
Algebr Represent Theor (2014) 17:275–288
DOI 10.1007/s10468-012-9398-3

The Algebra of Polynomial Integro-Differential
Operators is a Holonomic Bimodule over
the Subalgebra of Polynomial Differential Operators

V. V. Bavula

Received: 2 July 2012 / Accepted: 6 December 2012 / Published online: 26 January 2013
© Springer Science+Business Media Dordrecht 2013

Abstract In contrast to its subalgebra An := K〈x1, . . . , xn,
∂

∂x1
, . . . , ∂

∂xn
〉 of polyno-

mial differential operators (i.e. the n’th Weyl algebra), the algebra In := K〈x1, . . . ,

xn,
∂

∂x1
, . . . , ∂

∂xn
,
∫

1, . . . ,
∫

n〉 of polynomial integro-differential operators is neither left
nor right Noetherian algebra; moreover it contains infinite direct sums of nonzero
left and right ideals. It is proved that In is a left (right) coherent algebra iff n = 1;
the algebra In is a holonomic An-bimodule of length 3n and has multiplicity 3n with
respect to the filtration of Bernstein, and all 3n simple factors of In are pairwise non-
isomorphic An-bimodules. The socle length of the An-bimodule In is n + 1, the socle
filtration is found, and the m’th term of the socle filtration has length

(n
m

)
2n−m. This

fact gives a new canonical form for each polynomial integro-differential operator. It
is proved that the algebra In is the maximal left (resp. right) order in the largest left
(resp. right) quotient ring of the algebra In.

Keywords The algebra of polynomial integro-differential operators ·
The Weyl algebra ·The socle ·The socle length

Mathematics Subject Classifications (2010) 16D60 · 16S32

1 Introduction

Throughout, ring means an associative ring with one; module means a left module;
N := {0, 1, . . .} is the set of natural numbers; K is a field of characteristic zero
and K∗ is its group of units; Pn := K[x1, . . . , xn] is a polynomial algebra over
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K; ∂1 := ∂
∂x1

, . . . , ∂n := ∂
∂xn

are the partial derivatives (K-linear derivations) of Pn;
EndK(Pn) is the algebra of all K-linear maps from Pn to Pn; the subalgebras
An := K〈x1, . . . , xn, ∂1, . . . , ∂n〉 and In := K〈x1, . . . , xn, ∂1, . . . , ∂n,

∫
1, . . . ,

∫
n〉 of the

algebra EndK(Pn) are called the n’th Weyl algebra and the algebra of polynomial
integro-dif ferential operators respectively.

The Weyl algebras An are Noetherian algebras and domains. The algebras In are
neither left nor right Noetherian and not domains. Moreover, they contain infinite
direct sums of nonzero left and right ideals [1, 2]. The algebra An is isomorphic to its
opposite algebra Aop

n via the K-algebra involution:

An → An, xi �→ ∂i, ∂i �→ xi, i = 1, . . . , n.

Therefore, every An-bimodule is a left A2n-module and vice versa. Inequality of
Bernstein [6] states that each nonzero f initely generated An-module has Gelfand-
Kirillov dimension which is greater or equal to n. A finitely generated An-module is
holonomic if it has Gelfand-Kirillov dimension n. The holonomic An-modules share
many pleasant properties. In particular, all holonomic modules have finite length,
each nonzero submodule and factor module of a holonomic module is holonomic.
The aim of the paper is to prove Theorem 2.5. In particular, to show that the algebra
In is a holonomic An-bimodule of length 3n and has multiplicity 3n, i.e. a holonomic
left A2n-module of length 3n and has multiplicity 3n with respect to the filtration of
Bernstein. All 3n simple factors of In are pairwise non-isomorphic An-bimodules. We
also found the socle filtration of the A2n-module In. It turns out that the socle length
of the A2n-module is n + 1, and the length, as an A2n-module, of the m’th socle factor
is

(n
m

)
2n−m (Theorem 2.5.(4)) where m = 0, 1, . . . , n. A new K-basis for the algebra

In is found which gives a new canonical form for each polynomial integro-differential
operator, see Eq. 16. By the very definition,

In :=
n⊗

i=1

I1(i) � I
⊗n
1 where I1(i) := K

〈

xi, ∂i,

∫

i

〉

;

An :=
n⊗

i=1

A1(i) = A⊗n
1 where A1(i) := K〈xi, ∂i〉.

So, the properties of the algebras In and An are ‘determined’ by the properties of the
algebras I1 and A1.

At the beginning of Section 2 we collect necessary facts on the algebras In. Then
we prove Theorem 2.5 in the case when n = 1 and prove some necessary results that
are used in the proof of Theorem 2.5 (in the general case) which is given at the end
of the section.

In Section 3, it is proved that the algebra In is left (right) coherent iff n = 1
(Theorem 3.1).

