The Prime Spectrum and the Extended Prime Spectrum of Noncommutative Rings

Igor Klep · Marcus Tressl

Received: 5 March 2005 / Accepted: 10 December 2005 / Published online: 20 September 2006 © Springer Science + Business Media B.V. 2006

Abstract We investigate the prime spectrum of a noncommutative ring and its spectral closure, the extended prime spectrum. We construct a ring for which the prime spectrum is a spectral space different from the extended prime spectrum and we construct a von Neumann regular ring for which the prime spectrum is not a spectral space.

Mathematics Subject Classifications (2000) 06E15 · 16D25

Key words prime ideals · spectral spaces

1. Introduction

To each associative ring with identity *R* a topological space is associated: The socalled *prime spectrum* Spec *R* consisting of all prime ideals of *R* (an ideal $\mathfrak{p} \subsetneq R$ is *prime* if $aRb \subseteq \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$); by definition, the subbasis for the topology on Spec *R* are the sets $U(a) := \{\mathfrak{p} \in \text{Spec } R | a \notin \mathfrak{p}\}$ for $a \in R$.

I. Klep (⊠)

M. Tressl Universität Regensburg, NWF I-Mathematik, D-93040 Regensburg, Germany e-mail: marcus.tressl@mathematik.uni-regensburg.de

Presented by Ken Goodearl.

The authors are members of the European Research Training Network RAAG (Contract No. HPRN-CT-2001-00271). The first author was also supported by the Ministry of Education, Science and Sport of Slovenia.

Department of Mathematics, University of Ljubljana, IMFM, Jadranska 19, SI-1111 Ljubljana, Slovenia e-mail: igor.klep@fmf.uni-lj.si

The prime spectrum of a commutative ring is always a *spectral space*, i.e., a compact T_0 -space, such that the open and compact subsets are a basis of the topology, closed under finite intersections and every closed and irreducible subset has a generic point. In Hochster [6] it is proved that every spectral space is the spectrum of a commutative ring.

Prime spectra of noncommutative rings have not had the attention given their commutative counterparts. They are not as well behaved for a variety of reasons. In general, Spec R will be T_0 , compact and irreducible closed subsets will have a generic point. However, there need not be a basis of compact open subsets which is closed under finite intersections. Therefore several authors studied classes of noncommutative rings whose prime spectra are spectral spaces. For example, Kaplansky [7] introduced neo-commutative rings as those rings, for which the product of two finitely generated ideals is finitely generated, and proved that the prime spectrum of such a ring is spectral. Belluce [1] generalized Kaplansky's theorem by introducing quasi-commutative rings and proving that the prime spectrum of such a ring is spectral. The question of whether the quasi-commutative rings are precisely those rings for which the prime spectrum is spectral. was left open.

In 1997 Belluce [2] introduced the spectral closure of Spec R, the so-called extended prime spectrum XSpec R. He gave an example of a ring R with Spec $R \neq$ XSpec R and claimed that Spec $R \neq$ XSpec R implies that Spec R is not spectral. It turns out that this is not true (cf. Theorem 18 below). We introduce the extended prime spectrum from the viewpoint of spectral spaces, which gives a simplification of the matter compared with the construction of XSpec R from [2]. Also, many properties of XSpec R are more easily accessible from our construction.

The paper is organized as follows. In Section 2 we recall the basics about spectral spaces and we provide the topological tools needed for our purposes (cf. Proposition 1). Section 3 contains the definition and some basic properties of the extended prime spectrum of a noncommutative ring. In Section 4 we consider *spectral rings* (i.e., rings *R* for which Spec *R* is a spectral space) and *quasi-commutative rings* (i.e., rings *R* for which Spec *R* = XSpec *R*) and we prove that certain products of simple rings are quasi-commutative with Boolean Spec *R*. Section 5 contains our first main result. We show that for every prime ideal p of a ring *R* which is not completely prime (an ideal a is *completely prime* if $ab \in a \Rightarrow a \in a$ or $b \in a$) one can construct a ring *S* which is not quasi-commutative. This is used in Section 6 to give our second main result, an example of a spectral ring, which is not quasi-commutative (the ring even has a Boolean spectrum). In the final section we show that the ring proposed by Goodearl and studied by Belluce [1, 2] is not spectral thereby improving Belluce's result (he showed that this ring is not quasi-commutative).

2. Spectral Spaces

For a topological space X, let $\overset{\circ}{\mathcal{K}}(X) := \{U \subseteq X | U \text{ open and compact}\}, \overline{\mathcal{K}}(X) := \{X \setminus U | U \in \overset{\circ}{\mathcal{K}}(X)\}$ and let $\mathcal{K}(X)$ be the algebra of subsets of X, generated by $\overset{\circ}{\mathcal{K}}(X) \cup \overline{\mathcal{K}}(X)$. If $x, y \in X$ and $y \in \overline{\{x\}}$, then we say that x specializes to y.

A spectral space is a topological space X, which is compact and T_0 , such that $\overset{\circ}{\mathcal{K}}(X)$ is a basis of X closed under finite intersections and such that every closed and irreducible subset $A \subseteq X$ has a generic point, i.e., $A = \overline{\{x\}}$ for some $x \in A$.

D Springer

If X is a spectral space, then another topology is defined on X, which has $\mathcal{K}(X) \cup \overline{\mathcal{K}}(X)$ as a subbasis of open sets. This topology is called the *constructible topology* (in [6] it is called the *patch topology*) and X^{con} denotes X when viewed with this topology. The first fundamental theorem on spectral spaces says that X^{con} is a Boolean space (i.e., compact, Hausdorff and totally disconnected). A subset of X which is closed and open in X^{con} is called *constructible* and the constructible subsets of X are exactly those from $\mathcal{K}(X)$.

A map $f: X \to Y$ between spectral spaces X and Y is called *spectral* if $f^{-1}(V) \in \mathring{K}(X)$ for all $V \in \mathring{K}(Y)$. In other words, f is spectral iff f is continuous and continuous with respect to the constructible topologies. The category of spectral spaces has the spectral maps as morphisms. We now describe the Stone duality for spectral spaces. Let $L = (L, \land, \lor, 0, 1)$ be a distributive lattice. Here, we always assume that lattices contain a least element 0, a largest element 1 and that all lattice homomorphisms map 0 to 0 and 1 to 1. Let Prim L be the set of prime filters \mathscr{F} of L (a proper filter \mathscr{F} is *prime* if it contains a or b whenever $a \lor b \in \mathscr{F}$). We view Prim L as a topological space where a subbasis of open sets consists of all $D(a) := \{\mathscr{F} \in \operatorname{Prim} L | a \notin \mathscr{F}\}$, where $a \in L$. It turns out that Prim L is a spectral space with $\mathring{K}(\operatorname{Prim} L) = \{D(a) | a \in L\}$. We write $V(a) := \operatorname{Prim} L \setminus D(a)$, hence $\overline{\mathcal{K}}(\operatorname{Prim} L) = \{V(a) | a \in L\}$ is a lattice of subsets of Prim L. The Stone representation says that the map $L \to \overline{\mathcal{K}}(\operatorname{Prim} L)$, which sends a to V(a) is a lattice isomorphism (respecting 0 and 1).

