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Abstract We investigate the prime spectrum of a noncommutative ring and its
spectral closure, the extended prime spectrum. We construct a ring for which the
prime spectrum is a spectral space different from the extended prime spectrum and
we construct a von Neumann regular ring for which the prime spectrum is not a
spectral space.
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1. Introduction

To each associative ring with identity R a topological space is associated: The so-
called prime spectrum Spec R consisting of all prime ideals of R (an ideal p ( R is
prime if aRb ⊆ p implies a ∈ p or b ∈ p); by definition, the subbasis for the topology
on Spec R are the sets U(a) :=

{
p ∈ Spec R |a /∈ p

}
for a ∈ R.
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The prime spectrum of a commutative ring is always a spectral space, i.e., a compact
T0-space, such that the open and compact subsets are a basis of the topology, closed
under finite intersections and every closed and irreducible subset has a generic point.
In Hochster [6] it is proved that every spectral space is the spectrum of a commutative
ring.

Prime spectra of noncommutative rings have not had the attention given their
commutative counterparts. They are not as well behaved for a variety of reasons.
In general, Spec R will be T0, compact and irreducible closed subsets will have
a generic point. However, there need not be a basis of compact open subsets
which is closed under finite intersections. Therefore several authors studied classes
of noncommutative rings whose prime spectra are spectral spaces. For example,
Kaplansky [7] introduced neo-commutative rings as those rings, for which the product
of two finitely generated ideals is finitely generated, and proved that the prime
spectrum of such a ring is spectral. Belluce [1] generalized Kaplansky’s theorem by
introducing quasi-commutative rings and proving that the prime spectrum of such a
ring is spectral. The question of whether the quasi-commutative rings are precisely
those rings for which the prime spectrum is spectral, was left open.

In 1997 Belluce [2] introduced the spectral closure of Spec R, the so-called
extended prime spectrum XSpec R. He gave an example of a ring R with Spec R 6=

XSpec R and claimed that Spec R 6= XSpec R implies that Spec R is not spectral. It
turns out that this is not true (cf. Theorem 18 below). We introduce the extended
prime spectrum from the viewpoint of spectral spaces, which gives a simplification
of the matter compared with the construction of XSpec R from [2]. Also, many
properties of XSpec R are more easily accessible from our construction.

The paper is organized as follows. In Section 2 we recall the basics about spectral
spaces and we provide the topological tools needed for our purposes (cf. Proposition
1). Section 3 contains the definition and some basic properties of the extended prime
spectrum of a noncommutative ring. In Section 4 we consider spectral rings (i.e., rings
R for which Spec R is a spectral space) and quasi-commutative rings (i.e., rings R for
which Spec R = XSpec R) and we prove that certain products of simple rings are
quasi-commutative with Boolean Spec R. Section 5 contains our first main result. We
show that for every prime ideal p of a ring R which is not completely prime (an ideal
a is completely prime if ab ∈ a ⇒ a ∈ a or b ∈ a) one can construct a ring S which
is not quasi-commutative. This is used in Section 6 to give our second main result,
an example of a spectral ring, which is not quasi-commutative (the ring even has a
Boolean spectrum). In the final section we show that the ring proposed by Goodearl
and studied by Belluce [1, 2] is not spectral thereby improving Belluce’s result (he
showed that this ring is not quasi-commutative).

2. Spectral Spaces

For a topological space X, let
◦

K(X ) := {U ⊆ X|U open and compact}, K (X ) :={
X\U |U ∈

◦

K(X )
}

and let K(X ) be the algebra of subsets of X, generated by
◦

K(X ) ∪ K(X ). If x, y ∈ X and y ∈ {x}, then we say that x specializes to y.
A spectral space is a topological space X, which is compact and T0, such that

◦

K(X ) is a basis of X closed under finite intersections and such that every closed and
irreducible subset A ⊆ X has a generic point, i.e., A = {x} for some x ∈ A.
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If X is a spectral space, then another topology is defined on X, which has
◦

K(X ) ∪

K(X ) as a subbasis of open sets. This topology is called the constructible topology (in
[6] it is called the patch topology) and Xcon denotes X when viewed with this topology.
The first fundamental theorem on spectral spaces says that Xcon is a Boolean space
(i.e., compact, Hausdorff and totally disconnected). A subset of X which is closed
and open in Xcon is called constructible and the constructible subsets of X are exactly
those from K(X ).

A map f: X → Y between spectral spaces X and Y is called spectral if
f −1(V) ∈

◦

K(X ) for all V ∈
◦

K(Y ). In other words, f is spectral iff f is continuous
and continuous with respect to the constructible topologies. The category of spectral
spaces has the spectral maps as morphisms. We now describe the Stone duality for
spectral spaces. Let L = (L, ∧, ∨, 0, 1) be a distributive lattice. Here, we always
assume that lattices contain a least element 0, a largest element 1 and that all lattice
homomorphisms map 0 to 0 and 1 to 1. Let Prim L be the set of prime filters F of
L (a proper filter F is prime if it contains a or b whenever a ∨ b ∈ F ). We view
Prim L as a topological space where a subbasis of open sets consists of all D(a) :=

{F ∈ Prim L|a /∈ F }, where a ∈ L. It turns out that Prim L is a spectral space with
◦

K(Prim L) = {D(a)|a ∈ L}. We write V(a) := Prim L\D(a), hence K(Prim L) =

{V(a)|a ∈ L} is a lattice of subsets of Prim L. The Stone representation says that the
map L → K(Prim L), which sends a to V(a) is a lattice isomorphism (respecting 0
and 1).

