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Abstract Let C be a semidualizing module over a commutative noetherian ring R.
We exhibit an isomorphism TorFCM

i (−,−) ∼= TorPCM
i (−,−) between the bifunctors

defined via C-flat and C-projective resolutions. We show how the vanishing of these
functors characterizes the finiteness of FC- pd, and use this to give a relation between
the FC- pd of a module and of a pure submodule. On the other hand, we show that
other isomorphisms force C to be trivial.
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1 Introduction

For our purposes, relative homological algebra is the study of non-traditional res-
olutions and the (co)homology theories (i.e., relative derived functors) that they
define. By “non-traditional” we mean that these resolutions are not given directly by
projective, injective, or flat modules, as they are in “absolute” homological algebra.
This idea goes back to Butler and Horrocks [2] and Eilenberg and Moore [5], and
was reinvigorated by Enochs and Jenda [6] and Avramov and Martsinkovsky [1].

Much of the recent work [1, 15, 17] on the derived functors that arise in this context
focuses on relative Ext functors. The point of this paper is to treat some properties
of relative Tor. The relative homology functors that arise in this context come from
resolutions that model projective and flat resolutions using semidualizing modules.
(See Sections 2 and 3 for terminology, notation, and foundational results.)

Certain relations between the relative Tor functors defined by a semidualiz-
ing module C over a commutative noetherian ring R are obvious. For instance,
commutativity of tensor product implies that TorPCM

i (M, N) ∼= TorMPC
i (N, M) and

TorFCM
i (M, N) ∼= TorMFC

i (N, M). Other relations are not obvious. For instance, it
is well-known that TorR

i (M, N) can be computed using a projective resolution of M
or a flat resolution of M. The corresponding result for relative Tor is our first main
theorem, stated next. It is contained in Theorem 3.10.

Theorem A Let C be a semidualizing R-module, and let M and N be R-modules. For
each i, there is a natural isomorphism TorPCM

i (M, N) ∼= TorFCM
i (M, N).

This result allows for a certain amount of flexibility for proving results about
relative Tor, as in the absolute case. This is the subject of the rest of Section 3.

On the other hand, many properties of absolute Tor do not pass to the relative
setting. These differences are the subject of Section 4. For instance, in Example 4.1
we show that in general we have, for instance, TorFCM

i (M, N) � TorMFC
i (M, N).

The remainder of this section focuses on two areas. First, our results Propositions
4.2–4.5 provide classes of modules M, N such that these non-isomorphisms are
isomorphisms. Second, we show that the only way that these non-isomorphisms are
always isomorphisms is in the trivial case. For instance, the next result is proved
in Proof of Theorem B.

Theorem B Assume that (R,m, k) is local, and let B and C be semidualizing R-
modules. Then the following conditions are equivalent:

(i) TorFBM
i (M, N) ∼= TorMFC

i (M, N) for all i � 0 and for all R-modules M, N.
(ii) TorFBM

i (B, k) ∼= TorMFC
i (B, k) for i = 0 and some i > 0.

(iii) TorFBM
i (k, C) ∼= TorMFC

i (k, C) for i = 0 and some i > 0.
(iv) B ∼= R ∼= C.
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Section 5 discusses FC- pd, the homological dimension obtained from bounded
proper FC-resolutions, and its relation to relative Tor. For instance, we characterize
finiteness of FC- pd in terms of vanishing of relative Tor. The paper concludes with
the following version of [6, Lemma 9.1.4] and [12, Lemma 5.2(a)], proved in Proof of
Theorem C.

Theorem C Let C be a semidualizing R-module, and let M′ ⊆ M be a pure submod-
ule. Then one has FC- pdR(M) � sup{FC- pdR(M′),FC- pdR(M/M′) − 1}.

2 Background Material

Convention 2.1 Throughout this paper R and S are commutative noetherian rings,
and M(R) is the category of R-modules. Also, X is a full, additive subcategory X ⊆
M(R) closed under isomorphisms. Write P(R), F(R) and I(R) for the subcategories
of projective, flat and injective R-modules. Write m-Spec(R) for the set of maximal
ideals of R.

Definition 2.2 We index R-complexes homologically:

Y = · · · ∂Y
n+1−→ Yn

∂Y
n−→ Yn−1

∂Y
n−1−→ · · · .

An R-complex Y is HomR(X ,−)-exact if for each X in X , the complex
HomR(X, Y) is exact, and similarly for HomR(−,X )-exact. Two R-complexes Y
and Z are quasiisomorphic, written Y � Z , provided that there is a sequence of
quasiisomorphisms Y ← Y1 → Y2 ← · · · ← Ym → Z for some integer m.

We build resolutions from precovers and preenvelopes, defined next; see, e.g., [6].

Definition 2.3 An X -precover of an R-module M is an R-module homomorphism
X

ϕ−→ M, where X ∈ X , and such that the map HomR(X ′, ϕ) is surjective for every
X ′ ∈ X . If every R-module admits X -precover, then the class X is precovering.

Assume that X is precovering. Then each R-module M has an augmented proper
X -resolution, that is, an HomR(C,−)-exact R-complex

X+ = · · · ∂ X
2−→ X1

∂ X
1−→ X0

τ−→ M −→ 0.

The truncated complex X = · · · ∂ X
2−→ X1

∂ X
1−→ X0 −→ 0 is a proper X -resolution of

M. The X -projective dimension of M is

X - pdR(M) = inf{sup{n | Xn 	= 0} | X is a proper X -resolution of M}.
The terms preenveloping, proper X -coresolution and X - id are defined dually.
When X is the class of projective R-modules, we write pdR(M) for the associated

homological dimension and call it the projective dimension of M. Similarly, the flat
and injective dimensions of M are denoted fdR(M) and idR(M).

