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Abstract We prove that every tilting module of projective dimension at most one is
of finite type, namely that its associated tilting class is the Ext-orthogonal of a family
of finitely presented modules of projective dimension at most one.
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1 Introduction

The concept of tilting modules has its origin in the Representation Theory of finite
dimensional algebras (see [10, 16]). In this context, tilting modules were assumed
to be finitely generated and of projective dimension at most one. Later the theory
was extended to arbitrary rings and to infinitely generated modules (see [11, 12]).
We show that, even in the case of not necessarily finitely generated tilting modules,
strong finiteness conditions are involved: a tilting class is determined by finitely
presented data, namely there exists a family R of finitely presented modules, of
projective dimension at most one, such that the tilting class is the Ext-orthogonal
to R. This implies that tilting classes are in bijective correspondence with resolving
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classes consisting of finitely presented modules of projective dimension at most one.
This is a first step towards the classification of tilting classes.

Our starting point are the results in [9] that we collect in Theorem 2.1. In [9] it
is shown that tilting modules of projective dimension at most one are of finite type
if and only if the corresponding tilting classes are definable, namely closed under
arbitrary direct products, direct limits, and pure submodules (cf. [13, Section 2.3]). In
terms of model theory, this means that modules in a definable class are characterized
by formulas of the first order in the language of model theory.

Since tilting classes are already closed under direct products and direct limits,
tilting modules are of finite type if and only if tilting classes are closed under pure
submodules. Also in [9], it is established that tilting classes are of countable type.
More precisely, for any tilting class B there exists a family S of countably presented
modules, of projective dimension at most one, such that B is the Ext-orthogonal to
S . Every module in S is a direct limit of a direct system of the form

C1
f1→ C2

f2→ C3 → . . . → Cn
fn→ Cn+1 → . . .

where Cn are finitely presented modules, and such a direct system fits in a (pure) exact
sequence

0 → ⊕n∈NCn
φ→ ⊕n∈NCn → lim−→ Cn = A → 0 (1)

where, for every n ∈ N, φεn = εn − εn+1 fn and εn : Cn → ⊕n∈NCn denotes the canon-
ical map. Since M ∈ B if and only if Ext1

R(A, M) = 0 for any A ∈ S , it follows from
Eq. 1 that HomR(φ, M) is onto for any module M in the tilting class B. This means
that any map ⊕n∈NCn → M factors through φ. As every map ⊕n∈NCn → M can be
factored through a diagonal map ⊕n∈NCn → M(N) (cf. Lemma 4.2) and tilting classes
are closed under direct sums, to solve our problem we need to study when all diagonal
maps ⊕n∈NCn → M(N) factor through φ.

The characterization of when the exact sequence (1) splits, goes back to the
fundamental paper by Bass [6] and it is based on stationary conditions of suitable
descending chains. In Theorem 3.7 we extend this characterization by proving
that, for a given module M and a given sequence (Cn)n∈N of small modules, all
diagonal maps ⊕n∈NCn → M(N) factor through φ if and only if the inverse system
(HomR(Cn, M), HomR( fn, M))n∈N satisfies the Mittag–Leffler condition. It is inter-
esting to note that our result holds more generally for a sequence (Cn)n∈N of compact
objects in an additive category with countable coproducts.

To conclude that tilting classes are closed under pure submodules, hence of finite
type, the crucial point is to observe that, when (Cn)n∈N is a sequence of finitely
presented modules, the Mittag–Leffler condition is inherited by pure submodules.

The paper is organized as follows: in Section 2 we state our main result Theo-
rem 2.5, which is proved assuming the results in Sections 3 and 4 and that has as
an immediate consequence in Theorem 2.6 that tilting modules are of finite type. In
Section 3 we characterize when diagonal maps factor through φ, and in Section 4 we
show that the characterization is inherited by pure submodules.

In Section 5 we present further applications of our results to tilting modules of
projective dimension greater than one. We prove that the weak and the projective
dimension of a tilting module must coincide.
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Our analysis has consequences also in other directions. In Theorem 5.1 we
describe a setting in which the Mittag–Leffler condition is equivalent to the exactness
of countable inverse limits and also to the fact that countable direct limits of Ext-
orthogonal objects are Ext-orthogonal.

2 Tilting Modules and Tilting Classes

In what follows R is always an associative ring with unit. We first recall some
definitions and results.

Let C be a class of right R-modules. Define C⊥={M∈Mod-R | Ext1
R(C, M)=0

for any C ∈ C} and ⊥C = {M ∈ Mod-R | Ext1
R(M, C) = 0 for any C ∈ C}.

A pair of classes of modules (A,B) is a cotorsion pair provided that A = ⊥B and
B = A⊥.

Following [12], a right R-module T is said to be 1-tilting if and only if T⊥ =
Gen T, where Gen T is the class of modules generated by T. A class of modules B is
1-tilting provided there is a 1-tilting module T such that B = T⊥. In this case, (⊥B,B)

is a cotorsion pair, called the cotorsion pair cogenerated by T . All modules in ⊥B
have projective dimension at most 1, and 1-tilting classes B are characterized by the
properties: B is closed under direct sums and B = M⊥ for a module M with projective
dimension at most 1 (cf. [4] and [14]).

As introduced in [3], a 1-tilting module T is said to be of finite type (countable type)
provided there is a set S of finitely presented (countably presented) right R-modules
of projective dimension at most 1 such that T⊥ = S⊥. A 1-tilting class T⊥ is of finite
type (countable type) in case T is.

