K(X)c1 . . . ciudh+i . . . d1.

Notice that elements from the right hand side are contained in

l−1∑

i=1

K(X)R−iuRh+i .

Therefore

c1 . . . cludh+l . . . d1 ∈
l−1∑

i=1

K(X)R−iuRh+i .

As the left hand side belongs to K[X]R, we get

c1 . . . cludh+l . . . d1 ∈
l−1∑

i=1

K[X]R−iuRh+i .

Evaluating all of the x−i,j and xi,j , we finally get

R−luRh+l ⊆
l−1∑

i=1

R−iuRh+i (13)

Let c > l, d > h + l; then by Eq. 13 and by Lemma 2, we get

R−cuRd = R−c+l (R−luRh+l )Rd−h−l ⊆
l−1∑

i=1

K(X)R−c−i+luRd+i−l .

Continuing this process we can see that as long as c > l and d > h + l, then we can always
decrease the degrees in R−cuRd . It is not hard to see that for any n we have

∑

0≤i,j≤n

Ri
−1uR

j

1 ⊆
∑

p∈Z

α∑

q=−α

RquRp + RpuRq,

where α = max{l − 1, h + l − 1}.
Working in a similar manner, with term S′ appearing in Eq. 12, and for terms T , T ′, using

the same methods as in the proof of Lemma 15 (iii), we will produce β, γ, δ that play the
role of α in the relevant parts of the proof. Taking su = max{α, β, γ, δ}, we get

RuR ⊆
∑

p∈Z
(Rpu + uRp) +

∑

p∈Z

su∑

q=−su

(RquRp + RpuRq),

which was our goal.
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Regarding Lemma 7, it seems that the next lemma is interesting in its own right.

Lemma 17 Let R = ⊕
i∈Z Ri be a prime, affine algebra generated in degrees 1,−1, 0,

with finite-dimensional R0. Suppose that R is infinite-dimensional and that Ri = 0 for
almost all i < 0. Let u be a nonzero homogeneous element of R. Then Rsu �= 0, for every
s > 0.

Proof We will use Lemma 2 throughout. Let s > 0, and let t > 0 be such that R−i = 0
for all i > t . Take q > s + t such that there is a nonzero monomial 0 �= m ∈ Rq (as R is
infinitely dimensional, Rq �= 0 for almost all positive q). Since R is a prime and graded ring,
it follows that for some j , mRju �= 0. By assumption, j ≥ −t . If j < 0, then we can write
m = m1m2, where m2 ∈ R−j and m1 ∈ Rv where v > s. Then mRju = m1m2Rju ⊆ Rvu,
so Rvu �= 0. Since v > s, it follows that Rsu �= 0. If j ≥ 0, then mRjv ⊆ Rkv, where
k ≥ q > s + t , and so by Lemma 2 Rkv �= 0 implies Rsv �= 0.

Lemma 18 Let R = ⊕
i∈Z Ri be a prime, affine algebra generated in degrees 1,−1, 0,

with finite-dimensional R0. Suppose that R is infinite-dimensional and that Ri = 0 for
almost all i < 0. Then the algebra R′ = ⊕

i>0 Ri is prime.

Proof Let t > 0 be such that R−i = 0 for all i > t . Let 0 �= p ∈ Ri, 0 �= q ∈ Rj

be homogeneous elements in R. By Lemma 17, Rt+1q �= 0. Since R is prime and graded,
pRl(Rt+1q) �= 0 for some l ≥ −t . Therefore pRl+t+1q �= 0. As l + t + 1 > 0, pR′q �= 0,
as required.

We will also need the following part of [7, Lemma 2.3].

Lemma 19 Let K be a field. If A is a finitely generated, prime algebra of GK dimension at
least 2, and if V is a frame for A and z ∈ A is nonzero, then there exists a positive constant
C such that

dimK(V mzV m) > Cm2,

for all sufficiently large m.

