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Abstract Bergeron and Li have introduced a set of axioms which guarantee that
the Grothendieck groups of a tower of algebras

⊕
n≥0 An can be a pair of graded

dual Hopf algebras. Hivert and Nzeutchap, and independently Lam and Shimozono
constructed dual graded graphs from primitive elements in Hopf algebras. In this
paper we apply the composition of these constructions to towers of algebras. We
show that if a tower

⊕
n≥0 An gives rise to a pair of graded dual Hopf algebras,

then dim(An) = rnn! where r = dim(A1). In the case of r = 1 we give a conjectural
classification. We then investigate a quantum version of the main theorem. We
conclude with some open problems and a categorification of these constructions.
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1 Introduction

This paper1 is concerned with the interplay between towers of associative algebras,
pairs of graded dual combinatorial Hopf algebras, and dual graded graphs. Our
point of departure is the study of the composition of two constructions: (1) the
construction of dual Hopf algebras from towers of algebras satisfying some axioms,
due to Bergeron and Li [6]; and (2) the construction of dual graded graphs from
primitive elements in dual Hopf algebras, discovered independently by Hivert and
Nzeutchap [15], and Lam and Shimozono:

tower of algebras −→ combinatorial Hopf algebra −→ dual graded graph (1.1)

1.1 From Towers of Algebras to Combinatorial Hopf Algebras

A tower A = ⊕
n≥0 An is a direct sum of associative algebras An over C, equipped

with an external multiplication ρm,n : Am ⊗ An → Am+n satisfying a number of
axioms (see Section 2). A combinatorial Hopf algebra is a graded, connected Hopf
algebra with a distinguished basis such that all product and coproduct structure
constants are non-negative. The Grothendieck groups G(A) and K(A) of a certain
tower A give rise to a pair of graded dual combinatorial Hopf algebras: the product
and coproduct structures come from induction and restriction of modules, while the
distinguished bases come from the classes of simple modules, and of indecomposable
projective modules. Our notion of combinatorial Hopf algebra is related to, but
different from the one in [1] (see Section 8).

1.2 From Combinatorial Hopf Algebras to Dual Graded Graphs

The notion of a pair (�, �′) of dual graded graphs (see Section 3) was introduced by
Fomin [11] (see also [27]) to encode the enumerative properties of the Robinson-
Schensted correspondence and its generalizations. A pair of graded graphs is
equipped with linear operators D and U satisfying the relation DU − U D = rId,
where r is a non-negative integer, and Id is the identity. The second arrow of Eq. 1.1
is obtained by using (some of the) structure constants of a combinatorial Hopf
algebra as edge multiplicities for a graph. This construction depends on the choices
of primitive elements, but for combinatorial Hopf algebras arising from towers of
algebras there is a natural choice (see Eq. 4.1).

1A summary of an earlier shorter version of this paper appeared in [5].
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1.3 The Dimension Theorem

Using the natural choice (see Eq. 4.1) we relate the dimensions of simple modules
and indecomposable projective modules of An to the numbers of some paths in the
dual graded graphs via Eq. 1.1. We obtain the following result, that towers of algebras
giving rise to combinatorial Hopf algebras are much more rigid than they first appear.

Theorem 1.1 Let A = ⊕
n≥0 An be a tower of algebras. If the Grothendieck groups of

A form a pair of graded dual Hopf algebras, then dim(An) = rnn! where r = dim(A1).

The notion of “forming a pair of graded dual Hopf algebras” is made precise in
Section 2. The number rnn! counts certain paths in a pair of dual graded graphs. It is
also the number of permutation matrices with entries in a finite group of size r.

1.4 Symmetric Groups, Symmetric Functions and Young’s Graph

The fundamental example of all three classes of objects arises from the repre-
sentation theory of symmetric groups and the theory of symmetric functions. The
symmetric group algebras give rise to a tower

⊕
n≥0 CSn, the Grothendieck groups

of which form a graded self-dual combinatorial Hopf algebra (see [8] and [29]), which
can be identified with the ring Sym of symmetric functions. The Hopf structure of
Sym was studied by Geissinger [12]. The corresponding dual graded graph is the
(self-dual) Young’s graph of partitions, which is the motivating example [11, 27] of
dual graded graphs. Indeed Young’s graph can be obtained from Young’s branching
rule for the symmetric group, or equivalently the Pieri rule for symmetric functions.

1.5 Towards a Classification?

In recent years it has been shown that other graded dual Hopf algebras can be
obtained from towers of algebras. In [25] Malvenuto and Reutenauer establish the
duality between the Hopf algebra NSym of noncommutative symmetric functions
and the Hopf algebra QSym of quasi-symmetric functions. Krob and Thibon [18]
then showed that this duality can be interpreted as the duality of the Grothendieck
groups associated with

⊕
n≥0 Hn(0) the tower of Hecke algebras at zero. For more

examples, see [4, 13, 26].
It is very tempting, as suggested by J. Y. Thibon, to classify all combinatorial Hopf

algebras which arise as Grothendieck groups associated with towers of algebras. The
list of axioms given by Bergeron and Li in [6] guarantees that the Grothendieck
groups of a tower of algebras form a pair of graded dual Hopf algebras. This list
of axioms is far from a classification.

The rigidity proved in Theorem 1.1 suggests however that there may be a
classification theorem for towers of algebras which give rise to combinatorial Hopf
algebras. For the case r = 1, we give a conjectural classification in Section 6, which
includes symmetric group algebras, 0-Hecke algebras, nilCoxeter algebras (studied
by Khovanov [17]) and the infinite families of Hecke algebras at a root of unity (see
[21]).

In general, Theorem 1.1 suggests that to perform the inverse constructions of the
arrows in Eq. 1.1 one should study algebras related to symmetric groups (or wreath
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products of symmetric groups). There are many combinatorial Hopf algebras for
which one may attempt to perform the inverse construction, but there are even more
dual graded graphs. The general construction of [20] produces dual graded graphs
from Bruhat orders of Weyl groups of Kac-Moody algebras and it is unclear whether
there are Hopf algebras, or towers of algebras giving rise to these graphs.

1.6 Quantization and Categorification

Our work should also be put into the context of the general notion of categorification:
Theorem 1.1 provides a condition on when a Hopf algebra can be categorified by
the Grothendieck groups of a tower of algebras. The idea of categorifying Hopf
algebras, in particular quantum groups, has been around for some time. For example,
Crane and Frenkel [9] introduced a notion of a Hopf-category in the context of four-
dimensional topological quantum field theory. We remark that quantum groups are
not graded, and so do not fit into the class of Hopf algebras that we consider.

In the last two sections, we turn our attention to some generalizations. In Section 7,
we give a quantum version of Theorem 1.1: replacing towers of algebras with filtered
towers of algebras, Hopf algebras with q-twisted Hopf algebras [23], and dual graded
graphs with quantized dual graded graphs [19].

