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Abstract. The theory of integrals is used to analyze the structure of Hopf algebroids. We prove that
the total algebra of a Hopf algebroid is a separable extension of the base algebra if and only if it is
a semi-simple extension and if and only if the Hopf algebroid possesses a normalized integral. It is
a Frobenius extension if and only if the Hopf algebroid possesses a nondegenerate integral. We give
also a sufficient and necessary condition in terms of integrals, under which it is a quasi-Frobenius
extension, and illustrate by an example that this condition does not hold true in general. Our results
are generalizations of classical results on Hopf algebras.
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1. Introduction

The notion of integrals in Hopf algebras has been introduced by Sweedler [33]. The
integrals in Hopf algebras over principal ideal domains were analyzed in [19, 32]
where the following – by now classical – results have been proven:

− A free, finite-dimensional bialgebra over a principal ideal domain is a Hopf
algebra if and only if it possesses a nondegenerate left integral. (Larson–
Sweedler Theorem.)

− The antipode of a free, finite-dimensional Hopf algebra over a principal ideal
domain is bijective.

− A Hopf algebra over a field is finite-dimensional if and only if it possesses a
nonzero left integral.

− The left integrals in a finite-dimensional Hopf algebra over a field form a one
dimensional subspace.

− A Hopf algebra over a field is semi-simple if and only if it possesses a nor-
malized left integral. (Maschke’s Theorem.)

There are numerous generalizations of these results in the literature. Historically
the first is due to Pareigis [27] who proved the following statements on a finitely
generated and projective Hopf algebra (H, �, ε, S) over a commutative ring k:
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− H is a Frobenius extension of k if and only if there exists a Frobenius func-
tional ψ : H → k satisfying (H ⊗ ψ) ◦ � = 1Hψ( ).

− The antipode, S, is bijective.

− The left integrals form a projective rank 1 direct summand of the k-module
H .

− H is a quasi-Frobenius extension of k.

− A finitely generated and projective bialgebra over a commutative ring k, such
that pic(k) = 0, is a Hopf algebra if and only if it possesses a nondegenerate
left integral.

The generalization of the Maschke theorem to Hopf algebras H over commuta-
tive rings k states that the existence of a normalized left integral in H is equivalent
to the separability of H over k, which is further equivalent to its relative semi-
simplicity in the sense of [15, 17] that any H -module is (H, k)-projective [12, 20].
This is equivalent to the true semi-simplicity of H (i.e. the true projectivity of any
H -module [28]) if and only if k is a semi-simple ring [20].

As a nice review on these results we recommend Section 3.2 in [13].
Similar results are known also for the generalizations of Hopf algebras. Integrals

for finite-dimensional quasi-Hopf algebras [14] over fields were studied in [16, 25,
26, 11] and for finite-dimensional weak Hopf algebras [4, 3] over fields in [3, 40].

The purpose of the present paper is to investigate which of the above results
generalizes to Hopf algebroids.

Hopf algebroids with bijective antipode have been introduced in [1, 5]. It is
important to emphasize that this notion of Hopf algebroid is not equivalent to
the one introduced under the same name by Lu in [21]. Here we generalize the
definition of [5, 1] by relaxing the requirement of the bijectivity of the antipode.
A Hopf algebroid consists of a compatible pair of a left and a right bialgebroid
structure [21, 34, 35, 38] on the common total algebra A. The antipode relates
these two left- and right-handed structures. Left/right integrals in a Hopf algebroid
are defined as the invariants of the left/right regular A-module in terms of the counit
of the left/right bialgebroid. Integrals on a Hopf algebroid are the comodule maps
from the total algebra to the base algebra (reproducing the integrals in the dual
bialgebroids, provided the duals possess bialgebroid structures).

The total algebra of a bialgebroid can be looked at as an extension of the base
algebra or its opposite via the source and target maps, respectively. This way there
are four algebra extensions associated to a Hopf algebroid. The main results of the
paper relate the properties of these extensions to the existence of integrals with
special properties:

• A Maschke-type theorem, proving that the separability, and also the (in two
cases left in two cases right) semi-simplicity of any of the four extensions
is equivalent to the existence of a normalized integral in the Hopf algebroid
(Theorem 3.1).
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• Any of the four extensions is a Frobenius extension if and only if there exists
a nondegenerate integral in the Hopf algebroid (Theorem 4.7).

• Any of the four extensions is (in two cases a left in two cases a right) quasi-
Frobenius extension if and only if the total algebra is a finitely generated and
projective module, and the (left or right) integrals on the Hopf algebroid form
a flat module, over the base algebra (Theorem 5.2).

Our main tool in proving the latter two points is the Fundamental Theorem for
Hopf modules over Hopf algebroids (Theorem 4.2).

The paper is organized as follows: We start Section 2 with reviewing some
results on bialgebroids from [9, 18, 21, 30, 31, 34–36, 38], the knowledge of which
is needed for the understanding of the paper. Then we give the definition of Hopf
algebroids and discuss some of its immediate consequences. Integrals both in and
on Hopf algebroids are introduced and some equivalent characterizations are given.

In Section 3 we prove two Maschke-type theorems. The first collects some
equivalent properties (in particular the separability) of the inclusion of the base
algebra in the total algebra of a Hopf algebroid. These equivalent properties are
related to the existence of a normalized integral in the Hopf algebroid. The second
collects some equivalent properties (in particular the coseparability) of the cor-
ing, underlying the Hopf algebroid. These equivalent properties are shown to be
equivalent to the existence of a normalized integral on the Hopf algebroid.

In Section 4 we prove the Fundamental Theorem for Hopf modules over a Hopf
algebroid. This theorem is somewhat stronger than the one that can be obtained
by the application of [7, Theorem 5.6], to the present situation. The main result
of the section is Theorem 4.7. In proving it we follow an analogous line of rea-
soning as in [19]. That is, assuming that one of the module structures of the total
algebra over the base algebra is finitely generated and projective, we apply the
Fundamental Theorem to the Hopf module, constructed on the dual of the Hopf
algebroid (w.r.t. the base algebra). Similarly to the case of Hopf algebras, our result
implies the existence of nonzero integrals on any finitely generated projective Hopf
algebroid. Since the dual of a (finitely generated projective) Hopf algebroid is not
known to be a Hopf algebroid in general, we have no dual result, that is, we do
not know whether there exist nonzero integrals in any finitely generated projective
Hopf algebroid. As a byproduct, also a sufficient and necessary condition on a
finitely generated projective Hopf algebroid is obtained, under which the antipode
is bijective. We do not know, however, whether this condition follows from the
axioms.

In Section 5 we use the results of Section 4 to obtain conditions which are
equivalent to the (either left or right) quasi-Frobenius property of any of the four
extensions behind a Hopf algebroid. In order to show that these conditions do not
hold true in general, we construct a counterexample.

Throughout the paper we work over a commutative ring k. That is, the total and
base algebras of our Hopf algebroids are k-algebras. For an (always associative
and unital) k-algebra A ≡ (A, mA, 1A) we denote by AM, MA and AMA the
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categories of left, right, and bimodules over A, respectively. For the k-module of
morphisms in AM, MA and AMA we write AHom( , ), HomA( , ) and AHomA( , ),
respectively.

2. Integrals for Hopf Algebroids

Hopf algebroids with bijective antipode have been introduced in [5], where several
equivalent reformulations of the definition [5, Definition 4.1] have been given. The
definition we give in this section generalizes the form in [5, Proposition 4.2(iii)] by
allowing the antipode not to be bijective.

Integrals in Hopf algebroids have also been introduced in [5]. As we shall see,
the definition [5, Definition 5.1] applies also in our more general setting. In this
section we introduce integrals also on Hopf algebroids.

In order for the paper to be self-contained we recall some results on bialgebroids
from [38, 21, 34, 35, 18]. For more on bialgebroids we refer to the papers [30, 9,
31, 36].

The notions of Takeuchi’s ×R-bialgebra [38], Lu’s bialgebroid [21] and Xu’s
bialgebroid with anchor [41] have been shown to be equivalent in [9]. We are going
to use the definition in the following form:

DEFINITION 2.1. A left bialgebroid AL = (A, B, s, t, γ, π) consists of two
algebras A and B over the commutative ring k, which are called the total and base
algebras, respectively. A is a B ⊗

k
Bop-ring (i.e. a monoid in B⊗BopMB⊗Bop ) via the

algebra homomorphisms s: B → A and t : Bop → A, called the source and target
maps, respectively. In terms of s and t one equips A with a B–B bimodule structure
BAB as

b · a · b′ := s(b)t (b′)a for a ∈ A, b, b′ ∈ B.

The triple (BAB, γ, π) is a B-coring, that is a comonoid in BMB . Introducing
Sweedler’s convention γ (a) = a(1)

⊗
B

a(2) for a ∈ A, the axioms

a(1)t (b) ⊗
B

a(2) = a(1)
⊗
B

a(2)s(b), (2.1)

γ (1A) = 1A
⊗
B

1A, (2.2)

γ (aa′) = γ (a)γ (a′), (2.3)

π(1A) = 1B, (2.4)

π(a s ◦ π(a′)) = π(aa′), (2.5)

π(a t ◦ π(a′)) = π(aa′) (2.6)

are required for all b ∈ B and a, a′ ∈ A.
Notice that – although A ⊗

B
A is not an algebra – axiom (2.3) makes sense in

view of (2.1).
The homomorphisms of left bialgebroids AL = (A, B, s, t, γ, π) → A′

L =
(A′, B ′, s ′, t ′, γ ′, π ′) are pairs of k-algebra homomorphisms (�: A → A′,
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φ: B → B ′) satisfying

s ′ ◦ φ = � ◦ s, (2.7)

t ′ ◦ φ = � ◦ t, (2.8)

γ ′ ◦ � = (� ⊗
B

�) ◦ γ, (2.9)

π ′ ◦ � = φ ◦ π. (2.10)

The bimodule BAB , appearing in Definition 2.1, is defined in terms of multipli-
cation on the left. Hence – following the terminology of [18] – we use the name
left bialgebroid for this structure. In terms of right multiplication one defines right
bialgebroids analogously. For the details we refer to [18].