A class of modules is called definable if it is closed under arbitrary direct
products, direct limits, and pure submodules (cf. [13, Section 2.3]). Any 1-tilting
class of finite type is definable; because for any finitely presented module G of
projective dimension at most 1, G⊥ is closed under pure submodules and the functor
Ext1

R(G, −) commutes with direct products and direct limits. In general, a 1-tilting
class is definable if and only if it is closed under pure submodules, since it is always
closed under direct limits and direct products.

We collect in the following theorem a reformulation of some results proved in [9].

Theorem 2.1 Let T be a 1-tilting module and (A,B) the cotorsion pair cogenerated
by T. Then T is of countable type, and T is of finite type if and only if the class B is
definable.

Proof See [9, Proposition 1.1, Theorem 1.2 and Theorem 2.5]. ��

Remark 2.2 If A is a countably presented right R-module, then it is a countable
direct limit of finitely presented right R-modules. Moreover, it can be assumed that
A is a direct limit of a direct system of the form

C1
f1→ C2

f2→ C3 → . . . → Cn
fn→ Cn+1 → . . .

where, for every n ∈ N, Cn is finitely presented.
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We are interested in studying direct systems of the form appearing in Remark 2.2.
To this aim we fix the following notation which will be used in the rest of the paper,
sometimes without previous acknowledgment.

Notation 2.3 Given a countable direct system

C1
f1→ C2

f2→ C3 → . . . → Cn
fn→ Cn+1 → . . .

of right R-modules, we consider the pure exact sequence:

0 → ⊕n∈NCn
φ→ ⊕n∈NCn → lim−→ Cn → 0

where, for every n ∈ N, φεn = εn − εn+1 fn and εn : Cn → ⊕n∈NCn denotes the canon-
ical map.

The next two sections will be devoted to study factorization properties of the
map φ. Our final goal will be achieved in Theorem 4.3.

We recall the definition of a (countable) Mittag–Leffler inverse system, see [15,
13.1.1] or [21, Definition 3.5.6].

Definition 2.4 A countable inverse system of abelian groups

. . . → H3
h2→ H2

h1→ H1

satisfies the Mittag–Leffler condition if, for every m ∈ N, the chain of subgroups
of Hm

Hm ⊇ hm(Hm+1) ⊇ · · · ⊇ hmhm+1 · · · hm+n−1(Hm+n) ⊇ . . .

is stationary. Equivalently, for each m ∈ N, there exists l(m) > m such that

hm · · · hk(Hk+1) = hm · · · hl(m)−1(Hl(m))

for any k ≥ l(m).

The Mittag–Leffler condition for an inverse system of abelian groups was intro-
duced by Grothendieck in [15, Section 13]. For countable inverse systems of abelian
groups the Mittag–Leffler condition implies the exactness of the inverse limit (see
[15, Proposition 13.2.2] for the precise statement) and, more generally, that the first
derived functor of the inverse limit is zero (cf. [21, Proposition 3.5.7]).

Now we are ready to state and prove our main theorem, assuming Theorem 4.3.

Theorem 2.5 Let R be a ring. Let C be a class of right R-modules satisfying that
M(N) ∈ C whenever M ∈ C. If A is a countably presented right R-module such
that Ext1

R(A, M) = 0 for any M ∈ C, then Ext1
R(A, N) = 0 for any right module N

isomorphic to a pure submodule of a module in C.

Proof By Remark 2.2 and Notation 2.3, there is an exact sequence

0 → ⊕n∈NCn
φ→ ⊕n∈NCn → lim−→ Cn

∼= A → 0 (2)

where Cn are finitely presented right modules.



One dimensional tilting modules are of finite type 47

Let M ∈ C, and let N be a pure submodule of M. Set Mn = M for any n ∈ N. Since
⊕n∈N Mn ∈ C, Ext1

R(A,⊕n∈N Mn) = 0 by hypothesis. Thus, for every homomorphism
γ : ⊕n∈N Cn → ⊕n∈N Mn there exists ψ : ⊕n∈N Cn → ⊕n∈N Mn such that ψφ = γ . By
Theorem 4.3, the inverse system of abelian groups (HomR(Cn, N), HomR( fn, N))n∈N

is Mittag–Leffler.
As the modules Cn are finitely presented, when we apply the functor HomR(Cn,−)

to the pure exact sequence

0 → N → M → M/N → 0

we obtain an inverse system of pure exact sequences of the form

0 → HomR(Cn, N) → HomR(Cn, M) → HomR(Cn, M/N) → 0.

As (HomR(Cn, N), HomR( fn, N))n∈N is Mittag–Leffler we can apply [15, Proposition
13.2.2] to conclude that there is an exact sequence

0 → lim←− HomR(Cn, N) → lim←− HomR(Cn, M) → lim←− HomR(Cn, M/N) → 0,

which in turn gives the exact sequence

0 → HomR(A, N) → HomR(A, M) → HomR(A, M/N) → 0.

Therefore, we also have the exact sequence

0 → Ext1
R(A, N) → Ext1

R(A, M) = 0

from which we deduce that Ext1
R(A, N) = 0 as desired. ��

Theorem 2.6 Let R be a ring. Then any 1-tilting class is definable and any 1-tilting
module is of finite type.

Proof Let (A,B) be a 1-tilting cotorsion pair. Since there exists a (1-tilting) module
such that B = Gen(T) = T⊥, B is closed under products and under direct limits.
Combining Theorem 2.1 with Theorem 2.5 it follows that B is also closed under pure
submodules, hence B is definable.