In Section 4, it is proved that the algebra In is the maximal left (resp. right) order
in its largest left (resp. right) quotient ring (Theorem 4.3).

The referee of the present paper pointed out in his report that “this paper
provides an approach for studying the Belov-Kontsevich Conjecture and corre-
spondence between holonomic D-modules and Lagrangian varieties,” see [5, 7] for
details.
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2 Proof of Theorem 2.5

At the beginning of this section, we collect necessary (mostly elementary) facts on
the algebra I1 from [1] that are used later in the paper.

The algebra I1 is generated by the elements ∂ , H := ∂x and
∫

(since x = ∫
H) that

satisfy the defining relations (Proposition 2.2, [1]):

∂

∫
=1,

[

H,

∫ ]

=
∫

, [H, ∂] = −∂, H
(

1 −
∫

∂

)

=
(

1 −
∫

∂

)

H = 1 −
∫

∂,

(1)

where [a, b ] := ab − ba is the commutator of elements a and b . The elements of the
algebra I1,

eij :=
∫ i

∂ j −
∫ i+1

∂ j+1, i, j ∈ N, (2)

satisfy the relations eijekl = δ jkeil where δ jk is the Kronecker delta function and
N := {0, 1, . . .} is the set of natural numbers. Notice that eij =

∫ i e00∂
j. The matrices

of the linear maps eij ∈ EndK(K[x]) with respect to the basis {x[s] := xs

s! }s∈N of the
polynomial algebra K[x] are the elementary matrices, i.e.

eij ∗ x[s] =
{

x[i] if j = s,

0 if j 
= s.

Let Eij ∈ EndK(K[x]) be the usual matrix units, i.e. Eij ∗ xs = δ jsxi for all i, j, s ∈ N.
Then

eij = j!
i! Eij, (3)

Keij = KEij, and

F :=
⊕

i, j≥0

Keij =
⊕

i, j≥0

KEij � M∞(K),

the algebra (without 1) of infinite dimensional matrices. F is the only proper ideal
(i.e. 
= 0, I1) of the algebra I1 [1].

Z-grading on the algebra I1 and the canonical form of an integro-dif ferential operator
[1, 3] The algebra I1 = ⊕

i∈Z
I1,i is a Z-graded algebra (I1,iI1, j ⊆ I1,i+ j for all i, j ∈ Z)

where

I1,i =

⎧
⎪⎨

⎪⎩

D1
∫ i = ∫ i D1 if i > 0,

D1 if i = 0,

∂ |i|D1 = D1∂
|i| if i < 0,

the algebra D1 := K[H]⊕⊕
i∈N

Keii is a commutative non-Noetherian subalgebra of
I1, Heii = eii H = (i + 1)eii for i ∈ N (and so

⊕
i∈N

Keii is the direct sum of non-zero
ideals Keii of the algebra D1); (

∫ i D1)D1 � D1,
∫ i d �→ d; D1(D1∂

i) � D1, d∂ i �→ d,
for all i ≥ 0 since ∂ i

∫ i = 1. Notice that the maps · ∫ i : D1 → D1
∫ i, d �→ d

∫ i, and
∂ i· : D1 → ∂ i D1, d �→ ∂ id, have the same kernel

⊕i−1
j=0 Ke jj.



278 V.V. Bavula

Each element a of the algebra I1 is a unique finite sum

a =
∑

i>0

a−i∂
i + a0 +

∑

i>0

∫ i

ai +
∑

i, j∈N

λijeij (4)

where ak ∈ K[H] and λij ∈ K. This is the canonical form of the polynomial integro-
differential operator [1].

Definition Let a ∈ I1 be as in Eq. 4 and let aF := ∑
λijeij. Suppose that aF 
= 0 then

degF(a) := min

⎧
⎨

⎩
n ∈ N | aF ∈

n⊕

i, j=0

Keij

⎫
⎬

⎭
(5)

is called the F-degree of the element a; degF(0) := −1.

Let

vi :=

⎧
⎪⎨

⎪⎩

∫ i if i > 0,

1 if i = 0,

∂ |i| if i < 0.

Then I1,i = D1vi = vi D1 and an element a ∈ I1 is the unique finite sum

a =
∑

i∈Z

bivi +
∑

i, j∈N

λijeij (6)

where bi ∈ K[H] and λij ∈ K. So, the set {H j∂ i, H j,
∫ i H j, est | i ≥ 1; j, s, t ≥ 0} is a

K-basis for the algebra I1. The multiplication in the algebra I1 is given by the rule:
∫

H = (H − 1)

∫
, H∂ = ∂(H − 1),

∫
eij = ei+1, j, eij

∫
= ei, j−1,

∂eij = ei−1, j eij∂ = ∂ei, j+1.