Finally, we describe the anti-equivalence between spectral spaces and distributive lattices. For a lattice homomorphism $\phi: L \to L'$ the map Prim ϕ : Prim $L' \to$ Prim L, Prim $\phi(\mathscr{F}) := \phi^{-1}(\mathscr{F})$ is a spectral map and Prim is a contravariant functor from the category of distributive lattices into the category of spectral spaces. The second fundamental theorem on spectral spaces says that Prim is an anti-equivalence; the inverse is given by $X \mapsto \overline{\mathcal{K}}(X)$ for a spectral space X. We refer to [5] for proofs of these facts.

In this paper, we are concerned with subsets of a spectral space that are dense in the constructible topology. We first collect some properties of this situation on the level of spectral spaces:

PROPOSITION 1. Let X be a spectral space and $Y \subseteq X$ a subset which is dense in the constructible topology of X. Then:

- (1) For every constructible subset D of X, D is the closure of $C := D \cap Y$ in X^{con} and is the unique constructible subset D' of X with the property $D' \cap Y = C$.
- (2) For every $C \in \mathcal{K}(Y)$, the closure C_X of C in the constructible topology of X is constructible in X. C_X is the unique constructible subset C' of X with the property $C' \cap Y = C$.
- (3) The map $\mathcal{K}(Y) \to \mathcal{K}(X)$ which sends C to C_X is an embedding of Boolean algebras.
- (4) $C \in \mathring{\mathcal{K}}(Y)$ implies $C_X \in \mathring{\mathcal{K}}(X)$ and $C \in \overline{\mathcal{K}}(Y)$ implies $C_X \in \overline{\mathcal{K}}(X)$.
- (5) Now suppose that Y, equipped with the topology induced from X, is a spectral space. If x ∈ X, then the closure {x} of {x} in X meets Y and {x} ∩ Y has a generic point in Y. The spectral map Φ: X → Y induced by the lattice homomorphism *K*(Y) → *K*(X), C → C_X sends a point x ∈ X to the generic point of {x} ∩ Y. In particular, Φ is a retract of the inclusion Y → X (which is not spectral if Y ≠ X).

Proof. First observe that $y_1 \in Y$ specializes to $y_2 \in Y$ in the topology of Y iff y_1 specializes to y_2 in the topology of X.

Since Y is dense in X^{con} , assertion (1) certainly holds. Before proving the other statements we prove a few claims.

CLAIM 1. For every $V \in \overset{\circ}{\mathcal{K}}(Y)$ there is some $U \in \overset{\circ}{\mathcal{K}}(X)$ with $U \cap Y = V$.

Proof of the claim. This is so, since *V* is the union of sets of the form $U \cap Y$ with $U \in \mathring{\mathcal{K}}(X)$; as *V* is compact, *V* is a finite union of such sets, hence indeed we can find a single $U \in \mathring{\mathcal{K}}(X)$ with $U \cap Y = V$.

CLAIM 2. For every $B \in \overline{\mathcal{K}}(Y)$ there is some $A \in \overline{\mathcal{K}}(X)$ with $A \cap Y = B$.

Proof of the claim. By Claim 1 there is some $U \in \overset{\circ}{\mathcal{K}}(X)$ with $U \cap Y = Y \setminus B$. Now take $A := X \setminus U$.

CLAIM 3. If $C \in \mathcal{K}(Y)$, then there is a unique $C_X \in \mathcal{K}(X)$ with $C_X \cap Y = C$.

Proof of the claim. Say $C = \bigcup_{i=1}^{k} \bigcap_{j=1}^{k} B_{ij} \cap V_{ij}$, with $B_{ij} \in \overline{\mathcal{K}}(Y)$, $V_{ij} \in \overset{\circ}{\mathcal{K}}(Y)$. By Claims 1 and 2 there are $A_{ij} \in \overline{\mathcal{K}}(X)$, $U_{ij} \in \overset{\circ}{\mathcal{K}}(X)$ with $A_{ij} \cap Y = B_{ij}$ and $U_{ij} \cap Y = V_{ij}(1 \le i, j \le k)$. Now take $C_X := \bigcup_{i=1}^{k} \bigcap_{j=1}^{k} A_{ij} \cap U_{ij}$.

Now we prove the proposition. By Claim 3 and assertion (1), we know that assertion (2) holds. Assertion (3) holds, since taking constructible closures preserves finite unions and complements: If $C \in \mathcal{K}(Y)$ then C_X and $(Y \setminus C)_X$ are constructible, hence by (1) they have empty intersection. Assertion (4) holds by Claims 1 and 2, and the uniqueness property of the sets C_X .

It remains to show assertion (5), where Y is assumed to be a spectral space. By assertions (3) and (4), the map $\overline{\mathcal{K}}(Y) \to \overline{\mathcal{K}}(X)$, $C \mapsto C_X$ is a lattice homomorphism. Let $\Phi: X \to Y$ be the corresponding spectral map. Let $U \in \overset{\circ}{\mathcal{K}}(X)$ with $\Phi(x) \in U$. Since Y is spectral, there is some $V \in \overset{\circ}{\mathcal{K}}(Y)$ with $\Phi(x) \in V \subseteq U$. Thus $x \in \Phi^{-1}(V) = V_X \subseteq U$. This shows that $x \to \Phi(x)$.

On the other hand, if $y \in Y$ and $V \in \mathring{\mathcal{K}}(y)$ with $y \in V$, then $\Phi(y) \in V$; otherwise $y \in \Phi^{-1}(Y \setminus V) = X \setminus V_X$, a contradiction. This shows that $\Phi(y) \rightsquigarrow y$, thus $\Phi(y) = y$ for $y \in Y$.

For each $y \in Y$ with $x \rightsquigarrow y$ it follows that $\Phi(x) \rightsquigarrow \Phi(y) = y$. Hence $\Phi(x) \in Y$ is the generic point of $\{\overline{x}\} \cap Y$.

Now, we present an example of a spectral space X such that the set of maximal points (w.r.t. specialization) Y of X is a Boolean space in the topology induced from X and such that Y is a proper, dense subset of X^{con} .