The fact that 1-tilting modules are of finite type is now a consequence of
Theorem 2.1. ��

It is known that a combination of Ziegler’s result [23, Corollary 6.9] and the
Keisler–Shelah Theorem (cf. [17] and [20]) implies that a definable class is deter-
mined by the indecomposable pure injective modules it contains. Hence we have:

Corollary 2.7 Let B and B′ be two 1-tilting classes over a ring R. Then B = B′ if and
only if they contain the same indecomposable pure injective modules.

Corollary 2.8 Every 1-tilting flat module is projective.

Proof Let T be a 1-tilting flat module, and let (A,B) be the cotorsion pair
cogenerated by T. Then, by the well known Ext − Tor formulas, B contains all
pure injective modules and, as B is definable by Theorem 2.6, it is closed under
pure submodules. As any module is a pure submodule of its pure-injective envelope,
T⊥ = B = Mod −R and, hence, T is projective. ��
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3 Factoring Diagonal Maps through φ

We recall that a right R-module CR is said to be small if for any family of right
R-modules {Mi}i∈I and for any morphism f : C → ⊕i∈I Mi there exists a finite
subset F ⊆ I such that f (C) ⊆ εF(⊕i∈F Mi) where εF : ⊕i∈F Mi → ⊕i∈I Mi denotes
the canonical map. Equivalently, HomR(C, ⊕i∈I Mi) ∼= ⊕i∈IHomR(C, Mi).

Let (Mn)n∈N and (Cn)n∈N be two sequences of right R-modules, and let

α : ⊕n∈N Cn → ⊕n∈N Mn

be an R-homomorphism. For any i, j ∈ N, define αij : C j → Mi to be the map

C j
ε j→ ⊕n∈NCn

α→ ⊕n∈N Mn
πi→ Mi,

where ε j and πi denote the canonical inclusion and the canonical projection, respec-
tively. We associate the matrix (αij) to the map α, and we will identify the map α with
its associated matrix (αij). We say that α is a diagonal map if αij = 0 whenever i �= j
and we will say that α is upper (lower) triangular if αij = 0 whenever i > j (i < j).

In the case that each Cn is small for every n ∈ N, the matrix (αij) is column finite.
This is the fundamental reason why we consider the factorization of the morphism φ

in the setting of small modules.
Following Notation 2.3, the map φ in the exact sequence:

0 → ⊕n∈NCn
φ→ ⊕n∈NCn → lim−→ Cn → 0

is identified with the matrix

φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 . . .

− f1 1

0 − f2
. . .

...
. . . 1

... − fn
. . .

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Given a homomorphism γ : ⊕n∈N Cn → ⊕n∈N Mn of right R-modules, we are inter-
ested in finding conditions under which there exists ψ : ⊕n∈N Cn → ⊕n∈N Mn such
that ψφ = γ . We will focus on the case in which the Cn’s are small modules.

It is convenient to recall when φ is invertible.

Lemma 3.1 Assuming the modules Cn in the Notation 2.3 are small, the following
statements are equivalent:

(1) φ is invertible.
(2) lim−→ Cn = 0.
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(3) For every m ∈ N there exists an integer l(m) > m such that fk−1 · · · fm = 0
for any k ≥ l(m).

(4) The matrix
∑

n≥0(1 − φ)n is column finite.

Moreover, if these equivalent statements hold then φ−1 = ∑
n≥0(1 − φ)n.

Remark 3.2 The matrix L = ∑
n≥0(1 − φ)n is lower triangular and its entries are

Lij =
⎧⎨
⎩

fi−1 · · · f j if i > j
1 if i = j
0 otherwise

Thus, in general, L is not associated to an element of EndR(⊕n∈NCn).

The next lemma gives a necessary condition to factor a diagonal map γ through
φ. It is inspired by the characterization of the case when Cn = Mn and γ the identity,
that is when φ has a left inverse. The argument in the proof, that we repeat for
completeness’ sake, was used first by Bass [6] for the case Cn = Mn = R, later it was
completed and extended to more general situations in work by Zimmermann [24],
Whitehead [22], Azumaya [5], Angeleri-Hügel and Saorin [2].

Lemma 3.3 Assume that the modules Cn in the Notation 2.3 are small. Let {Mn}n∈N

be right R-modules and let γ : ⊕n∈N Cn → ⊕n∈N Mn be a diagonal map. Assume that
there is ψ : ⊕n∈N Cn → ⊕n∈N Mn such that ψφ = γ . Then,

(*) There exist a sequence of maps (gn : Cn+1 → Mn)n∈N and a sequence of natural
numbers (l(m))m∈N, with l(m) > m for every m ∈ N, satisfying the following
property:

γkk fk−1 fk−2 · · · fm = gk fk fk−1 fk−2 · · · fm,

for all k ≥ l(m).

Proof Fix m ≥ 1. Let (ψ)k denote the kth-row of the matrix ψ and [φ]k denote the
kth-column of the matrix φ. Since γ is diagonal and ψφ = γ , we have (ψ)k[φ] j = 0
whenever k �= j. Thus, if k > m, ψkj = ψk j+1 f j for every m ≤ j ≤ k − 1. Hence,

(a) ψkm = ψkk fk−1 fk−2 · · · fm and (ψ)k[φ]k = γkk yields
(b) ψkk = ψk k+1 fk + γkk. Since ψ is column finite, there exists an index l(m) > m

such that ψkm = 0 for every k ≥ l(m). Thus, multiplying (b) by fk−1 fk−2 · · · fm,
we obtain

(c) −ψk k+1 fk fk−1 fk−2 · · · fm = γkk fk−1 fk−2 · · · fm, for every k ≥ l(m).