Once the map γ : A → A ⊗
B

A is given we can define γ op: A → A ⊗
Bop A via

a �→ a(2) ⊗ a(1). It is straightforward to check that if AL = (A, B, s, t, γ, π) is a
left bialgebroid then AL cop = (A, Bop, t, s, γ op, π) is also a left bialgebroid and
A

op
L = (Aop, B, t, s, γ, π) is a right bialgebroid.
In the case of a left bialgebroid AL = (A, B, s, t, γ, π) the category AM of left

A-modules is a monoidal category. As a matter of fact, any left A-module is a B–B

bimodule via s and t . The monoidal product in AM is defined as the B-module
tensor product with A-module structure

a · (m ⊗
B

m′) := a(1) · m ⊗
B

a(2) · m′ for a ∈ A, m ⊗
B

m′ ∈ M ⊗
B

M ′.

Just the same way as axiom (2.3), also this definition makes sense in the view
of (2.1). The monoidal unit is B with A-module structure

a · b := π(as(b)) for a ∈ A, b ∈ B.

Analogously, in the case of a right bialgebroid AR the category MA of right
A-modules is a monoidal category.

The B-coring structure (BAB, γ, π), underlying the left bialgebroid AL =
(A, B, s, t, γ, π), gives rise to a k-algebra structure on any of the B-duals of BAB

[10, 17.8]. The multiplication on the k-module ∗A := BHom(A, B), for example,
is given by

(∗φ∗ψ)(a) = ∗ψ(t ◦ ∗φ(a(2))a(1)) for ∗φ, ∗ψ ∈ ∗A, a ∈ A (2.11)

and the unit is π . ∗A is a left A-module and A is a right ∗A-module via

a ⇁ ∗φ := ∗φ( a) and a ↽ ∗φ := t ◦ ∗φ(a(2)) a(1) (2.12)

for ∗φ ∈ ∗A, a ∈ A. As it is well known [39, 18], ∗A is also a B ⊗
k

Bop-ring via
the inclusions

∗s: B → ∗A, b �→ π( )b,

∗t : Bop → ∗A, b �→ π( s(b)).

Both maps ∗s and ∗t are split injections of B-modules with common left inverse
∗π : ∗A → B, ∗φ �→ ∗φ(1A). What is more, if A is finitely generated and projective
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as a left B-module, then ∗A has also a right bialgebroid structure (with source and
target maps ∗s and ∗t , respectively, and counit ∗π ).

Notice that the algebra ∗A reduces to the opposite of the usual dual algebra if
(BAB, γ, π) is a coalgebra over a commutative ring B. In the case when A is a
finitely generated projective left B-module, also the coproduct specializes to the
opposite of the usual one in the case when A is a bialgebra. This convention is
responsible for duality to flip the notions of left and right bialgebroids.

Applying the above formulae to the left bialgebroid (AL)cop we obtain a B ⊗
k

Bop-ring structure on A∗ := HomB(A, B). The inclusions B → A∗ and Bop → A∗
will be denoted by s∗ and t∗, respectively. In particular, A∗ is a left A-module and
A is a right A∗-module via

a ⇀ φ∗ := ( a) and a ↼ φ∗ := s ◦ φ∗(a(1)) a(2). (2.13)

If the module A is finitely generated and projective as a right B-module then A∗ is
also a right bialgebroid.

In the case of a right bialgebroid AR = (A, B, s, t, γ, π) the application of
the opposite of the multiplication formula (2.11) to (AR)

op
cop and to (AR)op results

B ⊗
k

Bop-ring structures on A∗ := HomB(A, B) and ∗A := BHom(A, B), respec-
tively. We have the inclusions s∗: B → A∗, t∗: Bop → A∗, ∗s: B → ∗A and
∗t : Bop → ∗A.

In particular, A∗ and ∗A are right A-modules and A is a left A∗-module and a
left ∗A-module via the formulae

φ∗ ↼ a: = φ∗(a ) and φ∗ ⇀ a := a(2) t ◦ φ∗(a(1)), (2.14)
∗φ ↽ a := ∗φ(a ) and ∗φ ⇁ a := a(1) s ◦ ∗φ(a(2)) (2.15)

for φ∗ ∈ A∗, ∗φ ∈ ∗A and a ∈ A. If A is finitely generated and projective as a
right, or as a left B-module then the corresponding dual is also a left bialgebroid.

Before defining the structure that is going to be the subject of the paper let us
stop here and introduce some notations. Analogous notations were already used
in [5].

When dealing with a B ⊗
k

Bop-ring A, we have to face the situation that A

carries different module structures over the base algebra B. In this situation the
usual notation A ⊗

B
A would be ambiguous. Therefore we make the following

notational convention. In terms of the maps s: B → A and t : Bop → A we
introduce four B-modules

BA : b · a := s(b)a,

AB : a · b := t (b)a,

AB : a · b = as(b),
BA : b · a = at (b). (2.16)

(Our notation can be memorized as left indices stand for left modules and right
indices for right modules. Upper indices for modules defined in terms of right mul-
tiplication and lower indices for the ones defined in terms of left multiplication.)
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In writing B-module tensor products we write out explicitly the module struc-
tures of the factors that are taking part in the tensor products, and do not put marks
under the symbol ⊗. For example, we write AB ⊗ BA. Normally we do not denote
the module structures that are not taking part in the tensor product, this should be
clear from the context. In writing elements of tensor product modules we do not
distinguish between the various module tensor products. That is, we write both
a ⊗ a′ ∈ AB ⊗ BA and c ⊗ c′ ∈ AB ⊗ BA, for example.

A left B-module can be considered as a right Bop-module, and sometimes we
want to take a module tensor product over Bop. In this case we use the name of
the corresponding B-module and the fact that the tensor product is taken over
Bop should be clear from the order of the factors. For example, BA ⊗ AB is the
Bop-module tensor product of the right Bop module defined via multiplication by
s(b) on the left, and the left Bop-module defined via multiplication by t (b) on the
left.

In writing multiple tensor products we use different types of letters to denote
which module structures take part in the same tensor product. For example, the
B-module tensor product AB ⊗ BA can be given a right B module structure via
multiplication by t (b) on the left in the second factor. The tensor product of this
right B-module with BA is denoted by AB ⊗ BAB ⊗ BA.

We are ready to introduce the structure that is going to be the subject of the
paper:

DEFINITION 2.2. A Hopf algebroid A = (AL, AR, S) consists of a left bialge-
broid AL = (A, L, sL, tL, γL, πL), a right bialgebroid AR = (A, R, sR, tR, γR, πR)

and a k-module map S: A → A, called the antipode, such that the following
axioms hold true:

(i) sL ◦ πL ◦ tR = tR, tL ◦ πL ◦ sR = sR and

sR ◦ πR ◦ tL = tL, tR ◦ πR ◦ sL = sL, (2.17)

(ii) (γL ⊗ RA) ◦ γR = (AL ⊗ γR) ◦ γL

as maps A → AL ⊗ LAR ⊗ RA and

(γR ⊗ LA) ◦ γL = (AR ⊗ γL) ◦ γR

as maps A → AR ⊗ RAL ⊗ LA, (2.18)

(iii) S is both an L–L bimodule map LAL → LAL

and an R–R bimodule map RAR → RAR, (2.19)

(iv) mA ◦ (S ⊗ LA) ◦ γL = sR ◦ πR and

mA ◦ (AR ⊗ S) ◦ γR = sL ◦ πL. (2.20)

If A = (AL, AR, S) is a Hopf algebroid then so is A
op
cop = ((AR)

op
cop, (AL)

op
cop, S)

and if S is bijective then also Acop = ((AL)cop, (AR)cop, S
−1) and Aop = ((AR)op,

(AL)op, S−1).
The following modification of Sweedler’s convention will turn out to be useful.

For a Hopf algebroid A = (AL, AR, S) we use the notation γL(a) = a(1) ⊗ a(2)
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with lower indices, and γR(a) = a(1) ⊗ a(2) with upper indices for a ∈ A in the
case of the coproducts of AL and of AR, respectively. The axioms (2.18) read in
this notation as

a(1)
(1) ⊗ a(1)

(2) ⊗ a(2) = a(1) ⊗ a(2)
(1) ⊗ a(2)

(2),

a(1)
(1) ⊗ a(1)

(2) ⊗ a(2) = a(1) ⊗ a(2)
(1) ⊗ a(2)

(2)

for a ∈ A.
Examples of Hopf algebroids (with bijective antipode) are collected in [5].

PROPOSITION 2.3. (1) The base algebras L and R of the left and right bialge-
broids in a Hopf algebroid are anti-isomorphic.

(2) For a Hopf algebroid A = (AL, AR, S) the pair (S, πL ◦ sR) is a left
bialgebroid homomorphism (AR)

op
cop → AL and (S, πR ◦ sL) is a left bialgebroid

homomorphism AL → (AR)
op
cop.

Proof. (1) Both πR ◦ sL and πR ◦ tL are anti-isomorphisms L → R with inverses
πL ◦ tR and πL ◦ sR, respectively.

(2) We have seen that the map πL ◦ sR: Rop → L is an algebra homomorphism.
It follows from (2.19), (2.20) and some bialgebroid identities that S: Aop → A is
an algebra homomorphism, as for a, b ∈ A we have

S(1A) = 1A S(1A) = sL ◦ πL(1A) = 1A and

S(ab) = S[tL ◦ πL(a(2)) a(1) b]
= S[a(1) tL ◦ πL(b(2)) b(1)] a(2)

(1)S(a(2)
(2))

= S[a(1)
(1)b

(1)
(1)] a(1)

(2)b
(1)

(2)S(b(2))S(a(2))

= sR ◦ πR(a(1)b(1)) S(b(2)) S(a(2))

= S[b(2) tR ◦ πR(tR ◦ πR(a(1)) b(1))]S(a(2))

= S(b) sR ◦ πR(a(1)) S(a(2)) = S(b)S(a).

The properties (2.7)–(2.8) follow from (2.19) and (2.17) as

sL ◦ πL ◦ sR = S ◦ tL ◦ πL ◦ sR = S ◦ sR,

tL ◦ πL ◦ sR = sR = S ◦ tR.

