The Prime Spectrum and the Extended Prime Spectrum of Noncommutative Rings

Igor Klep · **Marcus Tressl**

Received: 5 March 2005 / Accepted: 10 December 2005 / Published online: 20 September 2006 © Springer Science + Business Media B.V. 2006

Abstract We investigate the prime spectrum of a noncommutative ring and its spectral closure, the extended prime spectrum. We construct a ring for which the prime spectrum is a spectral space different from the extended prime spectrum and we construct a von Neumann regular ring for which the prime spectrum is not a spectral space.

Mathematics Subject Classifications (2000) 06E15 · 16D25

Key words prime ideals · spectral spaces

1. Introduction

To each associative ring with identity *R* a topological space is associated: The socalled *prime spectrum* Spec *R* consisting of all prime ideals of *R* (an ideal $p \subseteq R$ is *prime* if $aRb \subseteq p$ implies $a \in p$ or $b \in p$); by definition, the subbasis for the topology on Spec *R* are the sets $U(a) := \{ \mathfrak{p} \in \text{Spec } R \mid a \notin \mathfrak{p} \}$ for $a \in R$.

I. Klep (\boxtimes)

Department of Mathematics, University of Ljubljana, IMFM, Jadranska 19, SI-1111 Ljubljana, Slovenia e-mail: igor.klep@fmf.uni-lj.si

M. Tressl Universität Regensburg, NWF I-Mathematik, D-93040 Regensburg, Germany e-mail: marcus.tressl@mathematik.uni-regensburg.de

Presented by Ken Goodearl.

The authors are members of the European Research Training Network RAAG (Contract No. HPRN-CT-2001-00271). The first author was also supported by the Ministry of Education, Science and Sport of Slovenia.

The prime spectrum of a commutative ring is always a *spectral space*, i.e., a compact T_0 -space, such that the open and compact subsets are a basis of the topology, closed under finite intersections and every closed and irreducible subset has a generic point. In Hochster $\left[6\right]$ it is proved that every spectral space is the spectrum of a commutative ring.

Prime spectra of noncommutative rings have not had the attention given their commutative counterparts. They are not as well behaved for a variety of reasons. In general, Spec *R* will be T_0 , compact and irreducible closed subsets will have a generic point. However, there need not be a basis of compact open subsets which is closed under finite intersections. Therefore several authors studied classes of noncommutative rings whose prime spectra are spectral spaces. For example, Kaplansk[y \[7](#page-13-0)] introduced neo-commutative rings as those rings, for which the product of two finitely generated ideals is finitely generated, and proved that the prime spectrum of such a ring is spectral. Belluce [\[1](#page-13-0)] generalized Kaplansky's theorem by introducing quasi-commutative rings and proving that the prime spectrum of such a ring is spectral. The question of whether the quasi-commutative rings are precisely those rings for which the prime spectrum is spectral, was left open.

In 1997 Belluce [\[2](#page-13-0)] introduced the spectral closure of Spec *R*, the so-called extended prime spectrum XSpec *R*. He gave an example of a ring *R* with Spec $R \neq$ XSpec *R* and claimed that Spec $R \neq X$ Spec *R* implies that Spec *R* is not spectral. It turns out that this is not true (cf. Theorem 18 below). We introduce the extended prime spectrum from the viewpoint of spectral spaces, which gives a simplification of the matter compared with the construction of XSpec *R* from [\[2](#page-13-0)]. Also, many properties of XSpec *R* are more easily accessible from our construction.

The paper is organized as follows. In Section 2 we recall the basics about spectral spaces and we provide the topological tools needed for our purposes (cf. Proposition 1). Sectio[n](#page-4-0) 3 contains the definition and some basic properties of the extended prime spectrum of a noncommutative ring. In Sectio[n](#page-6-0) 4 we consider *spectral rings* (i.e., rings *R* for which Spec *R* is a spectral space) and *quasi-commutative rings* (i.e., rings *R* for which Spec $R = X$ Spec R) and we prove that certain products of simple rings are quasi-commutative with Boolean Spec *R*. Sectio[n](#page-9-0) 5 contains our first main result. We show that for every prime ideal p of a ring *R* which is not completely prime (an ideal a is *completely prime* if $ab \in \mathfrak{a} \Rightarrow a \in \mathfrak{a}$ or $b \in \mathfrak{a}$) one can construct a ring *S* which is not quasi-commutative. This is used in Sectio[n](#page-11-0) 6 to give our second main result, an example of a spectral ring, which is not quasi-commutative (the ring even has a Boolean spectrum). In the final section we show that the ring proposed by Goodearl and studied by Belluce [\[1,](#page-13-0) 2] is not spectral thereby improving Belluce's result (he showed that this ring is not quasi-commutative).

2. Spectral Spaces

For a topological space *X*, let $\mathring{\mathcal{K}}(X) := \{U \subseteq X | U \text{ open and compact} \}, \overline{\mathcal{K}}(X) :=$ $\{X\setminus U | U \in \stackrel{\circ}{\mathcal{K}}(X)\}$ and let $\mathcal{K}(X)$ be the algebra of subsets of *X*, generated by $\overline{\mathcal{K}}(X) \cup \overline{\mathcal{K}}(X)$. If $x, y \in X$ and $y \in \overline{\{x\}}$, then we say that *x specializes* to *y*.

A spectral space is a topological space *X*, which is compact and T_0 , such that $\mathcal{K}(X)$ is a basis of X closed under finite intersections and such that every closed and irreducible subset *A* ⊆ *X* has a generic point, i.e., *A* = {*x*} for some *x* ∈ *A*.

Springer

If *X* is a spectral space, then another topology is defined on *X*, which has $\overset{\circ}{\mathcal{K}}(X) \cup$ $\overline{\mathcal{K}}(X)$ as a subbasis of open sets. This topology is called the *constructible topology* (in $[6]$ $[6]$ it is called the *patch topology*) and X^{con} denotes X when viewed with this topology. The first fundamental theorem on spectral spaces says that X^{con} is a Boolean space (i.e., compact, Hausdorff and totally disconnected). A subset of *X* which is closed and open in *X*con is called *constructible* and the constructible subsets of *X* are exactly those from $\mathcal{K}(X)$.

A map $f: X \rightarrow Y$ between spectral spaces X and Y is called *spectral* if $f^{-1}(V) \in \mathcal{K}(X)$ for all $V \in \mathcal{K}(Y)$. In other words, *f* is spectral iff *f* is continuous and continuous with respect to the constructible topologies. The category of spectral spaces has the spectral maps as morphisms. We now describe the Stone duality for spectral spaces. Let $L = (L, \wedge, \vee, 0, 1)$ be a distributive lattice. Here, we always assume that lattices contain a least element 0, a largest element 1 and that all lattice homomorphisms map 0 to 0 and 1 to 1. Let Prim *L* be the set of prime filters $\mathcal F$ of *L* (a proper filter $\mathcal F$ is *prime* if it contains *a* or *b* whenever $a \vee b \in \mathcal F$). We view Prim *L* as a topological space where a subbasis of open sets consists of all $D(a) :=$ $\{\mathscr{F} \in \text{Prim } L | a \notin \mathscr{F} \}$, where $a \in L$. It turns out that Prim *L* is a spectral space with $\mathcal{K}(\text{Prim } L) = \{D(a) | a \in L\}.$ We write $V(a) := \text{Prim } L\setminus D(a)$, hence $\overline{\mathcal{K}}(\text{Prim } L) =$ ${V(a)|a \in L}$ is a lattice of subsets of Prim *L*. The Stone representation says that the map $L \to \overline{\mathcal{K}}$ (Prim *L*), which sends *a* to $V(a)$ is a lattice isomorphism (respecting 0 and 1).

