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Abstract We introduce a multivariate generalization of normalized Chebyshev poly-
nomials of the second kind. We prove that these polynomials arise in the context of
cluster characters associated to Dynkin quivers of type A and representation-infinite
quivers. This allows to obtain a simple combinatorial description of cluster algebras
of type A. We also provide explicit multiplication formulas for cluster characters
associated to regular modules over the path algebra of any representation-infinite
quiver.
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1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [14] in order to design.
a combinatorial framework for studying positivity in algebraic groups and canonical
bases in quantum groups. Since then, they were subjects to developments in various
areas of mathematics like combinatorics, Lie theory, Teichmüller theory and quiver
representations.

By definition, a (simply-laced, coefficient-free) cluster algebra is a commutative
algebra generated by a set of variables, called cluster variables, consisting of possibly
overlapping sets, all of the same finite cardinality, called clusters. The initial data
for constructing a cluster algebra is a pair (Q, u) where Q = (Q0, Q1) is a quiver
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without loops and 2-cycles and where Q0 denotes the (finite) set of vertices, Q1 the
(finite) set of arrows and u = (ui, i ∈ Q0) is a Q0-tuple of indeterminates over Q. The
corresponding cluster algebra is denoted by A(Q). It is a subring of the ring Z[u±1]
of Laurent polynomials in the ui’s. If Q has no oriented cycles, it is called acyclic and
A(Q) is called an acyclic cluster algebra.

Categorifications of cluster algebras via representation theory of quivers were
initiated in [19]. Since then, it appeared that triangulated 2-Calabi-Yau categories
provide a fruitful way for categorifying a wide class of cluster algebras (see [18] and
references therein). Given such a categorification of a cluster algebra A, one has
a notion of cluster character in the sense of Palu, which allows to realize explicitly
cluster variables in A from objects in the corresponding category [13, 20].

The relevant triangulated 2-Calabi-Yau category for studying an acyclic cluster
algebra A(Q) is the cluster category CQ introduced in [3] (see also [6]). The cor-
responding cluster character, in this case, is the so-called Caldero–Chapoton map
first introduced in [5] for Dynkin quivers and later generalized to the acyclic case
in [7]. The Caldero–Chapoton map is an explicit map X? : Ob (CQ)−→ Z[u±1] from
the set of objects in CQ to the ring of Laurent polynomials in u. Caldero and
Keller proved that if Q is any acyclic quiver, then the cluster variables in A(Q) are
precisely the characters XM where M is an indecomposable rigid (that is, such that
Ext1

CQ
(M, M) = 0) object in CQ [7].

Besides this property, the Caldero–Chapoton map also endows the acyclic cluster
algebra A(Q) with a structure of Hall algebra on the cluster category CQ. Namely, if
M and N are two objects in the cluster category CQ such that Ext1

CQ
(M, N) �= 0, the

product XM XN can be expressed as a Q-linear combination of XY ’s where Y runs
over the isoclasses of middle terms of triangles involving M and N. This property
was first proved for Dynkin quivers in [8]. It was generalized to arbitrary acyclic
quivers when Ext1

CQ
(M, N) is one-dimensional in [7] and finally proved in general in

[26]. Recently, Palu has obtained a similar multiplication formula for arbitrary cluster
characters on Hom-finite 2-Calabi-Yau triangulated categories [21].

The very first illustration of the structure of Hall algebra of the cluster algebra
was given by Caldero and Chapoton in terms of (finitely generated) modules over
the path algebra kQ of Q where Q is an acyclic quiver and k is an algebraically
closed field. The authors observed that if M is a non-projective indecomposable
kQ-module, then XM Xτ M = XB + 1 where B is the middle term of the almost split
sequence ending at M [5, Proposition 3.10]. When the considered module M belongs
to a homogeneous tube in the Auslander–Reiten quiver �(kQ) of kQ-mod, it was
observed by Caldero and Zelevinsky that the above multiplication property for
almost split sequences gives rise to normalized Chebyshev polynomials of the second
kind [9] (see Section 3 for definitions).

In this paper, we prove that if Q is any quiver of infinite representation type or
if Q is of Dynkin type A with a linear orientation, the multiplication property for
almost split sequences gives rise to so-called cluster-mesh relations and to a family
of polynomials called generalized Chebyshev polynomials which are multivariate
generalizations of normalized Chebyshev polynomials of the second kind. These
polynomials are also likely to have an interplay with the theory of orthogonal
polynomials in several variables.

The initial aim of this paper is to give a simplified version of Xiao-Xu’s multi-
plication theorem for two characters XM and XN in the case where M and N are
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indecomposable modules in a same regular component of the Auslander–Reiten
quiver �(kQ) where Q is any acyclic quiver. This is achieved using generalized
Chebyshev polynomials. The statement we provide is less general but more explicit
and elementary than the one given by Xiao and Xu in [26].

Studying these polynomials, it turned out that Generalized Chebyshev polyno-
mials can also be used in order to give a simple presentation of a cluster algebra
of Dynkin type A. Also, using cluster-mesh relations, we introduce the notion of
cluster-mesh algebra of a stable translation quiver. These cluster-mesh algebras are
of particular interest for studying certain subalgebras of an acyclic cluster algebra.

Note that after the submission of this paper, the author has introduced a deformed
version of these generalized Chebyshev polynomials fitting to the context of acyclic
cluster algebras with coefficients [11].

The paper is organized as follows. In Section 2, we recall necessary background
and state our main results. In Section 3, we introduce cluster-mesh relations and gen-
eralized Chebyshev polynomials. In Section 4, we study cluster algebras associated
to Dynkin quivers of type A through the lens of generalized Chebyshev polynomials.
In Section 5, we prove that generalized Chebyshev polynomials arise in the context
of cluster characters associated to regular kQ-modules when Q is acyclic of infinite
representation type. In Section 6, we introduce the notion of cluster-mesh algebra
of a translation quiver and investigate some particular examples. Finally, Section 7
is devoted to the proof of a multiplication formula for indecomposable modules in
a regular component of the Auslander–Reiten quiver �(kQ) of kQ-mod when Q is
any representation-infinite quiver.

2 Background and Main Results

In this section, we briefly recall the necessary background concerning cluster cate-
gories and cluster characters. For a general overview of these notions, we refer, for
instance, to the survey [18] and references therein.

2.1 Cluster Categories and the Caldero–Chapoton Map

Throughout the paper, k denotes an algebraically closed field. Let Q = (Q0, Q1)

be an acyclic quiver. We denote by kQ-mod the category of finitely generated left
kQ-modules over the path algebra kQ of Q, which we will usually identify with the
category rep(Q) of finite dimensional representations of Q over k. For any vertex
i ∈ Q0, we denote by Si the simple module associated to vertex i, by Pi its projective
cover and by Ii its injective hull. We denote by τ the Auslander–Reiten translation
on kQ-mod and by 〈−, −〉 the Euler form on kQ-mod given by

〈M, N〉 = dim HomkQ(M, N) − dim Ext1
kQ(M, N).