Heii = eii H = (i + 1)eii, i ∈ N,

where e−1, j := 0 and ei,−1 := 0.
The factor algebra B1 := I1/F is the simple Laurent skew polynomial algebra

K[H][∂, ∂−1; τ ] where the automorphism τ ∈ AutK−alg(K[H]) is defined by the rule
τ(H) = H + 1, [1]. Let

π : I1 → B1, a �→ a : a + F, (7)

be the canonical epimorphism.
The Weyl algebra A2 is equipped with the, so-called, f iltration of Bernstein, A2 =⋃

i≥0 A2,≤i where

A2,≤i :=
⊕{

Kxα1
1 xα2

2 ∂
β1
1 ∂

β2
2 |α1 + α2 + β1 + β2 ≤ i

}
.

The polynomial algebra P2 := K[x1, x2] � A2/(A2∂1 + A2∂2) is a simple left
A2-module with EndA2(P2) = kerP2(∂1) ∩ kerP2(∂2) = K. The standard filtration
{A2,≤i · 1}i∈N of the A2-module P2 coincides with the filtration {P2,≤i :=
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∑
α1,α2≥0{Kxα1

1 xα2
2 |α1 + α2 ≤ i}i∈N on the polynomial algebra P2 by the total degree,

i.e. P2,≤i = A2,≤i · 1 for all i ≥ 0, and so dimK(A2,≤i) = (i+1)(i+2)

2 . Therefore, P2 is a
holonomic A2-module with multiplicity e(P2) = 1 and EndA2(P2) � K. The Weyl
algebra A1 admits the K-isomorphism:

ξ : A1,→ A1, x �→ ∂, ∂ �→ −x. (8)

Then 1 ⊗ ξ is an automorphism of the Weyl algebra A2. The twisted by the automor-
phism 1 ⊗ ξ A2-module P2,

P1⊗ξ

2 � K[x1, ∂2] � A2/(A2∂1 + A2x2) (9)

is a simple holonomic A2-module with multiplicity 1 and EndA2(P1⊗ξ

2 ) � K.
The Weyl algebra A1 is isomorphic to its opposite algebra Aop

1 via

A1 → Aop
1 , x �→ ∂, ∂ �→ x. (10)

In particular, each A1-bimodule A1 MA1 is a left A2-module: A1 MA1 = A1⊗Aop
1

M �
A1⊗A1 M = A2 M.

Lemma 2.1

1. A1 FA1 = A1e00 A1 � A1(A1/A1∂ ⊗ A1/xA1)A1 .
2. A2 F � A2/(A2∂1 + A2∂2) � K[x1, x2] is a simple holonomic A2-module with

multiplicity 1 with respect to the f iltration of Bernstein of the algebra A2 and
EndA2(F) � K.

Proof A1(A1/A1∂ ⊗ A1/xA1)A1

(10)� A1⊗A1(A1/A1∂ ⊗ A1/A1∂) � A2/(A2∂1 +
A2∂2) � K[x1, x2] is a simple holonomic A2-module with multiplicity 1 with respect
to the filtration of Bernstein of the algebra A2 and EndA2(F) � K. Clearly, A1 FA1 =
A1e00 A1 and the A1-bimodule homomorphism

A1/A1∂ ⊗ A1/xA1 → A1e00 A1, (1 + A1∂1) ⊗ (1 + xA1) �→ e00,

is an epimorphism. Therefore, it is an isomorphism by the simplicity of the first A1-
bimodule. ��

Proposition 2.2

1. A1(I1/(A1 + F))A1 � A1/A1∂ ⊗ A1/∂ A1.
2. A2(I1/(A1 + F)) � A1/A1∂ ⊗ A1/A1x � A2/(A2∂1 + A2x2) � K[x1, ∂2] is a

simple holonomic A2-module with multiplicity 1 with respect to the f iltration of
Bernstein and EndA2(K[x1, ∂2]) � K.

3. A1(I1/(A1 + F)) � (A1/A1∂)(N) � K[x](N) is a semi-simple left A1-module and
(I1/(A1 + F))A1 � (A1/∂ A1)

(N) � K[x](N) is a semi-simple right A1-module.