So the sequence of maps (gn = −ψn n+1 : Cn+1 → Mn)n∈N and the sequence
(l(m))m∈N satisfy condition (∗). ��

Remark 3.4

(1) As seen in the proof of Lemma 3.3, the only requirement to define the sequence
(l(m))m∈N is that ψkm = 0 for any k ≥ l(m) and m ≥ 1. Therefore, (l(m))m∈N can



50 S. Bazzoni, D. Herbera

be chosen to be increasing and, in this case, condition (∗) is empty on the maps
g1, . . . , gl(1)−1, so they can be taken to be zero.

(2) The same computations as in Lemma 3.3 give analogous conditions to factor
an upper triangular map γ through φ. Moreover, if γ : ⊕n∈N Cn → ⊕n∈N Mn is
arbitrary then, grouping together the Mn’s, it can always be assumed that γ is
upper triangular.

Lemma 3.3 can be understood in terms of matrices.

Remark 3.5 Let (gn : Cn+1 → Mn)n∈N be a sequence of maps. Consider the matrix

G′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 g1 0 . . .

0 0 g2
...

. . .
. . .

0 gn

0
. . .

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Condition (∗) of Lemma 3.3 is equivalent to say that the matrix

G = (γ − G′)

(∑
n≥0

(1 − φ)n

)

is column finite (cf. Lemma 3.1). In fact, Gkm = 0 for k ≥ l(m) because the entries of
G : ⊕n∈N Cn → ⊕n∈N Mn are

Gkm =

⎧⎪⎪⎨
⎪⎪⎩

−gk if m = k + 1
γkk − gk fk if k = m
(γkk − gk fk) fk−1 . . . fm if m < k
0 otherwise

In the next lemma we collect and extend to our setting the different ideas available
in the literature to factor a map γ through φ. In particular, conditions (1) and (2) will
be helpful in the proof of Theorem 3.7.

Lemma 3.6 Let (gn : Cn+1 → Mn)n∈N be a sequence of maps satisfying the conclusion
of Lemma 3.3. With the notation of Remark 3.5 we have:

(1) Gφ = γ − G′.
(2) If β : ⊕n∈N Cn → ⊕n∈N Mn is such that βφ = G′ then

(G + β) φ = γ.

(3) If γ has a left inverse then there exists ψ : ⊕n∈N Cn → ⊕n∈N Mn such that ψφ = γ.

In the particular case that γ = 1, ψ = (∑
n≥0(G

′)n
)

G.

Proof

(1) Follows from direct computation using the formula for the entries of G given in
Remark 3.5.
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(2) Follows from (1).
(3) Let α : ⊕n∈N Mn → ⊕n∈NCn be a left inverse of γ . As γ is a diagonal map, α can

also be assumed to be diagonal. Hence it makes sense to consider
∑

n≥0(αG′)n

which is the inverse of 1 − αG′. By (1), α Gφ = 1 − α G′. Then

1 =
(∑

n≥0

(αG′)n

)
(1 − α G′) =

(∑
n≥0

(αG′)n

)
α Gφ.

Hence we can take

ψ = γ

(∑
n≥0

(αG′)n

)
α G. ��

In the next theorem we give a necessary and sufficient condition to factor certain
type of diagonal maps through φ. To prove the implication (2) ⇒ (1) we adapt
Azumaya’s argument in [5, Theorem 26] to our setting.

Theorem 3.7 Assume that the modules Cn in the Notation 2.3 are small. Let M be a
right R-module. For each n ∈ N, we set Mn

∼= M. Then the following statements are
equivalent:

(1) For every diagonal homomorphism γ : ⊕n∈N Cn → ⊕n∈N Mn there exists a ho-
momorphism ψ : ⊕n∈N Cn → ⊕n∈N Mn such that ψφ = γ .

(2) For every m ∈ N, the chain of subgroups of HomR(Cm, M):

HomR(Cm+1, M) fm ⊇ HomR(Cm+2, M) fm+1 fm ⊇ . . .

· · · ⊇ HomR(Cm+n, M) fm+n−1 fm+n−2 · · · fm ⊇ . . .

is stationary.
(3) The inverse system of abelian groups

. . . −→ HomR(C3, M)
HomR( f2,M)−→ HomR(C2, M)

HomR( f1,M)−→ HomR(C1, M)

satisfies the Mittag–Leffler condition.

Proof To prove that (2) and (3) are equivalent, observe that for every m ∈ N and for
any k > m

HomR( fm, M) · · · HomR( fk−1, M)HomR(Ck, M) = HomR(Ck, M) fk−1 · · · fm.

To prove (1) ⇒ (2), assume by way of contradiction that there exists an integer
m for which the chain is not stationary. Then, there exists an infinite set N ⊆ N such
that, for any n ∈ N, there is a map αn ∈ HomR(Cn, M) such that αn fn−1 fn−2 · · · fm /∈
HomR(Cn+1, M) fn fn−1 · · · fm. Consider the diagonal homomorphism α : ⊕n∈N Cn →
⊕n∈N Mn defined by αnn = αn for n ∈ N and αmn = 0 otherwise. By hypothesis, α

factors through φ, hence, by Lemma 3.3, there exists an integer l(m) > m such that for
all k ≥ l(m), αkk fk−1 fk−2 · · · fm ∈ HomR(Ck+1, M) fk fk−1 fk−2 · · · fm contradicting
the choice of the infinite family (αn)n∈N .
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(2) ⇒ (1). For every m ∈ N, let l(m) be the minimal integer such that l(m) > m and

HomR(Cl(m), M) fl(m)−1 fl(m)−2 · · · fm = HomR(Cl(m)+1, M) fl(m) fl(m)−1 · · · fm =
= HomR(Cl(m)+2, M) fl(m)+1 fl(m) · · · fm = . . .