Remark 2.4 Assume that X is precovering. We note explicitly that augmented
proper X -resolutions need not be exact. According to our definitions, we have
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X - pdR(0) = −∞. The modules of X -projective dimension zero are the non-zero
modules in X . Note that projective resolutions (in the usual sense) are automatically
proper, and that augmented proper flat resolutions are automatically exact.

The next result is a straightforward consequence of Remark 2.4.

Lemma 2.5 Let N be a module such that there exists an exact sequence

0 → Gn → · · · → G0 → N → 0

where each Gi is f lat. Let F be a proper f lat resolution of N. Then the truncation

˜F+ =
(

0 → Im
(

∂ F
n+1

) → Fn−1
∂ F

n−1−−→ · · · ∂ F
1−→ F0 → N → 0

)

is also a proper f lat resolution of N.

Remark 2.6 The difference between flat resolutions (in the usual sense) and proper
flat resolutions is subtle. For instance, the next example shows that bounded flat
resolutions need not be proper. On the other hand, Lemma 2.5 shows that the
classical flat dimension of N is the same as fdR(N).

Example 2.7 Assume that (R,m, k) is a local, non-complete, Gorenstein domain of
dimension 1. The augmented minimal injective resolution of R (over itself) has the
form X = (0 → R → Q

α−→ E → 0) where Q is the field of fractions of R and E is
the injective hull of k. Of course, R and Q are flat. By [9, Theorem 2.5], we have
Ext1R(̂R, R) 	= 0 where ̂R is the m-adic completion of R. It follows that HomR(̂R, X)

is not exact, so X is not an augmented proper flat resolution.

Semidualizing modules, defined by Foxby [7], yield our categories of interest.

Definition 2.8 A finitely generated R-module C is semidualizing if HomR(C, C) ∼= R
and ExtiR(C, C) = 0 for i � 1. Following [10, 12], we set

PC(R) = the subcategory of modules M ∼= P ⊗R C for some P ∈ P(R)

FC(R) = the subcategory of modules M ∼= F ⊗R C for some F ∈ F(R)

IC(R) = the subcategory of modules M ∼= HomR(C, I) for some I ∈ I(R).

A dualizing module for R is a semidualizing module of finite injective dimension.

Remark 2.9 Let C be semidualizing over R. Then PC(R) and FC(R) are precovering
and closed under coproducts, and IC(R) is preenveloping, by [12]. As R is noetherian
and C is finitely generated, FC(R) is closed under products.

Remark 2.10 Let C be semidualizing over R. Then C is cyclic if and only if it is free,
if and only if C ∼= R. Also, pdR(C) < ∞ if and only if C is projective (of rank 1). If
R is Gorenstein local, then C ∼= R. If R → S is a flat homomorphism, then S ⊗R C is
semidualizing over S. See [14, Section 1] and [13, Chapter 2].
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The next classes were also introduced by Vasconcelos [18].

Definition 2.11 Let C be a semidualizing R-module. The Auslander class with
respect to C is the class AC(R) of R-modules M such that:

(i) TorR
i (C, M) = 0 = ExtiR(C, C ⊗R M) for all i � 1, and

(ii) the natural map M → HomR(C, C ⊗R M) is an isomorphism.

The Bass class with respect to C is the class BC(R) of R-modules M such that:

(i) ExtiR(C, M) = 0 = TorR
i (C, HomR(C, M)) for all i � 1, and

(ii) the natural evaluation map C ⊗R HomR(C, M)
ξC

M−→ M is an isomorphism.

Remark 2.12 Let C be a semidualizing R-module. Given an exact sequence 0 →
M1 → M2 → M3 → 0 of R-module homomorphisms, if two of the Mi are in AC(R)

or in BC(R), then so is the third Mi; see [12, Corollary 6.3]. The class AC(R) contains
all flat R-modules and all modules from IC(R), and BC(R) contains all injective R-
modules and all modules from FC(R); see [12, Corollary 6.1] and [17, 1.9]. Foxby
equivalence ([3, Theorem 4.6] and [17, Theorem 2.8]) states:

(a) An R-module M is in BC(R) if and only if HomR(C, M) ∈ AC(R).
(b) An R-module M is in AC(R) if and only if C ⊗R M ∈ BC(R).

The next result follows readily from the previous remark.

Lemma 2.13 Let C be a semidualizing R-module, and let X, Y be R-complexes such
that Xi, Yi ∈ AC(R) for each index i. Assume that X and Y are both either bounded
above or bounded below.

(a) If X is exact, then so is C ⊗R X.
(b) If f : X → Y is a quasiisomorphism, then so is C ⊗R f .
(c) If X and Y are bounded below and X � Y, then C ⊗R X � C ⊗R Y.

The following functors are studied in [15, 17].

Definition 2.14 Let C be a semidualizing R-module, and let M and N be R-modules.
Let L be a proper PC-resolution of M, and let J be a proper IC-coresolution of N.
For each i, set

ExtiPCM(M, N) := H−i(HomR(L, N))

ExtiMIC
(M, N) := H−i(HomR(M, J)).

Lemma 2.15 Assume that R is local, and let C be a semidualizing R-module. Then
C ∼= R if and only if C ⊗R C is free.