Proof

1 and 2. Notice that A2(A1/A1∂ ⊗ A1/A1x) � A2(A2/(A2∂1 + A2x2)) � K[x1, ∂2]
is a simple holonomic A2-module with multiplicity 1 with respect to the
filtration of Bernstein and EndA2(K[x1, ∂2]) � K. The natural filtration
of the polynomial algebra Q′ := K[x1, ∂2] = ⋃

i≥0 Q′
≤i by the total degree
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of the variables, i.e. Q′
≤i :=

⊕
s+t≤i Kxs

1∂
t
2, is a standard filtration for the

A2-module Q′ = A2 · 1 since Q′
≤i = A2,≤i · 1 for all i ≥ 0. In particular,

dimK(Q′
≤i) = (i+1)(i+2)

2 for all i ≥ 0. By Eq. 4, the A1-bimodule Q :=
I1/(A1 + F) is the direct sum

Q =
⊕

i≥1

Qi (11)

of its vector subspaces

(Qi)K[H] �
∫ i

K[H]/xi K[H] �
∫ i

K[H]/
∫ i

(H(H + 1) · · ·

(H + i − 1)) � K[H]/(H(H + 1) · · · (H + i − 1)) (12)

(since xi = (
∫

H)i = ∫ i H(H + 1) · · · (H + i − 1) and ∂ i
∫ i = 1) such that

xQi ⊆ Qi+1, Qix ⊆ Qi+1, ∂ Qi ⊆ Qi−1 and Qi∂ ⊆ Qi−1 for all all i ≥ 1
where Q0 := 0. Then A2-module Q has the finite dimensional ascending
filtration Q = ⋃

i≥0 Q≤i where Q≤i := ⊕
1≤ j≤i+1 Q j and

dimK(Q≤i) =
i∑

j=0

( j+ 1) = (i + 1)(i + 2)

2
for all i ≥ 0.

Since ∂ Q1 = Q1∂ = 0, the simple filtered A2-module (treated as A1-
bimodule)

A1 Q′
A1

= A1/A1∂ ⊗ A1/∂ A1

can be seen as a filtered A2-submodule of Q via (1 + A1∂) ⊗ (1 + ∂ A1) �→∫ +A1 + F. In particular, for all i ≥ 0, we have the inclusions Q′
i ⊆ Qi

which are, in fact, equalities since dimK(Q′
i) = dimK(Qi). Then,

A1(I1/(A1 + F))A1 � A1(A1/A1∂ ⊗ A1/∂ A1)A1

� A2(A1/A1∂ ⊗ A1/A1x) � K[x1, ∂2].
It is obvious that the A2-module K[x1, ∂2] is a simple A2-module with
multiplicity 1 and EndA2(K[x1, ∂2]) � K.

3. Statement 3 follows from statement 1. ��

A linear map ϕ acting in a vector space V is called a locally nilpotent map if V =⋃
i≥1 ker(ϕi), i.e. for each element v ∈ V there exists a natural number i such that

ϕi(v) = 0.
It follows from Proposition 2.2 and Eq. 12 that

kerI1/(A1+F)(∂·)
⋂

kerI1/(A1+F)(·∂) = K
(∫

+A1 + F
)

, (13)

and that the maps ∂· : I1/(A1 + F) → I1/(A1 + F), u �→ ∂u, and ·∂ : I1/(A1 + F) →
I1/(A1 + F), u �→ u∂ , are locally nilpotent since

∂ ∗ xi
1x j

2 = ixi−1
1 x j

2, xi
1x j

2 ∗ ∂ = − jxi
1x j−1

2 . (14)
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Recall that the socle socA(M) of a module M over a ring A is the sum of all the simple
submodules of M, if they exist, and zero, otherwise.

Theorem 2.3

1. The A1-bimodule I1 is a holonomic A2-module of length 3 with simple non-
isomorphic factors F � A2 K[x1, x2], A1 A1 A1 and A2 K[x1, ∂2]. Each factor is a sim-
ple holonomic A2-module with multiplicity 1 and its A2-module endomorphism
algebra is K.

2. socA2(I1) = A1
⊕

F.
3. The short exact sequence of A2-modules

0 → A1

⊕
F → I1 → I1/(A1 + F) → 0 (15)

is non-split.

Proof

1. Statement 1 follows from Lemma 2.1, Proposition 2.2 and Eq. 15.
2. Suppose that the short exact sequence of A1-bimodules splits, we seek a contra-

diction. Then, by Proposition 2.2.(1) and Eq. 13, there is a nonzero element, say

u =
∫

+a + f ∈ I1 with a ∈ A1 and f ∈ F

such that ∂u = 0 and u∂ = 0. The first equation implies 1 + ∂a = −∂ f ∈ A1 ∩
F = 0, and so ∂a = −1 in A1, a contradiction.

3. Statement 3 follows from statement 2. ��

New basis for the algebra In It follows from Eqs. 11, 12 and 15 that

I1 =
⊕

i, j≥0

Kxi∂ j ⊕
⊕

k,l≥0

Kekl ⊕
⊕{

K
∫ s

Ht | s ≥ 1, t = 0, 1, . . . , s − 1
}

. (16)

This gives a new K-basis for the algebra I1:
{

xi∂ j, ekl,

∫ s

Ht | i, j, k, l ≥ 0; s ≥ 1; t = 0, 1, . . . , s − 1
}

.

By taking n’th tensor product of this basis we obtain a new K-basis for the algebra
In = I

⊗n
1 .