In Section 8, we relate our work to the combinatorial Hopf algebras of Aguiar,
Bergeron and Sottile [1]. We also discuss different notions of towers of algebras,
and describe how to categorify the constructions in Eq. 1.1, in particular making the
arrows into functors.

2 From Towers of Algebras to Combinatorial Hopf Algebras

We recall here the work of Bergeron and Li [6] on towers of algebras. For B
an arbitrary algebra we denote by Bmod, the category of all finitely generated
left B-modules, and by P(B), the category of all finitely generated projective left
B-modules. For some category C of left B-modules (Bmod or P(B)) let F be the
free abelian group generated by the symbols (M), one for each isomorphism class
of modules M in C. Let F0 be the subgroup of F generated by all expressions
(M) − (L) − (N) one for each exact sequence

0 → L → M → N → 0

in C. The Grothendieck group K0(C) of the category C is defined by the quotient
F/F0, an abelian additive group. For M ∈ C, we denote by [M] its image in K0(C).
We then set

G0(B) = K0(Bmod) and K0(B) = K0(P(B)).

For B a finite-dimensional algebra over a field K, let {V1, · · · , Vs} be a complete
list of nonisomorphic simple B-modules. The projective covers {P1, · · · , Ps} of the
simple modules Vi’s is a complete list of nonisomorphic indecomposable projective
B-modules. Then G0(B) = ⊕s

i=1 Z[Vi] and K0(B) = ⊕s
i=1 Z[Pi].

Let ϕ : B → A be an injection of algebras preserving unities, and let M be a (left)
A-module and N a (left) B-module. The induction of N from B to A is IndA

B N =
A ⊗ϕ N, the (left) A-module A ⊗ N modulo the relations a ⊗ bn ≡ aϕ(b) ⊗ n, and
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the restriction of M from A to B is ResA
B M = HomA(A, M), the (left) B-module

with the B-action defined by b f (a) = f (aϕ(b)).
Let A = ⊕

n≥0 An be a graded algebra over C with multiplication ρ : A ⊗ A → A.
Bergeron and Li studied five axioms for A (we refer to [6] for full details):

(1) For each n ≥ 0, An is a finite-dimensional algebra by itself with (internal)
multiplication μn : An ⊗ An → An and unit 1n. A0 ∼= C.

(2) The (external) multiplication ρm,n : Am ⊗ An → Am+n is an injective homo-
morphism of algebras, for all m and n (sending 1m ⊗ 1n to 1m+n ).

(3) Am+n is a two-sided projective Am ⊗ An-module with the action defined by
a · (b ⊗ c) = aρm,n(b ⊗ c) and (b ⊗ c) · a = ρm,n(b ⊗ c)a, for all m, n ≥ 0, a ∈
Am+n, b ∈ Am, c ∈ An and m, n ≥ 0.

(4) A relation between the decomposition of An+m as a left Am ⊗ An-module and
as a right Am ⊗ An-module holds.

(5) An analogue of Mackey’s formula relating induction and restriction of modules
holds.

We say here that A = ⊕
n≥0 An is a tower of algebras if it satisfies conditions

(1)–(3).
Condition (1) guarantees that the Grothendieck groups G(A) = ⊕

n≥0 G0(An)

and K(A) = ⊕
n≥0 K0(An) are graded connected. Conditions (2) and (3) ensure that

induction and restriction are well defined on G(A) and K(A), defining a product
and coproduct, as follows. For [M] ∈ G0(Am) (or K0(Am)) and [N] ∈ G0(An) (or
K0(An)) we let

[M][N] =
[
IndAm+n

Am⊗An
M ⊗ N

]
and �([N]) =

∑

k+l=n

[
ResAn

Ak⊗Al
N

]
.

The pairing between K(A) and G(A) is given by 〈 , 〉 : K(A) × G(A) → Z where

〈[P], [M]〉 =
{

dimK
(
HomAn(P, M)

)
if [P] ∈ K0(An) and [M] ∈ G0(An),

0 otherwise.

Thus with (only) conditions (1), (2), and (3), G(A) and K(A) are dual free Z-
modules both endowed with a product and coproduct.

Theorem 2.1 (Bergeron and Li [6]) If a graded algebra A = ⊕
n≥0 An over C satisf ies

conditions (1)–(5), then G(A) and K(A) are graded dual Hopf algebras.

In particular Theorem 1.1 applies to graded algebras which satisfy conditions
(1)–(5). Note that the dual Hopf algebras G(A) and K(A) come with distinguished
bases consisting of the isomorphism classes of simple and indecomposable projective
modules.

3 From Combinatorial Hopf Algebras to Dual Graded Graphs

This section recounts work of Fomin [11], Hivert and Nzeutchap [15], and Lam and
Shimozono. A graded graph � = (V, E, h, m) consists of a set of vertices V, a set
of (directed) edges E ⊂ V × V, a height function h : V → {0, 1, . . .} and an edge
multiplicity function m : V × V → {0, 1, . . .}. If (v, u) ∈ E is an edge, then we must



680 N. Bergeron et al.

have h(u) = h(v) + 1. The multiplicity function determines the edge set: (v, u) ∈ E if
and only if m(v, u) �= 0. We assume always that there is a single vertex v0 of height 0.

Let ZV = ⊕
v∈V Z · v be the free Z-module generated by the vertex set. Given a

graded graph � = (V, E, h, m) we define up and down operators U, D : ZV → ZV
by

U�(v) =
∑

u∈V

m(v, u) u D�(v) =
∑

u∈V

m(u, v) u

and extending by linearity over Z. We will assume that � is locally-finite, so that these
operators are well defined. A pair (�, �′) of graded graphs with the same vertex set
V and height function h is called dual with dif ferential coef f icient r if

D�′U� − U� D�′ = r Id.

We shall need the following result of Fomin. For a graded graph �, let f v
� denote the

number of paths from v0 to v, where for two vertices w, u ∈ V, we think that there
are m(w, u) edges connecting w to u.

Theorem 3.1 (Fomin [11]) Let (�, �′) be a pair of dual graded graphs with dif ferential
coef f icient r. Then

rnn! =
∑

v : h(v)=n

f v
� f v

�′ .

Let H• = ⊕
n≥0 Hn and H• = ⊕

n≥0 Hn be a pair of graded dual Hopf algebras
over Z with respect to the pairing 〈 . , . 〉 : H• × H• → Z. We assume that we are given
dual sets of homogeneous free Z-module generators {pλ ∈ H•}λ∈� and {sλ ∈ H•}λ∈�,
such that all structure constants are non-negative integers. We also assume that
dim(Hi) = dim(Hi) < ∞ for each i ≥ 0 and dim(H0) = dim(H0) = 1, so that H0 and
H0 are spanned by distinguished elements the unit 1. Let us suppose we are given
non-zero homogeneous elements α ∈ H1 and β ∈ H1 of degree 1 such that αpμ (resp.
βsμ) is a linear combination of {pλ} (resp. {sλ}) with non-negative integer coefficients
for any μ ∈ �.