Lemma 20 Let R be a prime algebra with quadratic growth, which is Z-graded and finitely
generated in degrees 1, −1 and 0. Moreover, let Rk �= 0 for almost all k ∈ Z. We write
R = ⊕

i∈Z Ri , and assume that R0 is finite-dimensional. Let u �= 0 be an homogeneous
element of R, and let (u) denote the ideal generated by u in R. Then there is a positive
number B such that

dimK

(

(u) ∩
n⊕

i=−n

Ri

)

> Bn2,

for almost all n > 0.

Proof By Lemma 7, we can assume that u ∈ R0. Clearly, we can consider V = R0+R−1+
R1 as a frame of R. By Lemma 19, we have dimK(V muV m) > Cm2 for some positive
integer C and all sufficiently large m. As we have

V mu V m ⊆
(

m⊕

i=−m

Ri

)

u

(
m⊕

i=−m

Ri

)

⊆ (u) ∩
2m⊕

i=−2m

Ri,
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then taking n = 2m we get

dimK

(

(u) ∩
n⊕

i=−n

Ri

)

> Bn2

for all sufficiently large n and B = 1
8C. The result is proved.

Proof of Theorem 14. We consider three cases.
Case 1. Ri = 0 for almost all i < 0. By Lemma 17, there is u′ ∈ Rj ∩ (u) for some

j > 0. By Lemma 18, the ring R′ = ⊕
i>0 Ri is prime, so by [8, Theorem 1.3] the ideal

(u′) generated by u′ in R′ satisfies

dimK

(

(u′) ∩
n⊕

i=1

Ri

)

≥ (n − m)(n − m − 1)

2

for all sufficiently large n and some m. The result follows, as (u′) ⊆ (u).
Case 2. Ri = 0 for almost all i > 0. This case is done by analogy with Case 1.
Case 3. By Lemma 2, we are left with the case Ri �= 0 for almost all i ∈ Z. By Lemma

7, we can assume that u ∈ R0. Suppose, on the contrary, that for any m

dimK

(

(u) ∩
n⊕

i=−n

Ri

)

<
(n − m)(n − m − 1)

2

for infinitely many n.

Let a1, . . . , ae be generators of R1 and let u1 = a1u, . . . , ue = aeu, ue+1 =
ua1, . . . , u2e = uae. Then ul ∈ R1 for any l, and by Lemma 15(ii) there exist kul

and pul

such that
dimK

∑

i, j > 0
i + j < n

Ri+kul
ulRj+kul

< pul
n (14)

for every positive integer n. Considering k = max{ku1 , . . . , ku2e
}, for any l we get

∑

i, j > k

i + j < n

RiulRj ⊆
∑

i, j > k

i + j < n + 2k

RiulRj ⊆
∑

i, j > 0
i + j < n

Ri+kulRj+k ⊆ (15)

⊆
∑

i, j > 0
i + j < n + 2k − 2kul

Ri+kul
ulRj+kul

.

Thus, by Eqs. 14 and 15, we have

dimK

∑

i, j > k
i + j < n

RiulRj ≤ dimK

∑

i, j > 0
i + j < n + 2k − 2kul

Ri+kul
ulRj+kul

< pul
(n + 2k − 2kul

)

and finally
dimK

∑

i, j > k

i + j < n

RiulRj < p̄n, (16)
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for all n and some p̄.
Similarly, we consider generators b1, . . . , bd of R−1 and elements vl ∈ R−1 for l ∈

{1, . . . , 2d} such that vl = blu for l = 1, . . . , d and vl = ubl for l = d + 1, . . . , 2d . Using
the appropriate “negative” version of Lemma 15(ii), we get positive integers k

′
and p′ such

that, for any l,
dimK

∑

i, j > k
′

i + j < n

R−ivlR−j < p′n (17)

for all n.
By Lemma 16, there is a number su > 0 such that the ideal generated by u in R is

contained in the linear space

∑

p∈Z
(Rpu + uRp) +

∑

p∈Z

su∑

q=−su

(RquRp + RpuRq).