EXAMPLE 2. Let *X* be an infinite set and take $x, y \in X$ with $x \neq y$. Define

$$\tau := \{ O \subseteq X | y \in O \Rightarrow x \in O \text{ and } x \in O \Rightarrow O \text{ is cofinite} \}.$$

Certainly τ is the set of open sets of a topology on X. Moreover, $\overset{\circ}{\mathcal{K}}(X) = \{O \in \tau | O \text{ is finite or } x \in O\}$ is a lattice of subsets of X separating points of X and every Springer element in τ is a union of elements of $\overset{\circ}{\mathcal{K}}(X)$. The closed subsets of X are those from $\{A \subseteq X | x \in A \Rightarrow y \in A \text{ and } A \text{ infinite } \Rightarrow x \in A\}$, so every closed and irreducible subset A of X is either a singleton or x is a generic point of A. Thus every closed and irreducible subset of X has a generic point. All this shows that X is a spectral space.

Let *Y* be the set of maximal points of *X*, thus $Y = X \setminus \{x\}$. Write τ_Y for the topology of *Y* induced from *X*. Then *Y* is dense in X^{con} , $\tau_Y = \{U \subseteq Y \mid y \in U \Rightarrow U \text{ is cofinite}\}$ and $\mathring{\mathcal{K}}(Y) = \{U \in \tau_Y \mid U \text{ is finite or } y \in U\}$. It follows that *Y* is a Boolean space. But $X \setminus \{y\} \in \mathring{\mathcal{K}}(X)$ and $(X \setminus \{y\}) \cap Y \notin \mathring{\mathcal{K}}(Y)$.

3. The Extended Prime Spectrum

Let R be a ring and let L(R) be the lattice of subsets generated by all the Z(a):= Spec $R \setminus U(a)$, $a \in R$. Then L(R) is a distributive lattice with smallest element $Z(1) = \emptyset$ and largest element Z(0) = Spec R.

The map Φ : Spec $R \to \operatorname{Prim} L(R)$ which sends \mathfrak{p} to $\{S \in L(R) | \mathfrak{p} \in S\}$ is obviously well defined, injective and a homeomorphism onto its image. Moreover, by definition, the image of Φ in $\operatorname{Prim} L(R)$ is dense in the constructible topology. In this sense, the spectral space $\operatorname{Prim} L(R)$ is a spectral closure of Spec R.

In general Φ is not surjective, since for $\mathscr{F} \in \operatorname{Prim} L(R)$ the set $\mathfrak{J} := \{a \in R | Z(a) \in \mathscr{F}\}$ need not be a prime ideal of R. We add these sets to Spec R in order to get an algebraic description of points in $\operatorname{Prim} L(R)$. Observe that the set \mathfrak{J} above has the property

$$a_1, \dots, a_k \in \mathfrak{J}, \ b_1, \dots, b_\ell \notin \mathfrak{J} \Rightarrow$$

$$\Rightarrow \exists \mathfrak{p} \in \operatorname{Spec} R : a_1, \dots, a_k \in \mathfrak{p} \land b_1, \dots, b_\ell \notin \mathfrak{p} \qquad (\star)$$

for all $a_1, ..., a_k, b_1, ..., b_\ell \in R$.

DEFINITION. A proper ideal \mathfrak{J} of *R* is called *locally prime* (compare [2, Proposition 33]) if property (*) holds for all $a_1, \ldots, a_k, b_1, \ldots, b_\ell \in R$.

The set of all locally prime ideals of *R* is denoted by XSpec *R* (motivated by *extended spectrum*). Moreover, for $a \in R$, we define $XU(a) := \{\mathfrak{J} \in XSpec \ R | a \notin \mathfrak{J} \}$ and $XZ(a) := \{\mathfrak{J} \in XSpec \ R | a \notin \mathfrak{J}\}$. Finally, XL(R) denotes the lattice of subsets generated by all the $XZ(a), a \in R$.

LEMMA 3. The map $X\Phi$: XSpec $R \rightarrow Prim XL(R)$, which sends a locally prime ideal \mathfrak{J} to $\{S|\mathfrak{J} \in S\}$, is bijective.

Proof. Clearly, $X\Phi$ is well defined and injective. In order to show that $X\Phi$ is surjective, take $\mathscr{F} \in \text{Prim } XL(R)$ and define

$$\mathfrak{J} := \{ x \in R | XZ(x) \in \mathscr{F} \}.$$

We prove that \mathfrak{J} is a locally prime ideal. If $x, y \in \mathfrak{J}$, then $XZ(x - y) \supseteq XZ(x) \cap XZ(y)$. Since \mathscr{F} is a filter, $x - y \in \mathfrak{J}$. Moreover if $a, b \in R$, then $XZ(axb) \supseteq XZ(x)$, hence $axb \in \mathfrak{J}$, too. Clearly, $\emptyset \notin \mathscr{F}$ implies $1 \notin \mathfrak{J}$. This shows that \mathfrak{J} is a proper ideal of R.

Now assume $a_1, \ldots, a_n \in \mathfrak{J}$ and $b_1, \ldots, b_m \notin \mathfrak{J}$. Since \mathscr{F} is a prime filter, $\bigcup_j XZ(b_j) \notin \mathscr{F}$. From $\bigcap_i XZ(a_i) \in \mathscr{F}$ and since \mathscr{F} is a proper filter we get \mathfrak{D} Springer $(\bigcap_i XZ(a_i))\setminus (\bigcup_j XZ(b_j)) \neq \emptyset$. Hence there is a locally prime ideal of *R* containing a_1, \ldots, a_n and avoiding b_1, \ldots, b_m . By definition, there is a prime ideal p satisfying $a_1, \ldots, a_n \in p$ and $b_1, \ldots, b_m \notin p$.

This shows $\mathfrak{J} \in XSpec R$ and it follows easily that $\mathscr{F} = X\Phi(\mathfrak{J})$.

DEFINITION. The topology on XSpec *R* is the one induced by the bijection $X\Phi$: XSpec $R \rightarrow \text{Prim } XL(R)$ from Lemma 3.

Hence XSpec *R* is a spectral space and $\overset{\circ}{\mathcal{K}}(XSpec R)$ is the set of finite unions of finite intersections of the sets $XU(a), a \in R$.

THEOREM 4. We have the following commutative diagram:

The prime spectrum Spec R is dense in XSpec R with respect to the constructible topology. The map $\pi: XL(R) \to L(R)$ which sends a set S to $S \cap$ Spec R is a lattice isomorphism.

Proof. This follows directly from the definitions and Lemma 3.

Applying Proposition 1 (5) to our situation yields:

COROLLARY 5. If Spec R is spectral, then for every locally prime ideal \mathfrak{a} of R, the ideal $\sqrt{\mathfrak{a}}$ is prime and the map Φ : XSpec $R \to \text{Spec } R, \mathfrak{a} \mapsto \sqrt{\mathfrak{a}}$ is a spectral retract of the inclusion Spec $R \hookrightarrow X$ Spec R.