Finally, we describe the anti-equivalence between spectral spaces and distributive
lattices. For a lattice homomorphism φ: L → L′ the map Prim φ: Prim L′

→ Prim L,
Prim φ(F ) := φ−1(F ) is a spectral map and Prim is a contravariant functor from
the category of distributive lattices into the category of spectral spaces. The second
fundamental theorem on spectral spaces says that Prim is an anti-equivalence; the
inverse is given by X 7→ K(X ) for a spectral space X. We refer to [5] for proofs of
these facts.

In this paper, we are concerned with subsets of a spectral space that are dense in
the constructible topology. We first collect some properties of this situation on the
level of spectral spaces:

PROPOSITION 1. Let X be a spectral space and Y ⊆ X a subset which is dense in the
constructible topology of X. Then:

(1) For every constructible subset D of X, D is the closure of C := D ∩ Y in Xcon and
is the unique constructible subset D′ of X with the property D′

∩ Y = C.
(2) For every C ∈ K(Y ), the closure CX of C in the constructible topology of X is

constructible in X. CX is the unique constructible subset C′ of X with the property
C′

∩ Y = C.
(3) The map K(Y ) → K(X ) which sends C to CX is an embedding of Boolean

algebras.

(4) C ∈
◦

K(Y ) implies CX ∈
◦

K(X ) and C ∈ K(Y ) implies CX ∈ K(X ).
(5) Now suppose that Y, equipped with the topology induced from X, is a spectral

space. If x ∈ X, then the closure {x} of {x} in X meets Y and {x} ∩ Y has a generic
point in Y. The spectral map 8: X → Y induced by the lattice homomorphism
K(Y ) → K(X ), C 7→ CX sends a point x ∈ X to the generic point of {x} ∩ Y. In
particular, 8 is a retract of the inclusion Y ↪→ X (which is not spectral if Y 6= X).
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Proof. First observe that y1 ∈ Y specializes to y2 ∈ Y in the topology of Y iff y1

specializes to y2 in the topology of X.
Since Y is dense in Xcon, assertion (1) certainly holds. Before proving the other

statements we prove a few claims.

CLAIM 1. For every V ∈
◦

K(Y ) there is some U ∈
◦

K(X ) with U ∩ Y = V.

Proof of the claim. This is so, since V is the union of sets of the form U ∩ Y with

U ∈
◦

K(X ); as V is compact, V is a finite union of such sets, hence indeed we can find

a single U ∈
◦

K(X ) with U ∩ Y = V.

CLAIM 2. For every B ∈ K(Y ) there is some A ∈ K(X ) with A ∩ Y = B.

Proof of the claim. By Claim 1 there is some U ∈
◦

K(X ) with U ∩ Y = Y\B. Now
take A:= X\U.

CLAIM 3. If C ∈ K(Y ), then there is a unique CX ∈ K(X ) with CX ∩ Y = C.

Proof of the claim. Say C =
⋃k

i=1

⋂k
j=1 Bij ∩ Vij, with Bij ∈ K(Y ), Vij ∈

◦

K(Y ). By

Claims 1 and 2 there are Aij ∈ K(X ), Uij ∈
◦

K(X ) with Aij ∩ Y = Bij and Uij ∩ Y =

Vij(1 6 i, j 6 k). Now take CX :=
⋃k

i=1

⋂k
j=1 Aij ∩ Uij.

Now we prove the proposition. By Claim 3 and assertion (1), we know that
assertion (2) holds. Assertion (3) holds, since taking constructible closures preserves
finite unions and complements: If C ∈ K(Y ) then CX and (Y\C)X are constructible,
hence by (1) they have empty intersection. Assertion (4) holds by Claims 1 and 2, and
the uniqueness property of the sets CX.

It remains to show assertion (5), where Y is assumed to be a spectral space. By
assertions (3) and (4), the map K(Y ) → K(X ), C 7→ CX is a lattice homomorphism.

Let 8: X → Y be the corresponding spectral map. Let U ∈
◦

K(X ) with 8 (x) ∈ U.

Since Y is spectral, there is some V ∈
◦

K(Y ) with 8(x) ∈ V ⊆ U. Thus x ∈ 8−1(V) =

VX ⊆ U. This shows that x 8(x).
On the other hand, if y ∈ Y and V ∈

◦

K(y) with y ∈ V, then 8(y) ∈ V; otherwise y ∈

8−1(Y\V)=X\VX, a contradiction. This shows that 8(y) y, thus 8(y)=y for y ∈ Y.
For each y ∈ Y with x y it follows that 8(x) 8(y) = y. Hence 8(x) ∈ Y is the

generic point of {x} ∩ Y. �

Now, we present an example of a spectral space X such that the set of maximal
points (w.r.t. specialization) Y of X is a Boolean space in the topology induced from
X and such that Y is a proper, dense subset of Xcon.