Finally, we describe the anti-equivalence between spectral spaces and distributive lattices. For a lattice homomorphism $\phi: L \to L'$ the map Prim $\phi: \text{Prim } L' \to \text{Prim } L$, Prim $\phi(\mathscr{F}) := \phi^{-1}(\mathscr{F})$ is a spectral map and Prim is a contravariant functor from the category of distributive lattices into the category of spectral spaces. The second fundamental theorem on spectral spaces says that Prim is an anti-equivalence; the inverse is given by $X \mapsto \overline{\mathcal{K}}(X)$ for a spectral space X. We refer to [[5\]](#page-13-0) for proofs of these facts.

In this paper, we are concerned with subsets of a spectral space that are dense in the constructible topology. We first collect some properties of this situation on the level of spectral spaces:

PROPOSITION 1. Let *X* be a spectral space and $Y \subseteq X$ a subset which is dense in the *constructible topology of X*. *Then:*

- (1) *For every constructible subset D of X, D is the closure of* $C := D \cap Y$ *in* X^{con} *and is the unique constructible subset D' of X with the property D'* \cap $Y = C$.
- (2) *For every* $C \in \mathcal{K}(Y)$ *, the closure* C_X *of* C *in the constructible topology of* X *is constructible in X.* C_X *is the unique constructible subset C' of X with the property* $C' \cap Y = C$.
- (3) *The map* $K(Y) \to K(X)$ *which sends C to C_X</sub> is an embedding of Boolean algebras.*
- (4) $C \in \overset{\circ}{\mathcal{K}}(Y)$ *implies* $C_X \in \overset{\circ}{\mathcal{K}}(X)$ *and* $C \in \overline{\mathcal{K}}(Y)$ *implies* $C_X \in \overline{\mathcal{K}}(X)$ *.*
- (5) *Now suppose that Y*, *equipped with the topology induced from X, is a spectral space. If* $x \in X$ *, then the closure* $\{\overline{x}\}$ *of* $\{x\}$ *in X meets Y and* $\{\overline{x}\}$ \cap *Y has a generic point in Y. The spectral map* $\Phi: X \to Y$ *induced by the lattice homomorphism* $\mathcal{K}(Y) \to \mathcal{K}(X)$, $C \mapsto C_X$ *sends a point* $x \in X$ *to the generic point of* $\{\overline{x}\} \cap Y$ *. In particular,* Φ *is a retract of the inclusion* $Y \hookrightarrow X$ *(which is not spectral if* $Y \neq X$ *).*

Proof. First observe that $y_1 \in Y$ specializes to $y_2 \in Y$ in the topology of *Y* iff y_1 specializes to y_2 in the topology of X.

Since *Y* is dense in X^{con} , assertion (1) certainly holds. Before proving the other statements we prove a few claims.

CLAIM 1. *For every* $V \in \overset{\circ}{\mathcal{K}}(Y)$ *there is some* $U \in \overset{\circ}{\mathcal{K}}(X)$ *with* $U \cap Y = V$.

Proof of the claim. This is so, since *V* is the union of sets of the form $U \cap Y$ with $U \in \overset{\circ}{\mathcal{K}}(X)$; as *V* is compact, *V* is a finite union of such sets, hence indeed we can find a single $U \in \overset{\circ}{\mathcal{K}}(X)$ with $U \cap Y = V$.

CLAIM 2. For every $B \in \overline{\mathcal{K}}(Y)$ there is some $A \in \overline{\mathcal{K}}(X)$ with $A \cap Y = B$.

Proof of the claim. By Claim 1 there is some $U \in \overset{\circ}{\mathcal{K}}(X)$ with $U \cap Y = Y \setminus B$. Now take $A := X \setminus U$.

CLAIM 3. *If* $C \in K(Y)$, *then there is a unique* $C_X \in K(X)$ *with* $C_X \cap Y = C$.

Proof of the claim. Say $C = \bigcup_{i=1}^{k} \bigcap_{j=1}^{k} B_{ij} \cap V_{ij}$, with $B_{ij} \in \overline{\mathcal{K}}(Y)$, $V_{ij} \in \overset{\circ}{\mathcal{K}}(Y)$. By Claims 1 and 2 there are $A_{ij} \in \overline{\mathcal{K}}(X)$, $U_{ij} \in \overset{\circ}{\mathcal{K}}(X)$ with $A_{ij} \cap Y = B_{ij}$ and $U_{ij} \cap Y =$ V_{ij} (1 \leq *i*, *j* \leq *k*). Now take $C_X := \bigcup_{i=1}^k \bigcap_{j=1}^k A_{ij} \cap U_{ij}$.

Now we prove the proposition. By Claim 3 and assertion (1), we know that assertion (2) holds. Assertion (3) holds, since taking constructible closures preserves finite unions and complements: If $C \in \mathcal{K}(Y)$ then C_X and $(Y \setminus C)_X$ are constructible, hence by (1) they have empty intersection. Assertion (4) holds by Claims 1 and 2, and the uniqueness property of the sets C_X .

It remains to show assertion (5), where *Y* is assumed to be a spectral space. By assertions (3) and (4), the map $\overline{\mathcal{K}}(Y) \to \overline{\mathcal{K}}(X)$, $C \mapsto C_X$ is a lattice homomorphism. Let $\Phi: X \to Y$ be the corresponding spectral map. Let $U \in \mathcal{K}(X)$ with $\Phi(x) \in U$. Since *Y* is spectral, there is some $V \in \mathcal{K}(Y)$ with $\Phi(x) \in V \subseteq U$. Thus $x \in \Phi^{-1}(V) =$ $V_X \subseteq U$. This shows that $x \rightsquigarrow \Phi(x)$.

On the other hand, if $y \in Y$ and $V \in \mathcal{K}(y)$ with $y \in V$, then $\Phi(y) \in V$; otherwise $y \in V$ $\Phi^{-1}(Y\setminus V)=X\setminus V_X$, a contradiction. This shows that $\Phi(y)\rightsquigarrow y$, thus $\Phi(y)=y$ for $y\in Y$.

For each $y \in Y$ with $x \rightsquigarrow y$ it follows that $\Phi(x) \rightsquigarrow \Phi(y) = y$. Hence $\Phi(x) \in Y$ is the generic point of $\{\overline{x}\} \cap Y$.