Proof. By Theorem 4, Y := Spec R is dense in the constructible topology of X := XSpec R and the topology of Spec R is the one induced from XSpec R. Now apply Proposition 1 (5).

REMARK 6. Another topological space can be associated to a ring A, namely the set CSpec A of all completely prime ideals. CSpec A with the topology induced from Spec A is a spectral space and $\overset{\circ}{\mathcal{K}}(C$ Spec A) is the set of all finite unions of finite intersections of the sets of the form $U(a) \cap C$ Spec A for $a \in A$.

4. Spectral and Quasi-commutative Rings

Recall from the introduction that a ring R is called spectral if Spec R is a spectral space; R is called quasi-commutative if Spec R = XSpec R. Belluce proves

R is quasi-commutative \Leftrightarrow *R* is spectral and U(a) is compact ($a \in R$),

which follows quickly from our Theorem 4, too.

PROPOSITION 7. Let R be a ring such that Spec R is Hausdorff. Then for every $a \in X$ Spec R, $\sqrt{a} \in$ Spec R. If XSpec R is Hausdorff, then R is quasi-commutative.

Proof. Let $a \in XSpec R$. We have to show that there is a unique prime ideal of R containing a. Suppose there are $\mathfrak{p}, \mathfrak{q} \in Spec R$ containing a with $\mathfrak{p} \neq \mathfrak{q}$. Since Spec R is Hausdorff, there are open and compact subsets U, V of XSpec R with $\mathfrak{p} \in U, \mathfrak{q} \in V$ and $U \cap V \cap Spec R = \emptyset$. Since \mathfrak{p} and \mathfrak{q} are specializations of a we get $a \in U \cap V$. Hence $U \cap V$ is a nonempty constructible subset of XSpec R, which does not contain a point of Spec R. Since Spec R is dense in the constructible topology of XSpec R, this is not possible.

Therefore, for every $a \in XSpec R$, $\sqrt{a} \in Spec R$. If XSpec R is Hausdorff, then Spec R is a closed subset of XSpec R, since Spec R is compact. Since Spec R is dense in XSpec R, both sets must be equal.

Proposition 40 in [2] claims that *R* is spectral iff *R* is quasi-commutative. This is not true, even if Spec *R* is Boolean, as we show in Theorem 18 below. If *R* is *von Neumann regular* (i.e., for all $x \in R$ there is some $y \in R$ satisfying xyx = x; for more on von Neumann regular rings we refer the reader to [4]) then both notions coincide:

PROPOSITION 8. Let R be a von Neumann regular ring. Then

- (1) *R* is quasi-commutative if and only if *R* is spectral.
- (2) If Spec R is Hausdorff, then R is quasi-commutative.

Proof. First note that every ideal a of *R* satisfies $a = \sqrt{a}$: if $x \in \sqrt{a}$ and $y \in R$ with xyx = x, then $xy \in \sqrt{a}$ and by Lam [8, Chapter 4, (10.6) and (10.7)], there is some $d \in \mathbb{N}$ such that $(xy)^d \in a$. Since xyx = x, xy is idempotent, thus $xy \in a$, so $x = xyx \in a$.

Now we prove (1). Assume that *R* is spectral and let $a \in XSpec R$. By Corollary 5, \sqrt{a} is prime, hence $a = \sqrt{a} \in Spec R$.

(2) Since Spec *R* is Hausdorff, we know $\sqrt{\mathfrak{a}} \in \operatorname{Spec} R$ for every $\mathfrak{a} \in \operatorname{XSpec} R$ from Proposition 7. Since $\sqrt{\mathfrak{a}} = \mathfrak{a}$ for all ideals \mathfrak{a} we get XSpec $R = \operatorname{Spec} R$.

In Theorem 20 below, we construct a von Neumann regular ring R for which Spec R is T_1 but not a spectral space.

DEFINITION. Let *R* be a ring and let *I* be a nonempty set. If $Z \subseteq I$, then we write $\chi(Z)$ for the element of R^I , which has *i*-th coordinate 0 if $i \in Z$ and 1 if $i \in I \setminus Z$. For an ideal $\mathfrak{a} \subseteq R^I$ define $\Phi(\mathfrak{a}) := \{Z \subseteq I | \chi(Z) \in \mathfrak{a}\}$. For a filter \mathscr{F} on *I* we define $\Psi(\mathscr{F}) := \bigcup_{J \in \mathscr{F}} \mathfrak{a}_J$, where \mathfrak{a}_J denotes the ideal $R^{I \setminus J} \times \{0\}^J$ of R^I . PROPOSITION 9. Let R be a ring and I a nonempty set.

- (1) If $\mathfrak{a} \subseteq R^I$ is an ideal, then $\Phi(\mathfrak{a})$ is a filter on I.
- (2) If \mathscr{F} is a filter on I, then $\Psi(\mathscr{F}) \subseteq \mathbb{R}^{I}$ is an ideal.
- (3) $\Phi(\Psi(\mathscr{F})) = \mathscr{F} and \Psi(\Phi(\mathfrak{a})) \subseteq \mathfrak{a}.$
- (4) $\Phi: \operatorname{Spec} \mathbb{R}^I \to \operatorname{Prim} 2^I$ is continuous and surjective.

Proof. (1) Take any ideal $\mathfrak{a} \subseteq \mathbb{R}^{I}$. Assume $A \in \Phi(\mathfrak{a})$ and $B \supseteq A$. Then $\chi(A) \in \mathfrak{a}$ and $\chi(B) = \chi(A) \cdot \chi(B) \in \mathfrak{a}$. Hence $B \in \Phi(\mathfrak{a})$. If $A, B \in \Phi(\mathfrak{a})$, then $\chi(A \cap B) = \chi(A \cup (I \setminus B)) + \chi(B) \in \mathfrak{a}$, thus $A \cap B \in \Phi(\mathfrak{a})$. This shows that $\Phi(\mathfrak{a})$ is a filter.

(2) Let \mathscr{F} be a filter on I. Take $x, y \in \Psi(\mathscr{F})$, say $x \in \mathfrak{a}_{J_1}$, and $y \in \mathfrak{a}_{J_2}$ for $J_1, J_2 \in \Psi(\mathscr{F})$. As $x - y \in \mathfrak{a}_{J_1 \cap J_2}$ and $J_1 \cap J_2 \in \Psi(\mathscr{F})$, this shows $x - y \in \Psi(\mathscr{F})$. If $r \in K^I$ then clearly $rx, xr \in \mathfrak{a}_{J_1}$. Hence $\Psi(\mathscr{F})$ is an ideal.