Proof The forward implication is straightforward. For the converse, assume that
C ⊗R C is free, and let β be the minimal number of generators of C. By Nakayama’s
Lemma, the module C ⊗R C is minimally generated by β2 many elements, so
C ⊗R C ∼= Rβ2

. On the other hand, the surjection Rβ � C gives a surjection Cβ �
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C ⊗R C ∼= Rβ2
by right exactness of tensor product. This splits, so Rβ2

is a direct
summand of Cβ . Taking endomorphism rings, we conclude that End(Rβ2

) ∼= Rβ4
is a

direct summand of EndR(Cβ) ∼= Rβ2
. In particular, this implies that β4 � β2, which

implies that β = 1. It follows that C is cyclic, so C ∼= R by Remark 2.10. �


Lemma 2.16 Let k be a f ield, and set R = k[X, Y]/(X, Y)2. If C is a non-free
semidualizing R-module, then C is dualizing for R and C ⊗R C ∼= k4.

Proof The ring R is local with maximal ideal m = (X, Y)R such that m2 = 0. As C is
not free, it follows that C is dualizing for R, so C ∼= ER(k). As a k-vector space, we
have C ∼= k · X−1 ⊕ k · Y−1 ⊕ k · 1 with R-module structure given by

X · 1 = 0 X · X−1 = 1 X · Y−1 = 0

Y · 1 = 0 Y · Y−1 = 1 Y · X−1 = 0.

Using this, one can show that C ⊇ RY−1 ∼= R/X R and C/RY−1 ∼= k. In par-
ticular, there is an exact sequence 0 → R/X R → C → k → 0. Also, we see that
XC = k · 1, so C/XC ∼= k2.

We claim that lenR(C ⊗R C) � 4. For this, we apply C ⊗R − to the previous exact
sequence to obtain the exact sequence C/XC → C ⊗R C → C ⊗R k → 0. As we
noted above, we have C/XC ∼= k2 ∼= C ⊗R k, so additivity of length implies that
lenR(C ⊗R C) � 4.

We next claim that lenR(C ⊗R C) = 4. To check this, consider the epimorphism
C → k2 coming from the fact that C is minimally generated by X−1, Y−1. The
right exactness of C ⊗R − implies that the map C ⊗R C → C ⊗R k2 is surjective.
Since C ⊗R k ∼= k2, it follows that 4 � lenR(C ⊗R C). The previous claim implies that
lenR(C ⊗R C) = 4.

Nakayama’s Lemma implies that C ⊗R C is minimally generated by four elements.
That is, the modules C ⊗R C and (C ⊗R C)/m(C ⊗R C) both have length 4. Since
(C ⊗R C)/m(C ⊗R C) is a homomorphic image of C ⊗R C, it follows that C ⊗R C ∼=
(C ⊗R C)/m(C ⊗R C) ∼= k4 as desired. �


3 Proper Resolutions and Relative Homology

In this section, C is a semidualizing R-module, and M and N are R-modules.
The results of this section document some properties of proper FC-resolutions and

proper PC-resolutions, beginning with two lemmas that are implicit in [17].

Lemma 3.1

(a) If F is a proper f lat resolution of HomR(C, M), then C ⊗R F is a proper FC-
resolution of M.

(b) If G is a proper FC-resolution of M, then HomR(C, G) is a proper f lat resolution
of HomR(C, M).

(c) If P is a projective resolution of HomR(C, M), then C ⊗R P is a proper PC-
resolution of M.

(d) If Q is a proper PC-resolution of M, then HomR(C, Q) is a projective resolution
of HomR(C, M).
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Lemma 3.2 Let X be an R-complex. Then X is HomR(PC,−)-exact if and only if
HomR(C, X) is exact.

The next result is a routine consequence of Lemma 3.2. We do not know if the
corresponding result for proper FC-resolutions holds. See, however, Corollary 5.3.

Lemma 3.3 Let R → S be a f lat ring homomorphism. If L is a proper PC-resolution
of M over R, then S ⊗R L is a proper PS⊗RC-resolution of S ⊗R M over S.

Lemma 3.4 Let {Mj} j∈J be a set of R-modules. For each j ∈ J, let X j be a proper
FC-resolution of Mj, and let Y j be a proper PC-resolution of Mj.

(a) The product
∏

j X j is a proper FC-resolution of
∏

j Mj.
(b) The coproduct

∐

j Y j is a proper PC-resolution of
∐

j Mj.

In our setting, there are four different relative Tor-modules to consider.

Definition 3.5 Let Q be a proper PC-resolution of M, and let G be a proper FC-
resolution of M. For each i � 0, set

TorPCM
i (M, N) := Hi(Q ⊗R N) ∼= Hi(N ⊗R Q) =: TorMPC

i (N, M)

TorFCM
i (M, N) := Hi(G ⊗R N) ∼= Hi(N ⊗R G) =: TorMFC

i (N, M).

Remark 3.6 The properness assumption on the resolutions in Definition 3.5 guaran-
tee that these relative Tor constructions are independent of the choice of resolutions
and functorial in both arguments. See [6, Section 8.2]. Also, there are natural
transformations of bifunctors

TorPCM
0 (−,−) → −⊗R − TorMPC

0 (−,−) → −⊗R −
TorFCM

0 (−,−) → −⊗R − TorMFC
0 (−,−) → −⊗R −.

In general, these are not isomorphisms, as we see in Example 4.1 below.

Example 3.7 In the trivial case C = R, we have FR(R) = F(R) and PR(R) = P(R),
and the relative Tors are the same as the absolute Tors.

TorPRM
i (−,−) ∼= TorMPR

i (−,−) ∼= TorFRM
i (−,−) ∼= TorMFR

i (−,−) ∼= TorR
i (−,−)

The following long exact sequences come from [6, Theorem 8.2.3].

Lemma 3.8 Let L = (0 → L′ → L → L′′ → 0) be a complex of R-modules.