Now, we present an example of a spectral space *X* such that the set of maximal points (w.r.t. specialization) *Y* of *X* is a Boolean space in the topology induced from *X* and such that *Y* is a proper, dense subset of X^{con} .

EXAMPLE 2. Let *X* be an infinite set and take *x*, $y \in X$ with $x \neq y$. Define

 $\tau := \{O \subseteq X \mid y \in O \Rightarrow x \in O \text{ and } x \in O \Rightarrow O \text{ is cofinite}\}.$

Certainly τ is the set of open sets of a topology on *X*. Moreover, $\hat{\chi}(X) = \{O \in$ τ |*O* is finite or $x \in O$ } is a lattice of subsets of *X* separating points of *X* and every Springer

element in τ is a union of elements of $\bigwedge^{\circ}(X)$. The closed subsets of *X* are those from ${A \subseteq X | x \in A \Rightarrow y \in A \text{ and } A \text{ infinite } \Rightarrow x \in A}$, so every closed and irreducible subset *A* of *X* is either a singleton or *x* is a generic point of *A*. Thus every closed and irreducible subset of *X* has a generic point. All this shows that *X* is a spectral space.

Let *Y* be the set of maximal points of *X*, thus $Y = X \setminus \{x\}$. Write τ_Y for the topology of *Y* induced from *X*. Then *Y* is dense in X^{con} , $\tau_Y = \{U \subseteq Y | y \in U \Rightarrow U$ is cofinite} and $\mathring{\mathcal{K}}(Y) = \{U \in \tau_Y | U$ is finite or $y \in U\}$. It follows that *Y* is a Boolean space. But $X \setminus \{y\} \in \overset{\circ}{\mathcal{K}}(X)$ and $(X \setminus \{y\}) \cap Y \notin \overset{\circ}{\mathcal{K}}(Y)$.

3. The Extended Prime Spectrum

Let *R* be a ring and let $L(R)$ be the lattice of subsets generated by all the $Z(a)$:= Spec $R\setminus U(a)$, $a \in R$. Then $L(R)$ is a distributive lattice with smallest element $Z(1) = \emptyset$ and largest element $Z(0) = \text{Spec } R$.

The map Φ : Spec $R \to \text{Prim } L(R)$ which sends p to $\{S \in L(R) | \mathfrak{p} \in S \}$ is obviously well defined, injective and a homeomorphism onto its image. Moreover, by definition, the image of Φ in Prim $L(R)$ is dense in the constructible topology. In this sense, the spectral space Prim *L*(*R*) is a spectral closure of Spec *R*.

In general Φ is not surjective, since for $\mathcal{F} \in \text{Prim } L(R)$ the set $\mathcal{F} := \{a \in R | Z(a) \in$ \mathcal{F} } need not be a prime ideal of *R*. We add these sets to Spec *R* in order to get an algebraic description of points in Prim $L(R)$. Observe that the set $\mathfrak J$ above has the property

$$
a_1, \ldots, a_k \in \mathfrak{J}, b_1, \ldots, b_\ell \notin \mathfrak{J} \Rightarrow \n\Rightarrow \exists \mathfrak{p} \in \text{Spec } R : a_1, \ldots, a_k \in \mathfrak{p} \wedge b_1, \ldots, b_\ell \notin \mathfrak{p}
$$
\n
$$
(*)
$$

for all $a_1, ..., a_k, b_1, ..., b_\ell \in R$.

DEFINITION. A proper ideal J of *R* is called *locally prime* (compare [[2,](#page-13-0) Proposition 33]) if property (\star) holds for all $a_1, \ldots, a_k, b_1, \ldots, b_\ell \in R$.

The set of all locally prime ideals of *R* is denoted by XSpec *R* (motivated by *extended spectrum*). Moreover, for $a \in R$, we define $XU(a) := \{ \mathfrak{J} \in X \text{Spec } R | a \notin \mathfrak{J} \}$ and $XZ(a) := \{\mathfrak{J} \in \mathcal{X} \text{Spec } R | a \in \mathfrak{J} \}$. Finally, $XL(R)$ denotes the lattice of subsets generated by all the $XZ(a)$, $a \in R$.

LEMMA 3. *The map X* Φ : XSpec $R \to \text{Prim } XL(R)$ *, which sends a locally prime ideal* \mathfrak{J} *to* $\{S | \mathfrak{J} \in S\}$ *, is bijective.*

Proof. Clearly, $X\Phi$ is well defined and injective. In order to show that $X\Phi$ is surjective, take $\mathcal{F} \in \text{Prim } XL(R)$ and define

$$
\mathfrak{J} := \{ x \in R | XZ(x) \in \mathcal{F} \}.
$$

We prove that \tilde{J} is a locally prime ideal. If $x, y \in \tilde{J}$, then $XZ(x - y) \supseteq XZ(x) \cap XZ(y)$. Since $\mathcal F$ is a filter, $x - y \in \mathcal J$. Moreover if $a, b \in R$, then $XZ(axb) \supseteq XZ(x)$, hence *axb* ∈ $\tilde{\mathfrak{I}}$, too. Clearly, $\emptyset \notin \mathcal{F}$ implies 1 $\notin \mathfrak{I}$. This shows that $\tilde{\mathfrak{I}}$ is a proper ideal of *R*.

Now assume $a_1, \ldots, a_n \in \mathfrak{J}$ and $b_1, \ldots, b_m \notin \mathfrak{J}$. Since \mathscr{F} is a prime filter, $\bigcup_j XZ(b_j) \notin \mathcal{F}$. From $\bigcap_i XZ(a_i) \in \mathcal{F}$ and since \mathcal{F} is a proper filter we get \mathcal{Q} Springer

 $(\bigcap_i XZ(a_i))\setminus (\bigcup_j XZ(b_j)) \neq \emptyset$. Hence there is a locally prime ideal of *R* containing a_1, \ldots, a_n and avoiding b_1, \ldots, b_m . By definition, there is a prime ideal p satisfying $a_1, \ldots, a_n \in \mathfrak{p}$ and $b_1, \ldots, b_m \notin \mathfrak{p}$.

This shows $\mathfrak{J} \in X$ Spec *R* and it follows easily that $\mathcal{F} = X\Phi(\mathfrak{J})$.

DEFINITION. The topology on XSpec R is the one induced by the bijection $X\Phi$: $XSpec R \rightarrow Prim XL(R)$ from Lemma 3.

Hence XSpec *R* is a spectral space and $\overset{\circ}{\mathcal{K}}(X \text{Spec } R)$ is the set of finite unions of finite intersections of the sets $XU(a)$, $a \in R$.

THEOREM 4. *We have the following commutative diagram:*

The prime spectrum Spec *R is dense in* XSpec *R with respect to the constructible topology. The map* π : $XL(R) \rightarrow L(R)$ *which sends a set S to S* \cap Spec R is a lattice *isomorphism.*

Proof. This follows directly from the definitions and Lemma 3.