We now define a graded graph �(β) = (V, E, h, m) where V = {sλ}λ∈� and
h : V → Z is defined by h(sλ) = deg(sλ). The map m : V × V → Z is defined by

m(sλ, sμ) = 〈pμ, βsλ〉 = 〈�(pμ), β ⊗ sλ〉
and E is determined by m. The grading of �(β) follows from the assumption that
β has degree 1. Similarly, we define a graded graph �′(α) = (V ′, E′, h′, m′) where
V ′ = V, h′ = h, and

m′(sλ, sμ) = 〈α pλ, sμ〉 = 〈α ⊗ pλ, �(sμ)〉.
The following theorem is due independently to Hivert and Nzeutchap [15] and Lam
and Shimozono (unpublished).

Theorem 3.2 The graded graphs � = �(β) and �′ = �′(α) form a pair of dual graded
graphs with dif ferential coef f icient 〈α, β〉.
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Proof We identify ZV with H• and note that U�(x) = β x where x ∈ H• and we use
the product in H•. Also,

D�′(x) =
∑

μ∈�

〈α ⊗ pμ, �x〉 sμ =
∑

〈α, x(1)〉 x(2).

where �x = ∑
x(1) ⊗ x(2). Now observe that by our hypotheses on the degree of α

and β they are primitive elements: �α = 1 ⊗ α + α ⊗ 1 and �β = 1 ⊗ β + β ⊗ 1. We
first calculate

〈α, β x〉 = 〈�α, β ⊗ x〉 = 〈1, β〉〈α, x〉 + 〈α, β〉〈1, x〉 = 〈α, β〉〈1, x〉
and then compute

D�′U�(x) = D�′(βx)

=
∑(〈α, β x(1)〉 x(2) + 〈α, x(1)〉 β x(2)

)

= 〈α, β〉x + U� D�′(x)

where to obtain 〈α, β〉x in the last line we use �x = 1 ⊗ x + terms of other degrees.
��

4 Proof of Theorem 1.1

We are given a graded algebra A = ⊕
n≥0 An over C with multiplication ρ satisfying

conditions (1)–(3). Moreover we assume that the two Grothendieck groups G(A)

and K(A) form a pair of graded dual Hopf algebras as in Section 2. Under these
assumptions we show that

dim(An) = rnn!
where r = dim(A1).

Let H• = G(A) and H• = K(A). Let {s(1)
1 = [S(1)

1 ], . . . , s(1)
t = [S(1)

t ]} and {p(1)
1 =

[P(1)
1 ], . . . , p(1)

t = [P(1)
t ]} denote the isomorphism classes of simple and indecompos-

able projective A1-modules, so that H1 = ⊕t
i=1 Zs(1)

i and H1 = ⊕t
i=1 Zp(1)

i . Define
ai = dim(S(1)

i ) and bi = dim(P(1)

i ) for 1 ≤ i ≤ t. We set for the remainder of this paper

α =
t∑

i=1

ai p(1)

i ∈ H1 and β =
t∑

i=1

bis
(1)

i ∈ H1. (4.1)

Since A0 ∼= C, we let s(0)
1 (respectively, p(0)

1 ) be the unique simple (respectively,
indecomposable projective) module representative in H0 (respectively, H0). Simi-
larly, let {s(n)

i = [S(n)

i ]} be all isomorphism classes of simple An-modules and {p(n)

i =
[P(n)

i ]} be all isomorphism classes of indecomposable projective An-modules. The
sets

⋃
n≥0{s(n)

i } and
⋃

n≥0{p(n)

i } form dual free Z-module bases of H• and H•.
Now define � = �(β) and �′ = �′(α) as in Section 3.
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Lemma 4.1 The numbers of paths from s(0)
1 to s(n)

j in � and �′ are

f
s(n)

j

� = dim P(n)

j and f
s(n)

j

�′ = dim S(n)

j .

Proof From the definition of β in Eq. 4.1,

m(s(n−1)

i , s(n)

j ) =
t∑

l=1

blcl,

where cl is the number of copies of the indecomposable projective module P(1)

l ⊗
P(n−1)

i as a summand in ResAn
A1⊗An−1

P(n)

j . Note that s(0)
1 is the unit of H• and

m(s(0)
1 , s(1)

i ) = bi = dim P(1)

i for all 1 ≤ i ≤ t. The dimension of an indecomposable
projective module P(n)

j is given by

dim P(n)

j =
∑

i,l

cl dim
(

P(1)

l ⊗ P(n−1)

i

)
=

∑

i

m(s(n−1)

i , s(n)

j ) dim P(n−1)

i .

By induction on n, we deduce that dim P(n)

j is the number of paths from s(0)
1 to s(n)

j
in �. The claim for �′ is similar. ��

For any finite dimensional algebra B let {Sλ}λ be a complete set of simple B-
modules. For each λ let Pλ be the projective cover of Sλ. It is well known (see [10])
that we can find minimal idempotents {ei} such that B = ⊕

Bei where each Bei

is isomorphic to a Pλ. Moreover, the quotient of B by its radical shows that the
multiplicity of Pλ in B is equal to dim Sλ. This implies the following lemma.

Lemma 4.2 Let B be a f inite dimensional algebra and {Sλ}λ be a complete set of simple
B-modules.

dim B =
∑

λ

(dim Pλ)(dim Sλ),

where Pλ is the projective cover of Sλ.

By Lemma 4.2, r = ∑t
i=1 aib i = 〈α, β〉. By Theorem 3.2 we apply Theorem 3.1 to

(�, �′). Using Lemmas 4.2 and 4.1, Theorem 3.1 says

dim(An) =
∑

i

(dim P(n)

i )(dim S(n)

i ) =
∑

i

f
s(n)

i
� f

s(n)
i

�′ = rnn!.

Remark 4.3 If the tower consists of semisimple algebras Ai, then � = �′. So we
obtain a self-dual graded graph �. In this case the graph would be a weighted version
of a dif ferential poset in the sense of Stanley [27]. If furthermore the branching of
irreducible modules from An to A1 ⊗ An−1 is multiplicity free, then we get a true
differential poset.

Remark 4.4 The Hopf algebras H• and H• are not in general either commutative
or co-commutative. Thus in the definitions of Section 3 we could have obtained a
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different pair of dual graded graphs by setting m(sλ, sμ) = 〈pμ, sλ β〉 or m′(sλ, sμ) =
〈pλ α, sμ〉.

5 Examples

In this section we explain four examples of the constructions in Sections 2–4, all with
r = dim(A1) = 1.

Tower of algebras A K(A) G(A) � �′

Sn-group algebras Sym Sym Young’s graph Young’s graph

NilCoxeter algebras Z[x] Z[x, x2/2, x3/3!, . . .] Weighted chain Chain

0-Hecke algebras NSym QSym BinWord graph Lifted binary tree

Hecke algebras at r
√

1 (J (r))⊥ Sym/J (r) ??? ???