Lemma 2.4

1. The A1-bimodule I1/A1 is a holonomic A2-module of length 2 with simple
non-isomorphic factors F � A2 K[x1, x2] and A2 K[x1, ∂2]. Each factor is a simple
holonomic A2-module with multiplicity 1 and its A2-module endomorphism
algebra is K.

2. socA2(I1/A1) = F.
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3. The short exact sequence of A2-modules

0 → F → I1/A1 → I1/(A1 + F) → 0 (17)

is non-split.
4. The short exact sequence of left A1-modules Eq. 17 splits and so A1(I1/A1) �

K[x](N) is a semi-simple left A1-module.
5. The short exact sequence of right A1-modules Eq. 17 does not split, and so

(I1/A1)A1 is not a semi-simple right A1-module.

Proof

1. Statement 1 follows from Theorem 2.3.(1).
2. Suppose that the short exact sequence of A1-bimodules Eq. 17 splits, we seek

a contradiction. Then, by Proposition 2.2.(1) and Eq. 13, there is a nonzero
element, say u = ∫ + f + A1 ∈ I1/A1 with f ∈ F such that 0 = ∂u = 1 + ∂ f and
0 = u∂ = 1 − e00 + f∂ in I1/A1. The first equality gives ∂ f = 0 in I1/A1, and
so f = ∑

i≥0 λie0i for some λi ∈ K. Then the second equality gives e00 = f∂ =∑
i≥0 λie0i∂ = ∑

i≥0 λie0,i+1, a contradiction.
3. Statement 3 follows from statement 2.
4. Let L be the last sum in the decomposition Eq. 16, i.e.

I1 = A1

⊕
F
⊕

L. (18)

Then A1
⊕

L is a left A1-submodule of A1I1 since ∂
∫ = 1, x = ∫

H and
∫

H =
(H − 1)

∫
. Notice that A1

⊕
L is not a right A1-submodule of I1 since

∫
∂ =

1 − e00 
∈ A1
⊕

L. By Eq. 18,

A1(I1/A1) � F
⊕

(A1 + L)/A1

is a direct sum of left A1-submodules such that A1 F � K[x](N) (Lemma 2.1.(1))
and A1((A1 + L)/A1) � I1/(A1 + F) � K[x](N) (Proposition 2.2.(3)). Therefore,
A1(I1/A1) is a semi-simple module. Therefore, the short exact sequence of left
A1-modules Eq. 17 splits and A1(I1/A1) � K[x](N)

⊕
K[x](N) � K[x](N).

5. By Proposition 2.2.(1), (I1/(A1 + F))A1 � (A1/∂ A1)
(N). Suppose that the short

exact sequence of right A1-modules Eq. 17 splits, we seek a contradiction. In
the factor module I1/(A1 + F), (

∫ +A1 + F)∂ = 0 since
∫

∂ = 1 − e00 ∈ A1 + F.
Then the splitness implies that

(∫
+ f + A1

)

∂ = 0

in I1/A1 for some element f ∈ F, equivalently, −e00 + f∂ ∈ A1 ∩ F = 0 in I1, i.e.
f∂ = e00, this is obviously impossible (since ei, j∂ = ei, j+1), a contradiction. ��

Let M be a module over a ring R. The socle socR(M), if nonzero, is the largest
semi-simple submodule of M. The socle of M, if nonzero, is the only essential semi-
simple submodule. The socle chain of the module M is the ascending chain of its
submodules:

soc0
R(M) := socR(M) ⊆ soc1

R(M) ⊆ · · · ⊆ soci
R(M) ⊆ · · ·
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where soci
R(M) := ϕ−1

i−1(socR(M/soci−1
R (M))) where

ϕi−1 : M → M/soci−1(M), m �→ m + soci−1
R (M).

Let soc∞R (M) := ⋃
i≥0 soci

R(M). If M = soc∞R (M) then

l.socR(M) = 1 + min
{
i ≥ 0 | M = soci

R(M)
}

is called the socle length of the R-module M. So, a nonzero module is semi-simple iff
its socle length is 1.

Theorem 2.5

1. The An-bimodule In is a holonomic A2n-module of length 3n with pairwise non-
isomorphic simple factors and each of them is the tensor product

⊗n
i=1 Mi of

simple A2(i)-modules Mi as in Theorem 2.3 for i = 1, . . . , n. Each simple factor⊗n
i=1 Mi is a simple holonomic A2n-module and has multiplicity 1 (with respect to

the f iltration of Bernstein on the algebra A2n) and its A2n-module endomorphism
algebra is K.

2. socA2n(In) = ⊗n
i=1 socA2(i)(I1(i)) = ⊗n

i=1(A1(i)
⊕

F(i)).
3. The socle length of the A2n-module In is n + 1. For each number m = 0, 1, . . . , n,

socm
A2n

(In) =
∑

i1+···+in=m

n⊗

s=1

socis
A2(i)

(I1(i))

where all is ∈ {0, 1} and soc j
A2(i)

=
{

A1(i)
⊕

F(i) if j = 0,

I1(i) if j = 1.