Since kQ-mod is hereditary, 〈−, −〉 is well defined on the Grothendieck group
K0(kQ) of kQ-mod. We denote by dim : kQ-mod−→ ZQ0 the dimension vector
given by dim M = (dim HomkQ(Pi, M))i∈Q0 for any kQ-module M. Note that dim
induces an isomorphism of abelian groups K0(kQ) � ZQ0 identifying the class of the
simple module Si with the i-th vector αi of the canonical basis of ZQ0 for any i ∈ Q0.
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Let Db (kQ) denote the bounded derived category of Q equipped with shift
functor [1] and Auslander–Reiten translation τ . The cluster category, as introduced
in [3], is the orbit category CQ = Db (kQ)/F of the auto-equivalence F = τ−1[1]
in Db (kQ). Keller proved that the cluster category is a triangulated category and
that the canonical functor Db (kQ)−→ CQ is triangulated [17]. The set ind(CQ) of
indecomposable objects, up to isomorphism, in CQ can be described:

ind(CQ) = ind(kQ-mod) � {Pi[1]|i ∈ Q0} .

It is proved in [3] that the cluster category is 2-Calabi-Yau, meaning that there is a
bifunctorial duality

Ext1
CQ

(X, Y) � DExt1
CQ

(Y, X)

for any two objects X, Y in CQ where D = Homk(−, k). Moreover, if X and Y are
kQ-modules, then

Ext1
CQ

(X, Y) � Ext1
kQ(X, Y) ⊕ DExt1

kQ(Y, X).

It follows from the above equality that a kQ-module is rigid in kQ-mod if and only
if it is rigid in CQ. An object M is called basic if any two distinct direct summands of
M are non-isomorphic. An object T in CQ is called cluster-tilting if T is rigid, basic
and if Ext1

CQ
(T, X) = 0 implies X ∈ add(T).

The cluster category CQ is known to provide a fruitful categorification of the
acyclic cluster algebra A(Q) with initial seed (Q, u) (see e.g. [3–5, 7]). In [5, 7],
the authors introduced a map X? : Ob (CQ)−→ Z[u±1] from the set of objects in the
cluster category to the ring of Laurent polynomials Z[u±1] containing the cluster
algebra A(Q). This map is a normalized generating series for Euler characteristics
of certain algebraic varieties, called grassmannians of submodules. Given a kQ-
module M and a dimension vector e ∈ NQ0 , the grassmannian of submodules of M of
dimension e (also called quiver grassmannian in the literature) is the set

Gre(M) = {N ⊂ M submodule such that dim N = e} .

It is a projective variety as it is a closed subset of the grassmannian of k-vector
spaces. It is thus possible to consider its Euler characteristics (of the underlying
topological space if k = C is the field of complex numbers or of l-adic cohomology if
k is arbitrary). We denote it by χ(Gre(M)).

Definition 2.1 The Caldero–Chapoton map on CQ is the map X? : Ob (CQ)−→
Z[u±1] defined as follows:

(1) If M is an indecomposable kQ-module, then

XM =
∑

e

χ(Gre(M))
∏

i∈Q0

u−〈e,αi〉−〈αi,dim M−e〉
i ; (2.1)

(2) If M = Pi[1] for some i ∈ Q0, then

XM = ui ;
(3) For any two objects M, N of CQ,

XM⊕N = XM XN.
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Note that X? is constant on isoclasses and equality 2.1 also holds for decomposable
kQ-modules. This map is known to be a particular case of cluster character in the
sense of Palu [20]. For this reason, for any object M in the cluster category, XM will
sometimes be called the cluster character or simply character associated to M.

The main motivation for studying the Caldero–Chapoton map is the following
theorem:

Theorem 2.1 [7] Let Q be an acyclic quiver. Then X? induces a 1–1 correspondence
from the set of indecomposable rigid objects in CQ to the set of cluster variables
in A(Q). Moreover, X? induces a 1–1 correspondence from the set of cluster-tilting
objects in CQ to the set of clusters in A(Q).

In [4], the authors provided a surjective map α from the set of cluster variables in
A(Q) to the set of indecomposable rigid objects in CQ. It is known that X? is a left
inverse to the map α. Thus, when one only considers rigid objects, both approaches
developed respectively in [5, 7, 8] and in [4] are equivalent. Nevertheless, in our
context, we will mainly deal with cluster characters associated to indecomposable
regular modules over the path algebra of a representation-infinite quiver and it is
known that all but finitely many such modules are non-rigid. From this point of view,
the fact that the Caldero–Chapoton map allows to consider non-rigid objects in CQ is
essential. Note that it will appear in Corollary 5.1 that these characters associated to
non-rigid objects may also belong to the cluster algebra.

As we already mentioned, the Caldero–Chapoton map also endows A(Q) with a
structure of Hall algebra on the cluster category. The following theorem, illustrating
this fact, will be of particular interest throughout the paper:

Theorem 2.2 [7] Let Q be an acyclic quiver and M, N be two indecomposable objects
in CQ such that Ext1

CQ
(M, N) � k, then XM XN = XB + XB′ where B and B′ are the

unique (up to isomorphism) objects in CQ such that there exists non-split triangles

M−→ B−→ N−→ M[1] and N−→ B′−→ M−→ N[1].
Actually, in this paper, we will mainly use the following classical module-theoretic

interpretation of the above theorem which first appeared in [16]. We give a proof for
completeness.

Corollary 2.1 Let Q be an acyclic quiver and M, N be two indecomposable kQ-
modules such that Ext1

kQ(M, N) � k and Ext1
kQ(N, M) = 0. Then, XM XN = XE +

XB where E is the unique (up to isomorphism) kQ-module such that there exists a
non-split exact sequence

0−→ N−→ E−→ M−→ 0

in kQ-mod and B = ker f ⊕ coker f [−1] where f is any non-zero morphism in
HomkQ(N, τ M).

Proof Let M and N be two indecomposable modules such that Ext1
kQ(M, N) � k

and Ext1
kQ(N, M) = 0. There exists a unique (up to isomorphism) kQ-module E such

that there is a non-split exact sequence of kQ-modules

0−→ N−→ E−→ M−→ 0.
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This short exact sequence induces a non-split triangle

N−→ E−→ M−→ N[1]
in Db (kQ) which induces a non-split triangle

N−→ E−→ M−→ N[1]
in CQ. According to the Auslander–Reiten formula, there are isomorphisms of k-
vector spaces HomkQ(N, τ M) � Ext1

kQ(M, N) � k. Fix a non-zero morphism f ∈
HomkQ(N, τ M), then there is a non-split triangle

τ M[−1]−→ cone ( f )[−1]−→ N
f−→ τ M

in Db (kQ) where cone ( f ) = ker f [1] ⊕ coker f . Thus, there is a non-split triangle

M−→ ker f ⊕ coker f [−1]−→ N
f−→ τ M

in CQ. Since, Ext1
CQ

(M, N) � Ext1
kQ(M, N) ⊕ DExt1

kQ(N, M) � k, Theorem 2.2 gives
XM XN = XE + XB, which proves the corollary. ��

2.2 Auslander–Reiten Theory of Representation-Infinite Quivers

We fix a representation-infinite acyclic quiver Q. We shall briefly recall classical
results on the Auslander–Reiten theory of kQ. The Auslander–Reiten quiver of kQ-
mod is denoted by �(kQ). It contains infinitely many connected components. There
is one component containing all the indecomposable projective (resp. injective) kQ-
modules which is called the preprojective component (resp. preinjective component).
The remaining components are called regular. An indecomposable module is called
regular if it belongs to a regular component. A decomposable module is called regular
if all its indecomposable direct summands are regular.