(3) Let \mathscr{F} be a filter on *I*. Then

$$(\Phi \circ \Psi)(\mathscr{F}) = \Phi\left(\bigcup_{J \in \mathscr{F}} \mathfrak{a}_J\right) = \left\{ Z \subseteq I | (1)_{I \setminus Z} \times (0)_Z \in \bigcup_{J \in \mathscr{F}} \mathfrak{a}_J \right\} = \mathscr{F}$$

For the second part of the statement, take some ideal $\mathfrak{a} \subseteq R^{I}$. Then

$$(\Psi \circ \Phi)(\mathfrak{a}) = \Psi\left(\underbrace{\{Z \subseteq I | (1)_{I \setminus Z} \times (0)_Z \in \mathfrak{a}\}}_{=:\mathscr{F}}\right) = \bigcup_{Z \in \mathscr{F}} \mathfrak{a}_Z$$

If $x \in \mathfrak{a}_Z$ for some $Z \in \mathscr{F}$, then $x = x \cdot \chi(Z) \in \mathfrak{a}$. Hence $(\Psi \circ \Phi)(\mathfrak{a}) \subseteq \mathfrak{a}$.

(4) To prove that Φ maps prime ideals to prime filters, let $\mathfrak{p} \in \operatorname{Spec} R^I$. Take $A, B \subseteq I$ such that $A \cup B \in \Phi(\mathfrak{p})$. In other words, $\chi(A) \cdot \chi(B) \in \mathfrak{p}$. For every $x \in R^I$ we have $\chi(A) \cdot x \cdot \chi(B) = x \cdot \chi(A) \cdot \chi(B) \in \mathfrak{p}$. As \mathfrak{p} is a prime ideal, this implies $\chi(A) \in \mathfrak{p}$ or $\chi(B) \in \mathfrak{p}$. Let us prove that Φ : Spec $R^I \to \operatorname{Prim} 2^I$ is surjective. For this let $\mathscr{F} \in \operatorname{Prim} 2^I$ be arbitrary. Then $\Psi(\mathscr{F})$ is a proper ideal of R and is thus contained in a prime ideal \mathfrak{p} . As $(\Phi \circ \Psi)(\mathscr{F}) = \mathscr{F}$ and Ψ is monotone with respect to inclusion, we get $\Phi(\mathfrak{p}) = \mathscr{F}$. The continuity is clear. \Box

DEFINITION. Let *K* be a ring and let $x \in K$. We say that *x* is of *principal generation height* $\leq n \in \mathbb{N}$ if the ideal generated by *x* in *K* is equal to

$$\underbrace{KxK + \dots + KxK}_{n-\text{times}}$$

We define *the principal generation height of x* as the least $n \in \mathbb{N} \cup \{\infty\}$ such that *x* is of principal generation height $\leq n$. We say that a ring *K* is of *finite principal generation height* if there is some $n \in \mathbb{N}$ such that every element of *K* is of principal generation height $\leq n$. The smallest such *n* (if it exists) is called the *principal generation height* of *K*. A similar notion for simple rings was studied by Cohn (see, e.g., [3]). In our notation his *n*-simple rings are simple rings of principal generation height $\leq n$.

EXAMPLE 10. Let *D* be a division ring. Then $M_n(D)$ is a simple ring of principal generation height *n*: If $e_{11} \in M_n(D)$ denotes the matrix which has exactly one entry different from 0, namely 1 in the upper left corner, then there are no elements $a_i, b_i \in M_n(D)$ with $1 = \sum_{i=1}^{n-1} a_i e_{11} b_i$.

🖄 Springer

EXAMPLE 11. To see an example of a simple ring of infinite principal generation height (i.e., not of finite p.g.h.), take

$$R := \{ x \in M_{\infty}(D) | \exists y \in M_{2^{k}}(D) : x = \text{diag}(y, y, \ldots) \}.$$

So *R* is the direct limit of the system $M_{2^n}(D) \to M_{2^{n+1}}(D)$, $x \mapsto \text{diag}(x, x)$. Therefore *R* is a simple ring. Using the idea from the previous example it turns out that *R* is not of finite principal generation height.

THEOREM 12. Let K be a simple ring and let I be a nonempty set. Let Φ : Spec $K^I \rightarrow$ Prim 2^I be as above.

- (1) If I is finite, then Φ is a homeomorphism with inverse Ψ : Prim $2^I \rightarrow Spec K^I$ and K^I is quasi-commutative.
- (2) If I is infinite, then the following are equivalent:
 - (a) *K* is of finite principal generation height,
 - (b) Φ is injective,
 - (c) Φ is a homeomorphism.

In this case $\Phi^{-1} = \Psi$ and K^{I} is quasi-commutative.

Proof. (1) Let us prove that $\Psi = \Phi^{-1}$. We start by showing that Ψ maps prime filters to prime ideals. Let $\mathscr{F} \in \operatorname{Prim} 2^I$. As *I* is finite, \mathscr{F} is a principal filter, generated by, say, $i_0 \in I$. Hence $\Psi(\mathscr{F}) = \mathfrak{a}_{i_0}$. Clearly, $\mathfrak{a}_{i_0} \in \operatorname{Spec} K^I$.

It remains to be seen that all prime ideals of K^I are of this form. If an element $x \in K^I$ has only nonzero entries, then $(x) = K^I$. Take some $\mathfrak{p} \in \operatorname{Spec} K^I$. We claim that there exists $i_0 \in I$ with $\mathfrak{p} \subseteq \mathfrak{a}_{i_0}$. Otherwise we have $x^{(i)} \in \mathfrak{p}$ with $x_i^{(i)} = 0$ for $i \in I$. Hence $\chi(\{i\}) \in \mathfrak{p}$ and thus $1 \in \mathfrak{p}$ since I is finite. This is clearly a contradiction showing that $\mathfrak{p} \subseteq \mathfrak{a}_{i_0}$ for some $i_0 \in I$. Similarly as before, one can show that this implies $\mathfrak{p} = \mathfrak{a}_{i_0}$.

(2) If K is not of finite principal generation height, then there is some $x = (x_i)_{i \in I} \in K^I$ such that $x_i \neq 0$ for all *i* and such that the set

$$I_n := \{i \in I | x_i \text{ is of principal generation height } > n\}$$

is nonempty for every $n \in \mathbb{N}$. Since $I_1 \supseteq I_2 \supseteq ...$, there is some $\mathscr{F} \in \text{Prim } 2^I$ containing every I_n . Then the ideal ($\Psi(\mathscr{F})$, x) is proper: To see this, take $n \in \mathbb{N}$ and suppose there are $a_1, ..., a_n, b_1, ..., b_n \in K^I$ and $c \in \Psi(\mathscr{F})$ with

$$1 = a_1 x b_1 + \ldots + a_n x b_n + c.$$

Take $J \in \mathscr{F}$ with $c \in \mathfrak{a}_J$, thus $c_j = 0$ for all $j \in J$. Since $J \in \mathscr{F}$, also $J \cap I_n \in \mathscr{F}$. For $j \in J \cap I_n$ we have $1 = a_{1j}x_jb_{1j} + ... + a_{nj}x_jb_{nj} + c_j = a_{1j}x_jb_{1j} + ... + a_{nj}x_jb_{nj}$. But x_j is of principal generation height > n (by definition of I_n), a contradiction.