4. For each number m = 0, 1, . . . , n,

socm
A2n

(In)/socm−1
A2n

(In) =
⊕

i1+···+in=m

n⊗

s=1

socis
A2(i)

(I1(i))/socis−1
A2(i)

(I1(i))

and its length (as an A2n-module) is
(n

m

)
2n−m where all is ∈ {0, 1} and soc−1 := 0.

5. The left A2n-module In has multiplicity 3n with respect to the f iltration of Bernstein
of the Weyl algebra A2n.

Remark The sum of lengths of all the factors in statement 4 is 3n as

3n = (1 + 2)n =
n∑

m=0

(
n
m

)

2n−m.

Proof

1. By Theorem 2.3.(1), each of the tensor multiples I1(i) in In = ⊗n
i=1 I1(i) has the

A2(i)-module (i.e. the A1(i)-bimodule) filtration of length 3 with factors Mi as in
Theorem 2.3.(1). By considering the tensor product of these filtrations, the A2n-
module In = ⊗n

i=1 I1(i) (i.e. the An-bimodule) has a filtration (of length 3n) with
factors

⊗n
i=1 Mi. It is obvious that each A2n-module

⊗n
i=1 Mi is isomorphic to a
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twisted A2n-module σ P2n by an automorphism σ of the Weyl algebra A2n that
preserves the filtration of Bernstein on the algebra A2n where

P2n = K[x1, . . . , x2n] � A2n/

2n∑

i=1

A2n∂i.

This statement is obvious for n = 1, then the general case follows at once. Since
the A2n-module P2n is simple, holonomic with multiplicity 1 and EndA2n(P2n) �
K, then so are all the A2n-modules

⊗n
i=1 Mi (since e(σ P2n) = e(P2n) = 1). This

finishes the proof of statement 1.
2. Statement 2 follows from statement 3.
3. To prove statement 3 we use induction on n. The initial step when n = 1 is true

due to Theorem 2.3.(1). Suppose that n > 1 and the statement holds for all n′ <

n. Let
{

s0 = A1

⊕
F, s1 = I1

}

be the socle filtration for A1I1 A1 and let {s0, s1, . . . , sn−1} be the socle filtration for
An−1In−1 An−1

. We are going to prove that
{
s′0 := s0 ⊗ s0, s′1 := s0 ⊗ s1 + s1 ⊗ s0, . . . ,

s′n−1 := s0 ⊗ sn−1 + s1 ⊗ sn−2, s′n := s1 ⊗ sn−1}

is the socle filtration for AnIn An
. Notice that An = A1 ⊗ An−1, In = I1 ⊗ In−1

and {s0 ⊗ si}n−1
i=0 is the socle filtration for An−1(s

0 ⊗ In−1)An−1 = s0 ⊗ (An−1In−1 An−1
)

since the In−1-bimodules s0 ⊗ si/si−1 are semi-simple. Since, for each number
m = 0, 1, . . . , n, the An-subbimodule

s′m := s′m/s′m−1=s0 ⊗ (sm/sm−1)
⊕

(s1/s0) ⊗ (sm−1/sm−2) (where s′0 = s0 ⊗ s0)

of I
′
n/s′m−1 is semi-simple, in order to finish the proof of statement 3 it suffices

to show that s′m is an essential An-subbimodule of In/s′m−1. Let a be a nonzero
element of the An-bimodule In/s′m−1. We have to show that

AnaAn ∩ s′m 
= 0.

If a ∈ s0 ⊗ In−1 + s′m−1 then

0 
= In−1aIn−1 ∩ s0 ⊗ (sm/sm−1) ⊆ s′m

(since {s0 ⊗ si}n−1
i=0 is the socle filtration for An−1(s

0 ⊗ In−1)An−1 ).
If a 
∈ s0 ⊗ In−1 + s′m−1 then using the explicit basis {xi

1x j
2}i, j≥0 for the A1-

bimodule s1/s0 (Proposition 2.2.(1)) and the action of the element ∂ on it (see
Eq. 14), we can find natural numbers, say k and l, such that, by Eq. 13, the
element

a′ := ∂ka∂ l =
∫

⊗u1 + v2 ⊗ u2 + · · · + vs ⊗ us,

is such that 0 
= u1 ∈ In−1/sm−1 (in particular, a′ is a nonzero element of In/s′m−1);
u2, . . . , us are linearly independent elements of In−1; v2, . . . , vs are linearly
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independent elements of s0. If the elements u1, u2, . . . , us are linearly indepen-
dent then

a′′ := ∂a′ = 1 ⊗ u1 + (∂v2) ⊗ u2 + · · · + (∂vs) ⊗ us

is a nonzero element of s0 ⊗ In−1, and so, by the previous case InaIn ∩ s′m 
= 0.
If the elements u1, u2, . . . , us are linearly dependent then u1 = ∑s

i=2 λiui for some
elements λi ∈ K not all of which are zero ones, say λ2 
= 0. The element a′ can be
written as a′ = (λ2

∫ +v2) ⊗ u2 + · · · + (λs
∫ +vs) ⊗ us. Then

a′′ := ∂a′ = (λ2 + ∂v2) ⊗ u2 + · · · + (λs + ∂vs) ⊗ us.