EXAMPLE 2. Let X be an infinite set and take x, y ∈ X with x 6= y. Define

τ := {O ⊆ X | y ∈ O ⇒ x ∈ O and x ∈ O ⇒ O is cofinite}.

Certainly τ is the set of open sets of a topology on X. Moreover,
◦

K(X ) = {O ∈

τ |O is finite or x ∈ O} is a lattice of subsets of X separating points of X and every
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element in τ is a union of elements of
◦

K(X ). The closed subsets of X are those from
{A ⊆ X|x ∈ A ⇒ y ∈ A and A infinite ⇒ x ∈ A}, so every closed and irreducible
subset A of X is either a singleton or x is a generic point of A. Thus every closed
and irreducible subset of X has a generic point. All this shows that X is a spectral
space.

Let Y be the set of maximal points of X, thus Y = X\{x}. Write τY for the topology
of Y induced from X. Then Y is dense in Xcon, τY = {U ⊆ Y | y ∈ U ⇒ U is cofinite}

and
◦

K(Y ) = {U ∈ τY |U is finite or y ∈ U}. It follows that Y is a Boolean space. But

X\{y} ∈
◦

K(X ) and (X\{y}) ∩ Y /∈
◦

K(Y ).

3. The Extended Prime Spectrum

Let R be a ring and let L(R) be the lattice of subsets generated by all the Z(a):=
Spec R\U(a), a ∈ R. Then L(R) is a distributive lattice with smallest element
Z(1) = ∅ and largest element Z(0) = Spec R.

The map 8: Spec R → Prim L(R) which sends p to {S ∈ L(R)|p ∈ S} is obviously
well defined, injective and a homeomorphism onto its image. Moreover, by definition,
the image of 8 in Prim L(R) is dense in the constructible topology. In this sense, the
spectral space Prim L(R) is a spectral closure of Spec R.

In general 8 is not surjective, since for F ∈ Prim L(R) the set J := {a ∈ R|Z (a) ∈

F } need not be a prime ideal of R. We add these sets to Spec R in order to get
an algebraic description of points in Prim L(R). Observe that the set J above has
the property

a1, . . . , ak ∈ J, b 1, . . . , b ` /∈ J ⇒

⇒ ∃p ∈ Spec R : a1, . . . , ak ∈ p ∧ b 1, . . . , b ` /∈ p
(?)

for all a1, . . . , ak, b1, . . . , b` ∈ R.

DEFINITION. A proper ideal J of R is called locally prime (compare [2, Proposition
33]) if property (?) holds for all a1, . . . , ak, b1, . . . , b` ∈ R.

The set of all locally prime ideals of R is denoted by XSpec R (motivated by
extended spectrum). Moreover, for a ∈ R, we define XU(a) := {J ∈ XSpec R|a /∈ J

and X Z (a) := {J ∈ XSpec R|a ∈ J}. Finally, XL(R) denotes the lattice of subsets
generated by all the XZ(a), a ∈ R.

LEMMA 3. The map X8: XSpec R → Prim XL(R), which sends a locally prime ideal
J to {S|J ∈ S}, is bijective.

Proof. Clearly, X8 is well defined and injective. In order to show that X8 is
surjective, take F ∈ Prim XL(R) and define

J := {x ∈ R|X Z (x) ∈ F }.

We prove that J is a locally prime ideal. If x, y ∈ J, then XZ(x − y) ⊇ XZ(x) ∩ XZ(y).
Since F is a filter, x − y ∈ J. Moreover if a, b ∈ R, then XZ(axb) ⊇ XZ(x), hence
axb ∈ J, too. Clearly, ∅ /∈ F implies 1 /∈ J. This shows that J is a proper ideal of R.

Now assume a1, . . . , an ∈ J and b 1, . . . , b m /∈ J. Since F is a prime filter,⋃
jXZ(bj) /∈ F . From

⋂
i X Z (ai) ∈ F and since F is a proper filter we get
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(
⋂

i X Z (ai))\(
⋃

j X Z (bj)) 6= ∅. Hence there is a locally prime ideal of R containing
a1, . . . , an and avoiding b1, . . . , bm. By definition, there is a prime ideal p satisfying
a1, . . . , an ∈ p and b 1, . . . , b m /∈ p.

This shows J ∈ XSpec R and it follows easily that F = X8(J). �

DEFINITION. The topology on XSpec R is the one induced by the bijection X8:
XSpec R → Prim XL(R) from Lemma 3.

Hence XSpec R is a spectral space and
◦

K(XSpec R) is the set of finite unions of
finite intersections of the sets XU(a), a ∈ R.