5.1 Symmetric Group Algebras

Let A = ⊕
n≥0 CSn be the tower of symmetric group algebras. Since CSn is

semisimple, K(A) = G(A). Indeed both K(A) and G(A) can be identified with
the (self-dual) Hopf algebra Sym of symmetric functions, and the classes of the
simple modules and the indecomposable projective modules are identified with the
Schur functions sλ. The corresponding self-dual graded graph is Young’s lattice of
partitions. We refer the reader to [29] for further details of this well-known example.

5.2 NilCoxeter Algebras

The nilCoxeter algebra Nn is the unital algebra over C generated by T1, T2, . . . , Tn−1

with relations

T2
i = 0

TiT j = T jTi for |i − j| > 1

TiTi+1Ti = Ti+1TiTi+1.

It has a basis {Tw | w ∈ Sn} labeled by permutations of {1, 2, . . . , n}, where Tw =
Ti1 Ti2 · · · Ti
 if w = si1 si2 · · · si
 is a reduced factorization of w. An explicit realization
of this algebra is obtained by divided dif ference operators. The external multiplica-
tion Ni ⊗ N j → Ni+ j is defined in the same way as for symmetric group algebras. The
representation theory of the tower N = ⊕

n≥0 Nn was worked out by Khovanov [17].
The unique simple module (up to isomorphism) Sn of Nn has dimension 1,

with projective cover Pn = Nn. Then K(N) = Z[x] with [Pn] = xn and G(N) =
Z[x, x2/2, x3/3!, . . .] with [Sn] = xn/n!. Here the algebra Z[x, x2/2, x3/3!, . . .] is the
free divided powers algebra on one generator over Z. The coproduct is given
by �(x) = 1 ⊗ x + x ⊗ 1 for both K(N) and G(N). The graph �′ is a chain, with
vertices {0, 1, 2, . . .} and multiplicities m(i, i + 1) = 1 for i = 0, 1, 2, . . .. The graph
� is a weighted chain, with vertices {0, 1, 2, . . .} and multiplicities m(i, i + 1) = i +
1. The “up” operators in these graphs correspond to product by x in Z[x] and
Z[x, x2/2, x3/3!, . . .]. This pair of dual graded graphs occurred as Example 2.2.1
in [11].
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5.3 0-Hecke Algebras

The 0-Hecke algebra Hn(0) is the unital algebra over C generated by T1, T2, . . . , Tn−1

with relations

T2
i = −Ti

TiT j = T jTi for |i − j| > 1

TiTi+1Ti = Ti+1TiTi+1.

The 0-Hecke algebra has a basis {Tw | w ∈ Sn} and an external multiplication
Hi(0) ⊗ Hj(0) → Hi+ j(0) defined in a manner similar to the nilCoxeter algebras. An
explicit realization of Hn(0) is obtained by the isobaric divided dif ference operators.
The representation theory of the tower H(0) = ⊕

n≥0 Hn(0) was worked out by Krob
and Thibon [18].

A composition I = (i1, i2, . . . , ir) of n is a finite sequence of positive integers
summing to n. The algebra Hn(0) is not semi-simple and it has 2n−1 non-isomorphic
simple modules SI all of dimension 1, as I ranges over the compositions of n. The
projective cover PI of SI has dimension dim(PI) = {w ∈ Sn | Des(w) = Des(I) :=
{i1, i1 + i2, . . . , i1 + · · · + ir−1}. It is known that G(H(0)) = QSym, the Hopf algebra
of quasi-symmetric functions, and K(H(0)) = NSym, the Hopf algebra of noncom-
mutative symmetric functions. The class of [SI] in QSym is given by the fundamental
quasi-symmetric function FI ∈ QSym. The class of [PI] in NSym is given by the
ribbon Schur function RI ∈ NSym.

The graph �′ is an infinite binary tree with vertices of height n identified with
compositions of n. There are edges (with multiplicity 1) joining the composition
(i1, i2, . . . , ir) with the compositions (1, i1, i2, . . . , ir) and with (i1 + 1, i2, . . . , ir). The
graph � has edges (multiplicity 1) joining (i1, i2, . . . , ir) with

{(i1, . . . , i j−1, i j + 1, i j+1, . . . , ir), (i1, . . . , i j−1, k + 1, i j − k, i j+1, . . . , ir)}

for each j = 1, 2, . . . , r and k = 0, . . . , i j − 1. We reproduce these graphs in Fig. 1 of
Section 7.5 (the edge labels should be ignored for now). This pair of dual graded
graphs occurred as Example 2.3.6 in [11].

5.4 Hecke Algebras at Roots of Unity

Let v ∈ C. The Hecke algebra Hn(v) is generated by T1, T2, . . . , Tn−1 with relations

T2
i = (v − 1)Ti + v

TiT j = T jTi for |i − j| > 1

TiTi+1Ti = Ti+1TiTi+1.

The Hecke algebra has a basis {Tw | w ∈ Sn} and an external multiplication
Hi(v) ⊗ Hj(v) → Hi+ j(v) defined in a manner similar to the nilCoxeter algebras. If
v = 0, then we recover the 0-Hecke algebra Hn(0). If v = 1, then we recover the
symmetric groups algebras. If v is neither 0 nor a root of unity, then the tower
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Fig. 1 Quantizations of the dual graded graphs for the 0-Hecke algebra

H(v) = ⊕
n≥0 Hn(v) has representation theory identical to that of

⊕
n≥0 CSn. In this

case we say that v is generic.
We now let v = ζ be a primitive r-th root of unity, and let H(ζ ) = ⊕

n≥0 Hn(ζ )

denote the corresponding tower of algebras. The representation theory of this
infinite family of towers of algebras is not completely understood. We refer the
reader to [21] for the following discussion. Let J (r) ⊂ Sym be the ideal in Sym
generated by the power symmetric functions pr, p2r, p3r, . . .. Then the graded dual
Hopf algebras G(H(ζ )) = Sym/J (r) and K(H(ζ )) = (J (r))⊥, where (J (r))⊥ ⊂ Sym
is the set of elements annihilated by J (r) under the usual pairing of Sym with
itself. Ariki [3], proving a conjecture from [21], showed that the symmetric functions
representing the classes of the simple modules, or the projective indecomposable
modules, can be expressed in terms of Schur functions via the (lower and upper)
global bases at q = 1 of the Fock space representation of Uq(ŝlr).

The graded graphs � and �′ are not known explicitly to our knowledge, though
they have been the subject of much recent work; see for example [7, 21]. In particular,
these branching graphs are closely related to the crystal graphs of quantum affine
algebras of type A. It follows from Theorem 3.2 that

Corollary 5.1 The branching graph � for the simple modules, and the branching graph
�′ for the projective indecomposable modules of H(ζ ) form a pair of dual graded
graphs with dif ferential coef f icient r = 1.