Denote this subgroup of HomR(Cm, M) by 	m. As

	m+1 = HomR(Cl(m+1), M) fl(m+1)−1 fl(m+1)−2 · · · fm+1 =
= HomR(Cl(m+1)+1, M) fl(m+1) fl(m+1)−1 · · · fm+1 = . . . ,

then,

	m+1 fm = HomR(Cl(m+1), M) fl(m+1)−1 fl(m+1)−2 · · · fm+1 fm =
= HomR(Cl(m+1)+1, M) fl(m+1) fl(m+1)−1 · · · fm+1 fm = . . .

implies l(m + 1) ≥ l(m) and 	m+1 fm = 	m. Thus we have l(1) ≤ l(2) ≤ . . . and

	m = 	m+1 fm = 	m+2 fm+1 fm = · · · = 	n+1 fn fn−1 · · · fm,

for every n ≥ m.

Fix a diagonal map γ : ⊕n∈N Cn → ⊕n∈N Mn. First we construct a sequence of
maps (gk : Ck+1 → Mk)k∈N satisfying condition (∗) in Lemma 3.3 with respect to the
sequence (l(k))k∈N.

We set g1, . . . , gl(1)−1 to be zero (cf. Remark 3.4(1)). Choose k ≥ l(1). Let h ∈ N

be maximal such that l(h) ≤ k (h exists because l(m) > m). Since k ≥ l(h),
	h = HomR(Ck, M) fk−1 fk−2 · · · fh and moreover 	h = 	k+1 fk fk−1 · · · fh. Since
γkk fk−1 fk−2 · · · fh ∈ 	h, there exists a map gk ∈ 	k+1, such that

gk fk fk−1 · · · fh = γkk fk−1 fk−2 · · · fh.

This finishes the construction of the sequence (gk)k∈N with gk ∈ 	k+1 for any k ∈ N.
It is immediate to check that it satisfies the desired condition.

Using γ and the sequence (gk)k∈N, we construct the matrix G given by Remark 3.5.
In view of Lemma 3.6 (2), if we construct β : ⊕n∈N Cn → ⊕n∈N Mn such that

βφ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 g1 0 . . .

0 0 g2
...

. . .
. . .

0 gn

0
. . .

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then ψ = G + β will satisfy ψφ = γ . Equivalently, we have to define βkn such that:
{

βkn − βk n+1 fn = 0 n �= k + 1
βk k+1 − βk k+2 fk+1 = gk

To this aim, fix k ∈ N. Since, for every n ≥ k + 2,

gk ∈ 	k+1 = 	k+2 fk+1 and 	n = 	n+1 fn
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we can construct inductively the sequence βkn ∈ 	n letting

(1) βkn = 0, for n ≤ k + 1;
(2) βk k+2 fk+1 = gk and
(3) βk n+1 fn = βk n, for n ≥ k + 2.

Then the homomorphism β : ⊕n∈N Cn → ⊕n∈N Mn defined by

βkn =
{

βkn if n ≥ k + 2
0 otherwise

satisfies the desired property. ��

Remark 3.8 Recall that an object C in an additive category A with arbitrary co-
products is called compact if HomR(C,⊕i∈I Mi) ∼= ⊕i∈IHomR(C, Mi) for every family
of objects {Mi | i ∈ I} in A. For example, if A = Mod −R the compact objects are
exactly the small modules.

In the proof of Theorem 3.7 we use only the hypothesis that (Cn)n∈N is a sequence
of compact objects in an additive category. Thus the result holds in this more general
context.

We reformulate the descending chain condition of Theorem 3.7(2). We follow
the spirit of [22, Theorems 1.9 and 2.1] and of [18, Lemma 3.1], where this type of
statement is used to give a description of countably generated projective modules.

Proposition 3.9 Assume that the modules Cn are as in the Notation 2.3. Let M be a
right R-module. Then the following statements are equivalent:

(1) For every m ∈ N, the chain of subgroups of HomR(Cm, M):

HomR(Cm+1, M) fm ⊇ HomR(Cm+2, M) fm+1 fm ⊇ . . .

· · · ⊇ HomR(Cm+n, M) fm+n−1 fm+n−2 · · · fm ⊇ . . .

is stationary.
(2) There is a strictly increasing sequence (nk)k∈N of natural numbers such that,

putting f ′
nk

= fnk+1−1 · · · fnk ,

HomR(Cnk+1 , M) f ′
nk

f ′
nk−1

= HomR(Cnk , M) f ′
nk−1

for every k > 1.

Proof To prove (1) ⇒ (2), construct the sequence (nk)k∈N inductively as follows.
Let n1 = 1; if k > 1 and assuming ni has been defined for every i ≤ k − 1, define
nk = l(nk−1), where for every m ∈ N, l(m) is the minimum integer such that
l(m) > m and

HomR(Cl(m), M) fl(m)−1 fl(m)−2 · · · fm = HomR(Ck, M) fk−1 fk−2 · · · fm

for every k ≥ l(m).
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Since nk+1 = l(nk) > nk = l(nk−1) > nk−1,

HomR(Cnk+1 , M) fnk+1−1 · · · fnk fnk−1 · · · fnk−1 =
= HomR(Cnk+1−1, M) fnk+1−2 · · · fnk fnk−1 · · · fnk−1 = . . .