THEOREM 4. We have the following commutative diagram:

XSpec R
∼=

X�

�� Prim XL(R)

Spec R
�

��
��

��

Prim L(R)

∼= Prim π

��

The prime spectrum Spec R is dense in XSpec R with respect to the constructible
topology. The map π : XL(R) → L(R) which sends a set S to S ∩ Spec R is a lattice
isomorphism.

Proof. This follows directly from the definitions and Lemma 3. �

Applying Proposition 1 (5) to our situation yields:

COROLLARY 5. If Spec R is spectral, then for every locally prime ideal a of R, the
ideal

√
a is prime and the map 8: XSpec R → Spec R, a 7→

√
a is a spectral retract of

the inclusion Spec R ↪→ XSpec R.

Proof. By Theorem 4, Y := Spec R is dense in the constructible topology of X :=
XSpec R and the topology of Spec R is the one induced from XSpec R. Now apply
Proposition 1 (5). �

REMARK 6. Another topological space can be associated to a ring A, namely the
set CSpec A of all completely prime ideals. CSpec A with the topology induced from
Spec A is a spectral space and

◦

K(C Spec A) is the set of all finite unions of finite
intersections of the sets of the form U(a) ∩ CSpec A for a ∈ A.
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4. Spectral and Quasi-commutative Rings

Recall from the introduction that a ring R is called spectral if Spec R is a spectral
space; R is called quasi-commutative if Spec R = XSpec R. Belluce proves

R is quasi-commutative ⇔ R is spectral and U(a) is compact (a ∈ R),

which follows quickly from our Theorem 4, too.

PROPOSITION 7. Let R be a ring such that Spec R is Hausdorff. Then for every a ∈

XSpec R,
√

a ∈ Spec R. If XSpec R is Hausdorff, then R is quasi-commutative.

Proof. Let a ∈ XSpec R. We have to show that there is a unique prime ideal of R
containing a. Suppose there are p, q ∈ Spec R containing a with p 6= q. Since Spec R
is Hausdorff, there are open and compact subsets U, V of XSpec R with p ∈ U , q ∈

V and U ∩ V ∩ Spec R = ∅. Since p and q are specializations of a we get a ∈ U ∩ V.
Hence U ∩ V is a nonempty constructible subset of XSpec R, which does not contain
a point of Spec R. Since Spec R is dense in the constructible topology of XSpec R,
this is not possible.

Therefore, for every a ∈ XSpec R,
√

a ∈ Spec R. If XSpec R is Hausdorff, then
Spec R is a closed subset of XSpec R, since Spec R is compact. Since Spec R is dense
in XSpec R, both sets must be equal. �

Proposition 40 in [2] claims that R is spectral iff R is quasi-commutative. This is
not true, even if Spec R is Boolean, as we show in Theorem 18 below. If R is von
Neumann regular (i.e., for all x ∈ R there is some y ∈ R satisfying xyx = x; for more
on von Neumann regular rings we refer the reader to [4]) then both notions coincide:

PROPOSITION 8. Let R be a von Neumann regular ring. Then

(1) R is quasi-commutative if and only if R is spectral.
(2) If Spec R is Hausdorff, then R is quasi-commutative.

Proof. First note that every ideal a of R satisfies a =
√

a : if x ∈
√

a and y ∈ R with
xyx = x, then xy ∈

√
a and by Lam [8, Chapter 4, (10.6) and (10.7)], there is some

d ∈ N such that (xy)d ∈ a. Since xyx = x, xy is idempotent, thus xy ∈ a, so x = xyx ∈ a.
Now we prove (1). Assume that R is spectral and let a ∈ XSpec R. By Corollary 5,

√
a is prime, hence a =

√
a ∈ Spec R.

(2) Since Spec R is Hausdorff, we know
√

a ∈ Spec R for every a ∈ XSpec R from
Proposition 7. Since

√
a = a for all ideals a we get XSpec R = Spec R. �

In Theorem 20 below, we construct a von Neumann regular ring R for which
Spec R is T1 but not a spectral space.

DEFINITION. Let R be a ring and let I be a nonempty set. If Z ⊆ I, then we write
χ(Z) for the element of RI, which has i-th coordinate 0 if i ∈ Z and 1 if i ∈ I\Z.
For an ideal a ⊆ RI define 8(a):= {Z ⊆ I|χ(Z) ∈ a}. For a filter F on I we define
9(F ) :=

⋃
J∈F aJ , where aJ denotes the ideal RI\J

×{0}J of RI.
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PROPOSITION 9. Let R be a ring and I a nonempty set.

(1) If a ⊆ RI is an ideal, then 8(a) is a filter on I.
(2) If F is a filter on I, then 9(F ) ⊆ RI is an ideal.
(3) 8(9(F )) = F and 9(8(a)) ⊆ a.
(4) 8: Spec RI → Prim 2I is continuous and surjective.