Applying Proposition 1 (5) to our situation yields:

COROLLARY 5. *If* Spec *R is spectral, then for every locally prime ideal* a *of R*, *the ideal* \sqrt{a} *is prime and the map* Φ : XSpec $R \to \text{Spec } R$, $\mathfrak{a} \mapsto \sqrt{a}$ *is a spectral retract of the inclusion* Spec $R \hookrightarrow X$ Spec R .

Proof. By Theorem 4, $Y := \text{Spec } R$ is dense in the constructible topology of $X :=$ XSpec *R* and the topology of Spec *R* is the one induced from XSpec *R*. Now apply Proposition 1 (5).

REMARK 6. Another topological space can be associated to a ring *A*, namely the set CSpec *A* of all completely prime ideals. CSpec *A* with the topology induced from Spec *A* is a spectral space and $\hat{K}(C)$ Spec *A*) is the set of all finite unions of finite intersections of the sets of the form $U(a) \cap C$ Spec *A* for $a \in A$.

4. Spectral and Quasi-commutative Rings

Recall from the introduction that a ring *R* is called spectral if Spec *R* is a spectral space; *R* is called quasi-commutative if Spec $R = XS$ *R*. Belluce proves

R is quasi-commutative \Leftrightarrow *R* is spectral and $U(a)$ is compact ($a \in R$),

which follows quickly from our Theorem 4, too.

PROPOSITION 7. Let *R* be a ring such that Spec *R* is Hausdorff. Then for every $a \in$ XSpec *R*, [√]^a [∈] Spec *^R*. *If* XSpec *R is Hausdorff, then R is quasi-commutative.*

Proof. Let $a \in XSpec R$. We have to show that there is a unique prime ideal of R containing a. Suppose there are $\mathfrak{p}, \mathfrak{q} \in \text{Spec } R$ containing a with $\mathfrak{p} \neq \mathfrak{q}$. Since Spec R is Hausdorff, there are open and compact subsets *U*, *V* of XSpec *R* with $p \in U$, $q \in$ *V* and $U \cap V \cap$ Spec $R = \emptyset$. Since p and q are specializations of a we get a ∈ $U \cap V$. Hence $U \cap V$ is a nonempty constructible subset of XSpec *R*, which does not contain a point of Spec *R*. Since Spec *R* is dense in the constructible topology of XSpec *R*, this is not possible.

Therefore, for every $a \in X$ Spec *R*, $\sqrt{a} \in$ Spec *R*. If XSpec *R* is Hausdorff, then Spec *R* is a closed subset of XSpec *R*, since Spec *R* is compact. Since Spec *R* is dense in XSpec *R*, both sets must be equal. \square

Proposition 40 in [[2\]](#page-13-0) claims that *R* is spectral iff *R* is quasi-commutative. This is not true, even if Spec *R* is Boolean, as we show in Theorem 18 below. If *R* is *von Neumann regular* (i.e., for all $x \in R$ there is some $y \in R$ satisfying $xyx = x$; for more on von Neumann regular rings we refer the reader to [[4\]\)](#page-13-0) then both notions coincide:

PROPOSITION 8. *Let R be a von Neumann regular ring. Then*

- (1) *R is quasi-commutative if and only if R is spectral.*
- (2) *If* Spec *R is Hausdorff, then R is quasi-commutative.*

Proof. First note that every ideal a of *R* satisfies $a = \sqrt{a}$: if $x \in \sqrt{a}$ and $y \in R$ with $xyx = x$, then $xy \in \sqrt{a}$ and by Lam [[8,](#page-13-0) Chapter 4, (10.6) and (10.7)], there is some $d \in \mathbb{N}$ such that $(xy)^d \in \mathfrak{a}$. Since $xyx = x, xy$ is idempotent, thus $xy \in \mathfrak{a}$, so $x = xyx \in \mathfrak{a}$.

Now we prove (1). Assume that *R* is spectral and let $a \in XSpec R$. By Corollary 5, $\sqrt{\mathfrak{a}}$ is prime, hence $\mathfrak{a} = \sqrt{\mathfrak{a}} \in \text{Spec } R$.

(2) Since Spec *R* is Hausdorff, we know $\sqrt{a} \in$ Spec *R* for every $a \in$ XSpec *R* from Proposition 7. Since $\sqrt{\alpha} = \alpha$ for all ideals α we get XSpec $R = \text{Spec } R$.

In Theorem 20 below, we construct a von Neumann regular ring *R* for which Spec *R* is T_1 but not a spectral space.

DEFINITION. Let *R* be a ring and let *I* be a nonempty set. If $Z \subseteq I$, then we write $\chi(Z)$ for the element of R^I , which has *i*-th coordinate 0 if $i \in Z$ and 1 if $i \in I\setminus Z$. For an ideal $a \subseteq R^I$ define $\Phi(a) := \{ Z \subseteq I | \chi(Z) \in \mathfrak{a} \}$. For a filter $\mathcal F$ on *I* we define $\Psi(\mathscr{F}) := \bigcup_{J \in \mathscr{F}} \mathfrak{a}_J$, where \mathfrak{a}_J denotes the ideal $R^{I \setminus J} \times \{0\}^J$ of R^I .

PROPOSITION 9. *Let R be a ring and I a nonempty set.*

- (1) *If* $a \subseteq R^I$ *is an ideal, then* $\Phi(a)$ *is a filter on I.*
- (2) *If* \mathcal{F} *is a filter on I, then* $\Psi(\mathcal{F}) \subset R^I$ *is an ideal.*
- (3) $\Phi(\Psi(\mathscr{F})) = \mathscr{F}$ *and* $\Psi(\Phi(\mathfrak{a})) \subset \mathfrak{a}$.
- (4) Φ : Spec $R^I \rightarrow$ Prim 2^{*I*} *is continuous and surjective.*

Proof. (1) Take any ideal $a \subseteq R^I$. Assume $A \in \Phi(a)$ and $B \supseteq A$. Then $\chi(A) \in \mathfrak{a}$ and $\chi(B) = \chi(A) \cdot \chi(B) \in \mathfrak{a}$. Hence $B \in \Phi(\mathfrak{a})$. If $A, B \in \Phi(\mathfrak{a})$, then $\chi(A \cap B) = \chi(A \cup$ $(I \setminus B)$ + $\chi(B) \in \mathfrak{a}$, thus $A \cap B \in \Phi(\mathfrak{a})$. This shows that $\Phi(\mathfrak{a})$ is a filter.

(2) Let $\mathscr F$ be a filter on *I*. Take $x, y \in \Psi(\mathscr F)$, say $x \in \mathfrak a_{J_1}$, and $y \in \mathfrak a_{J_2}$ for *J*₁, *J*₂ ∈ $\Psi(\mathscr{F})$. As $x - y \in \mathfrak{a}_{J_1 \cap J_2}$ and $J_1 \cap J_2 \in \Psi(\mathscr{F})$, this shows $x - y \in \Psi(\mathscr{F})$. If *r* ∈ *K¹* then clearly *rx*, *xr* ∈ a_J . Hence $\Psi(\mathscr{F})$ is an ideal.