Remark 5.2 The case r ≥ 2 is abundant. In particular, for r = 2 one can consider
towers of super-algebras and super modules. This is how Sergeev [26] constructed
the combinatorial Hopf algebra of Q-Schur functions from the tower of Sergeev
algebras. This is also how Bergeron et al. [4] constructed the combinatorial Hopf
algebra of �-peak quasisymmetric functions from the tower of Hecke–Clifford
algebras. Theorem 1.1 also holds for towers of super-algebras; the proof is a direct
adaptation of the one presented here.
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6 Two Parameter Hecke Algebras and Conjectural Classification

Let a, b ∈ C. Let Hn(a, b) denote the two-parameter Hecke algebra with generators
T1, T2, . . . , Tn−1 and relations

T2
i = aTi + b

TiT j = T jTi for |i − j| > 1

TiTi+1Ti = Ti+1TiTi+1.

Proposition 6.1 The C-algebra Hn(a, b) is isomorphic to one of the following four
families of algebras:

(H1) a Hecke algebra Hn(v) at a generic (see Section 5.4) value of v, or
(H2) a Hecke algebra Hn(ζ ) at a root of unity ζ , or
(H3) the 0-Hecke algebra Hn(0) (when a �= 0 but b = 0), or
(H4) the nilCoxeter algebra Nn (when a = b = 0).

Proof If (a, b) = (0, 0), then Hn(a, b) = Nn the nilCoxeter algebra. Otherwise, we
can find a non-zero z ∈ C satisfying

az = b z2 − 1. (6.1)

The elements T ′
i = zTi then satisfy

(T ′
i )

2 = (q − 1)T ′
i + q

where q = b z2. Note that the braid relation for the Ti implies the braid relation for
the T ′

i . Thus Hn(a, b) is isomorphic to Hn(b z2).
If b = 0, then Hn(a, 0) is isomorphic to the 0-Hecke algebra Hn(0) and we are in

Case (H3). Otherwise we are in Case (H1) or (H2). Note that if z and z′ are the two
roots of Eq. 6.1, then b z2 is a r-th root of unity if and only if b(z′)2 is. This follows
from the fact that zz′ = −1/b . ��

Note that the isomorphism of Proposition 6.1 is compatible with the external
multiplication of the obvious construction of the tower H(a, b) = ⊕

n≥0 Hn(a, b). It
thus follows that for any a, b ∈ C, the tower H(a, b) gives rise to one of the graded
dual Hopf algebras, and dual graded graphs, discussed in Section 5.

Based on this and Theorem 1.1, we conjecture

Conjecture 6.2

(1) (Weak version) Suppose A is a tower of algebras with dim(A1) = 1, giving rise
to graded dual Hopf algebras K(A) and G(A). Then the pair (K(A), G(A))

is isomorphic, together with their distinguished bases (classes of simples and
indecomposable projectives), to one of the examples in Section 5.

(2) (Strong version) Suppose A is a tower of algebras with dim(A1) = 1, giving rise
to graded dual Hopf algebras. Then A is isomorphic to one of the towers H(a, b).

Zelevinsky [29] shows that a graded connected self-dual Hopf algebra H, with
a self-dual basis {bλ} such that all product and coproduct structure constants are
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positive with respect to this basis, must be a tensor product of the Hopf algebra of
symmetric functions, together with the tensor product of the Schur function basis.
Thus Conjecture 6.2(1) holds when A is a tower of semisimple algebras.

7 Quantum Version

In this section, we describe a “quantum” version of our theorem. We replace Eq. 1.1
with

tower of filtered algebras → q-twisted Hopf algebra → q-dual graded graph

We shall not make the first arrow completely axiomatic here.

7.1 From Filtered Towers of Algebras to q-Twisted Hopf Algebras

We first recall the notion of a q-twisted Hopf algebra [14, 23]. Let H be a graded
connected algebra over Z[q], equipped with an associative graded coproduct � :
H → H ⊗Z[q] H. The formula for the q-twisted product of tensors is

(a ⊗ b) ·q (a′ ⊗ b ′) = qdeg(b)·deg(a′)(aa′ ⊗ bb ′).

We say that H is a q-twisted Hopf algebra if �(a) ·q �(b) = �(ab) for every a, b ∈ H.
The other structure maps (unit, counit, antipode) will not concern us here.

The notion of q-twisted Hopf algebras is a particular instance of twisted Hopf
algebras (or Hopf monoids) for braided monoidal categories [16]. Indeed, a q-twisted
Hopf algebra is a Hopf monoid in the category of graded vector spaces with braiding
induced by τq : V ⊗ W → W ⊗ V where τq(v ⊗ w) = qnmw ⊗ v for v (resp. w) a
homogeneous element of degree n (resp. m).

Now let A = ⊕
n≥0 An be a tower of algebras as in Section 2. We suppose that each

An is equipped with a filtration An = A(0)
n ⊃ A(1)

n ⊃ · · · such that each A(k)
n is a left

ideal in An. We call this a f iltered tower of algebras. Let M be a left An-module and
M′ ⊂ M be a subset. If M = An · M′, then the sequence M(0) = A(0)

n · M′ ⊃ M(1) =
A(1)

n · M′ ⊃ M(2) = A(2)
n · M′ ⊃ · · · is a filtration of M by left submodules of An. The

graded character [M]q ∈ G0(A) ⊗Z Z[q] is defined by

[M]q =
∑

i≥0

qi [M(i)/M(i+1)].

Obviously [M]q depends on M′ even though it is suppressed in the notation.
We now define a multiplication ∗ in G(A)q = G(A) ⊗Z Z[q]. For [M] ∈ G0(Am)

and [N] ∈ G0(An) we let

[M] ∗ [N] =
[
IndAm+n

Am⊗An
M ⊗ N

]

q

with respect to the subset M ⊗ N ⊂ IndAm+n
Am⊗An

M ⊗ N. We also equip G(A)q with the
usual coproduct of G(A), extended by linearity to G(A)q. Assume:

(Q1) The multiplication ∗ is a well-defined associative product on G(A)q.
(Q2) G(A)q is a q-twisted Hopf algebra.
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(Q3) Graded characters and inductions are sufficiently compatible such that

β∗n = [An]q =
∑

i≥0

qi [A(i)
n /A(i+1)

n ]

where β is as in Section 4.

Remark 7.1 For example, (Q3) would follow from the more general compatibility
equation

[M1] ∗ [M2] ∗ · · · ∗ [Mr] =
[
Ind

Am1+m2+···+mr

Am1 ⊗···⊗Amr
M1 ⊗ · · · ⊗ Mr

]

q

and some assumption about the structure map A1 ⊗ · · · ⊗ A1 → An. We believe that
this compatibility relation is the most natural one, but do not need such generality
here.

For our purposes, the precise construction of G(A)q is not crucial, as long as
(Q1)–(Q3) are satisfied. We say that a multiplication on G(A) ⊗Z Z[q] quantizes
G(A) if it reduces to the usual product of G(A) at q = 1. Let [r] = 1 + q + · · · + qr−1,
and [r]! = [r][r − 1] · · · [1] be the usual q-analogues.