Proof. (1) Take any ideal a ⊆ RI. Assume A ∈ 8(a) and B ⊇ A. Then χ(A) ∈ a

and χ(B) = χ(A) · χ(B) ∈ a. Hence B ∈ 8(a). If A, B ∈ 8(a), then χ(A ∩ B) = χ(A ∪

(I\B)) + χ(B) ∈ a, thus A ∩ B ∈ 8(a). This shows that 8(a) is a filter.
(2) Let F be a filter on I. Take x, y ∈ 9(F ), say x ∈ aJ1 , and y ∈ aJ2 for

J1, J2 ∈ 9(F ). As x − y ∈ aJ1∩J2 and J1 ∩ J2 ∈ 9(F ), this shows x − y ∈ 9(F ). If
r ∈ KI then clearly rx, xr ∈ aJ1 . Hence 9(F ) is an ideal.

(3) Let F be a filter on I. Then

(8 ◦ 9)(F ) = 8

(⋃
J∈F

aJ

)
=

{
Z ⊆ I|(1)I\Z × (0)Z ∈

⋃
J∈F

aJ

}
= F .

For the second part of the statement, take some ideal a ⊆ RI. Then

(9 ◦ 8)(a) = 9
(

{Z ⊆ I|(1)I\Z × (0)Z ∈ a︸ ︷︷ ︸
=:F

}

)
=

⋃
Z∈F

aZ .

If x ∈ aZ for some Z ∈ F , then x = x · χ(Z) ∈ a. Hence (9 ◦ 8)(a) ⊆ a.
(4) To prove that 8 maps prime ideals to prime filters, let p ∈ Spec RI . Take

A, B ⊆ I such that A ∪ B ∈ 8(p). In other words, χ(A)·χ(B) ∈ p. For every x ∈ RI

we have χ(A) · x · χ(B) = x · χ(A) · χ(B) ∈ p. As p is a prime ideal, this implies
χ(A) ∈ p or χ(B) ∈ p. Let us prove that 8: Spec RI → Prim 2I is surjective. For this
let F ∈ Prim 2I be arbitrary. Then 9(F ) is a proper ideal of R and is thus contained
in a prime ideal p. As (8 ◦ 9)(F ) = F and 9 is monotone with respect to inclusion,
we get 8(p) = F . The continuity is clear. �

DEFINITION. Let K be a ring and let x ∈ K. We say that x is of principal generation
height ≤ n ∈ N if the ideal generated by x in K is equal to

KxK + · · · + KxK︸ ︷︷ ︸
n−times

.

We define the principal generation height of x as the least n ∈ N ∪ {∞} such that x is of
principal generation height ≤ n. We say that a ring K is of finite principal generation
height if there is some n ∈ N such that every element of K is of principal generation
height ≤ n. The smallest such n (if it exists) is called the principal generation height
of K. A similar notion for simple rings was studied by Cohn (see, e.g., [3]). In our
notation his n-simple rings are simple rings of principal generation height ≤ n.

EXAMPLE 10. Let D be a division ring. Then Mn(D) is a simple ring of principal
generation height n: If e11 ∈ Mn(D) denotes the matrix which has exactly one entry
different from 0, namely 1 in the upper left corner, then there are no elements
ai, bi ∈ Mn(D) with 1 =

∑n−1
i=1 aie11bi.
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EXAMPLE 11. To see an example of a simple ring of infinite principal generation
height (i.e., not of finite p.g.h.), take

R :=
{

x ∈ M∞(D)|∃y ∈ M2k(D) : x = diag(y, y, . . .)
}
.

So R is the direct limit of the system M2n(D) → M2n+1(D), x 7→ diag(x, x). Therefore
R is a simple ring. Using the idea from the previous example it turns out that R is not
of finite principal generation height.

THEOREM 12. Let K be a simple ring and let I be a nonempty set. Let 8: Spec KI →

Prim 2I be as above.

(1) If I is finite, then 8 is a homeomorphism with inverse 9 : Prim 2I → Spec KI and
KI is quasi-commutative.

(2) If I is infinite, then the following are equivalent:

(a) K is of finite principal generation height,
(b) 8 is injective,
(c) 8 is a homeomorphism.

In this case 8−1
= 9 and KI is quasi-commutative.

Proof. (1) Let us prove that 9 = 8−1. We start by showing that 9 maps prime
filters to prime ideals. Let F ∈ Prim 2I . As I is finite, F is a principal filter, generated
by, say, i0 ∈ I. Hence 9(F ) = ai0 . Clearly, ai0 ∈ Spec KI .

It remains to be seen that all prime ideals of KI are of this form. If an element
x ∈ KI has only nonzero entries, then (x) = KI. Take some p ∈ Spec KI . We claim
that there exists i0 ∈ I with p ⊆ ai0 . Otherwise we have x(i)

∈ p with x(i)
i = 0 for i ∈ I.

Hence χ({i}) ∈ p and thus 1 ∈ p since I is finite. This is clearly a contradiction showing
that p ⊆ ai0 for some i0 ∈ I. Similarly as before, one can show that this implies p = ai0 .

(2) If K is not of finite principal generation height, then there is some x =

(xi)i ∈ I ∈ KI such that xi 6= 0 for all i and such that the set

In :=
{
i ∈ I|xi is of principal generation height > n

}
is nonempty for every n ∈ N. Since I1 ⊇ I2 ⊇ ..., there is some F ∈ Prim 2I containing
every In. Then the ideal (9(F ), x) is proper: To see this, take n ∈ N and suppose there
are a1, ..., an, b1,..., bn ∈ KI and c ∈ 9(F ) with

1 = a1xb 1 + . . . + anxb n + c.