The properties (2.9)–(2.10) are checked on an element a ∈ A as

γL ◦ S(a) = S(a(1))(1) sL ◦ πL(a(2)) ⊗ S(a(1))(2)

= S(a(1)
(1))(1)a

(1)
(2)S(a(2)) ⊗ S(a(1)

(1))(2)

= S(a(1)
(1))(1) tL ◦ πL(a(1)

(2)(2)) a(1)
(2)(1) S(a(2)) ⊗ S(a(1)

(1))(2)

= S(a(1)(1)
(1))(1)a

(1)(1)
(2)(1)S(a(2))

⊗ S(a(1)(1)
(1))(2)a

(1)(1)
(2)(2)S(a(1)(2))

= S(a(2)) ⊗ sR ◦ πR(a(1)(1)) S(a(1)(2)) = (S ⊗ S) ◦ γ
op
R (a) and

πL ◦ S(a) = πL[S(a(1)) sL ◦ πL(a(2))] = πL ◦ sR ◦ πR(a).
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The proof is completed by the observation that in passing from the Hopf alge-
broid A to A

op
cop the roles of (S, πL ◦ sR) and (S, πR ◦ sL) become interchanged. �

PROPOSITION 2.4. The left bialgebroid AL in a Hopf algebroid A is a ×L-Hopf
algebra in the sense of [30]. That is, the map

α: LA ⊗ AL → AL ⊗ LA, a ⊗ b → a(1) ⊗ a(2)b

is bijective.
Proof. The inverse of α is given by

α−1: AL ⊗ LA → LA ⊗ AL, a ⊗ b �→ a(1) ⊗ S(a(2))b. �
The relation between the left and the right bialgebroids in a Hopf algebroid

A implies relations between the dual algebras A∗ ≡ HomR(AR, R) and A∗ ≡
HomL(AL, L) and also between ∗A ≡ RHom(RA, R) and ∗A ≡ LHom(LA, L):

LEMMA 2.5. For a Hopf algebroid A there exist algebra anti-isomorphisms
σ : ∗A → ∗A and χ : A∗ → A∗ satisfying

a ↽ ∗φ = σ(∗φ) ⇁ a (2.21)

and

φ∗ ⇀ a = a ↼ χ(φ∗) (2.22)

for all ∗φ ∈ ∗A, φ∗ ∈ A∗ and a ∈ A.
Proof. We leave it to the reader to check that the maps

σ : ∗A → ∗A, ∗φ �→ πR( ↽ ∗φ)

and

χ : A∗ → A∗, φ∗ �→ πL(φ∗ ⇀ )

are algebra anti-homomorphisms satisfying (2.21)–(2.22). The inverses are given
by

σ−1: ∗A → ∗A, ∗φ �→ πL(∗φ ⇁ )

and

χ−1: A∗ → A∗, φ∗ �→ πR( ↼ φ∗). �
LEMMA 2.6. The following properties of a Hopf algebroid A = (AL, AR, S) are
equivalent:

(1.a) The module AL is finitely generated and projective.
(1.b) The module AR is finitely generated and projective.
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The following are also equivalent:

(2.a) The module LA is finitely generated and projective.
(2.b) The module RA is finitely generated and projective.

If furthermore S is bijective then all the four properties (1.a), (1.b), (2.a) and (2.b)
are equivalent.

Proof. (1.a) ⇒ (1.b) In terms of the dual bases, {bi} ⊂ A and {βi∗} ⊂ A∗ for the
module AL, the dual bases, {kj } ⊂ A and {κ∗

j } ⊂ A∗ for the module AR, can be
constructed by the requirement that

∑

j

kj ⊗ κ∗
j =

∑

i

b
(1)
i ⊗ [χ−1(βi

∗) ↼ sR ◦ πR ◦ sL ◦ πL(b
(2)
i )]

as elements of AR ⊗ RA∗, where χ is the isomorphism (2.22). The expression on
the right-hand side is well defined since – though the map

AL ⊗ LA∗ → A∗, a ⊗ φ∗ �→ χ−1(φ∗) ↼ sR ◦ πR ◦ sL ◦ πL(a)

is not a left R-module map RAL⊗LA∗ → RA∗ – its restriction to the R-submodule
{∑k ak ⊗ φk∗ ∈ AL ⊗ LA∗ | ∑

k aktL(l) ⊗ φk∗ = ∑
k ak ⊗ φk∗s∗(l) ∀l ∈ L } is so.

(2.a) ⇒ (2.b) Similarly, in terms of the dual bases, {bi} ⊂ A and {∗βi} ⊂ ∗A
for the module LA, the dual bases, {kj } ⊂ A and {∗κj } ⊂ ∗A for the module RA,
can be constructed by the requirement that

∑

j

∗κj ⊗ kj =
∑

i

[σ(∗βi) ↽ tR ◦ πR ◦ tL ◦ πL(b
(1)
i )] ⊗ b

(2)
i

as elements of ∗AR ⊗ RA, where σ is the isomorphism (2.21).
(1.b) ⇒ (1.a) follows by applying (2.a) ⇒ (2.b) to the Hopf algebroid A

op
cop.

(2.b) ⇒ (2.a) follows by applying (1.a) ⇒ (1.b) to the Hopf algebroid A
op
cop.

Now suppose that S is bijective.
(1.a) ⇒ (2.b) In terms of the dual bases, {bi} ⊂ A and {βi∗} ⊂ A∗ for the

module AL, the dual bases, {kj } ⊂ A and {∗κj } ⊂ ∗A for the module RA, can be
constructed by the requirement that

∑

j

∗κj ⊗ kj =
∑

i

πR ◦ tL ◦ βi
∗ ◦ S ⊗ S−1(bi) as elements of ∗AR ⊗ RA.

(2.b) ⇒ (1.a) follows by applying (1.a) ⇒ (2.b) to the Hopf algebroid A
op
cop. �

Now we turn to the study of the notion of integrals in Hopf algebroids. For a
left bialgebroid AL = (A, L, sL, tL, γL, πL) and a left A-module M the invariants
of M with respect to AL are the elements of

Inv(M) := {n ∈ M | a · n = sL ◦ πL(a) · n ∀a ∈ A}.
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Clearly, the invariants of M with respect to (AL)cop coincide with its invariants
with respect to AL. The invariants of a right A-module M with respect to a right
bialgebroid AR are defined as the invariants of M (viewed as a left Aop-module)
with respect to (AR)op.

DEFINITION 2.7. The left integrals in a left bialgebroid AL are the invariants of
the left regular A-module with respect to AL.

The right integrals in a right bialgebroid AR are the invariants of the right
regular A-module with respect to AR.

The left/right integrals in a Hopf algebroid A = (AL, AR, S) are the left/right
integrals in AL/AR, that is the elements of

L(A) = {� ∈ A | a� = sL ◦ πL(a) � ∀a ∈ A}
and

R(A) = {℘ ∈ A | ℘a = ℘ sR ◦ πR(a) ∀a ∈ A}.
For any Hopf algebroid A = (AL, AR, S) we have L(A) = R(A

op
cop) and if S is

bijective then also L(A) = L(Acop) = R(Aop). Since for � ∈ L(A) and a ∈ A,

S(�)a = S[tL ◦ πL(a(1)) �]a(2) = S(a(1)�)a(2) = S(�) sR ◦ πR(a),

we have S(L(A)) ⊆ R(A) and, similarly, S(R(A)) ⊆ L(A).

SCHOLIUM 2.8. The following properties of an element � ∈ A are equivalent:

(1.a) � ∈ L(A),

(1.b) S(a)�(1) ⊗ �(2) = �(1) ⊗ a�(2) ∀a ∈ A,

(1.c) a�(1) ⊗ S(�(2)) = �(1) ⊗ S(�(2))a ∀a ∈ A.

The following properties of the element ℘ ∈ A are also equivalent:

(2.a) ℘ ∈ R(A),

(2.b) ℘(1) ⊗ ℘(2)S(a) = ℘(1)a ⊗ ℘(2) ∀a ∈ A,

(2.c) S(℘(1)) ⊗ ℘(2)a = aS(℘(1)) ⊗ ℘(2) ∀a ∈ A.

By comodules over a left bialgebroid AL = (A, L, sL, tL, γL, πL) we mean
comodules over the L-coring (LAL, γL, πL), and by comodules over a right bial-
gebroid AR = (A, R, sR, tR, γR, πR) comodules over the R-coring (RAR, γR, πR).
The pair (LA, γL) is a left comodule, and (AL, γL) is a right comodule over the left
bialgebroid AL. Since the L-coring (LAL, γL, πL) possesses a grouplike element
1A, also (L, sL) is a left comodule and (L, tL) is a right comodule over AL (see
[10, 28.2]). Similarly, (AR, γR) and (R, sR) are right comodules, and (RA, γR) and
(R, tR) are left comodules over AR.

DEFINITION 2.9. An s-integral on a left bialgebroid AL = (A, L, sL, tL, γL, πL)

is a left AL-comodule map ∗ρ: (LA, γL) → (L, sL). That is, an element of

R(∗A) := {∗ρ ∈ ∗A | (AL ⊗ ∗ρ) ◦ γL = sL ◦ ∗ρ}.
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A t-integral on AL is a right AL-comodule map (AL, γL) → (L, tL). That is, an
element of

R(A∗) := {ρ∗ ∈ A∗ | (ρ∗ ⊗ LA) ◦ γL = tL ◦ ρ∗}.
An s-integral on a right bialgebroid AR = (A, R, sR, tR, γR, πR) is a right
AR-comodule map (AR, γR) → (R, sR). That is, an element of

L(A∗) := {λ∗ ∈ A∗ | (λ∗ ⊗ RA) ◦ γR = sR ◦ λ∗}.
A t-integral on AR is a left AR-comodule map (RA, γR) → (R, tR). That is, an
element of

L(∗A) := {∗λ ∈ ∗A | (AR ⊗ ∗λ) ◦ γR = tR ◦ ∗λ}.
The right/left s- and t-integrals on a Hopf algebroid A = (AL, AR, S) are the
s- and t-integrals on AL/AR.

The integrals on a left/right bialgebroid are checked to be invariants of the
appropriate right/left regular module – justifying our usage of the terms ‘right’
and ‘left’ integrals for them (cf. the remark in Section 2 about using the opposite–
co-opposite of the convention, usual in the case of bialgebras, when defining the
dual bialgebroids ∗A and A∗). As a matter of fact, for example, if ∗ρ ∈ R(∗A)

then

[∗ρ ∗φ](a) = ∗φ(a ↼ ∗ρ) = ∗φ(sL ◦ ∗ρ(a)) = ∗ρ(a) ∗φ(1A)

= [∗ρ ∗s ◦ ∗π(∗φ)](a) (2.23)

for all ∗φ ∈ ∗A and a ∈ A. If the module LA is finitely generated and projective
(hence ∗A is a right bialgebroid) then also the converse is true, so in this case the
s-integrals on AL are the same as the right integrals in ∗A. Similar statements hold
true on the elements of R(A∗), L(A∗) and L(∗A).