(a) If L is HomR(PC,−)-exact (i.e., if HomR(C, L) is exact, e.g., if L′ ∈ BC(R)), then
there is a long exact sequence

· · ·TorPCM
1 (L′′, N) → TorPCM

0 (L′, N) → TorPCM
0 (L, N) → TorPCM

0 (L′′, N) → 0

that is natural in L and N.



110 M. Salimi et al.

(b) If L is HomR(FC,−)-exact, then there is a long exact sequence

· · ·TorFCM
1 (L′′, N) → TorFCM

0 (L′, N) → TorFCM
0 (L, N) → TorFCM

0 (L′′, N) → 0

that is natural in L and N.

Construction 3.9 For each i, there is a natural transformation of bifunctors
�i : TorPCM

i (−,−) → TorFCM
i (−,−). To construct �i, let Q be a proper PC-

resolution of M, and let G be a proper FC-resolution of M. The containment
PC(R) ⊆ FC(R) implies that the augmented resolution G+ is HomR(PC,−)-exact.
It follows that there is a chain map Q+ → G+ that is an isomorphism in degree −1.
The induced morphism Q ⊗R N → G ⊗R N gives rise to �i by taking homology.

The next result compares to [17, Theorem 4.1] which has similar formulas for
relative Ext. This contains Theorem A from the introduction.

Theorem 3.10 For each i, there are natural isomorphisms

TorPCM
i (M, N)

∼=−→ TorR
i (HomR(C, M), C ⊗R N)

∼=−→ TorFCM
i (M, N)

and the morphism TorPCM
i (−,−)

�i−→ TorFCM
i (−,−) is an isomorphism.

Proof Let F be a proper flat resolution of HomR(C, M). Lemma 3.1(a) implies that
C ⊗R F is a proper FC-resolution of M, so we have

TorFCM
i (M, N) ∼= Hi((C ⊗R F) ⊗R N)

∼= Hi(F ⊗R (C ⊗R N))

∼= TorR
i (HomR(C, M), C ⊗R N).

The naturality of this isomorphism comes from the naturality of the constructions,
and similarly for TorPCM

i (M, N).
Let (C ⊗R F)± denote the following complex

(C ⊗R F)± = · · · C⊗∂ F
2−−−→ C ⊗R F1

C⊗∂ F
1−−−→ C ⊗R F0

ξC
M◦(C⊗Rτ)−−−−−−→ M → 0

and similarly for (C ⊗R P)±. Let P → F be a lift of the identity map on HomR(C, M).
Then the induced map (C ⊗R P)± → (C ⊗R F)± is of the form Q+ → G+, as in Con-
struction 3.9. It follows that �i(M, N) is gotten by taking homology in the map (C ⊗R

P) ⊗R N → (C ⊗R F) ⊗R N. Of course, this is equivalent to taking homology in the
map P ⊗R (C ⊗R N) → F ⊗R (C ⊗R N). The fact that TorR

i (HomR(C, M), C ⊗R N)

can be computed using P or F implies that the induced maps on homology are
isomorphisms, as desired. �


Theorem 3.10 allows for a certain amount of flexibility for relative Tor, in the same
way that flat and projective resolutions give flexibility for absolute Tor. For instance,
the next two results follow from Theorem 3.10, using Lemmas 3.3 and 3.4.
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Corollary 3.11 Let {N j} j∈J be a set of R-modules.

(a) For each i, there are isomorphisms

TorPCM
i (M,

∐

j N j) ∼= ∐

j TorPCM
i (M, N j)

TorPCM
i (

∐

j N j, M) ∼= ∐

j TorPCM
i (N j, M)

and similarly for TorFCM.
(b) If M is f initely generated, then for each i, there are isomorphisms

TorPCM
i (M,

∏

j N j) ∼= ∏

j TorPCM
i (M, N j)

TorPCM
i (

∏

j N j, M) ∼= ∏

j TorPCM
i (N j, M)

and similarly for TorFCM.

Corollary 3.12 Let R → S be a f lat ring homomorphism. Then for all i there are S-
module isomorphisms

Tor
PS⊗RCM
i (S ⊗R M, S ⊗R N) ∼= S ⊗R TorPCM

i (M, N)

Tor
FS⊗RCM
i (S ⊗R M, S ⊗R N) ∼= S ⊗R TorFCM

i (M, N).

The last result of this section is a relative version of Hom-tensor adjointness.

Corollary 3.13 Let I be an injective R-module. For all i � 0 one has

ExtiPCM(M, HomR(N, I)) ∼= HomR(TorPCM
i (M, N), I) (3.13.1)

ExtiMIC
(M, HomR(N, I)) ∼= HomR(TorMPC

i (M, N), I). (3.13.2)

Proof The first isomorphism in the next sequence follows from [17, Theorem 4.1]

ExtiPCM(M, HomR(N, I)) ∼= ExtiR(HomR(C, M), HomR(C, HomR(N, I)))

∼= ExtiR(HomR(C, M), HomR(C ⊗R N, I))

∼= HomR(TorR
i (HomR(C, M), C ⊗R N), I)

∼= HomR(TorPCM
i (M, N), I).

The second isomorphism is by Hom-tensor adjointness, and the remaining steps
follow from [6, Theorem 3.2.1] and Theorem 3.10. This explains Eqs. 3.13.1,
and 3.13.2 is established similarly. �


4 Comparison of Relative Homologies

In this section, B, C are semidualizing R-modules, and M, N are R-modules.
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The next example shows that relative Tors do not satisfy a naive version of bal-
ance, they are not commutative, and they do not agree with absolute Tor in general.