(3) Let $\mathcal F$ be a filter on *I*. Then

$$
(\Phi \circ \Psi)(\mathscr{F}) = \Phi\left(\bigcup_{J \in \mathscr{F}} \mathfrak{a}_J\right) = \left\{Z \subseteq I | (1)_{I \setminus Z} \times (0)_Z \in \bigcup_{J \in \mathscr{F}} \mathfrak{a}_J\right\} = \mathscr{F}.
$$

For the second part of the statement, take some ideal $a \subseteq R^I$. Then

$$
(\Psi \circ \Phi)(\mathfrak{a}) = \Psi\left(\underbrace{\{Z \subseteq I | (1)_{I\setminus Z} \times (0)_Z \in \mathfrak{a} \}}_{=: \mathscr{F}}\right) = \bigcup_{Z \in \mathscr{F}} \mathfrak{a}_Z.
$$

If $x \in \mathfrak{a}_Z$ for some $Z \in \mathcal{F}$, then $x = x \cdot \chi(Z) \in \mathfrak{a}$. Hence $(\Psi \circ \Phi)(\mathfrak{a}) \subseteq \mathfrak{a}$.

(4) To prove that Φ maps prime ideals to prime filters, let $p \in Spec R^I$. Take $A, B \subseteq I$ such that $A \cup B \in \Phi(\mathfrak{p})$. In other words, $\chi(A) \cdot \chi(B) \in \mathfrak{p}$. For every $x \in R^I$ we have $\chi(A) \cdot x \cdot \chi(B) = x \cdot \chi(A) \cdot \chi(B) \in \mathfrak{p}$. As p is a prime ideal, this implies $\chi(A) \in \mathfrak{p}$ or $\chi(B) \in \mathfrak{p}$. Let us prove that Φ : Spec $R^I \to \text{Prim } 2^I$ is surjective. For this let \mathcal{F} ∈ Prim 2^{*I*} be arbitrary. Then $\Psi(\mathcal{F})$ is a proper ideal of *R* and is thus contained in a prime ideal p. As $(\Phi \circ \Psi)(\mathscr{F}) = \mathscr{F}$ and Ψ is monotone with respect to inclusion, we get $\Phi(\mathfrak{p}) = \mathscr{F}$. The continuity is clear.

DEFINITION. Let *K* be a ring and let $x \in K$. We say that *x* is of *principal generation height* $\leq n \in \mathbb{N}$ if the ideal generated by *x* in *K* is equal to

$$
\underbrace{KxK+\cdots+KxK}_{n-\text{times}}.
$$

We define *the principal generation height of x* as the least $n \in \mathbb{N} \cup \{\infty\}$ such that *x* is of principal generation height $\leq n$. We say that a ring *K* is of *finite principal generation height* if there is some $n \in \mathbb{N}$ such that every element of *K* is of principal generation height ≤ *n*. The smallest such *n* (if it exists) is called the *principal generation height* of *K*. A similar notion for simple rings was studied by Cohn (see, e.g., [\[3](#page-13-0)]). In our notation his *n*-simple rings are simple rings of principal generation height $\leq n$.

EXAMPLE 10. Let *D* be a division ring. Then $M_n(D)$ is a simple ring of principal generation height *n*: If $e_{11} \in M_n(D)$ denotes the matrix which has exactly one entry different from 0, namely 1 in the upper left corner, then there are no elements $a_i, b_i \in M_n(D)$ with $1 = \sum_{i=1}^{n-1} a_i e_{11} b_i$.

 $\hat{\mathfrak{D}}$ Springer

EXAMPLE 11. To see an example of a simple ring of infinite principal generation height (i.e., not of finite p.g.h.), take

$$
R := \left\{ x \in M_{\infty}(D) | \exists y \in M_{2^k}(D) : x = \text{diag}(y, y, \ldots) \right\}.
$$

So *R* is the direct limit of the system $M_{2^n}(D) \to M_{2^{n+1}}(D), x \mapsto \text{diag}(x, x)$. Therefore *R* is a simple ring. Using the idea from the previous example it turns out that *R* is not of finite principal generation height.

THEOREM 12. Let K be a simple ring and let I be a nonempty set. Let Φ : Spec $K^I \rightarrow$ Prim 2*^I be as above.*

- (1) *If I is finite, then* Φ *is a homeomorphism with inverse* Ψ : *Prim* $2^I \rightarrow Spec K^I$ *and KI is quasi-commutative*.
- (2) *If I is infinite, then the following are equivalent*:
	- (a) *K is of finite principal generation height,*
	- (b) Φ *is injective*,
	- (c) Φ *is a homeomorphism*.

In this case $\Phi^{-1} = \Psi$ *and K^I is quasi-commutative.*

Proof. (1) Let us prove that $\Psi = \Phi^{-1}$. We start by showing that Ψ maps prime filters to prime ideals. Let $\mathscr{F} \in \mathrm{Prim}\ 2^I$. As *I* is finite, \mathscr{F} is a principal filter, generated by, say, $i_0 \in I$. Hence $\Psi(\mathscr{F}) = \mathfrak{a}_{i_0}$. Clearly, $\mathfrak{a}_{i_0} \in \text{Spec } K^I$.

It remains to be seen that all prime ideals of K^I are of this form. If an element *x* ∈ *KI* has only nonzero entries, then $(x) = K^I$. Take some $\mathfrak{p} \in \text{Spec } K^I$. We claim that there exists $i_0 \in I$ with $\mathfrak{p} \subseteq \mathfrak{a}_{i_0}$. Otherwise we have $x^{(i)} \in \mathfrak{p}$ with $x_i^{(i)} = 0$ for $i \in I$. Hence $\chi({i}) \in \mathfrak{p}$ and thus $1 \in \mathfrak{p}$ since *I* is finite. This is clearly a contradiction showing that $p \subseteq a_{i_0}$ for some $i_0 \in I$. Similarly as before, one can show that this implies $p = a_{i_0}$.

(2) If K is not of finite principal generation height, then there is some $x =$ $(x_i)_{i \in I} \in K^I$ such that $x_i \neq 0$ for all *i* and such that the set

$$
I_n := \{ i \in I | x_i \text{ is of principal generation height } > n \}
$$

is nonempty for every $n \in \mathbb{N}$. Since $I_1 \supseteq I_2 \supseteq ...$, there is some $\mathscr{F} \in \text{Prim } 2^I$ containing every *I_n*. Then the ideal ($\Psi(\mathcal{F})$, *x*) is proper: To see this, take *n* \in N and suppose there are $a_1, ..., a_n, b_1, ..., b_n \in K^I$ and $c \in \Psi(\mathscr{F})$ with

$$
1 = a_1xb_1 + \ldots + a_nxb_n + c.
$$

Take *J* ∈ \mathcal{F} with *c* ∈ α *J*, thus *c_i* = 0 for all *j* ∈ *J*. Since *J* ∈ \mathcal{F} , also *J* ∩ *I_n* ∈ \mathcal{F} . For *j* ∈ *J* ∩ *I_n* we have 1 = $a_{1j}x_jb_{1j}$ + ... + $a_{nj}x_jb_{nj}$ + c_j = $a_{1j}x_jb_{1j}$ + ... + $a_{nj}x_jb_{nj}$. But x_j is of principal generation height $> n$ (by definition of I_n), a contradiction.