The reader should be warned that integrals on Hopf algebras H over commu-
tative rings k are defined in the literature sometimes as comodule maps H → k –
similarly to our Definition 2.9 –, sometimes by the analogue of the weaker invariant
condition (2.23).

For any Hopf algebroid A we have R(∗A) = L((A
op
cop)

∗) and R(A∗) =
L(∗(Aop

cop)). If the antipode is bijective then also R(∗A) = R((Acop)∗) =
L(∗(Aop)).

SCHOLIUM 2.10. Let A = (AL, AR, S) be a Hopf algebroid. The following
properties of an element ∗ρ ∈ ∗A are equivalent:

(1.a) ∗ρ ∈ R(∗A),

(1.b) πR ◦ sL ◦ ∗ρ ∈ L(∗A),

(1.c) sL ◦ ∗ρ(aS(b(1))) b(2) = tL ◦ ∗ρ(a(2)S(b)) a(1) ∀a, b ∈ A.
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The following properties of an element ρ∗ ∈ A∗ are equivalent:

(2.a) ρ∗ ∈ R(A∗),
(2.b) πR ◦ tL ◦ ρ∗ ∈ L(A∗),
(2.c) tL ◦ ρ∗(ab(1)) S(b(2)) = sL ◦ ρ∗(a(1)b) a(2) ∀a, b ∈ A.

The following properties of an element λ∗ ∈ A∗ are equivalent:

(3.a) λ∗ ∈ L(A∗),
(3.b) πL ◦ sR ◦ λ∗ ∈ R(A∗),
(3.c) a(1) sR ◦ λ∗(S(a(2))b) = b(2) tR ◦ λ∗(S(a)b(1)) ∀a, b ∈ A.

The following properties of an element ∗λ ∈ ∗A are equivalent:

(4.a) ∗λ ∈ L(∗A),

(4.b) πL ◦ tR ◦ ∗λ ∈ R(∗A),

(4.c) S(a(1)) tR ◦ ∗λ(a(2)b) = b(1) sR ◦ ∗λ(ab(2)) ∀a, b ∈ A.

In particular, for ∗ρ ∈ R(∗A) the element ∗ρ ◦ S belongs to R(A∗) and for λ∗ ∈
L(A∗) the element λ∗ ◦ S belongs to L(∗A).

3. Maschke Type Theorems

The most classical version of Maschke’s theorem [22] considers group algebras
over fields. It states that the group algebra of a finite group G over a field F is semi-
simple if and only if the characteristic of F does not divide the order of G. This
result has been generalized to finite-dimensional Hopf algebras H over fields F

by Sweedler [32] proving that H is a separable F -algebra if and only if it is semi-
simple and if and only if there exists a normalized left integral in H . The proof goes
as follows. It is a classical result that a separable algebra over a field is semi-simple.
If H is semi-simple then, in particular, the H -module on F , defined in terms of the
counit, is projective. This means that the counit, as an H -module map H → F ,
splits. Its right inverse maps the unit of F into a normalized integral. Finally, in
terms of a normalized integral one can construct an H -bilinear right inverse for the
multiplication map H ⊗

F
H → H .

The only difficulty in the generalization of Maschke’s theorem to Hopf algebras
over commutative rings comes from the fact that in the case of an algebra A over
a commutative base ring k, separability does not imply the semi-simplicity of A

in the sense [28] that every (left or right) A-module was projective. It implies [15,
17], however, that every A-module is (A, k)-projective, i.e. that every epimorphism
of A-modules which is k-split, is also A-split. In order to avoid confusion, we
will say that the k-algebra A is semi-simple [28] if it is an Artinian semi-simple
ring, i.e. if any A-module is projective. By the terminology of [15] we call A a
(left or right) semi-simple extension of k if any (left or right) A-module is (A, k)-
projective.
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Since the counit of a Hopf algebra H over a commutative ring k is a split
epimorphism of k-modules, the Maschke theorem generalizes to this case in the
following form [12, 20]. The extension k → H is separable if and only if it is (left
and right) semi-simple and if and only if there exist normalized (left and right)
integrals in H .

In this section we investigate the properties of the total algebra of a Hopf alge-
broid, as an extension of the base algebra, that are equivalent to the existence of
normalized integrals in the Hopf algebroid. Dually, we investigate also the prop-
erties of the coring over the base algebra, underlying a Hopf algebroid, that are
equivalent to the existence of normalized integrals on the Hopf algebroid (in any
of the four possible senses).

A Maschke-type theorem on certain Hopf algebroids can be obtained also by
the application of [37, Theorem 4.2]. Notice, however, that the Hopf algebroids
occurring this way are only the Frobenius Hopf algebroids (discussed in Section 4
below), that is the Hopf algebroids possessing nondegenerate integrals (which are
called Frobenius integrals in [37]).

The following Theorem 3.1 generalizes results from [12, Proposition 4.7] and
[20, Theorem 3.3].

THEOREM 3.1 (Maschke Theorem for Hopf algebroids). The following asser-
tions on a Hopf algebroid A = (AL, AR, S) are equivalent:

(1.a) The extension sR: R → A is separable. That is, the multiplication map
AR ⊗ RA → A splits as an A–A bimodule map.

(1.b) The extension tR: Rop → A is separable. That is, the multiplication map
RA ⊗ AR → A splits as an A–A bimodule map.

(1.c) The extension sL: L → A is separable. That is, the multiplication map
AL ⊗ LA → A splits as an A–A bimodule map.

(1.d) The extension tL: Lop → A is separable. That is, the multiplication map
LA ⊗ AL → A splits as an A–A bimodule map.

(2.a) The extension sR: R → A is right semi-simple. That is, any right A-module
is (A, R)-projective.

(2.b) The extension tR: Rop → A is right semi-simple. That is, any right A-module
is (A, Rop)-projective.

(2.c) The extension sL: L → A is left semi-simple. That is, any left A-module is
(A, L)-projective.

(2.d) The extension tL: Lop → A is left semi-simple. That is, any left A-module is
(A, Lop)-projective.

(3.a) There exists a normalized left integral in A. That is, an element � ∈ L(A)

such that πL(�) = 1L.
(3.b) There exists a normalized right integral in A. That is, an element ℘ ∈ R(A)

such that πR(℘) = 1R.
(4.a) The epimorphism πR: A → R splits as a right A-module map.
(4.b) The epimorphism πL: A → L splits as a left A-module map.
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Proof. (1.a) ⇒ (2.a), (1.b) ⇒ (2.b), (1.c) ⇒ (2.c) and (1.d) ⇒ (2.d) It is
proven in [17, Proposition 2.6] that a separable extension is both left and right
semi-simple.

(2.a) ⇒ (4.a) ((2.b) ⇒ (4.a)) The epimorphism πR is split as a right (left)
R-module map by sR (by tR), hence it is split as a right A-module map.

(4.a) ⇒ (3.b) Let ν: R → A be the right inverse of πR in MA. Then ℘ := ν(1R)

is a normalized right integral in A.
(3.a) ⇔ (3.b) By part (2) of Proposition 2.3 the antipode takes a normalized

left/right integral to a normalized right/left integral.
(3.a) ⇒ (1.a) and (3.b) ⇒ (1.b) If � is a normalized left integral in A then, by

Scholium 2.8, the required right inverse of the multiplication map AR ⊗RA → A is
given by the A–A bimodule map a �→ a�(1) ⊗ S(�(2)) ≡ �(1) ⊗ S(�(2))a. Similarly,
if ℘ is a normalized right integral in A then the right inverse of the multiplication
map RA ⊗ AR → A is given by a �→ aS(℘(1)) ⊗ ℘(2) ≡ S(℘(1)) ⊗ ℘(2)a.

The proof is completed by applying the above arguments to the Hopf alge-
broid A

op
cop. �

Let us make a comment on the semi-simplicity of the algebra A (cf. [17, Propo-
sition 1.3]). If R is a semi-simple algebra and the equivalent conditions of The-
orem 3.1 hold true, then A – being a semi-simple extension of a semi-simple
algebra – is a semi-simple algebra. On the other hand, notice that condition (4.a)
in Theorem 3.1 is equivalent to the projectivity of the right A-module R. Hence
if A is a semi-simple k-algebra then the equivalent conditions of the theorem hold
true. It is not true, however, that the semi-simplicity of the total algebra implies
the semi-simplicity of the base algebra (which was shown by Lomp to be the case
in Hopf algebras [20]). A counterexample can be constructed as follows: If B is
a Frobenius algebra over a commutative ring k then A: = Endk(B) has a Hopf
algebroid structure over the base B [6]. If B is a Frobenius algebra over a field
– which can be non-semi-simple! – then A is a Hopf algebroid with semi-simple
total algebra.

The following Theorem 3.2 can be considered as a dual of Theorem 3.1 in
the sense that it speaks about corings over the base algebras instead of algebra
extensions. It is important to emphasize, however, that the two theorems are inde-
pendent results. Even in the case of Hopf algebroids such that all module struc-
tures (2.16) are finitely generated and projective, the duals are not known to be
Hopf algebroids.

Recall that the dual notion of that of a relative projective module is the relative
injective comodule. Namely, a comodule M for an R-coring A is called (A, R)-
injective [10, 18.18] if any monomorphism of A-comodules from M , which splits
as an R-module map, splits also as an A-comodule map.

THEOREM 3.2 (Dual Maschke Theorem for Hopf algebroids). The following as-
sertions on a Hopf algebroid A = (AL, AR, S) are equivalent:
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(1.a) The R-coring (RAR, γR, πR) is coseparable. That is, the comultiplication
γR: A → AR ⊗ RA splits as an AR–AR bicomodule map.

(1.b) The L-coring (LAL, γL, πL) is coseparable. That is, the comultiplication
γL: A → AL ⊗ LA splits as an AL–AL bicomodule map.