Take J ∈ F with c ∈ aJ , thus cj = 0 for all j ∈ J. Since J ∈ F , also J ∩ In ∈ F . For
j ∈ J ∩ In we have 1 = a1jxjb1j + ... + anjxjbnj + cj = a1jxjb1j + ... + anjxjbnj. But xj is of
principal generation height > n (by definition of In), a contradiction.

Hence the ideal (9(F ), x) is proper and there is a prime ideal p1 of R containing
x and 9(F ). We write a := 9(F ). Observe that K is prime (as it is simple). Hence
for every nonzero a ∈ K there is some b ∈ K such that aba 6= 0. Write M := {y = (yi)i
∈ KI | ∀i ∈ I : yi 6= 0}. In the terminology of [8], M is an m-system containing x. As
a ∩M = ∅, by [8, Proposition 10.5] there is some prime ideal p2 of KI containing a and
avoiding x. Since 8(a) = F , 8 is inclusion preserving and p1, p2 ⊇ a, 8(p1) = 8(p2).
As p1 6= p2, this proves that 8 is not injective.
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Conversely we assume that K is of finite principal generation height and we first
show that 9(Prim 2I) ⊆ Spec KI with 9(8(p)) = p. Let F ∈ Prim 2I be arbitrary.
We claim that 9(F ) is prime. First note that (1)I /∈ 9(F ) since ∅ /∈ F . Assume
x, y ∈ KI and xry ∈ 9(F ) for all r ∈ KI. Let J1 := {i ∈ I | xi = 0) and
J2 := {j ∈ I | yj = 0}. For i ∈ I\(J1 ∪ J2), we have xi, yi 6= 0. Since K is simple,
the zero ideal of K is prime. Hence there must be some ri ∈ K with
xiriyi 6= 0. Since K is simple, the ideal generated by xiriyi in K contains 1. Let
r ∈ KI which has ri as the i-th component for i ∈ I \ (J1 ∪ J2). From xry ∈ 9(F ) and
since K has finite principal generation height, we get χ(J1 ∪ J2) ∈ 9(F ). In particular,
χ(J1 ∪ J2) ∈ aJ for some J ∈ F . Hence J ⊆ J1 ∪ J2 and thus J1 ∪ J2 ∈ F . This implies
J1 ∈ F or J2 ∈ F and x = x·χ(J1) ∈ 9(F ) or y = y·χ(J2) ∈ 9(F ).

By the previous proposition, 9(8(p)) ⊆ p. For the converse inclusion, take x ∈ p

and define J := {i ∈ I | xi = 0}. Since K is simple and has finite principal generation
height we get χ(J) ∈ p, thus J ∈ 8(p) and x ∈ aJ . This proves that 8−1

= 9.
Hence 8 is bijective. Since 8 is continuous, Spec KI is compact and Prim 2I is

Hausdorff, 8 is a homeomorphism.
It remains to show that KI is quasi-commutative if (a)–(c) holds. Take x ∈ KI and

let Z ⊆ I be the set of all i ∈ I with xi = 0. Since K has finite principal generation height
we clearly have U(x) = U(χ(Z)). Since 8(U(x)) = D(Z) and 8 is a homeomorphism
it follows that U(x) is compact. Thus KI is quasi-commutative. �

REMARK 13. If R is a ring with center Z(R), then the canonical embedding Z (R) ↪→

R induces a continuous mapping Spec R → Spec Z(R). If K and I are as above, then
the mapping 8: Spec KI → Prim 2I factorizes through Spec KI → Spec Z(K)I and
Spec Z(K)I → Prim 2I. Observe that the latter mapping is a homeomorphism since K
is simple and thus Z(K) is a field.

5. A Method to Produce Non Quasi-commutative Rings

In this section we consider a prime ideal p of a ring R which is not completely prime
and we construct a ring out of these data which is not quasi-commutative (cf. Remark
17 and Proposition 16 below). This will give a tool to produce a ring which is not
spectral (cf. Theorem 20) and a tool to produce a spectral ring, which is not quasi-
commutative (cf. Theorem 18).

LEMMA 14. Let I be a nonempty set and let B be a filter on I containing all cofinite
subsets of I . Take a prime ideal p of a ring k and let R be a subring of kI such that for
all x, y ∈ kI we have

{i ∈ I | xi = yi} ∈ B and x ∈ R ⇒ y ∈ R.

Fix an index j ∈ I. Then {x ∈ R | x j ∈ p} is a prime ideal of R.