Hence the ideal $(\Psi(\mathscr{F}), x)$ is proper and there is a prime ideal \mathfrak{p}_1 of *R* containing *x* and $\Psi(\mathcal{F})$. We write $\mathfrak{a} := \Psi(\mathcal{F})$. Observe that *K* is prime (as it is simple). Hence for every nonzero $a \in K$ there is some $b \in K$ such that $aba \neq 0$. Write $M := \{y = (y_i)\}\$ \in *K^I* | $\forall i \in I : y_i \neq 0$. In the terminology of [[8\],](#page-13-0) *M* is an *m*-system containing *x*. As $\mathfrak{a} \cap M = \emptyset$, by [[8,](#page-13-0) Proposition 10.5] there is some prime ideal \mathfrak{p}_2 of K^I containing a and avoiding *x*. Since $\Phi(\mathfrak{a}) = \mathscr{F}, \Phi$ is inclusion preserving and $\mathfrak{p}_1, \mathfrak{p}_2 \supseteq \mathfrak{a}, \Phi(\mathfrak{p}_1) = \Phi(\mathfrak{p}_2)$. As $\mathfrak{p}_1 \neq \mathfrak{p}_2$, this proves that Φ is not injective.

Conversely we assume that *K* is of finite principal generation height and we first show that $\Psi(\text{Prim }2^I) \subseteq \text{Spec } K^I$ with $\Psi(\Phi(\mathfrak{p})) = \mathfrak{p}$. Let $\mathscr{F} \in \text{Prim } 2^I$ be arbitrary. We claim that $\Psi(\mathscr{F})$ is prime. First note that $(1)_I \notin \Psi(\mathscr{F})$ since $\emptyset \notin \mathscr{F}$. Assume *x*, *y* ∈ *K^I* and *xry* ∈ $\Psi(\mathcal{F})$ for all *r* ∈ *K^I*. Let *J*₁ := {*i* ∈ *I* | *x_i* = 0) and *J*₂ := {*j* ∈ *I* | *y_i* = 0}. For *i* ∈ $I\setminus (J_1 \cup J_2)$, we have $x_i, y_i \neq 0$. Since *K* is simple, the zero ideal of *K* is prime. Hence there must be some $r_i \in K$ with $x_i r_i y_i \neq 0$. Since *K* is simple, the ideal generated by $x_i r_i y_i$ in *K* contains 1. Let *r* ∈ *K^I* which has *r_i* as the *i*-th component for $i \in I \setminus (J_1 \cup J_2)$. From *xry* ∈ $\Psi(\mathcal{F})$ and since K has finite principal generation height, we get $\chi(J_1 \cup J_2) \in \Psi(\mathscr{F})$. In particular, χ (*J*₁ ∪ *J*₂) ∈ a_{*J*} for some *J* ∈ \mathscr{F} . Hence *J* ⊆ *J*₁ ∪ *J*₂ and thus *J*₁ ∪ *J*₂ ∈ \mathscr{F} . This implies $J_1 \in \mathcal{F}$ or $J_2 \in \mathcal{F}$ and $x = x \cdot \chi(J_1) \in \Psi(\mathcal{F})$ or $y = \gamma \cdot \chi(J_2) \in \Psi(\mathcal{F})$.

By the previous proposition, $\Psi(\Phi(\mathfrak{p})) \subseteq \mathfrak{p}$. For the converse inclusion, take $x \in \mathfrak{p}$ and define $J := \{i \in I \mid x_i = 0\}$. Since K is simple and has finite principal generation height we get χ (*J*) \in p, thus $J \in \Phi$ (p) and $x \in \mathfrak{a}_J$. This proves that $\Phi^{-1} = \Psi$.

Hence Φ is bijective. Since Φ is continuous, Spec K^I is compact and Prim 2^{*I*} is Hausdorff, Φ is a homeomorphism.

It remains to show that K^I is quasi-commutative if (a)–(c) holds. Take $x \in K^I$ and let *Z* ⊆ *I* be the set of all $i \in I$ with $x_i = 0$. Since *K* has finite principal generation height we clearly have $U(x) = U(\chi(Z))$. Since $\Phi(U(x)) = D(Z)$ and Φ is a homeomorphism it follows that $U(x)$ is compact. Thus K^I is quasi-commutative.

REMARK 13. If *R* is a ring with center $Z(R)$, then the canonical embedding $Z(R) \hookrightarrow$ *R* induces a continuous mapping Spec $R \to \text{Spec } Z(R)$. If *K* and *I* are as above, then the mapping Φ : Spec $K^I \to \text{Prim } 2^I$ factorizes through Spec $K^I \to \text{Spec } Z(K)^I$ and Spec $Z(K)^{I} \to \text{Prim } 2^{I}$. Observe that the latter mapping is a homeomorphism since K is simple and thus $Z(K)$ is a field.

5. A Method to Produce Non Quasi-commutative Rings

In this section we consider a prime ideal p of a ring *R* which is not completely prime and we construct a ring out of these data which is not quasi-commutative (cf. Remark 17 and Proposition 16 below). This will give a tool to produce a ring which is not spectral (cf. Theorem 20) and a tool to produce a spectral ring, which is not quasicommutative (cf. Theorem 18).

LEMMA 14. *Let I be a nonempty set and let* B *be a filter on I containing all cofinite subsets of I . Take a prime ideal* p *of a ring k and let R be a subring of kI such that for all* $x, y \in k^I$ *we have*

 $\{i \in I \mid x_i = y_i\} \in \mathfrak{B} \text{ and } x \in R \Rightarrow y \in R.$

Fix an index j ∈ *I. Then* { $x \in R \mid x_i \in \mathfrak{p}$ } *is a prime ideal of R.*

Proof. Set $q := \{x \in R \mid x_i \in \mathfrak{p}\}\$. Take $x, y \in R$ with $xRy \subseteq q$. We must show $x_i \in \mathfrak{p}$ or $y_j \in \mathfrak{p}$ and since \mathfrak{p} is prime it is enough to show $x_jky_j \subseteq \mathfrak{p}$. If $a \in k$, then by the assumption on the filter \mathfrak{B} and the ring *R* the element $z \in k^I$ defined by $z_i = a$ and $z_i = 0$ ($i \neq j$) is in *R*. Hence *xzy* \in q says $x_j a y_j \in \mathfrak{p}$ as desired. \mathcal{D} Springer

DEFINITION. Let *R* be a ring and take *x*, $y \in R$. We call the set $\{U(xry) | r \in R\}$ the *base cover* defined by *x*, *y* on Spec *R*. Note that $\bigcup_{r \in R} U(xry) = U(x) \cap U(y)$. We call the base cover *finitary* if there is a finite set $E \subseteq R$ with $\bigcup_{r \in E} U(xry) = U(x) \cap U(y)$.