Theorem 7.2 Let A be a f iltered tower of algebras, and suppose a quantization G(A)q

of G(A) exists, satisfying (Q1)–(Q3) above. Then

dimq(An) =
∑

i≥0

qi dim(A(i)
n /A(i+1)

n ) = rn[n]!

where r = dim(A1).

Theorem 7.2 will be proved in Section 7.3 below.

7.2 From q-Twisted Hopf Algebras to Quantized Dual Graded Graphs

Quantized dual graded graphs are defined and studied in [19]. We now allow our
graded graphs � = (V, E, h, m) to have multiplicities taking values in N[q], where
N = {0, 1, 2, . . .} (for some purposes N[q1/2, q−1/2] could also be considered). Making
definitions analogous to those in Section 3, we say that (�, �′) is a pair of quantized
dual graded graphs with differential coefficient r, if the linear operators U� and D�′

satisfy

D�′U� − q U� D�′ = rId.

For now we allow r to lie in Z[q], though in the end we have no need for such
generality.

We define f v
� ∈ N[q] as before. The following is the quantized analogue of

Theorem 3.1.

Theorem 7.3 (Lam [19]) Let (�, �′) be a pair of quantized dual graded graphs with
dif ferential coef f icient r. Then

rn[n]! =
∑

v : h(v)=n

f v
� f v

�′ .



Combinatorial Hopf Algebras and Towers of Algebras 689

We now generalize Theorem 3.2 to the quantized setting. We first make the
general observation that the graded dual of a graded q-twisted Hopf algebra over
Z[q] is again a graded q-twisted Hopf algebra.

Let H• = ⊕
n≥0 Hn and H• = ⊕

n≥0 Hn be graded dual q-twisted Hopf algebras
over Z[q] with respect to the pairing 〈 . , . 〉 : H• × H• → Z[q]. We assume that we
are given dual sets of homogeneous free Z[q]-module generators {pλ ∈ H•}λ∈� and
{sλ ∈ H•}λ∈�, such that all structure constants lie in N[q]. We also assume that
dim(Hi) = dim(Hi) < ∞ for each i ≥ 0 and dim(H0) = dim(H0) = 1, so that H0 and
H0 are spanned by distinguished elements the unit 1. Let us suppose we are given
non-zero homogeneous elements α ∈ H1 and β ∈ H1 of degree 1 such that αpμ (resp.
βsμ) is a linear combination of {pλ} (resp. {sλ}) with N[q]-coefficients for any μ ∈ �.

We now define graded graphs �(β) and �′(α) exactly as in Section 3. The following
theorem generalizes Theorem 3.2.

Theorem 7.4 The graded graphs � = �(β) and �′ = �′(α) form a pair of quantized
dual graded graphs with dif ferential coef f icient 〈α, β〉.

Proof The proof is identical to that of Theorem 3.2 until the final calculation, which
proceeds

D�′U�(x) = D�′(βx)

=
∑

μ∈�

〈α ⊗ pμ,�(β).q�(x)〉sμ

=
∑

〈α ⊗ pμ, β x(1) ⊗ x(2) + qdeg(x(1))x(1) ⊗ β x(2)〉sμ

=
∑ (

〈α, β x(1)〉 x(2) + qdeg(x(1)) 〈α, x(1)〉β x(2)
)

= 〈α, β〉x +
∑

deg(x(1))=1

q β 〈α, x(1)〉 x(2)

= 〈α, β〉x + qU� D�′(x).

��

7.3 Proof of Theorem 7.2

The proof is analogous to that of Theorem 1.1. By Theorems 7.3 and 7.4, and

assumptions (Q1) and (Q2), it suffices to show that dimq(An) = ∑
i f

s(n)
i

� f
s(n)

i
�′ . By

assumption (Q3),

[An]q = β∗n =
∑

f
s(n)

i
� [S(n)

i ]
in G(A)q. But coproduct in G(A)q is the same as in G(A), so by Lemma 4.1, we have

dimq(An) =
∑

i

f
s(n)

i
� dim(S(n)

i ) =
∑

i

f
s(n)

i
� f

s(n)
i

�′ ,

as required.
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7.4 Filtered nilCoxeter Algebras

Recall the nilCoxeter algebra Nn from Section 5.2. The algebras Nn are filtered by
N(k)

n = ⊕

(w)≥k CTw, where 
(w) denotes the length of the permutation w. In fact,

Nn is a graded algebra, and the graded representation theory was also considered
by Khovanov [17]. (The formulae for our q-twisted Hopf algebra below differs
somewhat from that considered in [17].)

The construction of Section 7.1 produces a q-twisted Hopf algebra G(N)q with
multiplication as follow. Let Sn and Sm be the (unique) simple modules of Nn and
Nm respectively. Then

[
IndNm+n

Nm⊗Nn
Sm ⊗ Sn

]

q
= [n + m]!

[n]![m]! [Sn+m].

We can thus identify G(N)q with Z[q][x/[1], x2/[2]!, x3/[3]!, · · · ], equipped with the
usual multiplicative structure. The coproduct is then defined by

�

(
xc

[c]!
)

=
c∑

r=0

xr

[r]! ⊗ xc−r

[c − r]! .

The q-twisted structure reduces to a well-known identity for q-binomial coefficients.
Let

(m
n

)
q = [m]!/([n]![m − n]!) be the usual q-binomial coefficients, where by con-

vention
(m

n

)
q = 0 if m < n. Then the following identity is standard (and follows easily

from the interpretation of
(m

n

)
q as the rank-generating function of the product of two

chains):

(
m
n

)

q
=

n∑

i=0

q(n−i)(r−i)
(

r
i

)

q

(
m − r
n − i

)

q
(7.1)

for any 1 ≤ r ≤ n. We then calculate

�

(
xa

[a]!
)

.q�

(
xc−a

[c − a]!
)

=
(

a∑

i=0

xi

[i]! ⊗ xa−i

[a − i]!

)

.q

⎛

⎝
c−a∑

j=0

x j

[ j]! ⊗ xc−a− j

[c − a − j]!

⎞

⎠

=
a∑

i=0

c−a∑

j=0

q(a−i) j
(

i + j
i

)

q

(
c − i − j

a − i

)

q

xi+ j

[i + j]! ⊗ xc−i− j

[c − i − j]! .

Now take the coefficient of xr/[r]! ⊗ xc−r/[c − r]! and use Eq. 7.1 with m = c and
n = a to see that this is equal to

(c
a

)
q �(xc/[c]!). Theorem 7.2 reduces to the well-

known combinatorial identity
∑

w∈Sn
q
(w) = [n]!.

The graph �′ is still a chain, as in Section 5.2. The graph � has edge multiplicities
m(i, i + 1) = [i + 1]. The pair (�, �′) is a pair of quantized dual graded graphs with
differential coefficient r = 1.