(2.a) Any right AR-comodule is (AR, R)-injective.
(2.b) Any left AR-comodule is (AR, R)-injective.
(2.c) Any left AL-comodule is (AL, L)-injective.
(2.d) Any right AL-comodule is (AL, L)-injective.
(3.a) There exists a normalized left s-integral on A. That is, an element λ∗ ∈

L(A∗) such that λ∗(1A) = 1R.
(3.b) There exists a normalized left t-integral on A. That is, an element ∗λ ∈

L(∗A) such that ∗λ(1A) = 1R.
(3.c) There exists a normalized right s-integral on A. That is, an element ∗ρ ∈

R(∗A) such that ∗ρ(1A) = 1L.
(3.d) There exists a normalized right t-integral on A. That is, an element ρ∗ ∈

R(A∗) such that ρ∗(1A) = 1L.
(4.a) The monomorphism sR: R → A splits as a right AR-comodule map.
(4.b) The monomorphism tR: R → A splits as a left AR-comodule map.
(4.c) The monomorphism sL: L → A splits as a left AL-comodule map.
(4.d) The monomorphism tL: L → A splits as a right AL-comodule map.

Proof. (1.a) ⇒ (2.a), (2.b) is proven in [10, 26.1].
(2.a) ⇒ (4.a) ((2.b) ⇒ (4.b)) The monomorphism sR (tR) is split as a right

(left) R-module map by πR hence it is split as a right (left) AR-comodule map.
(4.a) ⇒ (3.a) and (4.b) ⇒ (3.b) The left inverse λ∗ of sR in the category of right

AR-comodules is a normalized s-integral on AR by its very definition. Similarly,
the left inverse ∗λ of tR in the category of left AR-comodules is a normalized
t-integral on AR.

(3.a) ⇒ (3.b) If λ∗ is a normalized s-integral on AR then λ∗ ◦ S is a normalized
t-integral on AR by Scholium 2.10.

(3.b) ⇒ (1.a) In terms of the normalized t-integral ∗λ on AR the required right
inverse of the coproduct γR is constructed as the map

AR ⊗ RA → A, a ⊗ b �→ tR ◦ ∗λ(aS(b(1))) b(2).

It is checked to be an AR–AR bicomodule map using that by Scholium 2.10, (4.b)
and (1.c) we have tR ◦ ∗λ(aS(b(1))) b(2) = a(1) sR ◦ πR[tR ◦ ∗λ(a(2)S(b(1))) b(2)] for
all a, b in A.

(3.a) ⇔ (3.d) follows from Scholium 2.10, (2.b).
The remaining equivalences are proven by applying the above arguments to the
Hopf algebroid A

op
cop. �

The proofs of Theorem 3.1 and 3.2 can be unified if one formulates them as
equivalent statements on the forgetful functors from the category of A-modules,
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and from the category of AL or AR-comodules, respectively, to the category of L-
or R-modules – as it is done in the case of Hopf algebras over commutative rings
in [12]. We believe (together with the referee), however, that the above formu-
lation in terms of algebra extensions and corings, respectively, is more appeal-
ing.

4. Frobenius Hopf Algebroids and Nondegenerate Integrals

A left or right integral � in a Hopf algebra (H, �, ε, S) over a commutative ring k

is called nondegenerate [19] if the maps

Homk(H, k) → H, φ �→ (φ ⊗ H) ◦ �(�) and

Homk(H, k) → H, φ �→ (H ⊗ φ) ◦ �(�)

are bijective.
The notion of nondegenerate integrals is made relevant by the Larson–Sweedler

Theorem [19] stating that a free and finite-dimensional bialgebra over a principal
ideal domain is a Hopf algebra if and only if there exists a nondegenerate left
integral in H .

The Larson–Sweedler Theorem has been extended by Pareigis [27] to Hopf
algebras over commutative rings with trivial Picard group. He proved also that a
bialgebra over an arbitrary commutative ring k, which is a Frobenius k-algebra,
is a Hopf algebra if and only if there exists a Frobenius functional ψ : H → k

satisfying

(H ⊗ ψ) ◦ � = 1Hψ( ).

As a matter of fact, based on the results of [27] the following variant of [13, 3.2
Theorem 31] can be proven:

THEOREM 4.1. The following properties of a Hopf algebra (H, �, ε, S) over a
commutative ring k are equivalent:

(1) H is a Frobenius k-algebra.
(2) There exists a nondegenerate left integral in H .
(3) There exists a nondegenerate right integral in H .
(4) There exists a nondegenerate left integral on H . That is, a Frobenius functional

ψ : H → k satisfying (H ⊗ ψ) ◦ � = 1Hψ( ).
(5) There exists a nondegenerate right integral on H . That is, a Frobenius func-

tional ψ : H → k satisfying (ψ ⊗ H) ◦ � = 1Hψ( ).

The main subject of the present section is the generalization of Theorem 4.1 to
Hopf algebroids.

The most important tool in the proof of Theorem 4.1 is the Fundamental Theo-
rem for Hopf modules [19]. A very general form of it has been proven by Brzez-
iński [7, Theorem 5.6], see also [10, 28.19] in the framework of corings. It can be
applied in our setting as follows.
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Hopf modules over bialgebroids are examples of Doi–Koppinen modules over
algebras, studied in [8]. A left-left Hopf module over a left bialgebroid AL =
(A, L, sL, tL, γL, πL) is a left comodule for the comonoid (A, γL, πL) in the cate-
gory of left A-modules. That is, a pair (M, τ) where M is a left A-module, hence
a left L-module LM via sL. The pair (LM, τ) is a left AL-comodule such that
τ : M → AL ⊗ LM is a left A-module map to the module

a · (b ⊗ m): = a(1)b ⊗ a(2) · m for a ∈ A, b ⊗ m ∈ AL ⊗ LM.

The right–right Hopf modules over a right bialgebroid AR are the left–left Hopf
modules over (AR)

op
cop.

It follows from [8, Proposition 4.1] that the left–left Hopf modules over AL are
the left comodules over the A-coring

W := (AL ⊗ LA, γL ⊗ LA, πL ⊗ LA), (4.1)

where the A–A bimodule structure is given by

a · (b ⊗ c) · d: = a(1)b ⊗ a(2)cd for a, d ∈ A, b ⊗ c ∈ AL ⊗ LA.

The coring (4.1) was studied in [2]. It was shown to possess a group-like element
1A ⊗ 1A ∈ AL ⊗ LA and corresponding coinvariant subalgebra tL(L) in A. The
coring (4.1) is Galois (w.r.t. the group-like element 1A ⊗ 1A) if and only if AL is a
×L-Hopf algebra in the sense of [30]. Since in a Hopf algebroid A = (AL, AR, S)

the left bialgebroid AL is a ×L-Hopf algebra by Proposition 2.4, the A-coring (4.1)
is Galois in this case. Denote the category of left–left Hopf modules over AL (i.e. of
left comodules over the coring (4.1)) by WM. The application of [7, Theorem 5.6]
results that if A = (AL, AR, S) is a Hopf algebroid, such that the module LA is
faithfully flat, then the functor

G: WM → ML,

(M, τ) �→ Coinv(M)L := {m ∈ M | τ(m) = 1A ⊗ m ∈ AL ⊗ LM} (4.2)

(where the right L-module structure on Coinv(M) is given via tL) and the induction
functor

F : ML → WM, NL �→ (LA ⊗ NL, γL ⊗ NL) (4.3)

(where the left A-module structure on LA ⊗ NL is given by left multiplication in
the first factor) are inverse equivalences.

In the case of Hopf algebras H over commutative rings k, these arguments lead
to the Fundamental Theorem only for faithfully flat Hopf algebras. The proof of
the Fundamental Theorem in [19], however, does not rely on any assumption on
the k-module structure of H .

Since the Hopf algebroid structure is more restrictive than the ×L-Hopf alge-
bra structure, one hopes to prove the Fundamental Theorem for Hopf algebroids
also under milder assumptions – using the whole strength of the Hopf algebroid
structure.
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THEOREM 4.2 (Fundamental Theorem for Hopf algebroids). Let A = (AL,

AR, S) be a Hopf algebroid and W the A-coring (4.1). The functors G: WM →
ML in (4.2) and F : ML → WM in (4.3) are inverse equivalences.

Proof. We construct the natural isomorphisms α: F ◦G → WM and β: G◦F →
ML. The map

αM : LA ⊗ Coinv(M)L → M, a ⊗ m �→ a · m

is a left W -comodule map and natural in M . The isomorphism property is proven
by constructing the inverse

α−1
M : M → LA ⊗ Coinv(M)L, m �→ m〈−1〉(1) ⊗ S(m〈−1〉(2)) · m〈0〉,

where we used the standard notation τ(m) = m〈−1〉 ⊗ m〈0〉. It requires some work
to check that α−1

M (m) belongs to LA ⊗ Coinv(M)L. Let us introduce the right L-
submodule X of AL ⊗ LAL ⊗ LM as

X :=
{∑

i

ai ⊗ bi ⊗ mi ∈ AL ⊗ LAL ⊗ LM

∣∣∣∣

∑

i

ai tL(l) ⊗ bi ⊗ mi =
∑

i

ai ⊗ bisL(l) ⊗ mi ∀l ∈ L

}

with L-module structure [∑i ai ⊗ bi ⊗ mi] · l := ∑
i ai tR ◦ πR ◦ tL(l) ⊗ bi ⊗ mi ,

and the map

ω: AL ⊗ LAL ⊗ LM → M,∑

i

ai ⊗ bi ⊗ mi �→
∑

i

S[sL ◦ πL(ai) bi] · mi.

Making M a right L-module via tL, the restriction of ω becomes a right L-module
map X → ML. The image of the map ω ◦ (AL ⊗ τ): AL ⊗ LM → M lies
in Coinv(M), since for any a ⊗ m ∈ AL ⊗ LM we have

τ ◦ ω ◦ (AL ⊗ τ)(a ⊗ m)

= S(m〈−1〉(2))m〈0〉〈−1〉 ⊗ S[sL ◦ πL(a) m〈−1〉(1)] · m〈0〉〈0〉
= sR ◦ πR(m〈−1〉(2)) ⊗ S[sL ◦ πL(a) m〈−1〉(1)] · m〈0〉
= 1A ⊗ ω ◦ (AL ⊗ τ)(a ⊗ m).

Since α−1
M = [LA ⊗ ω ◦ (AL ⊗ τ)] ◦ (γR ⊗ LM) ◦ τ , it follows that α−1

M (m) belongs
to LA ⊗ Coinv(M)L for all m ∈ M , as stated.