We can assume that su > k and su > k
′

(we can take a bigger su if necessary).
Using ideals I, I ′ defined in Lemma 6 and information therein we have II ′ ⊆

IRR6su ⊆ IR6su ⊆ RR−3suR6su , and by similar arguments II ′ ⊆ R6suR−3suR. Therefore
II ′(u)II ′ ⊆ R6suR−3su (u)R−3suR6su .

Observe now that we have

II ′(u)II ′ ⊆ R6suR−3su (u)R−3suR6su ⊆
⊆ R6suR−3su

(
∑

p∈Z
(Rpu + uRp) + ∑

p∈Z

su∑

q=−su

(RquRp + RpuRq)

)

R−3suR6su ⊆

⊆ R6su

(
∑

p∈Z

−2su∑

q=−4su

RquRp + RpuRq

)

R6su .

(18)

Consider

W1 =
∑

p≤0

−2su∑

q=−4su

RquRp + RpuRq ⊆
−n⊕

z=−1

Rz

and let

J =
∑

p<−su−1

−2su∑

q=−4su

RquRp + RpuRq =
∑

p<−su

−2su∑

q=−4su

RquR−1Rp + RpR−1uRq

(obviously J ⊆ ⊕
k<0 Rk). Then

W1 = V + J

where V = ∑−su
p=0

∑−2su
q=−4su

(RquRp + RpuRq) is a finite-dimensional linear space. Using
all of the above, for all sufficiently large n we have

J ∩
−n⊕

z=−1

Rz ⊆
2d∑

l=1

∑

i, j > k
′

i + j < n

R−ivlR−j . (19)

Thus, by Eqs. 17 and 19,

dimK

⎛

⎝J ∩
−n⊕

z=−1

Rz

⎞

⎠ < 2dp′n
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for almost all n, which gives

dimK

⎛

⎝W1 ∩
−n⊕

z=−1

Rz

⎞

⎠ = dimK

⎛

⎝(V + J ) ∩
−n⊕

z=−1

Rz

⎞

⎠ < qn (20)

for some q and almost all n.
In order to make the next step, we need to observe that R6suW1R6su ∩ ⊕∞

z=0 Rz is finite-
dimensional (as W1 ⊆ ⊕

z<0 Rz) and that

dimK

⎛

⎝R6suW1R6su ∩
−n⊕

z=−1

Rz

⎞

⎠ ≤ dimK

⎛

⎝R6su

⎛

⎝W1 ∩
−n−12su⊕

z=−1−12su

Rz

⎞

⎠R6su ≤

≤ dimK R6su · dimK

⎛

⎝W1 ∩
−n−12su⊕

z=−1−12su

Rz

⎞

⎠ · dimK R6su <

< dimK R6suq(n + 12su) dimK R6su ( by (20)),

which together imply that there is α such that

dimK

(

R6suW1R6su ∩
n⊕

z=−n

Rz

)

< αn (21)

for all sufficiently large n.
Consider now the linear space

W2 =
∑

p>0

−2su∑

q=−4su

RquRp + RpuRq.

Then

R6suW2R6su ⊆
∑

p>0

4su∑

q=2su

RquRp + RpuRq ⊆
⊕

z>0

Rz,

and as in Eq. 20, using elements ul we can show that there is β such that

dimK

(

R6suW2R6su ∩
n⊕

z=−n

Rz

)

< βn, (22)

for almost all n.
Notice that by Eq. 18 we have

II ′(u)II ′ ⊆ R6suR−3su (u)R−3suR6su ⊆ R6su (W1 + W2)R6su ,

and using Eqs. 21, 22 we get

dimK(II ′(u)II ′ ∩
n⊕

z=−n

Rz) ≤ (23)

≤ dimK

(

R6suW1R6su ∩
n⊕

z=−n

Rz

)