We claim that a′′ 
= 0. Suppose that a′′ = 0, we seek a contradiction. Then

λ2 + ∂v2 = 0, . . . , λs + ∂vs = 0

in A1
⊕

F (since the elements u2, . . . , us are linearly independent). The first
equality yields 0 
= λ2 = ∂b in the Weyl algebra A1 for some element b ∈ A1.
This is clearly impossible. Therefore, a′′ is a nonzero element of s0 ⊗ In−1, and
so, by the previous case, InaIn ∩ s′m 
= 0.

4. The equality follows from statement 3. To prove the claim about the length
note that

(n
m

)
is the number of vectors (i1, . . . , in) ∈ {0, 1}n with i1 + · · · +

in = m; and for each choice of (i1, . . . , in) the length of the A2n-module⊗n
s=1 socis

A2(i)
(I1(i))/socis−1

A2(i)
(I1(i)) is 2n−m. Therefore, the length of the A2n-

module socm
A2n

(In)/socm−1
A2n

(In) is
(n

m

)
2n−m.

5. Statement 5 follows from statement 1 and the additivity of the multiplicity on the
holonomic modules. ��

3 The Algebra In is Coherent iff n = 1

The aim of this section is to prove Theorem 3.1.
A module M over a ring R is f initely presented if there is an exact sequence of

modules

Rm → Rn → M → 0.

A finitely generated module is a coherent module if every finitely generated submod-
ule is finitely presented. A ring R is a left (resp. right) coherent ring if the module
R R (resp. RR) is coherent. A ring R is a left coherent ring if f, for each element
r ∈ R, kerR(·r) is a f initely generated left R-module and the intersection of two f initely
generated left ideals is f initely generated, Proposition 13.3, [8]. Each left Noetherian
ring is left coherent but not vice versa.

Theorem 3.1 The algebra In is a left coherent algebra if f the algebra In is a right
coherent algebra if f n = 1.

Proof The first ‘iff’ is obvious since the algebra In is self-dual [1], i.e. is isomorphic
to its opposite algebra I

op
n . If n = 1 the algebra is a left coherent algebra [3]. If n ≥ 2

then the algebra I2 is not a left coherent algebra since, by Lemma 3.2,

kerIn(·(H1 − H2)) = kerI2(·(H1 − H2)) ⊗ In−2 � In(P2 ⊗ In−2)
(N)
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is an infinite direct sum of nonzero In-modules, hence it is not finitely generated.
Therefore, the algebra In is not a left coherent algebra, by Proposition 13.3, [8]. ��

Lemma 3.2 kerI2(·(H1−H2))=kerF2(·(H1−H2))=⊕
i, j,k∈N

Keij(1)ekj(2)�(I2 P2)
(N).

Proof The algebra B2 = I2/a2 is a domain, see [1], where a2 := F(1) ⊗ I1(2) +
I1(1) ⊗ F(2) and H1 − H2 
∈ a2. Therefore, K := kerI2(·(H1 − H2)) = kera2(·(H1 −
H2)). Let F2 := F(1) ⊗ F(2). Notice that

I2(a2/F2)I2 � F(1) ⊗ B1(2)
⊕

B1(1) ⊗ F(2)

is a direct sum of two I2-bimodules. It follows from the presentation

F(1) ⊗ B1(2) =
⊕

i, j∈N,k∈Z

eij(1) ⊗ ∂k
2 K[H2]

that kerF(1)⊗B1(2)(·(H1 − H2)) = 0. Similarly, kerB1(1)⊗F(2)(·(H1 − H2)) = 0 (or use the
(1, 2)-symmetry). Therefore,

K = kerF2(·(H1 − H2)) =
⊕

i, j,k∈N

Keij(1)ekj(2)

=
⊕

j∈N

(
⊕

i,k∈N

Keij(1)ekj(2)) �
⊕

j∈N

(I2 P2) � I2(P2)
(N).

��

4 The Algebra In is a Maximal Order

The aim of this section is to prove Theorem 4.3.
Let R be a ring. An element x ∈ R is right regular if xr = 0 implies r = 0 for r ∈ R.