7.5 Filtered 0-Hecke Algebras

Now consider the tower H(0) of 0-Hecke algebras, which we equip with the
filtrations Hn(0)(k) = ⊕


(w)≥k CTw, where 
(w) denotes the length of the permutation
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w. The representation theory of this filtered tower of algebras was considered by
Thibon and Ung [28], to which we refer for further details.

The construction of Section 7.1 produces a q-twisted Hopf algebra G(H(0))q =
QSymq known as the quantum quasi-symmetric functions. QSymq is spanned
over Z[q] by the fundamental quasi-symmetric functions FI , equipped with the
quantum shuf f le product, which we now describe. Let I = (i1, i2, . . . , ir) and J =
( j1, j2, . . . , js) be compositions of m and n respectively. Let w = w1w2 · · ·wm ∈ Sm

and v = v1v2 · · · vn ∈ Sn be permutations with descent sets Des(w) = Des(I) :=
{i1, i1 + i2, . . . , i1 + i2 + · · · + ir−1} and Des(v) = Des(J). Denote the shuffles of w

and v by Shuf(w, v) ⊂ Sm+n, which we illustrate with an example: if w = 132 and
v = 21, then

Shuf(w, v) = {13254, 13524, 15324, 51324, 13542, 15342, 51342, 15432, 51432, 54132}.
For u ∈ Sn, write C(u) for the composition C of n such that Des(C) = Des(u). Then
in QSymq,

FI ∗ FJ =
∑

u∈Shuf(w,v)

qθ(u) FC(u)

where

θ(u) = #{(i, j) ∈ {1, 2, . . . , m} × {m + 1, . . . , m + n} | i occurs after j in u}.
With this product, and the usual coproduct of quasi-symmetric functions, QSymq
becomes a q-twisted Hopf algebra. At q = 1, the algebra QSymq reduces to QSym.
We caution that while QSym is commutative, the algebra QSymq is noncommutative,
and in fact is isomorphic to NSym as a ring ([28]). Theorem 7.2 reduces, again, to the
well-known combinatorial identity

∑
w∈Sn

q
(w) = [n]!.
The graph �′ is the infinite lifted binary tree as before. The edge multiplic-

ities for � are powers of q, which is illustrated in Fig. 1. The edge joining
(i1, i2, . . . , ir) with (i1, . . . , i j−1, i j + 1, i j+1, . . . , ir) has multiplicity qi1+i2+···+i j−1 ; the
edge joining (i1, i2, . . . , ir) with (i1, . . . , i j−1, k + 1, i j − k, i j+1, . . . , ir) has multiplicity
qi1+···+i j−1+k+1. This gives a pair of quantized dual graded graphs with differential
coefficient r = 1, which is not difficult to verify directly.

8 Further Directions

There are many new avenues that could be explored from the point of view
developed in this paper.

8.1 Generalized Bialgebras, and Hopf Monoids

In this paper, we have three worlds connected by some constructions:

tower of algebras −→ combinatorial Hopf algebra −→ dual graded graph. (8.1)

It is natural to ask if this is possible for other triples of similar objects. In particular,
in [6], Bergeron and Li described how a general tower of algebras gives rise to gen-
eralized bialgebras in the sense of Loday [24]. Fomin’s notion of dual graded graphs
is naturally related to Hopf algebras. It is thus natural to ask what generalization
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of dual graded graph is related to other generalized bialgebras. In particular, what
relation replaces DU − U D = rId?

The theory developed in Section 7 suggests another direction. The construction
there replaces Hopf algebras with Hopf monoids which lie in a different braided
monoidal category. It would be interesting to study if it is possible to construct a
triple for other types of Hopf monoids.

8.2 Category of Combinatorial Hopf Algebras

In [1], Aguiar, Bergeron, and Sottile considered the category of combinatorial Hopf
algebras, consisting of pairs (H, ζ ) where H is a graded connected Hopf algebra and
ζ : H → C is a character (multiplicative homomorphism to the ground field C).

The first arrow of Eq. 8.1 allows us to construct very natural pairs (H, ζ ). More
precisely, let A = ⊕

n≥0 An be a tower of algebras satisfying Theorem 1.1 and
suppose we are given a family {P0

n} of one-dimensional projective modules, satisfying
the following compatibility relation:

ResAn+m
An⊗Am

P0
m+n = P0

n ⊗ P0
m. (8.2)

We can thus define the linear map

ζ 0 : G0(A) → Z

[M] ∈ G0(An) �→ 〈[P0
n], [M]〉.

Using Eq. 8.2, it is clear that ζ 0 is a character (taking values on Z). We thus have that
(G0(A), ζ 0) is a combinatorial Hopf algebra in the sense of [1].

In our key examples, (G0(A), ζ 0) satisfies some universal properties. For instance,
for the tower of 0-Hecke algebras, a natural family of one-dimensional projective
modules exists and in NSym are encoded by the ribbon Schur functions R(n). The
resulting character ζ 0 is precisely what is needed to get the universal property of
QSym as in [1]. For the tower of Sn-group algebras, the one-dimensional projective
modules are encoded by the Schur functions s(n) in Sym. As shown in [1], (Sym, ζ 0)

is universal among cocomutative Hopf algebras.
In both cases, this family of one-dimensional projective modules are “trivial” –

both symmetric group algebras and 0-Hecke algebras have a distinguished basis (see
Section 5) which acts trivially on these modules. It is tempting to say that as soon as a
tower has “trivial” projective modules, then it is a universal object in some category.
This seems to be the case for most of the examples we know, and P. Choquette2

has some results along this line for our quantum example in Section 7. Yet we do
not have such a result for the tower of Hecke algebras at root of unity. It would be
very interesting to find a category for which Sym/J (r) and its character is a universal
object.

Remark 8.1 The towers given in Remark 5.2 also have a natural compatible family of
one-dimensional projective modules. The Hopf algebra of Q-Schur functions (with

2Personal communication with P. Choquette, 2009.
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the associated character) is the universal object in the category of cocommutative
odd combinatorial Hopf algebras. The Hopf algebra of peak quasisymetric functions
is universal in the category of odd combinatorial Hopf algebras.

Remark 8.2 The tower of nilCoxeter algebras does not have one-dimensional projec-
tive modules as described above. Yet, the simple modules S0

n do satisfy Eq. 8.2, giving
rise to a character ζ 0 on K(A) = Z[x], given by ζ 0(xn) = 1. The universal property
satisfied by Z[x] is somehow trivial: for any combinatorial Hopf algebra (H, ζ ), with
ζ taking values in Z, there is a unique algebra morphism ζ̂ : H → Z[x] defined by
ζ̂ (h) = ζ(h)xn for h ∈ Hn, satisfying ζ 0 ◦ ζ̂ = ζ .