+ dimK

(

R6suW2R6su ∩
n⊕

z=−n

Rz

)

< (α + β)n

for all sufficiently large n.
As R is prime by assumption, the homogeneous ideal II ′(u)II ′ is nonzero. Thus, taking

a nonzero homogeneous element a ∈ II ′(u)II ′ and considering the ideal (a), we can see
that by Eq. 23 we get a contradiction with Lemma 20, which completes the proof.
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5 Chains of Prime Ideals

Following on from our notes in the Introduction regarding this section, we add that our
research was also motivated by an example of Bergman (see [22]), which assures that there
are affine prime algebras with infinite ascending chains of prime ideals, and also by [14],
where Greenfeld, Rowen and Vishne gave other interesting related results and examples.

Recall that an algebra R over a field K has a classical Krull dimension equal to m if there
exists a chain of prime ideals Pm � Pm−1 � . . . � P0 of length m and there is no such
chain longer than m. If R has chains of prime ideals of arbitrary length then the classical
Krull dimension of R is equal to ∞.

Remark 21 Note that by [27, Theorem 2], if R is a prime PI algebra then any nonzero
ideal P of R has a regular element. Thus, using [16, Proposition 3.15], we find that
GKdim(R/P ) < GKdim(R). We will use this fact below.

Theorem 22 Let R be an affine, prime algebra over a field K with quadratic growth, which
is Z-graded and generated in degrees 1,−1 and 0. We write R = ⊕

i∈Z Ri , and assume
that R0 is finite-dimensional. Then R has finite classical Krull dimension.

Proof We first remark that if P is a prime ideal of R such that R/P is not PI, then P is
homogeneous, by Lemma 11. Moreover, as R has quadratic growth there is a number p > 0
such that dimK(V +. . .+V n) < pn2 for every n, where V ⊆ R−1+R0 +R1 is a generating
space of R.

We now show that if P1 � P2 � . . . � Pk is a chain of proper prime ideals of R

such that R/Pi is PI for every i, then k ≤ 3. Indeed, by Remark 21 it is not hard to see
that GKdim(R/Pk) < GKdim(R/Pk−1) < . . . < GKdim(R/P1). Thus by the Small-
Warfield theorem [29] and by Bergman’s gap theorem it follows that k ≤ 3.

In the second part of the proof we show that there are no chains of nonzero proper
homogeneous prime ideals in R which are longer than 2p + 1, with the condition that
R/P is not PI for any P appearing in this chain. Suppose on the contrary that P1 �

P2 � . . . � P2p+2 � R is a chain of nonzero proper homogeneous prime ideals
of R and R/Pi is not PI for any i. Next time, using the Small-Warfield theorem [29]
and Bergman’s gap theorem, we get that R/Pi has quadratic growth for any i. Observe
now that for every i, Pi+1/Pi is a nonzero homogeneous prime ideal in the ring R/Pi

and R/Pi satisfies all of the assumptions appearing in Theorem 14. Thus, by this theo-

rem Pi+1/Pi has more than n2−n
3
2

2 linearly independent elements with degrees between
−n and n, for all sufficiently large n. This holds for i = 1, 2, . . . , 2p + 2. By the above,

it follows that for every i the ideal Pi+1 has more than i · ( n2−n
3
2

2 ) linearly independent
elements of degrees between −n and n for almost all n (summing all elements in P1,

P2/P1, P3/P2, . . . Pi+1/Pi). Therefore the ideal P2p+2 has more than (2p + 2) · ( n2−n
3
2

2 )

linearly independent elements of degrees between −n and n for almost all n, and for suf-

ficiently large n we have (2p + 2) · ( n2−n
3
2

2 ) > pn2. This is impossible by assumption on
growth of R.