The structure of regular components in �(kQ) is well known. For a quiver R =
(R0, R1), we recall that the repetition quiver ZR associated to R is the quiver with
vertex set Z × R0 and whose arrows are given by (n, i)−→ (n, j) and (n, j)−→ (n +
1, i) for any arrow i−→ j in R1. Let A∞ be the quiver with vertex set N and with
arrows i−→ i + 1 for any i ∈ N. Then ZA∞ is a stable translation quiver for the
translation τ given by τ(i, n) = (i − 1, n). Then, for every regular component R in
�(kQ) there exists an integer p ≥ 0 such that R is of the form ZA∞/(τ p) which is
also denoted ZA∞/(p) [1, Section VIII.4].

If p > 0, R is called a tube of rank p. If p = 1, R is called homogeneous and if
p > 1, R is called exceptional. If Q is an affine quiver, then the regular components
form a family of tubes parametrized by P1(k) and at most three of these tubes are
exceptional [24]. Moreover, it is known that if R is a tube in kQ-mod, then R is
standard, that is, the full subcategory generated by indecomposable objects in R is
equivalent to the mesh category of R. If Q is a wild quiver, then regular components
in �(kQ) are all of the form ZA∞ [23].

We now return to the case where Q is any acyclic representation-infinite quiver
and we fix a regular component R in �(kQ) which is of the form ZA∞/(p) for some
p ≥ 0. An indecomposable kQ-module X in R is called quasi-simple if it is not
a direct summand of the middle term of an almost split sequence in kQ-mod.
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We denote by Ri, i ∈ Z the quasi-simple modules in R ordered such that
τ Ri � Ri−1 and Ri+p = Ri for any i ∈ Z. For any indecomposable kQ-module M in
R, there exists a unique sequence of irreducible monomorphisms 0 = R(0)

i −→ Ri =
R(1)

i −→ R(2)

i −→ · · · −→ R(n)

i = M such that R(k)

i /R(k−1)

i is quasi-simple in R for
any k = 1, . . . , n. The quotients R(k)

i /R(k−1)

i for k = 1, . . . , n are called the quasi-
composition factors of M, Ri is called the quasi-socle of M and n is called the quasi-
length of M. Note that if we set Mk = R(k)

i /R(k−1)

i for any k = 1, . . . , n, we have
τ Mk = Mk−1 for any k = 2, . . . , n.

2.3 Main Results

We introduce the family of generalized Chebyshev polynomials {Pn}n≥0 given by
P0 = 1, P1(x) = x and for any n ≥ 1, Pn is the polynomial in n variables given by

Pn+1(x1, . . . , xn+1) = xn+1 Pn(x1, . . . , xn) − Pn−1(x1, . . . , xn−1).

We prove in Lemma 3.2 that these polynomials are characterized by the cluster mesh
relations:

Pn+1(x1, . . . , xn+1) = Pn(x1, . . . , xn)Pn(x2, . . . , xn+1) − 1
Pn−1(x2, . . . , xn)

for any n ≥ 1.
These generalized Chebyshev polynomials provide a simple presentation of a

cluster algebra of Dynkin type A in the sense of [15]:

Corollary 4.2 Let r ≥ 0 and A be a cluster algebra of Dynkin type Ar. Then there is
an isomorphism of Z-algebras

A � Z[t0, . . . , tr]/(Pr+1(t0, . . . , tr) − 1)

where t0, . . . , tr are indeterminates over Z.

We also prove that for any representation-infinite acyclic quiver Q and any
indecomposable regular kQ-module M, the character XM can be expressed as a gen-
eralized Chebyshev polynomials in the characters associated to its quasi-composition
factors. Namely, we prove:

Theorem 5.1 Let Q be a quiver of inf inite representation type. Let R be a regular
component of the form ZA∞/(p) for some p ≥ 0 in �(kQ). Let {Ri|i ∈ Z/pZ} denote
the set of quasi-simple modules in R ordered such that τ Ri � Ri−1 for any i ∈ Z/pZ.
Then, for any n ≥ 1 and any i ∈ Z/pZ, we have

XR(n)
i

= Pn(XRi , . . . , XRi+n−1).

As a corollary, we can prove that a certain family of cluster characters associated
to non-rigid indecomposable objects does belong to the cluster algebra A(Q):

Corollary 5.1 Let Q be an acyclic quiver and M be an indecomposable regular
kQ-module with rigid quasi-composition factors. Then, XM ∈ A(Q).
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Combinatorics of generalized Chebyshev polynomials together with Theorem 5.1
allow to prove multiplication formulas for cluster characters associated to regular
kQ-modules. Namely, for affine quivers, we prove:

Theorem 7.2 Let Q be an af f ine quiver and T be a tube of rank p in �(kQ). Let
Ri, i ∈ Z denote the quasi-simple modules in T ordered such that τ Ri � Ri−1 and
Ri+p � Ri for any i ∈ Z. Let m, n > 0 be integers and j ∈ [0, p − 1]. Then, for every
k ∈ Z such that 0 < j + kp < n and m > n − j − kp, we have the following identity:

XR(m)
j

XR(n)
0

= XR(m+ j+kp)

0
XR(n− j−kp)

j
+ XR( j+kp−1)

0
XR(m+ j+kp−n−1)

n+1
.

and prove in Corollary 7.1 that this can be interpreted as a Hall product.
We also obtain a similar description for wild quivers:

Theorem 8.3 Let Q be a wild quiver and R be a regular component in �(kQ). Let
Ri, i ∈ Z denote the quasi-simple modules in T ordered such that τ Ri � Ri−1 for any
i ∈ Z. Let m, n > 0 be integers and j ≥ 0 such that 0 < j < n and m > n − j. Then, we
have the following identity:

XR(m)
j

XR(n)
0

= XR(m+ j)
0

XR(n− j)
j

+ XR( j−1)

0
XR(m+ j−n−1)

n+1
.

3 Cluster–Mesh Relations and Generalized Chebyshev Polynomials

3.1 Generalized Chebyshev Polynomials of Infinite Rank

Throughout the paper, {ti|i ∈ Z} denotes a family of indeterminates over Z. We also
fix {xi|i ∈ Z} a family of indeterminates over Z. We define a family

{
xi,n|i ∈ Z, n ≥ 1

}

of elements in Q(xi|i ∈ Z) by setting, for any n ≥ 1,

xi,nxi+1,n = xi,n+1xi+1,n−1 + 1 (3.1)

where xi,0 = 1 and xi,1 = xi for any i ∈ Z.
We label vertices in ZA∞ with

{
xi,n|i ∈ Z, n ≥ 1

}
by identifying (i, n) with xi,n for

any i ∈ Z and n ≥ 1. Equality 3.1 is called a cluster mesh relation. Figure 1 enlightens
the chosen terminology.