. . . = HomR(Cnk , M) fnk−1 · · · fnk−1 .

Hence, by the definition of f ′
nk

,

HomR(Cnk+1 , M) f ′
nk

f ′
nk−1

= HomR(Cnk , M) f ′
nk−1

for k > 1, as wanted.
To show that (2) ⇒ (1) observe that condition (2) and the definition of f ′

nk

imply that

(1) HomR(Cn, M) fn−1 · · · fnk f ′
nk−1

fnk−1−1 · · · fm =
= HomR(Cnk , M) f ′

nk−1
fnk−1−1 · · · fm

for any n, m ∈ N such that nk+1 ≥ n > nk > nk−1 ≥ m.
Let m ∈ N, and choose 
 ∈ N such that n
−1 ≥ m. We claim that

HomR(Cn
+ j, M) fn
+ j−1 · · · fm = HomR(Cn

, M) fn
−1 fn
−2 · · · fm,

for any j ∈ N, so that the sequence of subgroups of HomR(Cm, M):

HomR(Cm+1, M) fm ⊇ HomR(Cm+2, M) fm+1 fm ⊇ . . .

· · · ⊇ HomR(Cm+n, M) fm+n−1 fm+n−2 · · · fm ⊇ . . .

is stationary from the position n
.
Fix j ∈ N. As the sequence (nk)k∈N is strictly increasing, we can choose nk ≥ n


such that nk+1 ≥ n
 + j > nk. Then applying (1) we obtain that

HomR(Cn
+ j, M) fn
+ j−1 · · · fm = HomR(Cnk , M) fnk−1 fnk−2 · · · fm.

As n
 + j > nk ≥ n
 the claim follows by induction on j. ��

In Proposition 3.9, as the sequence (nk)k∈N is cofinal in N, the direct limit lim−→ Cnk

of the direct system

Cn1

f ′
n1→ Cn2

f ′
n2→ Cn3 → . . . → Cnk

f ′
nk→ Cnk+1 → . . .

is isomorphic to A = lim−→ Cn. So that we obtain the exact sequence

0 → ⊕k∈NCnk

φ′→ ⊕k∈NCnk → A = lim−→ Cn → 0
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where

φ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 . . .

− f ′
n1

1

0 − f ′
n2

. . .

...
. . . 1

... − f ′
nk

. . .

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let M be a right R-module, and, for each n ∈ N, set Mn = M. In view of Theorem 3.7
and Proposition 3.9, any diagonal map γ : ⊕n∈N Cn → ⊕n∈N Mn factors through φ if
and only if any diagonal map γ ′ : ⊕k∈N Cnk → ⊕k∈N Mnk factors through φ′. Let ψ ′
be the morphism constructed in the proof of Theorem 3.7 satisfying that ψ ′φ′ = γ ′,
for γ ′ : ⊕k∈N Cnk → ⊕k∈N Mnk . As for the direct system {Cnk}, l(nk) = nk+1, it follows
that ψ ′ is an upper triangular matrix.

4 Inheritance by Pure Submodules

We start this section by proving that the factoring condition given in Theorem 3.7 is
inherited by pure submodules.

Lemma 4.1 Let C1 and C2 be finitely generated right R-modules such that C2 is finitely
presented. Let Y, Z be right R-modules such that Y is a pure submodule of Z , and let
ε : Y → Z denote the inclusion. Let f : C1 → C2 and h : C1 → Y be homomorphisms
of right R-modules. If ĝ : C2 → Z is such that εh = ĝ f then there exists g : C2 → Y
such that h = gf .

Proof We choose a set of generators of C1, {c1
1, . . . , c1

n} say. We fix a (finite)
presentation of C2,

Rt α1→ Rm α2→ C2 → 0,

where α1 is given by left multiplication by a matrix A ∈ Mm×t(R). Denote by
{e1, . . . , em} the canonical basis of Rm. For i = 1, . . . , m, let c2

i = α2(ei).
For each j ∈ {1, . . . , n}, f (c1

j) = ∑m
i=1 c2

i rij, for suitable rij ∈ R, and h(c1
j) = y j ∈ Y.

Set B = (rij) ∈ Mm×n(R).
For i ∈ {1, . . . , m}, ĝ(c2

i ) = zi ∈ Z .
As ĝ f =εh, (z1, . . . , zm)B=(y1, . . . , yn)∈Yn. As ĝ defines a morphism ĝ: C2 → Z ,

(z1, . . . , zm)A = (0, . . . , 0). So that

(z1, . . . , zm)
(

A B
) = (

0, . . . , 0 y1, . . . , yn
)
.

Since Y is pure in Z , there exists (x1, . . . , xm) ∈ Ym such that

(x1, . . . , xm)
(

A B
) = (

0, . . . , 0 y1, . . . , yn
)
.

The relation (x1, . . . , xm)A = (0, . . . , 0) implies that the right R-module homomor-
phism g1 : Rm → Y defined by ei �→ xi, for i ∈ {1, . . . , m}, satisfies g1α1 = 0. Hence
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we obtain a right R-module homomorphism g : C2 → Y such that c2
i �→ xi, for i ∈

{1, . . . , m}.
The relation (x1, . . . , xm)B = (y1, . . . , yn) implies that (gf )(c1

j) = h(c1
j), j ∈

{1, . . . , n}. Hence gf = h, as we wanted to show. ��

The next lemma gives the final step to prove Theorem 4.3.