Example 4.1 Assume that (R,m, k) is local and that C is not free, that is, that C is
not cyclic. We show that

TorFCM
i (C, k) � TorFCM

i (k, C) � TorMFC
i (k, C) (4.1.1)

TorFCM
i (k, C) � TorR

i (k, C) (4.1.2)

for all i, at least in a specific example.
Let β � 2 be the minimum number of generators for C. It is straightforward to

show that TorMFC
i (k, C) = 0 for all i � 1 and that TorMFC

0 (k, C) ∼= k ⊗R C ∼= kβ ; see
also Proposition 4.2 and Theorem 5.4. From Theorem 3.10, we have

TorFCM
0 (k, C) ∼= HomR(C, k) ⊗R (C ⊗R C) ∼= kβ ⊗R (C ⊗R C) ∼= kβ3

.

This is not isomorphic to

TorR
0 (C, k) ∼= TorFCM

0 (C, k) ∼= kβ ∼= TorMFC
0 (k, C)

as β � 2. This explains Eqs. 4.1.1 and 4.1.2 for i = 0.
Again using Theorem 3.10, for i � 1 we have

TorFCM
i (k, C) ∼= TorR

i (HomR(C, k), C ⊗R C) ∼= TorR
i (k, C ⊗R C)β (4.1.3)

and TorFCM
i (C, k) = 0 = TorMFC

i (k, C). Thus, to show Eq. 4.1.1 in general, it suffices
to find an example such that TorR

i (k, C ⊗R C) 	= 0 for all i � 1, that is, such that
pdR(C ⊗R C) = ∞.1 This is supplied by Lemma 2.15 and the Auslander-Buchsbaum
formula, assuming that R is artinian.

Finally, we give a specific example where TorFCM
i (k, C) � TorR

i (k, C) for all i.
Note that Eq. 4.1.3 shows that TorFCM

i (k, C) ∼= kβ·βi(C⊗RC); here we use βi for the
ith Betti number. As TorR

i (k, C) ∼= kβi(C), it suffices to provide an example where

β · βi(C ⊗R C) > βi(C) (4.1.4)

for all i � 1. To this end, set R = k[X, Y]/(X, Y)2, so we have m2 = 0. Let C be
dualizing for R, so β = 2. Lemma 2.16 implies that C ⊗R C ∼= k4, so we have βi(C ⊗R

C) = 4βi(k) = 4 · 2i = 2i+2 for all i � 0. From [4, (1.5) Example], we have βi(C) =
3 · 2i−1 for all i � 1. From these equalities, one easily deduces the inequality (4.1.4)
for all i � 1, since β = 2.

We continue this section by giving some special cases where some naive properties
do hold for relative homology.

Proposition 4.2 If the natural map C ⊗R HomR(C, M) → M is an isomorphism (e.g.,
if M ∈ BC(R)), then TorFCM

0 (M,−) ∼= M ⊗R −.

1We believe that this is true in general, under the assumption that C is not free; see [8].
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Proof Again, by Theorem 3.10 we have

TorFCM
0 (M, N) ∼= HomR(C, M) ⊗R (C ⊗R N) ∼= M ⊗R N

where the last isomorphism is from the assumption C ⊗R HomR(C, M) ∼= M. �


Example 4.1 shows that we can have TorFCM
i (M,−) � TorR

i (M,−), even when
M ∈ BC(R). The next result shows that this fails when N ∈ AC(R).

Proposition 4.3 If M ∈ BC(R) and N ∈ AC(R), then for each i one has

TorPCM
i (M, N) ∼= TorR

i (M, N) and TorFCM
i (M, N) ∼= TorR

i (M, N).

Proof Let P be a projective resolution of HomR(C, M), and let Q be a projective
resolution of N. Lemma 3.1(c) implies that C ⊗R P is a proper PC-resolution of M.

Since Q is a bounded below complex of projective R-modules, it respects quasi-
isomorphisms. This explains the second isomorphism in the next sequence:

TorR
i (M, N) ∼= Hi(M ⊗R Q)

∼= Hi((C ⊗R P) ⊗R Q)

∼= Hi((C ⊗R P) ⊗R N)

∼= TorPCM
i (M, N).

The first isomorphism is from the balance of Tor. The fourth isomorphism is by
definition. It remains to explain the third isomorphism.

Since Q is a projective resolution of N, there is a quasiisomorphism Q
�−→ N.

Since P is a bounded below complex of projective R-modules, the functor P ⊗R −
respects quasiisomorphisms. So there is a quasiisomorphism P ⊗R Q

�−→ P ⊗R N.
Lemma 2.13(b) implies that the induced map C ⊗R P ⊗R Q

�−→ C ⊗R P ⊗R N is also
a quasiisomorphism, so (C ⊗R P) ⊗R Q � (C ⊗R P) ⊗R N, as desired. �


The best results we know for balance and commutativity are the following two
corollaries of Proposition 4.3.

Corollary 4.4 If M ∈ BB(R) ∩AC(R) and N ∈ BC(R) ∩AB(R), then one has
TorFBM

i (M, N) ∼= TorMFC
i (M, N) for all i � 0.

Corollary 4.5 If M, N ∈ BC(R) ∩AC(R), then for all indices i � 0 one has
TorFCM

i (M, N) ∼= TorFCM
i (N, M).

The next example provides modules satisfying the hypotheses of these results.

Example 4.6 Assume that C ∈ AB(R), e.g., if D is a dualizing R-module and B =
C† := HomR(C, D). By [8, Corollary 3.8], it follows that B ∈ AC(R). Then B ∈
BB(R) ∩AC(R), so FB(R) ⊆ BB(R) ∩AC(R). By Remark 2.12, every module of
finite FB-projective dimension is in BB(R) ∩AC(R). Similarly, every module of finite
FC-projective dimension is in BC(R) ∩AB(R).
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For another example, assume that R has a dualizing module D. Then every
module of finite G(PC)-projective dimension or finite G(IC†)-injective dimension is
in BC(R) ∩AC†(R), and every module of finite G(PC†)-projective dimension or finite
G(IC)-injective dimension is in BC†(R) ∩AC(R). See [15, Fact 3.13] for details.