Lemma 3.1 For any n ≥ 1, there exists a rational function Pn ∈ Q(t1, . . . , tn) such that

xi,n = Pn(xi, . . . , xi+n−1)

for any i ∈ Z.

Proof We prove it by induction on n. By convention, we set P0 = 1. If n = 1, the
result clearly holds and P1(t) = t. Since for any n ≥ 1 and for any i ∈ Z, we have

xi,n+1 = xi,nxi+1,n − 1
xi+1,n−1

= Pn(xi, . . . , xi+n−1)Pn(xi+1, . . . , xi+n) − 1
Pn−1(xi+1, . . . , xi+n−1)

.
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Fig. 1 Cluster–mesh relations

Thus, xi,n+1 = Pn+1(xi, . . . , xi+n) where

Pn+1(t0, . . . , tn) = Pn(t0, . . . , tn−1)Pn(t1, . . . , tn) − 1
Pn−1(t1, . . . , tn−1)

.

This proves the lemma. ��
We now prove that the rational functions Pn satisfy a relation analogous to

three terms recurrence relations in the theory of orthogonal polynomials in several
variables (see e.g. [12]).

Lemma 3.2 For any n ≥ 2, we have

Pn(t0, . . . , tn−1) = tn−1 Pn−1(t0, . . . , tn−2) − Pn−2(t0, . . . , tn−3).

Proof We prove it by induction on n. For n = 2, we compute directly

P2(t0, t1) = t0t1 − 1 = t1 P1(t0) − P0.

According to the proof of Lemma 3.1, we know that

Pn+1(t0, . . . , tn) = Pn(t0, . . . , tn−1)Pn(t1, . . . , tn) − 1
Pn−1(t1, . . . , tn−1)

.

By induction, Pn(t1, . . . , tn) = tn Pn−1(t1, . . . , tn−1) − Pn−2(t1, . . . , tn−2) so that we get

Pn+1(t0, . . . , tn) = tn Pn(t0, . . . , tn−1) − Pn(t0, . . . , tn−1)Pn−2(t1, . . . , tn−2) + 1
Pn−1(t1, . . . , tn−1)

.

Since

Pn(t0, . . . , tn−1)Pn−2(t1, . . . , tn−2) + 1 = Pn−1(t0, . . . , tn−2)Pn−1(t1, . . . , tn−1),

we get

Pn+1(t0, . . . , tn) = tn Pn(t0, . . . , tn−1) − Pn−1(t0, . . . , tn−2)

which proves the lemma. ��
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As a corollary, we obtain the polynomiality of Pn for any n ≥ 1, moreover we can
provide an explicit formula for these polynomials using determinental expressions.

Corollary 3.1 For any n ≥ 1, Pn(t0, . . . , tn−1) is the polynomial with integral
coef f icients given by

Pn(t0, . . . , tn−1) = det

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

tn−1 1 (0)

1
. . .

. . .

. . .
. . .

. . .

. . .
. . . 1

(0) 1 t0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof The identity is obtained by induction, noticing that the expansion of the
determinent with respect to the first column is precisely the relation given in Lemma
3.2. Polynomiality follows obviously from this identity. ��

Definition 3.1 For any n ≥ 1, Pn is called the n-th generalized Chebyshev polynomial
of inf inite rank of simply n-th generalized Chebyshev polynomial.

Example 3.1 The first five generalized Chebyshev polynomials of infinite rank are

P1(t0) t0
P2(t0, t1) t0t1 − 1

P3(t0, t1, t2) t0t1t2 − t0 − t2
P4(t0, t1, t2, t3) t0t1t2t3 − t0t1 − t2t3 − t0t3 + 1

P5(t0, t1, t2, t3, t4) t0t1t2t3t4 − t0t1t2 − t0t1t4 − t2t3t4 + t2 − t0t3t4 + t0 + t4

3.2 Generalized Chebyshev Polynomials of Finite Ranks

For any p ≥ 1, the abelian group pZ acts by homomorphisms of Z-algebras on
Z[xi|i ∈ Z] by

kp.xi = xi+kp

for any i, k ∈ Z. We denote by

πp : Z[xi|i ∈ Z]−→ Z[xi|i ∈ Z]/pZ

the canonical map.
Then, there exists a unique polynomial Pn,p ∈ Z[t0, . . . , tp−1] such that

πp(xi,n) = Pn,p(πp(xi), . . . , πp(xi+n−1))

for any i ∈ Z, n ≥ 1.

Definition 3.2 For any n ≥ 1 and p ≥ 1, Pn,p is called the n-th generalized Chebyshev
polynomial of rank p.

We recall that for any n ≥ 1, the n-th normalized Chebyshev polynomial of
the second kind is the polynomial Sn(x) ∈ Z[x] characterized by S0 = 1, S1(x) = x
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and Sn+1(x) = xSn(x) − Sn−1(x) for any n ≥ 1. The following straightforward lemma
justifies the terminology of generalized Chebyshev polynomials:

Lemma 3.3 For any n ≥ 0, the n-th generalized Chebyshev polynomial of rank 1 is the
n-th normalized Chebyshev polynomial of the second kind.

Example 3.2 The first five generalized Chebyshev polynomials of rank one are

P1,1(t0) t0
P2,1(t0) t2

0 − 1
P3,1(t0) t3

0 − 2t0
P4,1(t0) t4

0 − 3t2
0 + 1

P5,1(t0) t5
0 − 4t3

0 + 3t0

The first five generalized Chebyshev polynomials of rank two are

P1,2(t0, t1) t0
P2,2(t0, t1) t0t1 − 1
P3,2(t0, t1) t2

0t1 − 2t0
P4,2(t0, t1) t2

0t2
1 − 3t0t1 + 1

P5,2(t0, t1) t3
0t2

1 − 4t2
0t1 + 3t0

The first five generalized Chebyshev polynomials of rank three are

P1,3(t0, t1, t2) t0
P2,3(t0, t1, t2) t0t1 − 1
P3,3(t0, t1, t2) t0t1t2 − t0 − t2
P4,3(t0, t1, t2) t2t2

0t1 − t0t1 − t2t0 − t2
0 + 1

P5,3(t0, t1, t2) t2
0t2

1t2 − t2
0t1 − t0t2

1 − 2t0t1t2 + t0 + t1 + t2

The first five generalized Chebyshev polynomials of rank four are

P1,4(t0, t1, t2, t3) t0
P2,4(t0, t1, t2, t3) t0t1 − 1
P3,4(t0, t1, t2, t3) t0t1t2 − t0 − t2
P4,4(t0, t1, t2, t3) t0t1t2t3 − t0t1 − t2t3 − t0t3 + 1
P5,4(t0, t1, t2, t3) t2

0t1t2t3 − t0t1t2 − t2
0t1 − t0t2t3 + t2 − t2

0t3 + 2t0

The first five generalized Chebyshev polynomials of rank n for n ≥ 5 and the first
five generalized Chebyshev polynomials of infinite rank coincide.