The coinvariants of the left W -comodule LA ⊗ NL are the elements of

Coinv(LA ⊗ NL)

=
{∑

i

ai ⊗ ni ∈ LA ⊗ NL

∣∣∣∣
∑

i

ai ⊗ ni =
∑

i

sR ◦ πR(ai) ⊗ ni

}
,
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hence the map

βN : Coinv(LA ⊗ NL) → N,∑

i

ai ⊗ ni �→
∑

i

ni · πL ◦ S(ai) ≡
∑

i

ni · πL(ai)

is a right L-module map and is natural in N . It is an isomorphism with inverse

β−1
N : N → Coinv(LA ⊗ NL), n �→ 1A ⊗ n. �

An analogous result for right–right Hopf modules over AR can be obtained by
applying Theorem 4.2 to the Hopf algebroid A

op
cop.

PROPOSITION 4.3. Let A = (AL, AR, S) be a Hopf algebroid and (M, τ) a
left–left Hopf module over AL. Then Coinv(M) is a k-direct summand of M .

Proof. The canonical inclusion Coinv(M) → M is split by the k-module map

EM : M → Coinv(M), m �→ S(m〈−1〉) · m〈0〉. (4.4)�
As the next step towards our goal, let us assume that A = (AL, AR, S) is a Hopf

algebroid such that the module AR – and hence by Lemma 2.6 also AL – is finitely
generated and projective. Under this assumption we are going to equip A∗ with
the structures of a left–left Hopf module over AL and a right–right Hopf module
over AR.

Let {bi} ⊂ A and {βi∗} ⊂ A∗ be dual bases for the module AL. A left
AL-comodule structure on A∗ can be introduced via the L-module structure

LA∗: l · φ∗ := φ∗ ↼ S ◦ sL(l) for l ∈ L, φ∗ ∈ A∗

and the left coaction

τL: A∗ → AL ⊗ LA∗, φ∗ �→
∑

i

bi ⊗ χ−1(βi
∗)φ

∗. (4.5)

Similarly, a right AR-comodule structure on A∗ can be introduced by the right
R-module structure

A∗
R: φ∗ · r := φ∗ ↼ sR(r) for r ∈ R, φ∗ ∈ A∗

and the right coaction

τR: A∗ → A∗
R ⊗ RA, φ∗ �→

∑

i

χ−1(βi
∗)φ

∗ ⊗ S(bi), (4.6)

where χ : A∗ → A∗ is the algebra anti-isomorphism (2.22).

PROPOSITION 4.4. Let A = (AL, AR, S) be a Hopf algebroid such that the
module AR is finitely generated and projective.
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(1) Introduce the left A-module

AA∗: a · φ∗ := φ∗ ↼ S(a) for a ∈ A, φ∗ ∈ A∗.

Then (AA∗, τL) – where τL is the map (4.5) – is a left–left Hopf module
over AL.

(2) Introduce the right A-module

A∗
A: φ∗ · a: = φ∗ ↼ a for a ∈ A, φ∗ ∈ A∗.

Then (A∗
A, τR) – where τR is the map (4.6) – is a right–right Hopf module

over AR.

The coinvariants of both Hopf modules (AA∗, τL) and (A∗
A, τR) are the elements

of L(A∗).
Proof. (1) We have to show that τL is a left A-module map. That is, for all a ∈ A

and φ∗ ∈ A∗,
∑

i

bi ⊗ χ−1(βi
∗)(φ

∗ ↼ S(a)) =
∑

i

a(1)bi ⊗ (χ−1(βi
∗)φ

∗) ↼ S(a(2)) (4.7)

as elements of AL ⊗ LA∗. Since for any φ∗ ∈ A∗ and a ∈ A,
∑

i

χ−1(βi
∗) ↼ S[sL ◦ φ∗(a(1)bi) a(2)] = χ−1(φ∗) ↼ sL ◦ πL(a),

the following identity holds true in AL ⊗ LA∗ for all a ∈ A:
∑

i

a(1)bi ⊗ χ−1(βi
∗) ↼ S(a(2))

=
∑

i,j

tL ◦ βj
∗ (a(1)bi) bj ⊗ χ−1(βi

∗) ↼ S(a(2))

=
∑

i,j

bj ⊗ χ−1(βi
∗) ↼ S[sL ◦ βj

∗ (a(1)bi) a(2)]

=
∑

j

bj ⊗ χ−1(βj
∗ ) ↼ sL ◦ πL(a). (4.8)

Since for all φ∗, ψ∗ ∈ A∗ and a ∈ A,

(φ∗ψ∗) ↼ a = (φ∗ ↼ a(2))(ψ∗ ↼ a(1)), (4.9)

the identity (4.8) is equivalent to (4.7).
(2) We have to show that τR is a right A-module map. That is, for all a ∈ A and

φ∗ ∈ A∗,
∑

i

χ−1(βi
∗)(φ

∗ ↼ a) ⊗ S(bi) =
∑

i

(χ−1(βi
∗)φ

∗) ↼ a(1) ⊗ S(bi)a
(2) (4.10)
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as elements of A∗
R ⊗ RA. Recall from the proof of Lemma 2.6 that the dual bases,

{bi} ⊂ A and {βi∗} ⊂ A∗ for the module AL, and the dual bases, {kj } ⊂ A and
{κ∗

j } ⊂ A∗ for AR, are related to each other by
∑

i

bi ⊗ βi
∗ =

∑

j

kj (1) ⊗ χ [s∗ ◦ πR(kj (2)) κ∗
j ] as elements of AL ⊗ LA∗.

This implies that τR(φ∗) = ∑
j s∗ ◦ πR(kj (2)) κ∗

j φ∗ ⊗ S(kj (1)). The following
identity holds true in A∗

R ⊗ RA for all a ∈ A:
∑

j

[s∗ ◦ πR(kj (2)) κ∗
j ] ↼ a(1) ⊗ S(kj (1))a

(2)

=
∑

j

s∗ ◦ πR(a(1)
(2)kj (2)) κ∗

j ⊗ S(a(1)
(1)kj (1))a

(2)

=
∑

j

s∗ ◦ πR[sR ◦ πR(a(2)
(1)) kj (2)]κ∗

j ⊗ S(a(1)kj (1))a(2)
(2)

=
∑

j

[s∗ ◦ πR(kj (2)) κ∗
j ] ↼ sR ◦ πR(a(2)

(1)) ⊗ S(a(1)kj (1))a(2)
(2)

=
∑

j

s∗ ◦ πR(kj (2)) κ∗
j ⊗ S(kj (1)) sR ◦ πR(a)

=
∑

j

[s∗ ◦ πR(kj (2)) κ∗
j ] ↼ tR ◦ πR(a) ⊗ S(kj (1)). (4.11)

Here we used the identity (s∗(r)φ∗) ↼ a = s∗(r) (φ∗ ↼ a) for r ∈ R, φ∗ ∈ A∗
and a ∈ A, the property of the dual bases

∑
j kj ⊗ κ∗

j ↼ a = ∑
j akj ⊗ κ∗

j for all
a ∈ A as elements of AR ⊗ RA∗, the right analogue of the bialgebroid axiom (2.6)
and the Hopf algebroid axioms (2.19) and (2.20). In view of (4.9) the identity (4.11)
is equivalent to (4.10).

In the cases of the Hopf modules (AA∗, τL) and (A∗
A, τR) a projection onto the

coinvariants is given by the map (4.4) and its right–right version, respectively, both
yielding

EA∗ : A∗ → Coinv(A∗), φ∗ �→
∑

i

χ−1(βi
∗)φ

∗ ↼ S2(bi). (4.12)

A left s-integral λ∗ on A is a coinvariant, since it is an invariant of the left regular
A∗-module and so for all a ∈ A,

EA∗(λ∗)(a) =
∑

i

χ−1(βi
∗)(1A)λ∗(S2(bi)a)

= λ∗[S2(tL ◦ βi
∗(1A) bi)a] = λ∗(a).

On the other hand, for all a ∈ A,
∑

i

S(bi)(a ↼ βi
∗) = S[tL ◦ βi

∗(a(1)) bi]a(2) = sR ◦ πR(a), (4.13)
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hence for all φ∗ ∈ A∗,

EA∗(φ∗) ⇀ a

=
∑

i

a(2) tR ◦ πR{[φ∗ ⇀ S2(bi)a
(1)] ↼ βi

∗}

=
∑

i

tR ◦ πR ◦ S2(b
(2)
i ) a(2) tR ◦ πR{[φ∗ ⇀ S2(b

(1)
i )a(1)] ↼ βi

∗}

=
∑

i

S(bi(2)) (S2(bi(1))a)(2) tR ◦ πR{[φ∗ ⇀ (S2(bi(1))a)(1)] ↼ βi
∗}

=
∑

i,j

S(bi(2)){[φ∗ ⇀ S2(tL ◦ βj
∗ (bi(1)) bj )a] ↼ βi

∗}

=
∑

i,j

S(bi ↼ βj
∗ ){[φ∗ ⇀ S2(bj )a] ↼ βi

∗}

=
∑

j

sR ◦ πR{[φ∗ ⇀ S2(bj )a] ↼ βj
∗ } = sR ◦ EA∗(φ∗)(a).

That is, any coinvariant is an s-integral on AR. Here we used (4.12), the right
analogue of (2.1), the identity tR ◦πR ◦S2 = S ◦ sR ◦πR, (2.20), the right analogue
of (2.3), the identity γR[(φ∗ ⇀ a) ↼ ψ∗] = (φ∗ ⇀ a(1)) ↼ ψ∗⊗a(2), holding true
for all a ∈ A, φ∗ ∈ A∗ and ψ∗ ∈ A∗, the right L-linearity of the map (φ∗ ⇀ ) ↼

ψ∗: AL → AL and (4.13). �
The application of Theorem 4.2 to the Hopf modules of Proposition 4.4 results

in isomorphisms

αL: LA ⊗ L(A∗)L → A∗, a ⊗ λ∗ �→ λ∗ ↼ S(a) and (4.14)

αR: RL(A∗) ⊗ AR → A∗, λ∗ ⊗ a �→ λ∗ ↼ a (4.15)

of left–left Hopf modules over AL and of right–right Hopf modules over AR, re-
spectively. (The right L-module structure on L(A∗) is given by λ∗·l := λ∗ ↼ sL(l)

and the left R-module structure is given by r · λ∗ := λ∗ ↼ tR(r) – see the
explanation after (4.2).)

COROLLARY 4.5. For a Hopf algebroid A = (AL, AR, S), such that any of
the modules AR, RA, LA and AL is finitely generated and projective, there exist
nonzero elements in all of L(A∗), L(∗A), R(∗A) and R(A∗).