Lemma 4.2 Let (An)n∈N and (Bn)n∈N be two sequences of right R-modules. We fix ρ ∈
HomR(⊕n∈N An, ⊕n∈N Bn). Let Y be a right R-module, we set Yn = Y for any n ∈ N.
If for any diagonal map γ : ⊕n∈N An → ⊕n∈NYn there exists σ : ⊕n∈N Bn → ⊕n∈NYn

such that σρ = γ , then for any 
 : ⊕n∈N An → Y there exists σ ′ : ⊕n∈N Bn → Y such
that σ ′ρ = 
.

Proof Let 
 : ⊕n∈N An → Y. We define 
i = 
εi, where εi : Ai → ⊕n∈N An is the
canonical inclusion. We define γ : ⊕n∈N An → ⊕n∈NYn to be the diagonal map such
that γnn = 
n for every n ∈ N. If we denote by

∑ : ⊕n∈N Yn → Y the summation
map, then 
 = ∑

γ .
By hypothesis, there exists, σ : ⊕n∈N Bn → ⊕n∈NYn such that σρ = γ . To con-

clude take σ ′ : ⊕n∈N Bn → Y to be σ ′ = ∑
σ . ��

Theorem 4.3 Let Y be a pure submodule of a right R-module Z , and let Yn, Zn be
copies of Y, Z , respectively, for every n ∈ N. In the Notation 2.3 assume that the
modules Cn are finitely presented and that for every diagonal map γ : ⊕n∈N Cn →
⊕n∈N Zn there is ψ : ⊕n∈N Cn → ⊕n∈N Zn such that ψφ = γ . Then the following hold:

(1) All diagonal maps γ ′ : ⊕n∈N Cn → ⊕n∈NYn factor through φ;
(2) The inverse system of abelian groups

. . . −→ HomR(C3, Y)
HomR( f2,Y)−→ HomR(C2, Y)

HomR( f1,Y)−→ HomR(C1, Y)

satisfies the Mittag–Leffler condition;
(3) HomR(φ, Y) is onto.

Proof By Theorem 3.7, for every m ∈ N, the chain of subgroups of HomR(Cm, Z )

HomR(Cm+1, Z ) fm ⊇ HomR(Cm+2, Z ) fm+1 fm ⊇ . . .

· · · ⊇ HomR(Cm+n, Z ) fm+n−1 fm+n−2 · · · fm ⊇ . . .

is stationary. Let ε : Y → Z be the inclusion. By Lemma 4.1,

HomR(Cm+n, Z ) fm+n−1 fm+n−2 · · · fm

⋂
ε HomR(Cm, Y) =

= HomR(Cm+n, Y) fm+n−1 fm+n−2 · · · fm

so we get the stationary condition for the corresponding chain of subgroups of
HomR(Cm, Y). Hence (1) and (2) follow from Theorem 3.7.

(3) follows from (1) and Lemma 4.2. ��



One dimensional tilting modules are of finite type 57

5 Further Applications

Our discussion about factoring the map φ gives the following result.

Theorem 5.1 In the Notation 2.3, assume that the modules Cn are small. Let C be
a class of modules satisfying that M(N) ∈ C whenever M ∈ C. Then the following
statements are equivalent:

(1) For any M ∈ C, the map HomR(φ, M) is onto.
(2) For any M ∈ C, the inverse system of abelian groups

. . . −→ HomR(C3, M)
HomR( f2,M)−→ HomR(C2, M)

HomR( f1,M)−→ HomR(C1, M)

is Mittag–Leffler.
(3) For any M ∈ C, lim←−

1 HomR(Cn, M) = 0.

Assume moreover that Ext1
R(Cn, M) = 0 for any n ∈ N and any M ∈ C, then the above

conditions are equivalent to:

(4) For any M ∈ C, Ext1
R(lim−→ Cn, M) = 0.

Proof Since M(N) ∈ C for every M ∈ C, the implication (1) ⇒ (2) follows from
Theorem 3.7. As the Mittag–Leffler property implies that lim←−

1 HomR(Cn, M) = 0
(cf. [21, Proposition 3.5.7]), (2) ⇒ (3).

By the definition of the first derived functor of a countable inverse system of
abelian groups (cf. [21, Definition 3.5.1]), applying the functor HomR(−, M) to the
exact sequence

0 → ⊕n∈NCn
φ→ ⊕n∈NCn → lim−→ Cn = A → 0

we obtain the exact sequence

0 → lim←− HomR(Cn, M) = HomR(A, M) →
∏
n∈N

HomR(Cn, M)
HomR(φ,M)→

→
∏
n∈N

HomR(Cn, M) → lim←−
1HomR(Cn, M) → 0.

Therefore (1) and (3) are equivalent statements.
We prove now that if Ext1

R(Cn, M) = 0 for any n ∈ N, then (1) and (4) are
equivalent. This is immediate if we take into account that applying the functor
HomR(−, M) to the exact sequence

0 → ⊕n∈NCn
φ→ ⊕n∈NCn → lim−→ Cn = A → 0

we obtain the exact sequence
∏
n∈N

HomR(Cn, M)
HomR(φ,M)→

∏
n∈N

HomR(Cn, M)

→ Ext1
R(lim−→ Cn, M) →

∏
n∈N

Ext1
R(Cn, M) = 0. ��
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Following [19], a right R-module A is said to be Mittag–Leffler provided that
the canonical map A

⊗
R NI → (A

⊗
R N)I, a ⊗ (ni) �→ (a ⊗ ni) is injective for any

left R-module N. Equivalently, if A is the direct limit of a direct system (Ci, fij)i∈I

of finitely presented modules then, for any right R-module M, the inverse system
(HomR(Ci, M), HomR( fij, M))ij satisfies the Mittag–Leffler condition.