4 Generalized Chebyshev Polynomials and Cluster Algebras of Dynkin Type A

We now prove that generalized Chebyshev polynomials arise in the context of cluster
algebras associated to equioriented quivers of Dynkin type A. For any r ≥ 0, we
denote by Qr the quiver of Dynkin type Ar equipped with the following orientation

Qr : 0 1�� 2�� · · ·�� r − 1.��
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For any i ∈ [0, r − 1], we denote by Si the simple kQr-module associated to the vertex
i and for any n ∈ [1, r − i − 1] we denote by S(n)

i the unique indecomposable module
with socle Si and length n. By convention, S(0)

i denotes the zero module.
We denote by X? the Caldero–Chapoton map associated to the quiver Qr.

Proposition 4.1 Let r ≥ 1, then for any i ∈ [0, r − 1] and any n ∈ [1, r − i], we have

XS(n)
i

= Pn(XSi , . . . , XSi+n−1).

Proof We prove it by induction on n. If n = 1, the result clearly holds. Let n > 1 and
fix some indecomposable kQr-module S(n)

i . Then i is not equal to r − 1 since there
are no indecomposable modules of length ≥ 2 and socle Sr−1. Thus, there is an almost
split sequence of kQr-modules

0−→ S(n−1)

i −→ S(n)

i ⊕ S(n−2)

i+1 −→ S(n)

i+1−→ 0.

It follows from [5, Proposition 3.10] that

XS(n−1)
i

XS(n−1)
i+1

= XS(n)
i

XS(n−2)
i+1

+ 1.

By induction, we get

XS(n)
i

=
XS(n−1)

i
XS(n−1)

i+1
− 1

XS(n−2)
i+1

= Pn−1(XSi , . . . , XSi+n−2)Pn−1(XSi+1 , . . . , XSi+n−1) − 1
Pn−2(XSi+1 , . . . , XSi+n−2)

= Pn(XSi , . . . , XSi+n−1)

which proves the proposition. ��

Corollary 4.1 Let r ≥ 1. For every i ∈ [0, r − 1], set u′
i = ui−1+ui+1

ui
with u−1 = ur = 1.

Then, there are isomorphisms of Z-algebras:

(1) A(Qr) � Z[ui, u′
i|i ∈ [0, r − 1]];

(2) A(Qr) � Z[u0, u′
i|i ∈ [0, r − 1]].

Proof According to [5], cluster variables in A(Qr) are either initial cluster variables
or XM where M is an indecomposable kQr-module. Since every indecomposable
kQr-module is of the form S(n)

i , it follows from Proposition 4.1 that A(Qr) is
generated as a Z-algebra by the initial cluster variables u0, . . . , ur−1 and the XSi for
i ∈ [0, r − 1]. Now a direct computation shows that XSi = u′

i for every i ∈ [0, r − 1].
This proves the first assertion.

In order to prove the second assertion, we notice that for every i ∈ [0, r − 2],
ui+1 = uiu′

i − ui−1 so that ui+1 ∈ Z[u j, u′
j|0 ≤ j < i]. By induction, any of the ui for

i ≥ 1 belongs to Z[u0, u′
i|i ∈ [0, r − 1]]. This proves the second assertion. ��

Remark 4.1 The first point of Corollary 4.1 is a particular case of a result obtained
independently (in a wider context) in [2]. Indeed, for every i ∈ [0, r − 1], the Laurent
polynomial u′

i is a cluster variable such that u \ {ui} � {
u′

i

}
is the cluster obtained from
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the initial seed by mutating along the direction i. It thus follows from [2, Corollary
1.21] that u0, . . . , ur, u′

0, . . . , u′
r generate the cluster algebra A(Qr).

We now prove the algebraic independence of characters associated to simple
kQr-modules. Results in this direction are usually obtained using gradings on the
cluster algebra (see e.g. [8]) but in this case, we can provide a very elementary proof
using generalized Chebyshev polynomials.

Lemma 4.1 Let r ≥ 1 and S0, . . . , Sr be the simple kQr-modules. Then, the set{
XS0 , . . . , XSr−1

}
is algebraically independent over Z.

Proof We compute

Pr+1(XS0 , . . . , XSr−1 , ur−1) = ur−1 Pr(XS0 , . . . , XSr−1) − Pr−1(XS0 , . . . , XSr−2)

= XPr−1[1] XPr−1 − XPr−2

There are k-linear isomorphisms Ext1
CQr

(Pr−1[1], Pr−1) � Ext1
CQr

(Pr−1, Pr−1[1]) � k
and the corresponding triangles are

Pr−1−→ 0−→ Pr−1[1]−→ Pr−1[1],

Pr−1[1]−→ Pr−2−→ Pr−1−→ Pr−1[2] � Sr−1.

Applying Caldero-Keller’s one-dimensional multiplication theorem [7] gives

XPr−1[1] XPr−1 = XPr−2 + 1.

And thus,

Pr+1(XS0 , . . . , XSr−1 , ur−1) = 1. (4.1)

We get

ur−1 = Pr−1(XS0 , . . . , XSr−2) + 1
Pr(XS0 , . . . , XSr−1)

∈ Q(XS0 , . . . , XSr−1).

From the second point of Corollary 4.1, we thus know that each ui belongs to
Q(XS0 , . . . , XSr−1) when i runs over [0, r − 1]. It follows that

{
XS0 , . . . , XSr−1

}
is a

transcendence basis for Q(u0, . . . , ur−1). ��

We can now give a presentation of the cluster algebra A(Qr) by generators and
relations.

Corollary 4.2 Let r ≥ 1 be an integer and A be a cluster algebra of Dynkin type Ar.
Then, there is an isomorphism of Z-algebras

A � Z[t0, . . . , tr]/(Pr+1(t0, . . . , tr) − 1)

where t0, . . . , tr are indeterminates over Z.
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Proof Since A is of Dynkin type Ar, there is an isomorphism of Z-algebras A �
A(Qr). Let A′ = Z[t0, . . . , tr]/(Pr+1(t0, . . . , tr) − 1). According to Eq. 4.1, there is a
surjection A′−→A(Qr) sending tr �→ ur−1 and ti �→ XSi for every i ∈ [0, r − 1].

Now, consider the elements y0, . . . , yr in A′ given by y0 = t0 and

yi+1 = yiti − yi−1

for i ≥ 0 with y−1 = yr = 1. In particular, for every i ∈ [0, r − 1], we have

xi = yi−1 + yi+1

yi
.

Thus,

A(Qr) = Z[ui, XSi |i ∈ [0, r − 1]]/(ui XSi = ui−1 + uui+1)

with u−1 = ur = 1 and there is an inverse map A(Qr)−→A′ sending ui �→ yi and
XSi �→ xi. ��

5 Generalized Chebyshev Polynomials and Cluster Characters for Regular Modules

In this section, we prove that generalized Chebyshev polynomials arise in the context
of characters associated to regular modules over the path algebra of a representation-
infinite quiver.

Theorem 5.1 Let Q be a quiver of inf inite representation type. Let R be a regular
component of the form ZA∞/(p) for some p ≥ 0 in �(kQ). Let {Ri|i ∈ Z/pZ} denote
the set of quasi-simple modules in R ordered such that τ Ri � Ri−1 for any i ∈ Z/pZ.
Then, for any n ≥ 1 and any i ∈ Z/pZ, we have

XR(n)
i

= Pn(XRi , . . . , XRi+n−1).