Proof. Set q := {x ∈ R | x j ∈ p}. Take x, y ∈ R with xRy ⊆ q. We must show x j ∈ p

or y j ∈ p and since p is prime it is enough to show x jky j ⊆ p. If a ∈ k, then by the
assumption on the filter B and the ring R the element z ∈ kI defined by zj = a and
zi = 0 (i 6= j) is in R. Hence xzy ∈ q says x jay j ∈ p as desired. �
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DEFINITION. Let R be a ring and take x, y ∈ R. We call the set {U(xry) | r ∈ R} the
base cover defined by x, y on Spec R. Note that

⋃
r∈R U(xry) = U(x) ∩ U(y). We call

the base cover finitary if there is a finite set E ⊆ R with
⋃

r∈E U(xry) = U(x) ∩ U(y).

REMARK 15. R is quasi-commutative iff all base covers defined by elements x, y ∈ R
are finitary.

Proof. If R is quasi-commutative then the U(x), x ∈ X are open and compact. Since
Spec R is spectral, U(x) ∩ U(y) is also compact. In particular, the base cover of x, y
is finitary.

If R is not quasi-commutative, then there is a locally prime ideal a of R which is
not prime. Hence there are x, y ∈ R with xRy ⊆ a such that x, y /∈ a. The base cover
of x, y is not finitary. To see this take r1, . . . , rn ∈ R. Since a is a locally prime ideal,
xriy ∈ a for each i and x, y /∈ a there is a prime ideal p of R with xriy ∈ p for each i and
x, y /∈ p. Thus p ∈ U(x) ∩ U(y)\(U(xr1 y) ∪ . . . ∪ U(xrn y)) as desired. �

PROPOSITION 16. Let k be a ring and let p be a prime ideal of k. Take ξ, η ∈ k with
ξ, η /∈ p. Let k′ be a subring of k such that ξk′η ⊆ p. Let k0 be the subring of k generated
by k′ and ξ, η.

(1) We have ξk0η ⊆ p.
(2) Let I be an infinite set and let B be a proper filter on I containing all cofinite

subsets of I. Define x, y ∈ kI by xi := ξ, yi := η (i ∈ I) and set

R := {r ∈ kI
|{i ∈ I|ri ∈ k0} ∈ B}.

Then R is a subring of kI containing x, y and the base cover defined by x and y on
Spec R is not finitary. In particular, Spec R 6= XSpec R.

Proof. (1) In order to see ξk0η ⊆ p, it is enough to show ξa1 . . . anη ∈ p for all
n ∈ N, where each ai is from k′, or equal to ξ or equal to η; this holds true as one sees
immediately by induction on n.

(2) Clearly, R is a subring of kI and since ξ, η ∈ k0, we have x, y ∈ R. Let E ⊆ R be
finite. Since B is a proper filter, there is some j ∈ I such that rj ∈ k0 for each r ∈ E.

Let q := {r ∈ R | r j ∈ p}. Since R and B fulfill the requirements of Lemma 14, we
know that q is a prime ideal of R. As ξ, η ∈ p we have q ∈ U(x) ∩ U(y). If r ∈ E, then
(xry)j = ξrjη ∈ p since rj ∈ k0. We get xry ∈ q, thus q /∈

⋃
r∈E U(xry). This shows that⋃

r∈E U(xry) ( U(x) ∩ U(y), hence the base cover defined by x and y on Spec R is
not finitary. �

REMARK 17. Observe that the situation in Proposition 16 can be produced for every
prime ideal p of k, which is not completely prime: take ξ, η ∈ k\p with ξη ∈ p and let
k0 be the subring of k generated by the center Z of k and ξ, η. Then, as ξη ∈ p, also
ξ Zη ⊆ p, hence ξk0η ⊆ p.

Another choice for k0 is the subring of k generated by ξ and the subring k′ of all
elements of k that commute with η.
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6. A Spectral Ring which is not Quasi-commutative

THEOREM 18. There exists a ring R such that Spec R is a Boolean space (in
particular, R is spectral) and such that Spec R 6= XSpec R.

Proof. Let K be a field, k := M2(K) and ξ :=

[
0 1
0 0

]
∈ k. Denote by k0 the subring

of k generated by K and ξ. Let I be an infinite set and let B be a proper filter on I
containing all cofinite subsets of I. Set R :=

{
r ∈ kI

| {i ∈ I|ri ∈ k0} ∈ B
}
.

We claim that Spec R is Boolean and Spec R 6= XSpec R. By Proposition 16 applied
to ξ, η = ξ and p = {0}, the base cover of ξI and ξI defined on Spec R is not finitary
(i.e., U(ξI) is not compact). Hence it is enough to show that Spec R is Boolean.

CLAIM 1. k0 =

{[
a b
0 a

]
|a, b ∈ K

}
is commutative, k0 is the centralizer of ξ and

k×

0 =

{[
a b
0 a

]
|a, b ∈ K, a 6= 0

}
.

Proof of the claim: Clearly, k0 is commutative. Since ξ2
= 0, k0 is of the desired

form. For a, b ∈ K, a 6= 0 we have
[

a b
0 a

]−1

=

[
1
a −

b
a2

0 1
a

]
∈ k0, hence the units of

k0 have the form as claimed. A straightforward computation shows that k0 is the
centralizer of ξ.

CLAIM 2. Take r, s ∈ R and let e ∈ {0, 1}I be defined by ei = 1 ⇔ risiri 6= 0. Then
U(rsr) ⊆ U(e) ⊆ U(r).