Similarly, a left regular element is defined. A left and right regular element is called
a regular element. The sets of regular/left regular/right regular elements of a ring R
are denoted respectively by CR(0), ′CR(0) and C ′

R(0). For an arbitrary ring R there
exists the largest (w.r.t. inclusion) left regular denominator set Sl,0 = Sl,0(R) in the
ring R (regular means that Sl,0(R) ⊆ CR(0)), and so Ql(R) := S−1

l,0 R is the largest left
quotient ring of R (Theorem 2.1, [4]). Similarly, for an arbitrary ring R there exists
the largest right regular denominator set Sr,0 = Sr,0(R) in R, and so Qr(R) := RS−1

r,0 is
the largest right quotient ring of R. The rings Ql(R) and Qr(R) were introduced and
studied in [4].

Let EndK(K[x]) be the algebra of all linear maps from the vector space K[x] to
itself and AutK(K[x]) be its group of units (i.e. the group of all invertible linear maps
from K[x] to itself). The algebra I1 is a subalgebra of EndK(K[x]). Theorem 5.6.(1),
[4], states that

Sr,0(I1) = I1 ∩ AutK(K[x]),
it is the set of all elements of the algebra I1 that are invertible linear maps in K[x].
The set Sr,0(I1) is huge compared to the group of units I

∗
1 of the algebra I1 which is

obviously a subset of Sr,0(I1).
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Let R be a ring. A subring S (not necessarily with 1) of the largest right quotient
ring Qr(R) of the ring R is called a right order in Qr(R) if each element q ∈ Qr(R)

has the form rs−1 for some elements r, s ∈ S. A subring S (not necessarily with 1) of
the largest left quotient ring Ql(R) of the ring R is called a left order in Ql(R) if each
element q ∈ Ql(R) has the form s−1r for some elements r, s ∈ S.

Let R1 and R2 be right orders in Qr(In). We say that the right orders R1 and R2

are equivalent, R1 ∼ R2, if there are units a1, a2, b 1, b 2 ∈ Qr(In) such that

a1 R1b 1 ⊆ R2 and a2 R2b 2 ⊆ R1.

Clearly, ∼ is an equivalent relation on the set of right orders in Qr(In). A right
order in Qr(In) is called a maximal right order if it is maximal (w.r.t. ⊆) within its
equivalence class.

Lemma 4.1 Let Qr(In) be the right quotient ring of In and R, S be equivalent right
orders in Qr(In) such that R ⊆ S. Then there are equivalent right orders T and T ′ in
Qr(In) with R ⊆ T ⊆ S, R ⊆ T ′ ⊆ S and units r1, r2 of Qr(In) contained in R such that
r1S ⊆ T, Tr2 ⊆ R and Sr2 ⊆ T ′, r1T ′ ⊆ R. In particular, r1Sr2 ⊆ R.

Proof By definition, aSb ⊆ R for some units a, b of Qr(In). Then a = r1s−1
1 and b =

r2s−1
2 with ri, si ∈ R, and ri, and si are units in Qr(In). Then r1Sr2 ⊆ r1s−1

1 Sr2 ⊆ Rs2 ⊆
R. It is readily checked that T = R + r1S + Rr1S and T ′ = R + Sr2 + Sr2 R are as
claimed. ��

Lemma 4.2

1. CIn(0) ∩ an = ∅, ′CIn(0) ∩ an = ∅ and C ′
In

(0) ∩ an = ∅.
2. Sl,0(In) ∩ an = ∅ and Sr,0(In) ∩ an = ∅.
3. For all elements a ∈ Sl,0(In) ∪ Sr,0(In), InaIn = In.

Proof

1. Trivial (since every element of the ideal an is a left and right zero divisor in In).
2. Statement 2 follows from statement 1 and the inclusions Sl,0(In), Sr,0(In) ⊆ CIn(0).
3. If InaIn 
= In for some element a ∈ Sl,0(In) ∪ Sr,0(In) then a ∈ InaIn ⊆ an (as an is

the only maximal ideal of the algebra In). This contradicts statement 2. ��

Theorem 4.3 The algebra In is a maximal left order in Ql(In) and a maximal right
order in Qr(In).

Proof Suppose that In ⊆ S and S ∼ In for some right order S in Qr(In). Then aSb ⊆
In for some elements a, b ∈ In ∩ Qr(In)

∗, by Lemma 4.1, where Qr(In)
∗ is the group

of units of the algebra Qr(In). By Theorem 2.8, [4],

In ∩ Qr(In)
∗ = Sr,0(In).

Then, by Corollary 4.2.(3),

In ⊇ InaSbIn = (InaIn)S(InbIn) = InSIn = S,

i.e. In = S. Then the algebra In is a maximal right order in Qr(In). Since the algebra
In admits an involution [1], the algebra In is also a maximal left order in Ql(In). ��
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