Moreover, if p > 0, then

XR(n)
i

= Pn,p(XRi , . . . , XRi+p−1).

Proof For every i ∈ Z/pZ and any n ≥ 1, there is an almost split sequence

0−→ R(n)

i −→ R(n+1)

i ⊕ R(n−1)

i+1 −→ R(n)

i+1−→ 0.

Thus, the corresponding characters satisfy the cluster mesh relation

XR(n)
i

XR(n)
i+1

= XR(n+1)
i

XR(n−1)
i+1

+ 1.

Now consider the epimorphism of Z-algebras ρ : Z[xi|i ∈ Z]−→ Z[XRi |i ∈ Z/pZ]
sending xi to XRi where the index of Ri is taken in Z/pZ. It thus follows directly
from the cluster mesh relation that

XR(n)
i

= ρ(xi,n) = ρ(Pn(xi, . . . , xi+n−1)) = Pn(XRi , . . . , XRi+n−1)
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which proves the first assertion. If p > 0, it thus follows that

Pn(XRi , . . . , XRi+n−1) = Pn,p(XRi , . . . , XRi+p−1)

and the second assertion is proved. ��

As a corollary, we get:

Corollary 5.1 Let Q be an acyclic quiver and M be an indecomposable regular
kQ-module with rigid quasi-composition factors. Then, XM ∈ A(Q).

Proof Let n be the quasi-length of M and R be the quasi-socle of M. Then, the quasi-
composition factors of M are R, τ−1 R, . . . , τ−(n−1) R. Theorem 5.1 implies that

XM = Pn(XR, Xτ−1 R, . . . , Xτ−(n−1) R).

Since τ−i R is rigid for every i = 1, . . . , n − 1, Theorem 2.1 implies that each Xτ−i R

is a cluster variable in A(Q). Thus, XM is a polynomial in cluster variables and thus
belongs to A(Q). ��

Example 5.1 Fix Q an affine quiver and M an indecomposable regular kQ-module
in an exceptional tube T of �(kQ). It is well known that quasi-simple modules in T
are rigid (see e.g. [24]). In particular the quasi-composition factors of M are rigid and
thus, by Corollary 5.1, XM ∈ A(Q).

Example 5.2 Let Q be a wild quiver and M be a regular kQ-module such that
EndkQ(M) � k. Assume moreover that M has quasi-length at least 2. Then, it is
known the quasi-composition factors of M are rigid (see e.g. [25, Chapter XVIII])
and thus, by Corollary 5.1, XM ∈ A(Q).

6 The Cluster Mesh Algebra of a Stable Translation Quiver

We now introduce the notion of cluster mesh algebra of a stable translation quiver.
For general results concerning stable translation quiver, we refer to [22].

Definition 6.1 The cluster mesh algebra associated to a stable translation quiver (�, τ )

is

A(�, τ ) = Z[yi|i ∈ �0]/
⎛

⎝yi yτ(i) = 1 +
∏

i−→ j

y j|i ∈ �0

⎞

⎠

where {yi|i ∈ �0} is a family of indeterminates over Z.

Example 6.1 The quiver ZA∞ is a stable translation quiver for the translation
τ((i, n)) = (i − 1, n) for every i ∈ Z, n ≥ 1. Since xi,n = Pn(xi, . . . , xi+n−1) for every
i ∈ Z, n ≥ 1, it is straightforward to see that the cluster mesh algebra of the quiver
(ZA∞, τ ) is

A(ZA∞, τ ) = Z[xi|i ∈ Z].
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Example 6.2 Let r ≥ 1, we consider the Möbius band
Mr+1 = ZA∞/({(i, n) − (i + n − 1, r − n + 1)|i ∈ Z, n ≥ 1}) with the translation
τ induced by the translation on ZA∞. Then, we have

A(Mr+1, τ ) = Z[t0, . . . , tr]/(Pr+1(t0, . . . , tr) − 1).

In particular, it follows from Corollary 4.2 that there is a an isomorphism of
Z-algebras

A(Qr) � A(Mr+1, τ ).

Example 6.3 Let Tp = ZA∞/(p) be a tube of rank p for some p ≥ 1. This is a stable
translation quiver for the translation τ induced by the translation of ZA∞. Since
xi,n = Pn(xi, . . . , xi+n−1) for every i ∈ Z/pZ, n ≥ 1, it is straightforward to see that
the cluster mesh algebra of the tube Tp of rank p is

A(Tp, τ ) = Z[xi|i ∈ Z/pZ].

We now prove that if T is a tube of rank p ≥ 1 in the Auslander–Reiten quiver
�(kQ) of an affine quiver and if R0, . . . , Rp−1 are the quasi-simple modules of T ,
then the cluster-mesh algebra A(Tp) is isomorphic to the Z-algebra generated by
XR0 , . . . , XRp−1 . We will first need some technical results.

The following result is classical, we give the proof for completeness.

Lemma 6.1 Let Q be an af f ine quiver, T be a tube of rank p ≥ 1 in �(kQ) and
R0, . . . , Rp−1 be the quasi-simple modules in T . Then

{
dim R0, . . . , dim Rp−1

}
is

linearly independent over Z.

Proof We assume that the quasi-simple are ordered in such a way that τ Ri = Ri−1

for all i ∈ Z/pZ. Then, for any i ∈ Z/pZ, we have

dim Ext1
kQ(Ri, R j) =

{
1 if j = i − 1 ;
0 otherwise.

and

dim HomkQ(Ri, R j) =
{

1 if j = i ;
0 otherwise.

Fix a zero linear combination
∑p−1

j=0 λ jdim R j = 0 with λ0, . . . , λp−1 ∈ Z. For every
i ∈ [0, p − 1], the linear form 〈−, dim Ri〉 applied to this equality gives

λi − λi−1 = 0.

Thus λi = λ j for all i �= j and we denote by λ this common value. Then

0 =
p−1∑

j=0

λ jdim R j = λ

p−1∑

j=0

dim R j

and λ = 0. ��
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Lemma 6.2 Let Q be an af f ine quiver, T be a tube of rank p ≥ 1 in �(kQ) and
R0, . . . , Rp−1 be the quasi-simple modules in T . Then

{
XRi |i ∈ Z/pZ

}
is algebraically

independent over Z.

Proof Let P(t1, . . . , tp) = ∑
ν∈Np aν tν1

1 · · · t
νp
p ∈ Z[t1, . . . , tp] be a polynomial such that

0 = P(XR0 , . . . , XRp−1)

=
∑

ν∈Np

aν X⊕p
i=0 R

νi
i
.

But for every ν ∈ Np, dim
⊕p

i=0 Rνi
i = ∑p

i=0 νidim Ri. Thus, Lemma 6.1 implies
that dim

⊕p
i=0 Rνi

i �= dim
⊕p

i=0 Rμi
i is ν �= μ ∈ Np. In particular, it follows from [10,

Proposition 4.18] that the X⊕p
i=0 R

νi
i

are linearly independent over Z and thus, aν = 0
for every ν ∈ Np and P = 0. This proves the lemma. ��

Thus, we proved:

Proposition 6.1 Let Q be an af f ine quiver and T be a tube of rank p with quasi simple
modules R0, . . . , Rp−1. Then, there is an isomorphism of Z-algebras

Z[XRi |i = 0, . . . , p − 1] � A(T , τ ).