Hence the ideal $(\Psi(\mathscr{F}), x)$ is proper and there is a prime ideal \mathfrak{p}_1 of R containing x and $\Psi(\mathscr{F})$. We write $\mathfrak{a} := \Psi(\mathscr{F})$. Observe that K is prime (as it is simple). Hence for every nonzero $a \in K$ there is some $b \in K$ such that $aba \neq 0$. Write $M := \{y = (y_i)_i \in K^I \mid \forall i \in I : y_i \neq 0\}$. In the terminology of [8], M is an m-system containing x. As $\mathfrak{a} \cap M = \emptyset$, by [8, Proposition 10.5] there is some prime ideal \mathfrak{p}_2 of K^I containing \mathfrak{a} and avoiding x. Since $\Phi(\mathfrak{a}) = \mathscr{F}$, Φ is inclusion preserving and $\mathfrak{p}_1, \mathfrak{p}_2 \supseteq \mathfrak{a}, \Phi(\mathfrak{p}_1) = \Phi(\mathfrak{p}_2)$. As $\mathfrak{p}_1 \neq \mathfrak{p}_2$, this proves that Φ is not injective.

Conversely we assume that *K* is of finite principal generation height and we first show that $\Psi(\operatorname{Prim} 2^I) \subseteq \operatorname{Spec} K^I$ with $\Psi(\Phi(\mathfrak{p})) = \mathfrak{p}$. Let $\mathscr{F} \in \operatorname{Prim} 2^I$ be arbitrary. We claim that $\Psi(\mathscr{F})$ is prime. First note that $(1)_I \notin \Psi(\mathscr{F})$ since $\emptyset \notin \mathscr{F}$. Assume $x, y \in K^I$ and $xry \in \Psi(\mathscr{F})$ for all $r \in K^I$. Let $J_1 := \{i \in I \mid x_i = 0\}$ and $J_2 := \{j \in I \mid y_j = 0\}$. For $i \in I \setminus (J_1 \cup J_2)$, we have $x_i, y_i \neq 0$. Since *K* is simple, the zero ideal of *K* is prime. Hence there must be some $r_i \in K$ with $x_ir_iy_i \neq 0$. Since *K* is simple, the ideal generated by $x_ir_iy_i$ in *K* contains 1. Let $r \in K^I$ which has r_i as the *i*-th component for $i \in I \setminus (J_1 \cup J_2)$. From $xry \in \Psi(\mathscr{F})$ and since *K* has finite principal generation height, we get $\chi(J_1 \cup J_2) \in \Psi(\mathscr{F})$. In particular, $\chi(J_1 \cup J_2) \in \mathfrak{a}_J$ for some $J \in \mathscr{F}$. Hence $J \subseteq J_1 \cup J_2$ and thus $J_1 \cup J_2 \in \mathscr{F}$. This implies $J_1 \in \mathscr{F}$ or $J_2 \in \mathscr{F}$ and $x = x \cdot \chi(J_1) \in \Psi(\mathscr{F})$ or $y = y \cdot \chi(J_2) \in \Psi(\mathscr{F})$.

By the previous proposition, $\Psi(\Phi(\mathfrak{p})) \subseteq \mathfrak{p}$. For the converse inclusion, take $x \in \mathfrak{p}$ and define $J := \{i \in I \mid x_i = 0\}$. Since *K* is simple and has finite principal generation height we get $\chi(J) \in \mathfrak{p}$, thus $J \in \Phi(\mathfrak{p})$ and $x \in \mathfrak{a}_J$. This proves that $\Phi^{-1} = \Psi$.

Hence Φ is bijective. Since Φ is continuous, Spec K^{I} is compact and Prim 2^{I} is Hausdorff, Φ is a homeomorphism.

It remains to show that K^I is quasi-commutative if (a)–(c) holds. Take $x \in K^I$ and let $Z \subseteq I$ be the set of all $i \in I$ with $x_i = 0$. Since K has finite principal generation height we clearly have $U(x) = U(\chi(Z))$. Since $\Phi(U(x)) = D(Z)$ and Φ is a homeomorphism it follows that U(x) is compact. Thus K^I is quasi-commutative.

REMARK 13. If *R* is a ring with center Z(R), then the canonical embedding $Z(R) \hookrightarrow R$ induces a continuous mapping Spec $R \to \text{Spec } Z(R)$. If *K* and *I* are as above, then the mapping Φ : Spec $K^I \to \text{Prim } 2^I$ factorizes through Spec $K^I \to \text{Spec } Z(K)^I$ and Spec $Z(K)^I \to \text{Prim } 2^I$. Observe that the latter mapping is a homeomorphism since *K* is simple and thus Z(K) is a field.

5. A Method to Produce Non Quasi-commutative Rings

In this section we consider a prime ideal \mathfrak{p} of a ring R which is not completely prime and we construct a ring out of these data which is not quasi-commutative (cf. Remark 17 and Proposition 16 below). This will give a tool to produce a ring which is not spectral (cf. Theorem 20) and a tool to produce a spectral ring, which is not quasicommutative (cf. Theorem 18).

LEMMA 14. Let I be a nonempty set and let \mathfrak{B} be a filter on I containing all cofinite subsets of I. Take a prime ideal \mathfrak{p} of a ring k and let R be a subring of k^I such that for all x, $y \in k^I$ we have

 $\{i \in I \mid x_i = y_i\} \in \mathfrak{B} \text{ and } x \in R \Rightarrow y \in R.$

Fix an index $j \in I$ *. Then* $\{x \in R \mid x_j \in p\}$ *is a prime ideal of* R*.*

Proof. Set $q := \{x \in R \mid x_j \in p\}$. Take $x, y \in R$ with $xRy \subseteq q$. We must show $x_j \in p$ or $y_j \in p$ and since p is prime it is enough to show $x_jky_j \subseteq p$. If $a \in k$, then by the assumption on the filter \mathfrak{B} and the ring R the element $z \in k^I$ defined by $z_j = a$ and $z_i = 0$ ($i \neq j$) is in R. Hence $xzy \in q$ says $x_jay_j \in p$ as desired. \Box

DEFINITION. Let *R* be a ring and take $x, y \in R$. We call the set $\{U(xry) | r \in R\}$ the *base cover* defined by *x*, *y* on Spec *R*. Note that $\bigcup_{r \in R} U(xry) = U(x) \cap U(y)$. We call the base cover *finitary* if there is a finite set $E \subseteq R$ with $\bigcup_{r \in E} U(xry) = U(x) \cap U(y)$.