Finding modules in AC(R) ∩ BC(R) is more difficult. If R is a domain, then the
quotient field Q(R) is flat and injective, so it is in AC(R) ∩ BC(R).

Proof of Theorem B We verify the implications (i) =⇒ (ii) =⇒ (iv) =⇒ (i). The im-
plications (i) =⇒ (iii) =⇒ (iv) =⇒ (i) are verified similarly. The implication (i) =⇒
(ii) is trivial, and the implication (iv) =⇒ (i) is from Example 3.7.

(ii) =⇒ (iv) We exploit Theorem 3.10:

TorFBM
i (B, k) ∼= TorR

i (HomR(B, B), B ⊗R k) ∼= TorR
i (R, kβ0(B))

∼=
{

kβ0(B) i = 0
0 i 	= 0

TorMFC
i (B, k) ∼= TorR

i (C ⊗R B, HomR(C, k)) ∼= TorR
i (C ⊗R B, kβ0(C))

∼= kβi(C⊗R B)β0(C).

Assuming that TorFBM
0 (B, k) ∼= TorMFC

0 (B, k), we conclude that

β0(B) = β0(C ⊗R B)β0(C) = β0(B)β0(C)2.

Since β0(B) 	= 0, it follows that β0(C) = 1. So C is cyclic, and therefore C ∼= R by
Remark 2.10. Assuming TorFBM

i (B, k) ∼= TorMFC
i (B, k) for some i � 1, we have

0 = βi(C ⊗R B)β0(C) = βi(B).

It follows that pdR(B) < ∞, so Remark 2.10 implies that B ∼= R, as desired. �


The next results follow from Theorem B with B = C and B = R, respectively.

Corollary 4.7 Assume that (R,m, k) is local. The following are equivalent:

(i) TorFCM
i (X, Y) ∼= TorFCM

i (Y, X) for all i � 0 and for all R-modules X, Y.
(ii) TorMFC

i (X, Y) ∼= TorMFC
i (Y, X) for all i � 0 and for all R-modules X, Y.

(iii) TorFCM
i (C, k) ∼= TorFCM

i (k, C) for i = 0 and some i � 1.
(iv) TorMFC

i (C, k) ∼= TorMFC
i (k, C) for i = 0 and some i � 1.

(v) C ∼= R.

Corollary 4.8 Assume that (R,m, k) is local. The following are equivalent:

(i) TorFCM
i (X, Y) ∼= TorR

i (X, Y) for all i � 0 and for all R-modules X, Y.
(ii) TorMFC

i (X, Y) ∼= TorR
i (X, Y) for all i � 0 and for all R-modules X, Y.

(iii) TorFCM
i (C, k) ∼= TorR

i (C, k) for some i � 1.
(iv) TorMFC

i (k, C) ∼= TorR
i (k, C) for some i � 1.

(v) C ∼= R.
(vi) TorFCM

i (k, k) ∼= TorR
i (k, k) for some i � 0.

(vii) TorMFC
i (k, k) ∼= TorR

i (k, k) for some i � 0.
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Remark 4.9 Note that Theorem B and Corollary 4.7 do not contain versions of the
conditions (iv) and (vii) of Corollary 4.8. Indeed, for Corollary 4.7 this is because we
always have TorFCM

i (k, k) ∼= kβ0(C)2βi(k) ∼= TorMFC
i (k, k). Similarly, if one assumes in

Theorem B that TorFBM
i (k, k) ∼= TorMFC

i (k, k), then the only conclusion one would
be able to draw from this is that β0(B) = β0(C), which is not enough to guarantee
that B and C are isomorphic, let alone isomorphic to R.

For the non-local versions of the above results, we require a bit more technology.

Definition 4.10 Let Pic(R) denote the Picard group of R. The elements of Pic(R) are
the isomorphism classes [P] of finitely generated rank 1 projective R-modules P. The
group structure on Pic(R) is given by tensor product [P][Q] = [P ⊗R Q]. Let S0(R)

denote the set of isomorphism classes [C] of semidualizing R-modules.

Fact 4.11 Remark 2.10 implies that Pic(R) ⊆ S0(R). Also, there is an action of
Pic(R) on S0(R) given by [P][C] = [P ⊗R C]; see [8].

Definition 4.12 The equivalence relation defined by the Pic(R)-action on S0(R) is
denoted ≈: given [B], [C] ∈ S0(R) we have [B] ≈ [C] if there is an element [P] ∈
Pic(R) such that C ∼= P ⊗R B. Write B ≈ C when [B] ≈ [C].

Fact 4.13 For semidualizing R-modules B, C, one has B ≈ C if and only if Bm
∼= Cm

for all maximal ideals m ⊂ R, by [8, Proposition 5.1] and [13, Chapter 2].

The next result is routine, and the corollary follows using Example 3.7.

Proposition 4.14 Assume that B ≈ C. Then one has PB(R) = PC(R) and FB(R) =
FC(R). Thus, for all i, there are natural isomorphisms

TorFCM
i (M, N) ∼= TorFBM

i (M, N) and TorPCM
i (M, N) ∼= TorPBM

i (M, N).

Corollary 4.15 Let [C] ∈ Pic(R). For each i there are isomorphisms

TorPCM
i (M, N) ∼= TorR

i (M, N) and TorFCM
i (M, N) ∼= TorR

i (M, N).