8.3 Bi-Tower of Algebras, and Categorification

One can consider Fomin’s work on dual graded graphs [11] as generalizing Stanley’s
notion of differential posets by considering different posets for the up and for
the down operators. In this context it seems natural to allow two distinct tower
structures on a family of algebras in order to define induction and restriction with a
compatibility relation. More precisely, let us say that a bi-tower of algebras (A, ρ, ρ ′)
is a tower A = ⊕

n≥0 An such that ρ : A ⊗ A → A is a tower of algebras satisfying
conditions (1)–(3) of Section 2, and A with ρ ′ : A ⊗ A → A also satisfies (1)–(3).
Now, we use ρ to define the product of G(A) and the coproduct of K(A) but we use
ρ ′ to define the coproduct of G(A) and the product of K(A).

We may now ask whether (K(A), G(A)) form a pair of dual graded Hopf algebras.
It is straightforward to check that Theorem 1.1 also holds for bi-towers of algebras
which give rise to a pair of graded dual Hopf algebras.

Theorem 8.3 Let (A, ρ, ρ ′) be a bi-tower of algebras such that its associated
Grothendieck groups form a pair of graded dual Hopf algebras. Then dim(An) = rnn!
where r = dim(A1).

Example 8.4 We give one interesting example of a bi-tower of algebras. Let An =
Cn! be the commutative semisimple algebra of dimension n!. This implies that the
Grothendieck groups G(A) = K(A) = A. The canonical basis of An is given by {eσ :
σ ∈ Sn}. To define ρ and ρ ′, let Shuf(n, m) = {ζ ∈ Sn+m : ζ(1) < · · · < ζ(n), ζ(n +
1) < · · · < ζ(n + m)}. We also consider the canonical imbedding Sn × Sm ↪→ Sn+m

and denote by σ × π ∈ Sn+m the element corresponding to (σ, π) ∈ Sn × Sm. We
define ρ : A ⊗ A → A by

ρ(eσ ⊗ eπ ) =
∑

ζ∈Shuf(n,m)

e(σ×π)ζ−1 .

We define ρ ′ : A ⊗ A → A by

ρ ′(eσ ⊗ eπ ) =
∑

ζ∈Shuf(n,m)

eζ(σ×π).

With these two maps, the reader can easily verify that G(A) and its dual K(A) will
correspond to the two descriptions of the Malvenuto-Reutenauer Hopf algebras as
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in [2]. The pair of dual graphs corresponding to it is the fundamental pair given in
Section 2.6 of [11].

We now want to see the diagram in Eq. 8.1 as functors between categories.

T −→ H −→ G (8.3)

It is very natural to allow bi-towers of algebras in our constructions. The objects
in the first category are bi-towers of algebras (A, ρ, ρ ′) which give rise to graded
dual Hopf algebras. A morphism F : (A, ρ, ρ ′) → (B, ρ, ρ ′) is given by a family of
algebra homomorphisms Fn : An → Bn such that ρ ◦ (F ⊗ F) = F ◦ ρ and ρ ′ ◦ (F ⊗
F) = F ◦ ρ ′. Moreover we require that for every primitive idempotent g of An+m, we
can find idempotents e’s and f ’s such that

gAn+m
∼=

⊕
eAn ⊗ f Am and F(g)Bn+m

∼=
⊕

F(e)Bn ⊗ F( f )Bm.

As proven by Li in [22], this induces graded dual Hopf algebra morphisms
F∗ : K(A) → K(B) and F∗ : G(B) → G(A).

We now consider the category H with objects (H•, {pλ}, α, β) where H• = ⊕
Hn

is a graded connected Hopf algebra over Z, the set {pλ} is a homogeneous basis of
H• such that all structure constants for product and coproduct are non-negative
and α ∈ H1 is a non-negative Z-linear combination of the basis {pλ}. We denote
by H• the graded dual of H• and by {sλ} the homogeneous basis dual to {pλ}.
The element β ∈ H1 is a non-negative Z-linear combination of the basis {sλ}. A
morphism T : (H•, {pλ}, α, β) → (H•, {pλ}, α, β) in this category corresponds to a
graded Hopf algebra morphism T• : H• → H• such that T•(pλ) is a non-negative
linear combination of the {pλ} and T•(α) = α. By duality this induces a graded
Hopf algebra morphism T• : H

• → H• for which T•(sλ) is a non-negative linear
combination of the {sλ}. We require that T•(β) = β.

From the above construction and Section 2, if F : (A, ρ, ρ ′) → (A, ρ, ρ ′) is a
morphism of bi-towers of algebras, then F∗ : K(A) → K(A) is a graded Hopf algebra
morphism such that F∗(pλ) decomposes into a non-negative linear combination of
projective A-modules, which is a non-negative linear combination of the {pλ}. Using
the α ∈ K(A1) and β ∈ G(A1) as defined in Section 4, we obtain that F∗(α) = α and
F∗(β) = β. Hence the construction (A, ρ, ρ ′) �→ (K(A), {pλ}, α, β) is functorial.

The third category G consists of dual graded graphs (�, �′). A morphism
ϕ : (�, �

′
) → (�, �′) is a Z-linear map ϕ : ZV → ZV on the Z-module of vertices such

that h ◦ ϕ = h where h and h are extended linearly, U� ◦ ϕ = ϕ ◦ U� and D�′ ◦ ϕ =
ϕ ◦ D

�
′ . We also require that ϕ(v) is a non-negative linear combination of V for all

v ∈ V.
Given a morphism T : (H•, {pλ}, α, β) → (H•, {pλ}, α, β) in the category H, we

obtain a morphism of the category G as follows. First we remark that if T•(pλ) =∑
μ cλ,μ pμ, then T• : H

• → H• is a graded Z-linear map such that T•(sμ) = ∑
λ cλ,μsλ

is a non-negative linear combination. From Section 3,

U�(β) ◦ T•(x) = βT•(x) = T•(βx) = T• ◦ U�(β)(x).
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Also

D�(α) ◦ T•(x) =
∑

λ

〈αpλ, T•(x)〉sλ =
∑

λ

〈T•(αpλ), x〉sλ

=
∑

λ

∑

μ

cλ,μ〈α pμ, x〉sλ = T•
(∑

μ

〈α pμ, x〉sμ

)

= T• ◦ D�(α)(x).

Hence the construction (H•, {pλ}, α, β) �→ (�(β), �(α)) is a (contravariant) functor
from H to G. We have thus shown the following theorem.

Theorem 8.5 The two constructions T → H and H → G are functorial.

Remark 8.6 For r = 1, it should be possible to map the minimal idempotents of a
bi-tower (A, ρ, ρ ′) (giving rise to graded dual Hopf algebras) into the bi-tower of
Example 8.4 in such a way that we get a morphism. This would be a good way to see
the fundamental role played by the dual graded graphs given in Section 2.6 of [11]. It
also would explain the importance of the Malvenuto-Reutenauer Hopf algebra. This
is conceptually plausible but in practice likely to be very hard. For example, such a
morphism is not known for the tower of 0-Hecke algebras.
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