We are now ready to show that there are no chains of nonzero proper prime ideals in R

which are longer than 2p + 4. Indeed, consider a chain P1 � P2 � . . . � Pk of proper
prime ideals of R. Notice that if R/Pt is PI for some t then R/Pl is PI for any l ≥ t . Thus,
by the first part of the proof in the chain P1 � . . . � Pk−3, we have only homogeneous
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prime ideals such that for any i, R/Pi is not PI, which implies k − 3 ≤ 2p + 1, and the
result follows.

Clearly the classical Krull dimension of R is finite (less than or equal to 2p + 4), and it
depends upon p.

Now we consider domains with cubic growth. At the same time we need to notice that
if R = ⊕

i∈Z Ri is a domain, with R0 finite-dimensional generated in degrees 1,−1 and 0
and R1, R−1 �= 0, then Ric ⊆ R0, for any c ∈ R−i , hence, dimK Ri ≤ dimK R0, and in the
discussed case the growth of the algebra is at most quadratic. By the above, we need only
consider domains graded by non-negative integers. Firstly, we want to prove the following.

Lemma 23 Let R be a domain (also an algebra over a field K) with cubic growth, graded
by non-negative integers, and finitely generated in degrees 1 and 0. We write R = ⊕∞

i=0 Ri ,
and assume that R0 is finite-dimensional. If I is a nonzero homogeneous prime ideal of R,
such that R/I is not PI, then R/I has quadratic growth. Moreover, there exists D such that

dimK((R/I)1 + . . . + (R/I)n) ≤ Dn2

for almost all n, and D does not depend on I , only on R.

Proof We need to establish some information to work with. Firstly, by Lemma 2, R1 is
finite-dimensional and Rn = Rn

1 , for any n > 0. Secondly, by assumption there exists c > 0
such that dimK(R1 + . . . + Rn) ≤ cn3, for all n. Finally, as R is a domain it is also true that
dimK Rt ≤ dimK Rt+1, for any t > 0.

Since I is nonzero homogeneous and R is a domain, there exists a nonzero element i ∈ I

such that i ∈ Rk for some k > 0. Then it is not hard to see that

dimK(Rm/Im) ≤ dimK Rm − dimK Rm−k,

for any m > k, where Im = Rm ∩ I . Thus we can see that for any n > k we have

n∑

j=k+1

dimK(Rj/Ij ) ≤ dimK Rn + . . . + dimK Rn−k+1 +
k∑

l=1

dimK Rl. (24)

Assume for a while that there exists D > 0 such that for any n we have dimK Rn ≤ Dn2.
Then, using Eq. 24, we can see that R/I has at most quadratic growth. In fact, R/I has
exactly quadratic growth.

By the above to prove the first claim, it is enough to show that there exists a positive
number D such that dimK Rn ≤ Dn2, for any n. Suppose, to get a contradiction, that
for some n we have dimK Rn > 16cn2. As we remarked at the beginning, dimK R1 ≤
dimK R2 ≤ . . ., so

dimK R1 + . . . + dimK R2n ≥ dimK Rn + . . . + dimK R2n ≥ n dimK Rn > 16cn3.

On the other hand, we have dimK R1 + . . . + dimK R2n ≤ 8cn3, a contradiction. Thus,
taking D = 16c, we finish the proof.

Now, we recall a result of Bergman [Theorem 22.5, page 224, [23]]

Theorem 24 (Theorem 22.5, page 224, [23]) Let S be a Z-graded ring and let P be a
nonzero prime ideal. If I is an ideal of S properly containing P , then I has a nonzero
homogeneous element.
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We will now continue to consider rings with cubic growth and prove the second main
result for this section.

Theorem 25 Let R be a domain with cubic growth which is graded by non-negative inte-
gers, finitely generated in degrees 1 and 0. Write R = ⊕∞

i=0 Ri and assume that R0 is
finite-dimensional. Then R has a finite classical Krull dimension.