REMARK 15. *R* is quasi-commutative iff all base covers defined by elements $x, y \in R$ are finitary.

Proof. If *R* is quasi-commutative then the $U(x), x \in X$ are open and compact. Since Spec *R* is spectral, $U(x) \cap U(y)$ is also compact. In particular, the base cover of *x*, *y* is finitary.

If *R* is not quasi-commutative, then there is a locally prime ideal a of *R* which is not prime. Hence there are $x, y \in R$ with $xRy \subseteq a$ such that $x, y \notin a$. The base cover of x, y is not finitary. To see this take $r_1, \ldots, r_n \in R$. Since a is a locally prime ideal, $xr_iy \in a$ for each i and $x, y \notin a$ there is a prime ideal p of *R* with $xr_iy \in p$ for each i and $x, y \notin p$. Thus $p \in U(x) \cap U(y) \setminus (U(xr_1y) \cup \ldots \cup U(xr_ny))$ as desired.

PROPOSITION 16. Let k be a ring and let \mathfrak{p} be a prime ideal of k. Take $\xi, \eta \in k$ with $\xi, \eta \notin \mathfrak{p}$. Let k' be a subring of k such that $\xi k' \eta \subseteq \mathfrak{p}$. Let k_0 be the subring of k generated by k' and ξ, η .

- (1) We have $\xi k_0 \eta \subseteq \mathfrak{p}$.
- (2) Let I be an infinite set and let \mathfrak{B} be a proper filter on I containing all cofinite subsets of I. Define $x, y \in k^I$ by $x_i := \xi, y_i := \eta$ $(i \in I)$ and set

$$R := \{r \in k^I | \{i \in I | r_i \in k_0\} \in \mathfrak{B}\}.$$

Then R is a subring of k^{I} containing x, y and the base cover defined by x and y on Spec R is not finitary. In particular, Spec $R \neq X$ Spec R.

Proof. (1) In order to see $\xi k_0 \eta \subseteq \mathfrak{p}$, it is enough to show $\xi a_1 \dots a_n \eta \in \mathfrak{p}$ for all $n \in \mathbb{N}$, where each a_i is from k', or equal to ξ or equal to η ; this holds true as one sees immediately by induction on n.

(2) Clearly, *R* is a subring of k^{I} and since $\xi, \eta \in k_{0}$, we have $x, y \in R$. Let $E \subseteq R$ be finite. Since \mathfrak{B} is a proper filter, there is some $j \in I$ such that $r_{j} \in k_{0}$ for each $r \in E$.

Let $q := \{r \in R \mid r_j \in p\}$. Since *R* and \mathfrak{B} fulfill the requirements of Lemma 14, we know that q is a prime ideal of *R*. As $\xi, \eta \in p$ we have $q \in U(x) \cap U(y)$. If $r \in E$, then $(xry)_j = \xi r_j \eta \in p$ since $r_j \in k_0$. We get $xry \in q$, thus $q \notin \bigcup_{r \in E} U(xry)$. This shows that $\bigcup_{r \in E} U(xry) \subsetneq U(x) \cap U(y)$, hence the base cover defined by *x* and *y* on Spec *R* is not finitary.

REMARK 17. Observe that the situation in Proposition 16 can be produced for every prime ideal \mathfrak{p} of k, which is not completely prime: take $\xi, \eta \in k \setminus \mathfrak{p}$ with $\xi\eta \in \mathfrak{p}$ and let k_0 be the subring of k generated by the center Z of k and ξ, η . Then, as $\xi\eta \in \mathfrak{p}$, also $\xi Z\eta \subseteq \mathfrak{p}$, hence $\xi k_0\eta \subseteq \mathfrak{p}$.

Another choice for k_0 is the subring of k generated by ξ and the subring k' of all elements of k that commute with η .

6. A Spectral Ring which is not Quasi-commutative

THEOREM 18. There exists a ring R such that Spec R is a Boolean space (in particular, R is spectral) and such that Spec $R \neq X$ Spec R.

Proof. Let *K* be a field, $k := M_2(K)$ and $\xi := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in k$. Denote by k_0 the subring of *k* generated by *K* and ξ . Let *I* be an infinite set and let \mathfrak{B} be a proper filter on *I* containing all cofinite subsets of *I*. Set $R := \{r \in k^I | \{i \in I | r_i \in k_0\} \in \mathfrak{B}\}.$

We claim that Spec *R* is Boolean and Spec $R \neq X$ Spec *R*. By Proposition 16 applied to ξ , $\eta = \xi$ and $\mathfrak{p} = \{0\}$, the base cover of ξ^I and ξ^I defined on Spec *R* is not finitary (i.e., $U(\xi^I)$ is not compact). Hence it is enough to show that Spec *R* is Boolean.

CLAIM 1.
$$k_0 = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} | a, b \in K \right\}$$
 is commutative, k_0 is the centralizer of ξ and $k_0^{\times} = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} | a, b \in K, a \neq 0 \right\}.$

Proof of the claim: Clearly, k_0 is commutative. Since $\xi^2 = 0$, k_0 is of the desired form. For $a, b \in K$, $a \neq 0$ we have $\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{a} & -\frac{b}{a^2} \\ 0 & \frac{1}{a} \end{bmatrix} \in k_0$, hence the units of k_0 have the form as claimed. A straightforward computation shows that k_0 is the centralizer of ξ .

CLAIM 2. Take $r, s \in R$ and let $e \in \{0, 1\}^I$ be defined by $e_i = 1 \Leftrightarrow r_i s_i r_i \neq 0$. Then $U(rsr) \subseteq U(e) \subseteq U(r)$.

Proof of the claim: As rsr = rsre we have $U(rsr) \subseteq U(e)$. In order to prove $U(e) \subseteq U(r)$ we define elements $a, b, c, d \in k^{I}$ as follows. If $i \in I$ with $r_{i}s_{i}r_{i} = 0$ we take $a_{i} = b_{i} = c_{i} = d_{i} = 0$. If $i \in I$ with $r_{i}s_{i}r_{i} \neq 0$ such that $s_{i} \notin k_{0}$ or $r_{i} \notin k_{0}$, then we take $a_{i}, b_{i}, c_{i}, d_{i} \in k$ so that $a_{i}r_{i}b_{i} + c_{i}r_{i}d_{i} = 1$. If $i \in I$ with $r_{i}s_{i}r_{i} \neq 0$, such that $s_{i}, r_{i} \in k_{0}$, then $0 \neq r_{i}s_{i}r_{i} = s_{i}r_{i}^{2}$ and r_{i} must be a unit in k_{0} (all squares of non-units in k_{0} are zero!); thus we may take $a_{i} = r_{i}^{-1} \in k_{0}, b_{i} = 1$ and $c_{i} = d_{i} = 0$.