Proof of the claim: As rsr = rsre we have U(rsr) ⊆ U(e). In order to prove
U(e) ⊆ U(r) we define elements a, b, c, d ∈ kI as follows. If i ∈ I with risiri = 0 we
take ai = bi = ci = di = 0. If i ∈ I with risiri 6= 0 such that si /∈ k0 or ri /∈ k0, then
we take ai, bi, ci, di ∈ k so that airibi + ciridi = 1. If i ∈ I with risiri 6= 0, such that
si, ri ∈ k0, then 0 6= risiri = siri

2 and ri must be a unit in k0 (all squares of non-units in
k0 are zero!); thus we may take ai = ri

−1
∈ k0, bi = 1 and ci = di = 0.

It follows that e = arb + crd. Since {i ∈ I | ai, bi, ci, di ∈ k0} contains {i ∈ I |

si ∈ k0} ∩ {i ∈ I | ri ∈ k0} and r, s ∈ R, it follows that a, b, c, d ∈ R. Hence e = arb +
crd implies U(e) ⊆ U(r).

CLAIM 3. The mapping ρ: Spec R → Spec KI which sends q to q ∩ KI is a
homeomorphism. In particular, Spec R is Boolean.

Proof of the claim: Since KI is central, q ∩ KI is indeed a prime ideal of KI for every
q ∈ Spec R. First we show

p ∈ Spec KI
⇒ pR ( R.

By Theorem 12, p is of the form 9(F ) =
⋃

J∈F aJ for some F ∈ Prim 2I, where
aJ =

∏
i∈I\J K ×

∏
j∈J{0}. As pR G R, it suffices to show 1 /∈ pR. Assume otherwise.
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Then for some p(k)
∈ p and sk ∈ R we have 1 =

∑m
k=1 p(k)sk. Hence p(k)

∈ aJk for
some Jk ∈ F . In particular, pj

(k) = 0 for j ∈ Jk. So pj
(k) = 0 for all j ∈ J1 ∩ · · · ∩ Jm 6=

∅. This shows 1 6=
∑m

k=1 p(k)sk.
As pR is a proper ideal of R, there is a maximal (and hence prime) ideal m of R

above pR. On the other hand, m ∩ KI is a prime ideal of Spec KI that contains p (KI

is central). As Spec KI is Boolean by Theorem 12, we have m ∩ KI = p.
This shows that ρ is surjective. In order to show that ρ is injective let p1, p2 ∈

Spec R with p1 * p2. Let r ∈ p1\p2. Then p2 ∈ U(r) and p1 /∈ U(r). Let s ∈ R satisfy
p2 ∈ U(rsr) ⊆ U(r). By Claim 2, there is some a ∈ KI with p2 ∈ U(a) ⊆ U(r). Hence
also p1 /∈ U(a) and a ∈ (p1 ∩ KI)\p2 as desired.

So we know that ρ is bijective. For each a ∈ KI we certainly have ρ−1(U(a)) = U(a),
hence ρ is continuous. As Spec KI is Hausdorff and Spec R is compact, ρ is indeed a
homeomorphism. This concludes the proof of the theorem. �

REMARK 19. For the ring R constructed in the proof of Theorem 18, the open and
compact subsets of Spec R are precisely the sets U(a), where a ∈ {0, 1}I ⊆ R. This
follows easily from Theorem 12 and Claim 3 of the proof of Theorem 18.

7. A von Neumann Regular Ring which is not Spectral

At the end of [1] (see also [2] after Proposition 40) an example of a ring which is
not quasi-commutative is given. Together with the claim that every spectral ring is
quasi-commutative the author deduces the existence of non-spectral rings. As we
have seen in Theorem 18, this implication fails in general. Nevertheless, not every
ring is spectral:

THEOREM 20. There is a von Neumann regular ring R such that Spec R is T1 but not
a spectral space.

Proof. The following example was proposed by Goodearl and then studied by
Belluce in [1, 2]. Let K be a field and R the ring of all sequences (a1, a2, ...) of

2 × 2 matrices over K that are eventually diagonal. Let ξ :=

[
1 0
0 0

]
, η :=

[
0 0
0 1

]
∈

k := M2(K). Since matrix rings over fields are von Neumann regular it follows easily
that R is von Neumann regular. We show that R is not quasi-commutative; by
Proposition 8, this implies that R is not spectral.

With k0 := {a ∈ k | a is diagonal) we have ξ, η ∈ k0 and ξk0η = ξηk0 = {0} ∈ Spec
k. Let x := ξN, y := ηN. By Proposition 16 applied to the filter of cofinite subsets of
N, the base cover defined by x and y on Spec R is not finitary. Hence R is not quasi-
commutative (cf. Remark 15).

It remains to show that Spec R is T1, i.e., that all prime ideals of R are maximal.
Observing that R is a simplified version of [4, Example 6.5] we may apply [4, Theorem
6.2] together with [4, Corollary 6.7] to see that all prime, primitive and maximal ideals
of R coincide. �
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