Proof. Suppose that the module AR (equivalently, by Proposition 2.6 the mod-
ule AL) is finitely generated and projective. It follows from Proposition 4.4 and
Theorem 4.2 that the map (4.14) is an isomorphism, hence there exist nonzero
elements in L(A∗).

For any element λ∗ of L(A∗), λ∗ ◦ S is a (possibly zero) element of L(∗A) by
Scholium 2.10. Now we claim that it is excluded by the bijectivity of the map (4.14)
that λ∗ ◦ S = 0 for all λ∗ ∈ L(A∗). For if so, then by the surjectivity of the
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map (4.14) we have φ∗(1A) = 0 for all φ∗ ∈ A∗. But this is impossible, since
πR(1A) = 1R, by definition.

It follows from Scholium 2.10, (3.b) and (4.b) that also R(∗A) and R(A∗) must
contain nonzero elements.

The case when the module LA (equivalently, by Proposition 2.6 the module RA)
is finitely generated and projective can be treated by applying the same arguments
to the Hopf algebroid A

op
cop. �

Since none of the duals of a Hopf algebroid is known to be a Hopf algebroid,
it does not follow from Theorem 4.2, however, that for a Hopf algebroid, in which
the total algebra is finitely generated and projective as a module over the base
algebra, also L(A) and R(A) contain nonzero elements. At the moment we do not
know under what necessary conditions the existence of nonzero integrals in a Hopf
algebroid follows.

It is well known [27, Proposition 4] that the antipode of a finitely generated
and projective Hopf algebra over a commutative ring is bijective. We do not know
whether a result of the same strength holds true on Hopf algebroids. Our present
understanding on this question is formulated in

PROPOSITION 4.6. The following statements on a Hopf algebroid A = (AL,

AR, S) are equivalent:

(1) The antipode S is bijective and any of the modules LA, AL, AR and RA is
finitely generated and projective.

(2) There exists an invariant
∑

k xk ⊗ λ∗
k of the left A-module RA ⊗ L(A∗)R –

defined via left multiplication in the first factor – with respect to AL, satisfying∑
k λ∗

k(xk) = 1R. (The right R-module structure of L(A∗) is defined by the
restriction of the one of (A∗)R, i.e. as λ∗ · r := λ∗( tR(r)).)

Proof. For any invariant
∑

k xk ⊗λ∗
k of the left A-module RA⊗L(A∗)R and any

element a ∈ A the identities

∑

k

S(a)x
(1)
k ⊗ x

(2)
k ⊗ λ∗

k =
∑

k

x
(1)
k ⊗ ax

(2)
k ⊗ λ∗

k and

∑

k

ax
(1)
k ⊗ S(x

(2)
k ) ⊗ λ∗

k =
∑

k

x
(1)
k ⊗ S(x

(2)
k )a ⊗ λ∗

k

hold true as identities in RAR ⊗ RA ⊗ L(A∗)R and in RAR ⊗ RA ⊗ L(A∗)R,
respectively.

(2) ⇒ (1) In terms of the invariant
∑

k xk ⊗ λ∗
k the inverse of the antipode is

constructed explicitly as

S−1: A → A, a �→
∑

k

(λ∗
k ↼ a) ⇀ xk.
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The dual bases {bi} ⊂ A and {∗βi} ⊂ ∗A for the module RA are introduced by the
requirement that

∑

i

∗βi ⊗ bi =
∑

k

λ∗
k(S( )x

(1)
k ) ⊗ x

(2)
k

as elements of ∗AR ⊗ RA. Together with Lemma 2.6 this proves the implication
(2) ⇒ (1).

(1) ⇒ (2) If S is bijective then in the case of the Hopf algebroid Acop the
isomorphism (4.14) takes the form

α
cop
L : AL ⊗ LL(∗A) → ∗A, a ⊗ ∗λ �→ ∗λ ↽ S−1(a),

where the left L-module structure on L(∗A) is defined by l · ∗λ := ∗λ ↽ tL(l).
In terms of

∑
k xk ⊗∗λk := (α

cop
L )−1(πR) the required invariant of RA⊗L(A∗)R

is given by
∑

k xk ⊗ ∗λk ◦ S−1. �
In any Hopf algebroid A = (AL, AR, S), in which the module AL is finitely

generated and projective, the extensions sR: R → A and tL: Lop → A satisfy the
left depth two (or D2, for short) condition and the extensions tR: Rop → A and
sL: L → A satisfy the right D2 condition of [18]. If furthermore S is bijective
then all the four extensions satisfy both the left and the right D2 conditions. This
means [18, Lemma 3.7] in the case of sR: R → A, for example, the existence of
finite sets (the so called D2 quasi-bases) {dk} ⊂ AR ⊗ RA, {δk} ⊂ REndR(RAR),
{fl} ⊂ AR ⊗ RA and {φl} ⊂ REndR(RAR) satisfying

∑

k

dk · mA ◦ (δk ⊗ RA)(u) = u

and
∑

l

mA ◦ (AR ⊗ φl)(u) · fl = u

for all elements u in AR ⊗ RA, where the A–A bimodule structure on AR ⊗ RA

is defined by left multiplication in the first factor and right multiplication in the
second factor.

The D2 quasi-bases for the extension sR: R → A can be constructed in terms
of the invariants

∑
i xi ⊗ λ∗

i : = α−1
L (πR) and

∑
j x ′

j ⊗ ∗λ′
j := (α

cop
L )−1(πR) via the

requirements that
∑

k

dk ⊗ δk =
∑

i

xi(1)
(1) ⊗ S(xi(1)

(2)) ⊗ [λ∗
i ↼ S(xi(2))] ⇀

and
∑

l

φl ⊗ fl =
∑

j

↼ [x ′
j (1) ⇀ πL ◦ sR ◦ ∗λ′

j ◦ S−1] ⊗

⊗ x ′
j (2)

(1) ⊗ S(x ′
j (2)

(2)
)
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as elements of AR ⊗ RAL ⊗ L[REndR(RAR)] and of [REndR(RAR)]L ⊗ LAR ⊗ RA,
respectively. (The L–L bimodule structure on REndR(RAR) is given by

l1 · � · l2 = sL(l1)�( )sL(l2) for l1, l2 ∈ L, � ∈ REndR(RAR).)

The D2 property of the extensions tR: Rop → A, sL: L → A and tL: Lop → A

follows by applying these formulae to the Hopf algebroids Acop, A
op
cop and Aop,

respectively.
The following theorem, characterizing Frobenius Hopf algebroids A = (AL,

AR, S) – that is, Hopf algebroids such that the extensions, given by the source and
target maps of the bialgebroids AL and AR, are Frobenius extensions – is the main
result of this section.

Recall that for a homomorphism s: R → A of k-algebras the canonical R–A

bimodule RAA is a 1-cell in the additive bicategory of [k-algebras, bimodules, bi-
module maps], possessing a right dual, the bimodule AAR. If A is finitely generated
and projective as a left R-module, then RAA possesses also a left dual, the bimodule
A[RHom(A, R)]R defined as

a · φ · r = φ( a)r for r ∈ R, a ∈ A, φ ∈ RHom(A, R).

A monomorphism of k-algebras s: R → A is called a Frobenius extension if the
module RA is finitely generated and projective and the left and right duals

AAR and A[RHom(A, R)]R
of the bimodule RAA are isomorphic. Equivalently, if AR is finitely generated and
projective and the left and right duals

RAA and R[HomR(A, R)]A
of the bimodule AAR are isomorphic. This property holds if and only if there exists
a Frobenius system (ψ,

∑
i ui ⊗ vi), where ψ : A → R is an R–R bimodule map

and
∑

i ui ⊗ vi is an element of A ⊗
R

A such that
∑

i

s ◦ ψ(aui) vi = a =
∑

i

ui s ◦ ψ(via) for all a ∈ A.

THEOREM 4.7. The following statements on a Hopf algebroid A = (AL, AR, S)

are equivalent:

(1.a) The map sR: R → A is a Frobenius extension of k-algebras.
(1.b) The map tR: Rop → A is a Frobenius extension of k-algebras.
(1.c) The map sL: L → A is a Frobenius extension of k-algebras.
(1.d) The map tL: Lop → A is a Frobenius extension of k-algebras.
(2.a) The module AR is finitely generated and projective and the module L(A∗)L,

defined by λ∗ · l := λ∗ ↼ sL(l), is free of rank 1.
(2.b) S is bijective, the module RA is finitely generated and projective and the

module LL(∗A), defined by l · ∗λ := ∗λ ↽ tL(l), is free of rank 1.
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(2.c) The module LA is finitely generated and projective and the module RR(∗A),
defined by r · ∗ρ := sR(r) ⇁ ∗ρ, is free of rank 1.

(2.d) S is bijective, the module AL is finitely generated and projective and the
module R(A∗)R, defined by ρ∗ · r: = tR(r) ⇀ ρ∗, is free of rank 1.

(3.a) The module AR is finitely generated and projective and there exists an ele-
ment λ∗ ∈ L(A∗) such that the map

F : A → A∗, a �→ λ∗ ↼ a (4.16)

is bijective.
(3.b) S is bijective, the module RA is finitely generated and projective and there

exists an element ∗λ ∈ L(∗A) such that the map A → ∗A, a �→ ∗λ ↽ a is
bijective.

(3.c) The module LA is finitely generated and projective and there exists an ele-
ment ∗ρ ∈ R(∗A) such that the map A → ∗A, a �→ a ⇁ ∗ρ is bijective.

(3.d) S is bijective, the module AL is finitely generated and projective and there
exists an element ρ∗ ∈ R(A∗) such that the map A → A∗, a �→ a ⇀ ρ∗ is
bijective.

(4.a) There exists a left integral � ∈ L(A) such that the map

F ∗: A∗ → A, φ∗ �→ φ∗ ⇀ � (4.17)

is bijective.
(4.b) S is bijective and there exists a left integral � ∈ L(A) such that the map

∗F : ∗A → A, ∗φ �→ ∗φ ⇁ � (4.18)

is bijective.
(4.c) There exists a right integral ℘ ∈ R(A) such that the map ∗A → A, ∗φ �→

℘ ↽ ∗φ is bijective.
(4.d) S is bijective and there exists a right integral ℘ ∈ R(A) such that the map

A∗ → A, φ∗ �→ ℘ ↼ φ∗ is bijective.

In particular, the integrals λ∗, ∗λ, ∗ρ and ρ∗ on A satisfying the condition
in (3.a), (3.b), (3.c) and (3.d), respectively, are Frobenius functionals themselves
for the extensions sR: R → A, tR: Rop → A, sL: L → A and tL: Lop → A,
respectively.