REMARK 15. *R* is quasi-commutative iff all base covers defined by elements $x, y \in R$ are finitary.

Proof. If *R* is quasi-commutative then the $U(x)$, $x \in X$ are open and compact. Since Spec *R* is spectral, $U(x) \cap U(y)$ is also compact. In particular, the base cover of *x*, *y* is finitary.

If *R* is not quasi-commutative, then there is a locally prime ideal a of *R* which is not prime. Hence there are *x*, $y \in R$ with $xRy \subseteq a$ such that *x*, $y \notin a$. The base cover of *x*, *y* is not finitary. To see this take $r_1, \ldots, r_n \in R$. Since a is a locally prime ideal, *xr_iy* ∈ a for each *i* and *x*, *y* ∉ *a* there is a prime ideal p of *R* with *xr_iy* ∈ p for each *i* and *x*, *y* ∉ p. Thus $p \in U(x) \cap U(y) \setminus (U(xr_1 y) \cup ... \cup U(xr_n y))$ as desired. *x*, *y* ∉ **p**. Thus $p \in U(x) \cap U(y) \setminus (U(xr_1y) \cup ... \cup U(xr_ny))$ as desired.

PROPOSITION 16. *Let k be a ring and let* p *be a prime ideal of k. Take* ξ, η ∈ *k with* ξ, η ∈/ p*. Let k*⁰ *be a* subring *of k such that* ξ*k*⁰ η ⊆ p*. Let k*⁰ *be the* subring *of k generated by k'* and ξ , η .

- (1) *We have* $\xi k_0 \eta \subseteq \mathfrak{p}$.
- (2) *Let I be an infinite set and let* B *be a proper filter on I containing all* cofinite *subsets of I. Define x,* $y \in k^I$ *by* $x_i := \xi$ *,* $y_i := \eta$ *(* $i \in I$ *) and set*

$$
R := \{ r \in k^I | \{ i \in I | r_i \in k_0 \} \in \mathfrak{B} \}.
$$

Then R is a subring *of kI containing x*, *y and the base cover defined by x and y on* Spec *R* is not finitary. In particular, Spec $R \neq X$ Spec *R*.

Proof. (1) In order to see $\xi k_0 \eta \subseteq \mathfrak{p}$, it is enough to show $\xi a_1 \dots a_n \eta \in \mathfrak{p}$ for all *n* \in N, where each *a_i* is from *k'*, or equal to ξ or equal to η ; this holds true as one sees immediately by induction on *n*.

(2) Clearly, *R* is a subring of *kI* and since $\xi, \eta \in k_0$, we have $x, y \in R$. Let $E \subseteq R$ be finite. Since \mathfrak{B} is a proper filter, there is some $j \in I$ such that $r_j \in k_0$ for each $r \in E$.

Let $q := \{r \in R \mid r_j \in \mathfrak{p}\}\)$. Since *R* and \mathfrak{B} fulfill the requirements of Lemma 14, we know that q is a prime ideal of *R*. As $\xi, \eta \in \mathfrak{p}$ we have $\mathfrak{q} \in U(x) \cap U(y)$. If $r \in E$, then $(xry)_i = \xi r_i \eta \in \mathfrak{p}$ since $r_i \in k_0$. We get $xry \in \mathfrak{q}$, thus $\mathfrak{q} \notin \bigcup_{r \in E} U(xry)$. This shows that $(xry)_j = \xi r_j \eta \in \mathfrak{p}$ since $r_j \in k_0$. We get $xry \in \mathfrak{q}$, thus $\mathfrak{q} \notin \bigcup_{r \in E} U(xry)$. This shows that $\bigcup_{r \in E} U(xry) \subsetneq U(x) \cap U(y)$, hence the base cover defined by *x* and *y* on Spec *R* is not finitary. \Box

REMARK 17. Observe that the situation in Proposition 16 can be produced for every prime ideal p of *k*, which is not completely prime: take $\xi, \eta \in k \backslash \mathfrak{p}$ with $\xi \eta \in \mathfrak{p}$ and let k_0 be the subring of *k* generated by the center *Z* of *k* and ξ , η . Then, as $\xi \eta \in \mathfrak{p}$, also ξ Z η ⊆ p, hence ξ k_0 η ⊆ p.

Another choice for k_0 is the subring of k generated by ξ and the subring k' of all elements of k that commute with η .

6. A Spectral Ring which is not Quasi-commutative

THEOREM 18. *There exists a ring R such that* Spec *R is a Boolean space (in particular, R is spectral) and such that* Spec $R \neq X$ Spec R .

Proof. Let *K* be a field, $k := M_2(K)$ and $\xi := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in k$. Denote by k_0 the subring of *k* generated by *K* and ξ. Let *I* be an infinite set and let B be a proper filter on *I* containing all cofinite subsets of *I*. Set $R := \{r \in k^I | \{i \in I | r_i \in k_0\} \in \mathfrak{B} \}.$

We claim that Spec *R* is Boolean and Spec $R \neq X$ Spec *R*. By Proposition 16 applied to ξ , $\eta = \xi$ and $\mathfrak{p} = \{0\}$, the base cover of ξ^I and ξ^I defined on Spec *R* is not finitary (i.e., $U(\xi^I)$ is not compact). Hence it is enough to show that Spec *R* is Boolean.

CLAIM 1.
$$
k_0 = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} | a, b \in K \right\}
$$
 is commutative, k_0 is the centralizer of ξ and $k_0^{\times} = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} | a, b \in K, a \neq 0 \right\}.$

Proof of the claim: Clearly, k_0 is commutative. Since $\xi^2 = 0$, k_0 is of the desired form. For *a*, $b \in K$, $a \neq 0$ we have $\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$ 0 *a* $\begin{bmatrix} -1 \\ a \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & -\frac{b}{a^2} \\ 0 & \frac{1}{a} \end{bmatrix}$ $\Big] \in k_0$, hence the units of k_0 have the form as claimed. A straightforward computation shows that k_0 is the centralizer of ξ .

CLAIM 2. Take $r, s \in R$ and let $e \in \{0, 1\}^I$ be defined by $e_i = 1 \Leftrightarrow r_i s_i r_i \neq 0$. Then $U(rsr) ⊆ U(e) ⊆ U(r)$.

Proof of the claim: As $rsr = rsre$ we have $U(rsr) \subseteq U(e)$. In order to prove *U*(*e*) ⊆ *U*(*r*) we define elements *a*, *b*, *c*, *d* ∈ *k^I* as follows. If *i* ∈ *I* with $r_i s_i r_i = 0$ we take $a_i = b_i = c_i = d_i = 0$. If $i \in I$ with $r_i s_i r_i \neq 0$ such that $s_i \notin k_0$ or $r_i \notin k_0$, then we take a_i , b_i , c_i , $d_i \in k$ so that $a_i r_i b_i + c_i r_i d_i = 1$. If $i \in I$ with $r_i s_i r_i \neq 0$, such that $s_i, r_i \in k_0$, then $0 \neq r_i s_i r_i = s_i r_i^2$ and r_i must be a unit in k_0 (all squares of non-units in *k*₀ are zero!); thus we may take $a_i = r_i^{-1} \in k_0, b_i = 1$ and $c_i = d_i = 0$.