Proof Consider a chain of proper prime ideals P1 � P2 � . . . � Pm of R. Using Remark
21 and similar arguments as in the proof of Theorem 22, we can see that the first index t

such that R/Pt is PI (if such exists) is at least equal to m − 3. Observe that by Theorem 24,
applied for S = R, P = P1, I = P2, the ideal P2 contains a homogeneous element. Let Q

be the set of all homogeneous elements in P2, then Q is a prime ideal in R (since P2 is a
prime ideal in R). Moreover, by Lemma 23, R/Q has quadratic growth and

dimK((R/Q)1 + . . . + (R/Q)n) ≤ Dn2

for almost all n, and some D which does not depend on Q but only on R.
Consider the chain

P3/Q � P4/P1 � . . . � Pm−4/P1

of proper prime ideals of R/P1. By Theorem 22 and its proof, we have m − 8 ≤ 2D + 4,
which implies that m ≤ 2D + 12. This completes the proof.

6 On Tensor Products of Algebras Which are Brown-McCoy Radical

As recalled in the Introduction, a ring R is Brown-McCoy radical if it cannot be homomor-
phically mapped onto a simple ring with an identity element. Clearly, if R is Brown-McCoy
radical then any homomorphic image of R is Brown-McCoy radical as well. As the first
supporting result, we present the following.

Lemma 26 Let K be a field, R be a K-algebra, and let A be a K-algebra with identity. If
R ⊗ A can be mapped onto a simple ring with identity, then there is a prime homomorphic
image R′ of R such that R′ ⊗ A and R′C′ can be mapped onto a simple ring with identity,
where C′ is the extended centroid of R′. Moreover, R′ has no locally nilpotent ideals.

Proof Let f : R ⊗ A → S be a homomorphism onto a simple ring S with identity. Let
I = {c ∈ R : f (c ⊗ 1) = 0} (we leave it for the reader to check that I is a prime ideal
of R, and equivalently I = {c ∈ R : f (c ⊗ b) = 0 for every b ∈ A}), and consider the
ring R′ = R/I . Then R′ ⊗ A can be homomorphically mapped onto S with the analogous
mapping f ′ : R′ ⊗ A → S (where f ′((a + I ) ⊗ b) = f (a ⊗ b)). The first part of the
theorem has been proven.

Observe that if R has a locally nilpotent ideal L then L ⊆ I , so R′ has no nonzero
locally nilpotent ideals. Indeed, it follows because S is a simple ring with identity, so if
f (L ⊗ A) �= 0 then f (L ⊗ A) = S, which is impossible.

We consider for some n elements a1, . . . , an ∈ R′, b1, . . . , bn ∈ A such that
f ′(

∑n
i=1 ai ⊗ bi) = 1. Consider the central closure R′C′ of R′. By [6, Theorem 2.3.3], it

follows that we have two possibilities:

(1) 1 ∈ ∑
i C′ai .
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(2) There are elements pj , qj in R′ such that
∑

j pj aiqj = 0 for every i and
∑

j pj 1qj =
c �= 0 for some c ∈ R.

If (1) holds then R′C′ has identity so it can be mapped onto a simple ring with identity.
Assume now that (2) holds. Then we get

0 =
∑

i

∑

j

f ′(pj ⊗ 1)f ′(aiqj ⊗ bi) =
∑

i

∑

j

f ′(pj ⊗ 1)f ′(ai ⊗ bi)f
′(qj ⊗ 1) =

=
∑

j

f ′(pj ⊗ 1)f ′(qj ⊗ 1) = f ′(c ⊗ 1) = f (c ⊗ 1).

The last fact implies that c ∈ I , which gives a contradiction, as c �= 0 . Thus case (2) cannot
happen.

Remark 27 Notice that we can add an identity to a ring A to have a ring A1 with identity
which has A as an ideal. So Lemma 26 would also work if A does not have an identity.

Lemma 28 If R is an algebra (over a field K) without an identity element, and K ⊆ F

is an algebraic field extension, then R ⊗K F is Brown-McCoy radical if and only if R is
Brown-McCoy radical.