Corollary 4.16 The following conditions are equivalent:

(i) TorFBM
i (X, Y) ∼= TorMFC

i (X, Y) for all i � 0 and for all R-modules X, Y.
(ii) TorFBM

i (B, R/m) ∼= TorMFC
i (B, R/m) for i = 0, for some i � 1, and for all m ∈

m-Spec(R).
(iii) TorFBM

i (R/m, C) ∼= TorMFC
i (R/m, C) for i = 0, for some i � 1, and for all m ∈

m-Spec(R).
(iv) B ≈ R ≈ C, i.e., [B], [C] ∈ Pic(R).

Proof As in the proof of Theorem B, we verify the implications (ii) =⇒ (iv) =⇒ (i).
The implication (iv) =⇒ (i) is from Corollary 4.15.
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(ii) =⇒ (iv) Assume that TorFBM
i (R/m, C) ∼= TorMFC

i (R/m, C) for all i � 0, for
all m ∈ m-Spec(R). Corollary 3.12 then implies that

TorFBmM
i (Rm/mm, Cm) ∼= TorFBM

i (R/m, C)m ∼= TorMFC
i (R/m, C)m

∼= TorMFCm

i (Rm/mm, Cm).

Theorem B implies that Bm
∼= Rm

∼= Cm for all m, so B ≈ R ≈ C by Fact 4.13. �


The next two results are proved similarly.

Corollary 4.17 The following conditions are equivalent:

(i) TorFCM
i (X, Y) ∼= TorFCM

i (Y, X) for all i � 0 and for all R-modules X, Y.
(ii) TorMFC

i (X, Y) ∼= TorMFC
i (Y, X) for all i � 0 and for all R-modules X, Y.

(iii) TorFCM
i (C, R/m) ∼= TorFCM

i (R/m, C) for i = 0, for some i � 1, and for all m ∈
m-Spec(R).

(iv) TorMFC
i (C, R/m) ∼= TorMFC

i (R/m, C) for i = 0, for some i � 1, and for all m ∈
m-Spec(R).

(v) C ≈ R.

Corollary 4.18 The following conditions are equivalent:

(i) TorFCM
i (X, Y) ∼= TorR

i (X, Y) for all i � 0 and for all R-modules X, Y.
(ii) TorMFC

i (X, Y) ∼= TorR
i (X, Y) for all i � 0 and for all R-modules X, Y.

(iii) TorFCM
i (C, R/m) ∼= TorR

i (C, R/m) for some i � 1, for all m ∈ m-Spec(R).
(iv) TorMFC

i (R/m, C) ∼= TorR
i (R/m, C) for some i � 1, for all m ∈ m-Spec(R).

(v) C ≈ R.
(vi) TorFCM

i (R/m, R/m) ∼= TorR
i (R/m, R/m) for some i � 0, and for all m ∈

m-Spec(R).
(vii) TorMFC

i (R/m, R/m) ∼= TorR
i (R/m, R/m) for some i � 0, and for all m ∈

m-Spec(R).

5 FC-Projective Dimension and Vanishing of Relative Homology

In this section, C is a semidualizing R-module, and M and N are R-modules.
We begin this section with a counterpoint to Example 2.7: the example says that

bounded and exact resolutions are not necessarily proper, while the following lemma
says that bounded and proper resolutions are exact.

Lemma 5.1 Assume that FC- pdR(M) � n and let L be a proper FC-resolution of M
such that Li = 0 for i > n. Then L+ is exact and we have M ∈ BC(R).

Proof Lemma 3.1(b) implies that the complex HomR(C, L) is a proper flat reso-
lution of HomR(C, M) such that HomR(C, L)i = 0 for i > n. In particular, we have
fdR(HomR(C, M)) � n, so HomR(C, M) ∈ AC(R). Remark 2.12(a) shows that M ∈
BC(R), so M ∼= C ⊗R HomR(C, M). The conditions L ∼= C ⊗R HomR(C, L) and M ∼=
C ⊗R HomR(C, M) imply that L+ ∼= C ⊗R HomR(C, L)+, so Lemma 2.13(a) implies
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that L+ is exact. Since each Li is in BC(R), the condition M ∈ BC(R) follows from
Remark 2.12. �


Proposition 5.2

(a) One has FC- pdR(M) � n if and only if there is an exact sequence 0 → Ln →
· · · → L0 → M → 0 such that each Li ∈ FC(R).

(b) FC- pdR(M) = fdR(HomR(C, M)).
(c) FC- pdR(C ⊗R M) = fdR(M).
(d) FC- pdR(M) � PC- pdR(M).

Proof Argue as in [17, Corollary 2.10(a)], using Lemma 5.1. �


Corollary 5.3 If ϕ : R → S is a f lat homomorphism, then there is an inequality
FC- pdR(M) � FS⊗RC- pdS(S ⊗R M) with equality when ϕ is faithfully f lat.

Theorem 5.4 Given an integer n � 0, the following conditions are equivalent:

(i) TorFCM
i (M,−) = 0 for all i > n;

(ii) TorFCM
n+1 (M,−) = 0; and

(iii) FC- pdR(M) � n.

Proof Let E be a faithfully injective R-module, and set (−)∨ = HomR(−, E).
Theorem 3.10 and Corollary 3.13 imply that ExtiMIC

(−, M∨) ∼= TorFCM
i (M,−)∨, so

Condition (i) is equivalent to the following:

(i′) ExtiMIC
(−, M∨) = 0 for all i > n.

Similarly, conditions (ii) and (iii) are (respectively) equivalent to the following, by
the proof of [16, Lemma 4.2(a)]:

(ii′) Extn+1
MIC

(−, M∨) = 0.
(iii′) IC- idR(M∨) � n.