It follows that $e = arb + crd$. Since $\{i \in I \mid a_i, b_i, c_i, d_i \in k_0\}$ contains $\{i \in I \mid a_i, b_i, c_i, d_i \in k_0\}$ *s_i* ∈ *k*₀} ∩ {*i* ∈ *I* | *r_i* ∈ *k*₀} and *r, s* ∈ *R*, it follows that *a, b, c, d* ∈ *R*. Hence *e* = *arb* + *crd* implies $U(e) \subseteq U(r)$.

CLAIM 3. The mapping ρ : Spec $R \to$ Spec K^I which sends q to q \cap K^I is a homeomorphism. In particular, Spec *R* is Boolean.

Proof of the claim: Since K^I is central, q $\cap K^I$ is indeed a prime ideal of K^I for every $q \in$ Spec *R*. First we show

$$
\mathfrak{p} \in \text{Spec } K^I \Rightarrow \mathfrak{p}R \subsetneq R.
$$

By Theorem 12, \mathfrak{p} is of the form $\Psi(\mathscr{F}) = \bigcup_{J \in \mathscr{F}} \mathfrak{a}_J$ for some $\mathscr{F} \in \text{Prim } 2^I$, where $\mathfrak{a}_J = \prod_{i \in I \setminus J} K \times \prod_{j \in J} \{0\}$. As $\mathfrak{p}R \triangleleft R$, it suffices to show $1 \notin \mathfrak{p}R$. Assume otherwise. \mathcal{D} Springer

Then for some $p^{(k)} \in \mathfrak{p}$ and $s_k \in R$ we have $1 = \sum_{k=1}^{m} p^{(k)} s_k$. Hence $p^{(k)} \in \mathfrak{a}_{J_k}$ for some $J_k \in \mathcal{F}$. In particular, $p_j^{(k)} = 0$ for $j \in J_k$. So $p_j^{(k)} = 0$ for all $j \in J_1 \cap \cdots \cap J_m \neq \emptyset$ Ø. This shows $1 \neq \sum_{k=1}^{m} p^{(k)} s_k$.

As p*R* is a proper ideal of *R*, there is a maximal (and hence prime) ideal m of *R* above p*R*. On the other hand, m ∩ K^I is a prime ideal of Spec K^I that contains p (K^I) is central). As Spec K^I is Boolean by Theorem 12, we have m $\cap K^I = \mathfrak{p}$.

This shows that ρ is surjective. In order to show that ρ is injective let $\mathfrak{p}_1, \mathfrak{p}_2 \in$ Spec *R* with $p_1 \nsubseteq p_2$. Let $r \in p_1 \setminus p_2$. Then $p_2 \in U(r)$ and $p_1 \notin U(r)$. Let $s \in R$ satisfy p_2 ∈ *U*(*rsr*) ⊆ *U*(*r*). By Claim 2, there is some $a \in K^I$ with $p_2 \in U(a) \subseteq U(r)$. Hence also $\mathfrak{p}_1 \notin U(a)$ and $a \in (\mathfrak{p}_1 \cap K^I) \backslash \mathfrak{p}_2$ as desired.

So we know that ρ is bijective. For each $a \in K^I$ we certainly have $\rho^{-1}(U(a)) = U(a)$, hence ρ is continuous. As Spec K^I is Hausdorff and Spec R is compact, ρ is indeed a homeomorphism. This concludes the proof of the theorem. \Box

REMARK 19. For the ring *R* constructed in the proof of Theorem 18, the open and compact subsets of Spec *R* are precisely the sets $U(a)$, where $a \in \{0, 1\}^I \subseteq R$. This follows easily from Theorem 12 and Claim 3 of the proof of Theorem 18.

7. A von Neumann Regular Ring which is not Spectral

At the end of [[1\]](#page-13-0) (see also [[2\]](#page-13-0) after Proposition 40) an example of a ring which is not quasi-commutative is given. Together with the claim that every spectral ring is quasi-commutative the author deduces the existence of non-spectral rings. As we have seen in Theorem 18, this implication fails in general. Nevertheless, not every ring is spectral:

THEOREM 20. *There is a von Neumann regular ring R such that* Spec *R is T*¹ *but not a spectral space.*

Proof. The following example was proposed by Goodearl and then studied by Belluce in [[1,](#page-13-0) [2\].](#page-13-0) Let *K* be a field and *R* the ring of all sequences $(a_1, a_2, ...)$ of 2 x 2 matrices over *K* that are eventually diagonal. Let $\xi := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\eta := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in$ $k := M_2(K)$. Since matrix rings over fields are von Neumann regular it follows easily that R is von Neumann regular. We show that R is not quasi-commutative; by Proposition 8, this implies that *R* is not spectral.

With $k_0 := \{a \in k \mid a \text{ is diagonal} \}$ we have $\xi, \eta \in k_0$ and $\xi k_0 \eta = \xi \eta k_0 = \{0\} \in \text{Spec}$ *k*. Let $x := \xi^N$, $y := \eta^N$. By Proposition 16 applied to the filter of cofinite subsets of N, the base cover defined by *x* and *y* on Spec *R* is not finitary. Hence *R* is not quasicommutative (cf. Remark 15).

It remains to show that Spec R is T_1 , i.e., that all prime ideals of R are maximal. Observing that *R* is a simplified version of [[4, E](#page-13-0)xample 6.5] we may apply [[4, T](#page-13-0)heorem 6.2] together with [[4, C](#page-13-0)orollary 6.7] to see that all prime, primitive and maximal ideals of *R* coincide. \Box

Acknowledgements We wish to thank K. R. Goodearl and the anonymous referee for simplifying our original proof of Theorem 20.

References

- 1. Belluce, L.P.: Spectral spaces and noncommutative rings. Comm. Algebra **19**, 1855–1865 (1991)
- 2. Belluce, L.P.: Spectral closure for non-commutative rings. Comm. Algebra **25**, 1513–1536 (1997)
- 3. Cohn, P.M.: On *n*-simple rings. Algebra Universalis **53**, 301–305 (2005)
- 4. Goodearl, K.R.: Von Neumann Regular Rings. Pitman, London (1979)
- 5. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag, Basel, (1998)
- 6. Hochster, M.: Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. **142**, 43–60 (1969)
- 7. Kaplansky, I.: Topics in commutative ring theory, Dept. of Math., University of Chicago
- 8. Lam, T.Y.: A first course in noncommutative rings, 2nd edn. Grad. Texts in Math. **131**, Springer, Berlin Heidelberg New York (2001)