Proof If R ⊗K F is Brown-McCoy radical then clearly R is Brown-McCoy radical.
Suppose that R ⊗K F is not Brown-McCoy radical, so R ⊗K F can be homomorphically

mapped onto a simple ring S with identity. Let f : R ⊗K F → S be a ring homomorphism
onto S, and let f (

∑m
i=1 ai ⊗ ξi) = 1. Since we only need a finite number of ξi’s we can

assume that F is a finitely generated algebraic extension of K . We can proceed by induction
with respect to the minimal number of generators of F . Therefore it is sufficient to prove
that if F = K[ξ ] where ξ is algebraic over K then R is not Brown-McCoy radical.

Observe that we can view R⊗K[ξ ] as R[ξ ], where ξ is algebraic over K . By assumption
there exists a homomorphism ψ : R[ξ ] → S mapping R[ξ ] onto a simple ring S with
identity. Let g(x) ∈ K[x] be a minimal polynomial of ξ , and assume that g(x) has degree
n+1. Then, considering the minimal number k such that ψ(

∑k
i=0 eiξ

i) = 1 and ψ(ekξ
k) �=

0 for some ei ∈ R, we have k ≤ n. As ψ(ekξ
k) �= 0 we clearly have ψ(ek) �= 0. Let I

be the ideal of R generated by ek . Then I ′ = ∑n
p=0 Iξp is a nonzero ideal of R[ξ ], and as

ψ(ek) �= 0 we have S = ψ(I ′) = ∑n
p=0 ψ(I)ψ(ξ)p. Observe that by the obvious fact that

Sn �= 0 we also have In �= 0, and S = ∑n
p=0 ψ(In)ψ(ξ)p follows. In particular,

ψ

⎛

⎝
j∑

l=0

dlξ
l

⎞

⎠ = 1

for some dl ∈ In and some j ≤ n. Observe that since each dl ∈ In we have

dl ∈
∑

tl

ctl ekI
n−1

for some ctl ∈ R. We now use a substitution

ψ(ekξ
k) = 1 − ψ

(
k−1∑

i=0

eiξ
i

)

= ψ

(
k−1∑

i=0

aiξi

)
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for a0 = 1 − e0 and as = es for s > 0. Observe that if j > k − 1 then

ψ(dj ξ
j ) ∈

∑

tj

ψ(ctj ekξ
k)ψ(I)n−1ψ(ξj−k) ⊆

∑

tj

ψ

(

ctj

k−1∑

i=0

aiξ
i

)

ψ(I)n−1ψ(ξj−k) ⊆

⊆
j−1∑

i=0

ψ(I)n−1ψ(ξ i).

In this way we can see that ψ(dj ξ
j ) ∈ ∑k−1

i=0 ψ(I)n−1ψ(ξ i). The same approach can be

used toward other coefficients dl for l > k − 1, so we conclude that ψ(
∑j

i=1 diξ
i) ∈

∑k−1
i=0 ψ(I)n−1ψ(ξ i). Thus 1 ∈ ∑k−1

i=0 ψ(I)n−1ψ(ξ i), which is impossible regarding the
minimality of k. Therefore k = 0, so f (e0) = 1 for some e0 ∈ R and R can be homo-
morphically mapped onto a ring with identity and it follows that R is not a Brown-McCoy
radical. This completes the proof.

We are now in a position to prove the main result for this section.

Theorem 29 Let K be a field, and let R be an affine algebra over K with GK dimension
less than 3. If R is Brown-McCoy radical, then R ⊗ A is Brown-McCoy radical for every
algebra A over K .