It follows that e = arb + crd. Since $\{i \in I \mid a_i, b_i, c_i, d_i \in k_0\}$ contains $\{i \in I \mid s_i \in k_0\} \cap \{i \in I \mid r_i \in k_0\}$ and $r, s \in R$, it follows that $a, b, c, d \in R$. Hence e = arb + crd implies $U(e) \subseteq U(r)$.

CLAIM 3. The mapping ρ : Spec $R \to$ Spec K^I which sends \mathfrak{q} to $\mathfrak{q} \cap K^I$ is a homeomorphism. In particular, Spec R is Boolean.

Proof of the claim: Since K^I is central, $q \cap K^I$ is indeed a prime ideal of K^I for every $q \in$ Spec R. First we show

$$\mathfrak{p} \in \operatorname{Spec} K^{I} \Rightarrow \mathfrak{p} R \subsetneq R.$$

By Theorem 12, \mathfrak{p} is of the form $\Psi(\mathscr{F}) = \bigcup_{J \in \mathscr{F}} \mathfrak{a}_J$ for some $\mathscr{F} \in \operatorname{Prim} 2^I$, where $\mathfrak{a}_J = \prod_{i \in I \setminus J} K \times \prod_{j \in J} \{0\}$. As $\mathfrak{p}_R \triangleleft R$, it suffices to show $1 \notin \mathfrak{p}_R$. Assume otherwise. \mathfrak{D} Springer Then for some $p^{(k)} \in \mathfrak{p}$ and $s_k \in R$ we have $1 = \sum_{k=1}^m p^{(k)} s_k$. Hence $p^{(k)} \in \mathfrak{a}_{J_k}$ for some $J_k \in \mathscr{F}$. In particular, $p_j^{(k)} = 0$ for $j \in J_k$. So $p_j^{(k)} = 0$ for all $j \in J_1 \cap \cdots \cap J_m \neq \emptyset$. This shows $1 \neq \sum_{k=1}^m p^{(k)} s_k$.

As $\mathfrak{p}R$ is a proper ideal of R, there is a maximal (and hence prime) ideal \mathfrak{m} of R above $\mathfrak{p}R$. On the other hand, $\mathfrak{m} \cap K^I$ is a prime ideal of Spec K^I that contains $\mathfrak{p}(K^I$ is central). As Spec K^I is Boolean by Theorem 12, we have $\mathfrak{m} \cap K^I = \mathfrak{p}$.

This shows that ρ is surjective. In order to show that ρ is injective let $\mathfrak{p}_1, \mathfrak{p}_2 \in$ Spec *R* with $\mathfrak{p}_1 \notin \mathfrak{p}_2$. Let $r \in \mathfrak{p}_1 \setminus \mathfrak{p}_2$. Then $\mathfrak{p}_2 \in U(r)$ and $\mathfrak{p}_1 \notin U(r)$. Let $s \in R$ satisfy $\mathfrak{p}_2 \in U(rsr) \subseteq U(r)$. By Claim 2, there is some $a \in K^I$ with $\mathfrak{p}_2 \in U(a) \subseteq U(r)$. Hence also $\mathfrak{p}_1 \notin U(a)$ and $a \in (\mathfrak{p}_1 \cap K^I) \setminus \mathfrak{p}_2$ as desired.

So we know that ρ is bijective. For each $a \in K^I$ we certainly have $\rho^{-1}(U(a)) = U(a)$, hence ρ is continuous. As Spec K^I is Hausdorff and Spec R is compact, ρ is indeed a homeomorphism. This concludes the proof of the theorem.

REMARK 19. For the ring *R* constructed in the proof of Theorem 18, the open and compact subsets of Spec *R* are precisely the sets U(a), where $a \in \{0, 1\}^I \subseteq R$. This follows easily from Theorem 12 and Claim 3 of the proof of Theorem 18.

7. A von Neumann Regular Ring which is not Spectral

At the end of [1] (see also [2] after Proposition 40) an example of a ring which is not quasi-commutative is given. Together with the claim that every spectral ring is quasi-commutative the author deduces the existence of non-spectral rings. As we have seen in Theorem 18, this implication fails in general. Nevertheless, not every ring is spectral:

THEOREM 20. There is a von Neumann regular ring R such that Spec R is T_1 but not a spectral space.

Proof. The following example was proposed by Goodearl and then studied by Belluce in [1, 2]. Let K be a field and R the ring of all sequences $(a_1, a_2, ...)$ of 2×2 matrices over K that are eventually diagonal. Let $\xi := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\eta := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in k := M_2(K)$. Since matrix rings over fields are von Neumann regular it follows easily that R is von Neumann regular. We show that R is not quasi-commutative; by Proposition 8, this implies that R is not spectral.

With $k_0 := \{a \in k \mid a \text{ is diagonal}\}$ we have $\xi, \eta \in k_0$ and $\xi k_0 \eta = \xi \eta k_0 = \{0\} \in \text{Spec} k$. Let $x := \xi^{\mathbb{N}}, y := \eta^{\mathbb{N}}$. By Proposition 16 applied to the filter of cofinite subsets of \mathbb{N} , the base cover defined by x and y on Spec R is not finitary. Hence R is not quasi-commutative (cf. Remark 15).

It remains to show that Spec R is T_1 , i.e., that all prime ideals of R are maximal. Observing that R is a simplified version of [4, Example 6.5] we may apply [4, Theorem 6.2] together with [4, Corollary 6.7] to see that all prime, primitive and maximal ideals of R coincide.

Acknowledgements We wish to thank K. R. Goodearl and the anonymous referee for simplifying our original proof of Theorem 20.

References

- 1. Belluce, L.P.: Spectral spaces and noncommutative rings. Comm. Algebra 19, 1855–1865 (1991)
- 2. Belluce, L.P.: Spectral closure for non-commutative rings. Comm. Algebra 25, 1513–1536 (1997)
- 3. Cohn, P.M.: On n-simple rings. Algebra Universalis 53, 301-305 (2005)
- 4. Goodearl, K.R.: Von Neumann Regular Rings. Pitman, London (1979)
- 5. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag, Basel, (1998)
- 6. Hochster, M.: Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. **142**, 43–60 (1969)
- 7. Kaplansky, I.: Topics in commutative ring theory, Dept. of Math., University of Chicago
- 8. Lam, T.Y.: A first course in noncommutative rings, 2nd edn. Grad. Texts in Math. **131**, Springer, Berlin Heidelberg New York (2001)