Finally, conditions (i′)–(iii′) are equivalent by [17, Theorem 3.2(b)]. �


Theorem 5.5 Assume that M is f initely generated over R. Given an integer n � 0, the
following conditions are equivalent:

(i) TorFCM
i (M, R/m) = 0 for all i > n and for each m ∈ m-Spec(R);

(ii) TorFCM
n+1 (M, R/m) = 0 for each m ∈ m-Spec(R);

(iii) PC- pdR(M) � n; and
(iv) FC- pdR(M) � n.

In particular, one has FC- pdR(M) = PC- pdR(M).

Proof The implication (i) =⇒ (ii) is trivial, and the implications (iii) =⇒ (iv) =⇒ (i)
are from Proposition 5.2(d) and Theorem 5.4.

(ii) =⇒ (iii) Assume that TorFCM
n+1 (M, R/m) = 0 for each m ∈ m-Spec(R). The

module Cm is a semidualizing for Rm, so it is non-zero and finitely generated and

C ⊗R R/m ∼= C/mC ∼= Cm/mmCm
∼= (R/m)β0(m;C) (5.5.1)
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where β0(m;C) 	= 0. The second step in the next sequence is by Theorem 3.10:

0 = TorFCM
n+1 (M, R/m)

∼= TorR
n+1(HomR(C, M), (C ⊗R R/m))

∼= TorR
n+1(HomR(C, M), R/m)β0(m;C).

The third step is by Eq. 5.5.1. Since β0(m;C) 	= 0, we conclude that

TorR
n+1(HomR(C, M), R/m) = 0

for each m. Thus, Proposition 5.2(b) explains the first step in the next display

FC- pdR(M) = fdR(HomR(C, M)) = pdR(HomR(C, M)) � n

and the other steps follow from the fact that HomR(C, M) is finitely generated. �


Corollary 5.6 Given a set {N j} j∈J of R-modules, one has

FC- pdR(
∐

j N j) = sup{FC- pdR(N j) | j ∈ J}.

Proof Apply Theorem 3.10, Corollary 3.11(a), and Theorem 5.4. �


Next, we present a two-of-three result.

Corollary 5.7 Given an exact sequence M = (0 → M1 → M2 → M3 → 0) of R-
module homomorphisms, one has

FC- pdR(M2) � sup{FC- pdR(M1),FC- pdR(M3)}
FC- pdR(M1) � sup{FC- pdR(M2),FC- pdR(M3) − 1}
FC- pdR(M3) � sup{FC- pdR(M2),FC- pdR(M1) + 1}.

In particular, if two of the Mi have f inite FC- pd, then so does the third one.

Proof For each inequality, one can assume without loss of generality that two of
the modules in the sequence have finite FC-projective dimension. In particular,
these modules are in BC(R), so Remark 2.12 implies that all three modules are in
BC(R). In particular, we have Ext1R(C, M1) = 0, so Lemma 3.2 implies that M is
HomR(PC,−)-exact. The desired conclusion follows from Theorem 5.4, using the
long exact sequence from Lemma 3.8(a) and Theorem 3.10. �


We conclude with Theorem C from the introduction.

Definition 5.8 An R-submodule M′ ⊆ M is pure if for every R-module N the
induced map N ⊗R M′ → N ⊗R M is 1-1, i.e., if for each finitely generated R-module
N, the map HomR(N, M) → HomR(N, M′′) is onto; see [19, Proposition 3].
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Proof of Theorem C Assume without loss of generality that FC- pdR(M) = n < ∞.
It follows that M ∈ BC(R), and from [11, Proposition 2.4(a) and Theorem 3.1] we
know that M′ and M′′ := M/M′ are in BC(R). In particular, the sequence

0 → M′ → M → M′′ → 0 (5.9.1)

is HomR(PC,−)-exact by Lemma 3.2. By adjointness HomR(N, HomR(C,−)) ∼=
HomR(N ⊗R C,−), the submodule HomR(C, M′) ⊆ HomR(C, M) is pure.

We prove that FC- pdR(M′) � n. It suffices by Theorem 5.4 to show that
TorFCM

n+1 (M′,−) = 0. Let G be an R-module. Theorems 3.10 and 5.4 imply that
TorR

n+1(HomR(C, M), C ⊗R G) ∼= TorFCM
n+1 (M, G) = 0. Let

0 → Kn+1 → Pn → · · · → P0 → C ⊗R G → 0,

be a truncation of a projective resolution of C ⊗R G. In the commutative diagram

0 �� Kn+1 ⊗R HomR(C, M′) ��

��

Pn ⊗R HomR(C, M′)

��
0 �� Kn+1 ⊗R HomR(C, M) �� Pn ⊗R HomR(C, M)

the bottom row is exact, as TorR
n+1(HomR(C, M), C ⊗R G) = 0. The vertical arrows

are injective, since HomR(C, M′) ⊆ HomR(C, M) is pure. Hence, the top row of the
diagram is exact, so we have TorFCM

n+1 (M′, G) ∼= TorR
n+1(HomR(C, M′), C ⊗R G) = 0

by Theorem 3.10, as desired.
To complete the proof, note that FC- pdR(M′′) − 1 � n by Corollary 5.7. �


Example 5.9 Let M′, M′′ be R-modules with FC- pdR(M′) < FC- pdR(M′′) < ∞. The
split inclusion M′ ⊆ M′ ⊕ M′′ is pure, but

FC- pdR(M′ ⊕ M′′) = FC- pdR(M′′) > sup{FC- pdR(M′),FC- pdR(M′′) − 1}
by Proposition 5.6. Thus, we can have strict inequality in Theorem C.
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