Proof Let A′ = Z[XRi |i = 0, . . . , p − 1]. According to Lemma 6.2, there is an iso-
morphism of Z-algebras φ : A(T , τ )−→A′ sending xi to XRi . Moreover, it follows
from Theorem 5.1 that φ(xi,n) = XR(n)

i
for every i ∈ Z/pZ, n ≥ 1. ��

Remark 6.1 If Q is a wild quiver and R � ZA∞ is a regular component in �(kQ)

whose quasi-simple modules are denoted by Ri, with i ∈ Z, it follows from Theorem
5.1 that there is an epimorphism of Z-algebras φ : A(ZA∞, τ )−→ Z[Ri|i ∈ Z] sending
xi to XRi . For any i �= j ∈ Z, it is known that dim Ri �= dim R j (see e.g. [27]). In
particular, Caldero-Keller’s denominator theorem implies that the denominator
vectors of XRi and XR j are distinct (see [7]). Thus, the family

{
XRi |i ∈ Z

}
is infinite

in a field F = Q(ui|i ∈ Q0) which has a finite transcendence basis over Q. Thus, the
XRi , i ∈ Z are not algebraically independent over Z and φ is not an isomorphism of
Z-algebras.

7 Multiplication in Regular Components

We now prove multiplication theorems for cluster characters associated to indecom-
posable modules in regular components.

7.1 The Affine Case

In this subsection, we assume that Q is a quiver of affine type. Let T be a tube of
rank p in �(kQ). As usual, we denote by Ri, with i ∈ Z the quasi-simple modules
in T ordered such that τ Ri � Ri−1 and Ri+p � Ri for every i ∈ Z. Let M, N be
indecomposable regular modules contained in T . Up to reordering, we can assume
that M = R(n)

0 and N = R(m)

j for some integers m, n > 0 and some j ∈ [0, p − 1].
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Theorem 7.1 Let Q be an af f ine quiver and T be a tube of rank p in �(kQ). Let
m, n > 0 be integers and j ∈ [0, p − 1]. Then, for every k ∈ Z such that 0 < j + kp < n
and m > n − j − kp, we have the following identity:

XR(m)
j

XR(n)
0

= XR(m+ j+kp)

0
XR(n− j−kp)

j
+ XR( j+kp−1)

0
XR(m+ j+kp−n−1)

n+1
.

Proof Let k be in Z such that 0 < j + kp ≤ n and m ≥ n − j − kp and set i = j + kp.
Let Qi+m be the quiver of Dynkin type A equipped with the following orientation

0 1�� · · ·�� i + m − 1.��

For any r ∈ [0, i + m − 1], we denote by Sr (resp. Pr, Ir) the associated simple
(resp. projective, injective) kQi+m-module. Let X ′

? be the Caldero–Chapoton map
on CQi+m . Consider the epimorphism of Z-algebras:

φ :
{

Z[X ′
Sr

|r ∈ [0, i + m − 1]] −→ Z[XRr |r ∈ [0, p − 1]]
X ′

Sr
�→ XRr .

Now if S(n)
r is any indecomposable regular kQi+m-module, it follows from Propo-

sition 4.1 that X ′
S(n)

r
= Pn(X ′

Sr
, . . . , X ′

Sr+n−1
). As Theorem 5.1 implies that XR(n)

r
=

Pn(XRr , . . . , XRr+n−1), it follows that then φ(X ′
S(n)

r
) = XR(n)

r
for any indecomposable

kQm+i-module S(n)
r .

Since 0 < i < n and m > n − i, we have Ext1
kQi+m

(S(m)

i , S(n)
0 ) � HomkQi+m(S(n)

0 ,

τ S(m)

i ) � k and there is a non-split exact sequence of kQi+m-modules given by

0−→ S(n)
0 −→ S(i+m)

0 ⊕ S(n−i)
i −→ S(m)

i −→ 0.

Thus, applying Caldero-Keller’s multiplication formula, we get

X ′
S(m)

i
X ′

S(n)
0

= X ′
S(i+m)

0
X ′

S(n−i)
i

+ X ′
B

where B = ker f ⊕ τ−1coker f for any 0 �= f ∈ HomkQi+m(S(n)
0 , τ S(m)

i ). Now, for
every r ∈ [0, m + i − 1], we have Pr � S(r+1)

0 and Ir � S(m+i−r)
r so that HomkQm+n(S(n)

0 ,

τ S(m)

i ) � HomkQm+n(Pn−1, τ Ii). Fix now some f �= 0 in HomkQm+n(Pn−1, τ Ii). A direct
computation proves that ker f � Pi−2 � S(i−1)

0 and coker f � τ In+1. Thus,

B � S(i−1)
0 ⊕ S(m+i−n−1)

n+1

and

X ′
S(m)

i
X ′

S(n)
0

= X ′
S(i+m)

0
X ′

S(n−i)
i

+ X ′
S(i−1)

0
X ′

S(m+i−n−1)
n+1

.

Applying φ we get

XR(m)
i

XR(n)
0

= XR(m+i)
0

XR(n−i)
j

+ XR(i−1)
0

XR(m+i−n−1)
n+1

which proves the theorem. ��
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We now prove that the multiplication provided by Theorem 7.1 can be interpreted
as a Hall product in the cluster category CQ.

Corollary 7.1 Let Q be an af f ine quiver, T be a tube in �(kQ) and M, N be
indecomposable regular modules in T such that Ext1

kQ(N, M) �= 0. Then, there exists
two regular kQ-modules B, E in T such that

XM XN = XE + XB

and such that there exist non-split triangles

M−→ E−→ N−→ M[1] and N−→ B−→ M−→ N[1]
in CQ.

Proof Let Ri, i ∈ Z denote the quasi-simple modules in T ordered such that τ Ri �
Ri−1 and Ri+p � Ri for every i ∈ Z. Up to reordering, we can assume that M = R(n)

0

and N = R(m)

j for some integers m, n > 0 and some j ∈ [0, p − 1].
It is known that Ext1

kQ(N, M) �= 0 if and only if there exists k ∈ Z such that

{
0 < j + kp < n ;
m > n − j − kp.

Fix any k ∈ Z such that 0 < j + kp < n and m > n − j − kp and set i = j + kp.
Since T is of rank p, it follows that Ri � R j.

We know that Ext1
kQ(R(m)

i , R(n)
0 ) � Ext1

kQ(R(n)
0 , τ R(m)

i ) �= 0. More precisely, there
is a non-split short exact sequence

0−→ M � R(n)
0 −→ R(i+m)

0 ⊕ R(n−i)
i −→ R(m)

i � N−→ 0.

in kQ-mod inducing a non-split triangle

M−→ R(i+m)
0 ⊕ R(n−i)

j −→ N−→ M[1]
in CQ.