Raynaud and Gruson proved that countably generated Mittag–Leffler modules
are pure-projective (cf. [19, Corollaire 2.2.2 p. 74]). Theorem 5.1 gives also a
generalization of this result, because if ⊕n∈NCn ∈ C, then lim−→ Cn is a direct summand

of ⊕n∈NCn.

Now we go back to illustrate some consequences of Theorem 2.6.
Recall that a torsion pair is a pair (T ,F) of classes of modules which are mutually

orthogonal with respect to the HomR functor, i.e., such that

T = {T ∈ Mod −R | HomR(T, F) = 0 for all F ∈ F}

F = {F ∈ Mod −R | HomR(T, F) = 0 for all T ∈ T }.
T is called a torsion class and its objects are the torsion modules; F is called a

torsion-free class and its objects are the torsion-free modules. T is a torsion class if
and only if it is closed under epimorphic images, direct sums and extensions; while F
is a torsion-free class if and only if it is closed under submodules direct products and
extensions. A torsion class is a tilting torsion class if it coincides with the class T⊥,
for a 1-tilting module T.

The following result is dual to the result (proved in [7]) stating that cotilting
torsion free classes are closed under direct limits, hence definable.

Corollary 5.2 Tilting torsion classes are closed under pure submodules, hence
definable.

Proof The result follows from the previous remarks and Theorem 2.6. ��

We recall that a class R of finitely generated modules is said to be resolving
provided that

(R1) R contains all finitely generated projective modules,
(R2) R is closed under direct summands and extensions, and
(R3) X ∈ R whenever there is an exact sequence 0 → X → Y → Z → 0 with

Y, Z ∈ R.

As the modules in a resolving class R are finitely generated, (R3) implies that the
modules in R have a projective resolution consisting of finitely generated projective
modules.

In [3, Theorem 2.2] it was proved that there is a bijective correspondence between
1-tilting classes of finite type and resolving subclasses of modules of projective
dimension at most 1. If B is a 1-tilting class of finite type, its corresponding resolving
subcategory is

α(B) = {C ∈ ⊥B | C is finitely presented }.
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If R is a resolving subclass of modules of projective dimension at most 1 then its
corresponding tilting class is

β(R) = R⊥.

In this setting, an immediate consequence of Theorem 2.6 is the following.

Corollary 5.3 Let R be a ring. There exists a bijective correspondence between 1-tilting
classes and resolving subclasses of modules of projective dimension at most one.

We recall the notion of n-tilting modules, as introduced in [1].
Let n ∈ N. A module T is n-tilting provided

(T1) The projective dimension of T is at most n,
(T2) Exti

R(T, T(I)) = 0 for each i ≥ 1 and all sets I, and
(T3) There exist r ≥ 0 and a long exact sequence

0 → R → T0 → · · · → Tr → 0

such that Ti ∈ Add(T) for each 0 ≤ i ≤ r.

Here, Add(T) denotes the class of all direct summands of arbitrary direct sums of
copies of T.

The above definition for n = 1 is equivalent to Gen T = T⊥ (see [12]). For a
characterization of n-tilting modules in terms of the class of modules generated by T
and some classes of Ext-orthogonal modules, see [8].

Proposition 5.4 Let R be a ring, and let T be an n-tilting right module over R. Then
the projective dimension and the weak dimension of T coincide.

Proof Assume that the weak dimension of T is m. We only need to prove that the
projective dimension of T is not bigger than m.

Let n > m, and consider a projective resolution of T

0 → Pn → Pn−1 → Pn−2 → . . . → P1 → P0 → T → 0

with projective modules Pi. Let Hn−1 = Ker(Pn−2 → Pn−3) be the (n − 1) st-syzygy
module of T and let Hm = Ker(Pm−1 → Pm−2). Then Hm is a flat module and the
exact sequence

0 → Hn−1 → Pn−2 → . . . → Pm → Hm → 0

yields that Hn−1 is a flat module. Clearly, the projective dimension of Hn−1 is 1 and,
by shift dimension, H⊥

n−1 = {X ∈ Mod −R | Extn
R(T, X) = 0}. By [8, Lemma 3.4],

H⊥
n−1 is closed under direct sums and, by [14, Theorem 10] H⊥

n−1 is a special pre-
enveloping class, namely every R-module M fits in a short exact sequence 0 → M →
B → A → 0, where B ∈ H⊥

n−1 and A ∈ ⊥(H⊥
n−1). Hence by the characterization of

1-tilting classes (see [4, Theorem 2.1]), H⊥
n−1 is a 1-tilting class, that is H⊥

n−1 = T⊥
1 , for

a 1-tilting module T1. Since Hn−1 is flat we can argue as in the proof of Corollary 2.8
to conclude that T1 and, hence, Hn−1 are projective. That is, the class H⊥

n−1 = T⊥
1

contains all the pure injective modules and since it is closed by pure submodules, by
Theorem 2.6, H⊥

n−1 = T⊥
1 = Mod −R. Hence, both modules must be projective.



60 S. Bazzoni, D. Herbera

This shows that the projective dimension of T is bounded by its weak dimension.
Thus they must coincide. ��

Corollary 5.5 Over a von Neumann regular ring, n-tilting modules are projective.

Proof As von Neumann regular rings are the rings with weak dimension 0, the
statement follows from Proposition 5.4. ��

Corollary 5.6 Let R be a ring of weak dimension 1 then every n-tilting module has
projective dimension at most 1, hence it is 1-tilting. In particular, n-tilting modules
over R are of finite type.
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