Proof Suppose on the contrary that for some algebra A over K , the algebra R ⊗ A can
be mapped onto a simple ring with identity. Then by Lemma 26 and Remark 27, R′C′ can
be mapped onto a simple ring with identity, where R′ is a prime homomorphic image of R

(without locally nilpotent ideals), and C′ is the extended centroid of R′.
We claim that R′ is not PI. Indeed, the Jacobson radical J (R′) of R′ is zero, since R′

does not have locally nilpotent ideals and the Jacobson radical of any finitely generated PI
algebra is nilpotent. Thus the intersection of all (right) primitive ideals of R′ is zero. If R′ is
primitive (which means that the zero ideal is primitive), then being PI the ring R′ is simple
with an identity by Kaplansky’s Theorem, a contradiction (as R′ is Brown-McCoy radical).
Thus there exists a nonzero primitive ideal P of R′. But then R′/P is primitive and PI, so
as above it is simple with an identity, a contradiction.

As R′ is not PI and has GK dimension less than 3, then by [7, Corollary 1.2], the extended
centroid C′ of R′ is algebraic over K . Additionally, the extended centroid of a prime algebra
is a field.

As R′ is Brown-McCoy radical and C′ is an algebraic field extension of the base field
K , then using Lemma 28 we can see that R′C′ is Brown-McCoy radical (as a homomorphic
image of R′ ⊗ C′). The last fact contradicts the assumption from the beginning, which
completes the proof.

By [20, Theorem 5.7], a graded-nil ring which is Z-graded is Brown-McCoy radical.
Therefore the following holds.

Corollary 30 Let K be a field, and let R be an affine, Z-graded algebra over K with
Gelfand-Kirillov dimension less than 3. If R is graded-nil, then R ⊗ A is Brown-McCoy
radical for every algebra A over K .

Recall that Bartholdi [4] constructed examples of finitely generated graded-nil algebras
with quadratic growth which are not Jacobson radical. These algebras are primitive. This
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provides examples of a primitive algebra R such that R is Brown-McCoy radical, and R⊗A

is Brown-McCoy radical for any algebra A, showing that Brown-McCoy radical may be
quite far from the Jacobson radical. On the other hand, a Jacobson radical ring is Brown-
McCoy radical.

We would also like to mention that in [31] examples of Jacobson radical algebras with
quadratic growth (over any countable field) are constructed.

7 Open Questions

We say that a graded ring R is graded-nilpotent if every subring of R which is generated by
homogeneous elements of the same degree is nilpotent.

Question 31 Is every graded-nilpotent ring locally nilpotent (or nil, or Jacobson radical)?

This can also be asked of prime rings and rings with small growth.

Question 32 Is there a graded-nilpotent ring with Gelfand-Kirillov dimension two?

Lemma 33 IfR is a strongly Z-graded Jacobson radical ring, thenR is infinitely generated
and R0 is infinitely generated.

Proof Since R is strongly Z-graded, R = R2 and R0 = R2
0. By Lemma 8, R0 is nil.

Suppose though that R is finitely generated; then by Nakayama’s Lemma we learn that
R = 0. Similarly, if R0 is finitely generated, then by Nakayama’s Lemma R0 = 0.

Question 34 Is Lemma 33 also true if R is graded-nil but not nil?

Example 35 It is known that simple nil rings exist (cf. [33]). For such a ring R, R[x, x−1]
is graded-nil, and strongly Z-graded.

Question 36 Let R be a graded-nilpotent algebra which is finitely generated as a Lie
algebra. Does it follow that R is nilpotent?

This question is related to the following.

Question 37 Let R be a nil algebra which is finitely generated as a Lie algebra. Does it
follow that R is nilpotent?

Notice that Question 37 is practically a reformulation of Question 9 from a survey by
Amberg and Kazarin [1] (see [15] for an explanation of why these questions are related).
Moreover, this question has connections to group theory, and the famous Eggert’s conjecture
(see [1]).

Question 38 Is there an affine algebra R over a field K with finite Gelfand-Kirillov dimen-
sion such that R is Brown-McCoy radical, and that, for some K-algebra A, R ⊗ A can be
mapped onto a simple ring with identity?
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