Also, there is a non-zero morphism f : R(n)
0 −→ τ R(m)

j in kQ-mod such that ker f �
R(i−1)

0 and coker f � R(m+i−n−1)
n so that there is a non-split triangle

τ N[−1]−→ ker f ⊕ coker f [−1]−→ M
f−→ τ N

in Db (kQ) inducing a non-split triangle

N−→ R(i−1)
0 ⊕ R(m+i−n−1)

n+1 −→ M
f−→ N[1]

in CQ.
The corollary thus follows from Theorem 7.1. ��

Example 7.1 Let Q be an affine quiver such that the Auslander–Reiten quiver
�(kQ) of kQ-mod contains a tube T of rank 4. We denote by Ri, i ∈ Z the quasi-
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simple modules in T such that Ri+4 � Ri and τ Ri � Ri−1 for any i ∈ Z. We want to
compute the product XR0 XR(3)

1
where X? denotes the Caldero–Chapoton map on CQ.

Consider the quiver

Q8 : 0 1�� · · ·�� 7��

and denote by X ′
? the Caldero–Chapoton map on CQ8 . Caldero-Keller multiplication

theorem for X ′
? implies

X ′
S0

X ′
S(3)

1
= X ′

S(4)
0

+ X ′
S(2)

2
.

and

X ′
S4

X ′
S(3)

1
= X ′

S(4)
1

+ X ′
S(2)

1
.

Consider the epimorphism φ : Z[X ′
Si
|i = 0, . . . , 7]−→ Z[XRi |i = 0, . . . , 3] sending

XRi(mod 3) to XRi . Applying φ to these equalities, we obtain

XR0 XR(3)
1

= XR(4)
0

+ XR(2)
2

and

XR0 XR(3)
1

= XR(4)
1

+ XS(2)
1

so that

2XR0 XR(3)
1

= XR(4)
0

+ XR(2)
2

+ XR(4)
1

+ XR(2)
1

.

Remark 7.1 We now investigate the connections between Theorem 7.1 and the
multiplication formula given by Xiao and Xu in [26]. Let T be a tube of rank p ≥ 1
in the Auslander–Reiten quiver �(kQ) of an affine quiver Q whose quasi-simple
modules are Ri, with i ∈ Z ordered such that Ri+p � Ri and τ Ri � Ri−1 for any i ∈ Z.
We also denote by T the full subcategory of kQ-mod generated by objects in T . Let
X? be the Caldero–Chapoton map on CQ.

Let A∞∞ be the double infinite quiver

A∞∞ : · · · −1�� 0�� 1�� · · ·��

and let rep(A∞∞) be the category of finite dimensional representations of A∞∞ over k.
We denote by Si the simple representation at vertex i for any i ∈ Z and by S(n)

i the
representation of length n with socle Si for any i ∈ Z, n ≥ 1. It is well known, that T
is equivalent to the orbit category rep(A∞∞)/(τ p). We choose an equivalence sending
S(n)

i to R(n)

i for any i ∈ Z and n ≥ 1.
Fix M and N two indecomposable kQ-modules in T such that Ext1

kQ(N, M) �= 0.

Without loss of generality, we assume that M � R(n)
0 and N � R(m)

j for some m, n ≥ 1
and j ∈ [0, p − 1]. We fix

k0 = max {k|0 < j + kp < n and m > n − j − kp}
which is a well defined integer since Ext1

kQ(N, M) �= 0. We set i = j + k0 p. Then,

the wing at vertex S(n)
0 in rep(A∞∞) is equivalent to the category kQm+i-mod and
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this equivalence sends the simple representation Si of rep(A∞∞) to the simple kQm+i-
module Si for any i ∈ [0, m + i − 1].

We have the following identities:

Ext1
kQ(R(m)

j , R(n)
0 ) �

k0⊕

l=0

Ext1
A∞∞(S(m)

j+lp, S(n)
0 ) �

k0⊕

l=0

Ext1
kQm+i

(S(m)

j+lp, S(n)
0 ).

Let X ′
? be the Caldero–Chapoton map on CQm+i . For any l ∈ [0, k0], we have

X ′
S(m)

j+lp
X ′

S(n)
0

= X ′
S( j+lp+m)

0
X ′

S(n− j−lp)

j+lp

+ X ′
S( j+lp−1)

0
X ′

S(m+ j+lp−n−1)

n+1
.

giving

XR(m)
j

XR(n)
0

= XR( j+lp+m)

0
XR(n− j−lp)

j
+ XR( j+lp−1)

0
XR(m+ j+lp−n−1)

n+1
.

Summing up these equalities when l runs over [0, k0], we get

dim Ext1
kQ(N, M)XM XN =

k0∑

l=0

(
XR( j+lp+m)

0
XR(n− j−lp)

j
+ XR( j+lp−1)

0
XR(m+ j+lp−n−1)

n+1

)
. (7.1)

Note that all the terms occurring in the right hand side are actually middle
terms of non-split triangles involving M and N in CQ. In [26], the authors give, in
much more general settings, an expansion formula for dim Ext1

kQ(N, M)XM XN as a
Z-linear combination of XY where Y runs over the set of middle terms of non-split
triangles involving M and N in CQ. It is not clear whether their result coincides with
equality 7.1.

Note that Theorem 7.1 is slightly more precise than the multiplication provided
in [26] in the sense that it allows to express XM XN as a Z-linear combination
of XY ’s whereas the Xiao-Xu’s multiplication theorem only allows to express
dim Ext1

kQ(N, M)XM XN as a Z-linear combination of XY ’s.

7.2 The Wild Case

We now prove an analogue of Theorem 7.1 for regular modules over the path algebra
of a wild quiver.

Theorem 7.2 Let Q be a wild quiver and R be a regular component in �(kQ). Let
Ri, i ∈ Z denote the quasi-simple modules in T ordered such that τ Ri � Ri−1 for any
i ∈ Z. Let m, n > 0 be integers and j ∈ Z such that 0 < j < n and m > n − j. Then, we
have the following identity:

XR(m)
j

XR(n)
0

= XR(m+ j)
0

XR(n− j)
j

+ XR( j−1)

0
XR(m+ j−n−1)

n+1
.

Proof Let Q j+m be the quiver of Dynkin type A equipped with the following
orientation

0 1�� · · ·�� j + m − 1��

and let X ′
? be the Caldero–Chapoton map on CQ j+m .
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Consider the epimorphism of Z-algebras:

φ :
{

Z[X ′
Sr

|r ∈ [0, j + m − 1]] −→ Z[XRr |r ∈ [0, j + m − 1]]
X ′

Sr
�→ XRr

Now if S(n)
r is any indecomposable regular kQ j+m-module, we know from cluster

mesh relations that φ(X ′
S(n)

r
) = XR(n)

r
.

Since 0 < j < n and m > n − j, we have isomorphisms of k-vector spaces
Ext1

Q j+m
(S(m)

j , S(n)
0 ) � HomQi+m(S(n)

0 , τ S(m)

j ) � k.
As in the proof of Theorem 7.1, we get

X ′
S(m)

j
X ′

S(n)
0

= X ′
S( j+m)

0
X ′

S(n− j)
j

+ X ′
S( j−1)

0
X ′

S(m+ j−n−1)

n+1
.

and thus, applying φ, we obtain

XR(m)
j

XR(n)
0

= XR(m+ j)
0

XR(n− j)
j

+ XR( j−1)

0
XR(m+ j−n−1)

n+1

which establishes the theorem. ��
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