What is more, under the equivalent conditions of the theorem the left integrals
� ∈ L(A) satisfying the conditions in (4.a) and (4.b) can be chosen to be equal,
that is, to be a nondegenerate left integral in A. Similarly, the right integrals ℘ ∈
R(A) satisfying the conditions in (4.c) and (4.d) can be chosen to be equal, that is
to be a nondegenerate right integral in A.

Proof. (4.a) ⇒ (1.a) In terms of the left integral � in (4.a) define
λ∗ := F ∗−1(1A) ∈ A∗. We claim that λ∗ is a left s-integral on A. The element
� ⊗ λ∗ ∈ RL(A) ⊗ L(A∗)R is an invariant of the left A-module RA ⊗ L(A∗)R,
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hence by Proposition 4.6 the antipode is bijective and the modules AR and RA are
finitely generated and projective. Since for all φ∗ ∈ A∗,

φ∗λ∗ = F ∗−1(φ∗ ⇀ 1A) = F ∗−1(s∗ ◦ φ∗(1A) ⇀ 1A) = s∗ ◦ π∗(φ∗) λ∗,

λ∗ is an s-integral on AR, so in particular an R–R bimodule map RAR → R.
Since for all a ∈ A,

�(2) tR ◦ λ∗(S(a)�(1)) = a,

we have F ∗−1(a) = λ∗ ↼ S(a) hence �(1) sR ◦ λ∗ ◦ S(�(2)) = 1A. A Frobenius
system for the extension sR: R → A is provided by (λ∗, �(1) ⊗ S(�(2))).

(1.a) ⇒ (2.a) The module AR is finitely generated and projective by assump-
tion. In terms of a Frobenius system (ψ,

∑
i ui ⊗ vi) for the extension sR: R → A

one constructs an isomorphism of right L-modules as

κ: L(A∗) → L, λ∗ �→ πL

[∑

i

sR ◦ λ∗(ui)vi

]
(4.19)

with inverse

κ−1: L → L(A∗), l �→ EA∗(ψ ↼ sL(l)), (4.20)

where EA∗ is the map (4.12). The right L-linearity of κ follows from the property
of the Frobenius system (ψ,

∑
i ui ⊗ vi) that

∑
i aui ⊗ vi = ∑

i ui ⊗ via for all
a ∈ A, the bialgebroid axiom (2.5), and left R-linearity of the map λ∗: RA → R

and the right L-linearity of πL: LA → L.
The maps κ and κ−1 are mutual inverses as

κ−1 ◦ κ(λ∗)
=

∑

i,j

[χ−1(βj
∗ )ψ] ↼ sL ◦ πL(sR ◦ λ∗(ui)vi) S2(bj )

=
∑

i,j

[χ−1(βj
∗ )ψ] ↼ S2(b

(2)
j ) tR ◦ πR[tR ◦ πR ◦ S(sR ◦ λ∗(ui)vi) S2(b

(1)
j )]

=
∑

i,j

[χ−1(βj
∗ )ψ] ↼ S2(b

(2)
j ) sL ◦ πL[S(b

(1)
j ) sR ◦ λ∗(ui)vi] = λ∗, (4.21)

where in the first step we used (4.9), in the second step the fact that by Proposi-
tion 2.3 we have sL ◦ πL = tR ◦ πR ◦ S, then the right analogue of (2.5) and finally
in the last step the identity in RL(A∗) ⊗ AR:

∑

i,j

[χ−1(βj
∗ )ψ] ↼ S2(b

(2)
j ) ⊗ S(b

(1)
j ) sR ◦ λ∗(ui)vi

= α−1
R

(∑

i

ψ ↼ sR ◦ λ∗(ui)vi

)
= λ∗ ⊗ 1A,
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which follows from the explicit form of the inverse of the map (4.15). In a similar
way, also

κ ◦ κ−1(l) =
∑

i,j

πL[sR ◦ (χ−1(βj
∗ )ψ)(sL(l)S2(bj )ui) vi]

=
∑

i,j

πL[sR ◦ (χ−1(βj
∗ ) ψ)(sL(l)ui) vi S2(bj )]

=
∑

i,j

πL[sR ◦ (χ−1(βj
∗ ) ψ)(sL(l)ui) vi tL ◦ πL ◦ S2(bj )]

=
∑

i,j

πL[sR ◦ (χ−1(βj
∗ ) ψ)(sL(l) tL ◦ πL ◦ S2(bj ) ui) vi]

=
∑

i,j

πL{sR ◦ [(χ−1(βj
∗ ) ↼ tL ◦ πL ◦ S2(bj ))ψ](sL(l)ui) vi}

= l,

where in the last step we used that
∑

j χ−1(β
j
∗ ) ↼ tL◦πL◦S2(bj ) = χ−1(

∑
j β

j
∗ t∗◦

πL(bj )) = πR.
(2.a) ⇒ (3.a) If κ: L(A∗)L → L is an isomorphism of L-modules then πR ◦

sL ◦ κ: RL(A∗) → R is an isomorphism of R-modules. Introduce the cyclic and
separating generator λ∗ := κ−1(1L) for the module L(A∗)L. The map F in (4.16)
is equal to αR ◦ (κ−1 ◦πL ◦ tR ⊗AR) – where αR is the isomorphism (4.15) – hence
bijective.

(3.a) ⇒ (4.a), (4.b) A Frobenius system for the extension sR: R → A is
given in terms of the dual bases {bi} ⊂ A and {β∗

i } ⊂ A∗ for the module AR

as (λ∗,
∑

i bi ⊗ F −1(β∗
i )).

The element � := ∑
i bi tL ◦ πL ◦ F −1(β∗

i ) is a left integral in A. Using the
identities

λ∗ ⇀ � = sR ◦ λ∗
[∑

i

bi tL ◦ πL ◦ F −1(β∗
i )

]

= tL ◦ πL

[∑

i

sR ◦ λ∗(bi) F −1(β∗
i )

]
= 1A,

�(1) ⊗ S(�(2)) =
∑

i

bi sR ◦ λ∗[F −1(β∗
i )�(1)] ⊗ S(�(2))

=
∑

i

bi ⊗ S[�(2) tR ◦ λ∗(�(1))]F −1(β∗
i )

=
∑

i

bi ⊗ F −1(β∗
i )

one checks that the inverse of the map F ∗ in (4.17) is given by F ◦S. This implies,
in particular, that S is bijective.
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The inverse of the map ∗F in (4.18) – defined in terms of the same left integral �

– is the map

A → ∗A, a �→ λ∗ ◦ S ↽ S−1(a).

(1.a) ⇔ (1.d) The datum (ψ,
∑

i ui⊗vi) is a Frobenius system for the extension
sR: R → A if and only if (πL ◦ sR ◦ ψ,

∑
i ui ⊗ vi) is a Frobenius system for

tL: Lop → A, where πL ◦ sR: R → Lop was claimed to be an isomorphism of
k-algebras in part (1) of Proposition 2.3.

(1.a) ⇒ (1.c) We have already seen that (1.a) ⇒ (3.a) ⇒ S is bijective. If the
datum (ψ,

∑
i ui ⊗ vi) is a Frobenius system for the extension sR: R → A then

(πL ◦ sR ◦ ψ ◦ S−1, S(vi) ⊗ S(ui)) is a Frobenius system for sL: L → A.
(4.c) ⇒ (1.c) ⇒ (2.c) ⇒ (3.c) ⇒ (4.c), (1.c) ⇔ (1.b) and (1.c) ⇒ (1.a)

follow by applying (4.a) ⇒ (1.a) ⇒ (2.a) ⇒ (3.a) ⇒ (4.a), (1.a) ⇔ (1.d) and
(1.a) ⇒ (1.c) to the Hopf algebroid A

op
cop.

(1.b) ⇒ (2.b) ⇒ (3.b) ⇒ (4.b) ⇒ (1.b) We have seen that (1.b) ⇔ (1.c) ⇒ S

is bijective. Hence we can apply (1.a) ⇒ (2.a) ⇒ (3.a) ⇒ (4.a) ⇒ (1.a) to the
Hopf algebroid Acop.

(1.d) ⇒ (2.d) ⇒ (3.d) ⇒ (4.d) ⇒ (1.d) follows by applying (1.b) ⇒ (2.b) ⇒
(3.b) ⇒ (4.b) ⇒ (1.b) to the Hopf algebroid A

op
cop. �

It is proven in [5, Theorem 5.17] that under the equivalent conditions of The-
orem 4.7 the duals, A∗, ∗A, ∗A and A∗ of the Hopf algebroid A, possess (anti-)
isomorphic Hopf algebroid structures.

The Hopf algebroids, satisfying the equivalent conditions of Theorem 4.7, pro-
vide examples of distributive Frobenius double algebras [37]. (Notice that the
integrals, which we call nondegenerate, are called Frobenius integrals in [37].)

Our result naturally raises the question, under what conditions on the base
algebra the equivalent conditions of Theorem 4.7 hold true. That is, what is the
generalization of Pareigis’ condition – the triviality of the Picard group of the
commutative base ring of a Hopf algebra – to the noncommutative base algebra of
a Hopf algebroid. We are going to return to this problem in a different publication.

5. The Quasi-Frobenius Property

It is known [27, Theorem added in proof], that any finitely generated projective
Hopf algebra over a commutative ring k is (both a left and a right) quasi-Frobenius
extension of k in the sense of [23]. In this section we examine in what Hopf alge-
broids the total algebra is (a left or a right) quasi-Frobenius extension of the base
algebra.

The quasi-Frobenius property of an extension s: R → A of k-algebras has been
introduced by Müller [23] as a weakening of the Frobenius property (see the para-
graph preceding Theorem 4.7). The extension s: R → A is left quasi-Frobenius (or
left QF, for short) if the module RA is finitely generated and projective (hence the
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bimodule RAA possesses both a right dual AAR and a left dual A[RHom(A, R)]R)
and the bimodule AAR is a direct summand in a finite direct sum of copies of
A[RHom(A, R)]R.

The extension s: R → A is right QF if s, considered as a map Rop → Aop, is
a left QF extension. That is, if the module AR is finitely generated and projective
and the left dual bimodule RAA is a direct summand in a finite direct sum of copies
of the right dual bimodule R[HomR(A, R)]A.

To our knowledge it is not known whether the notions of left and right QF
extensions are equivalent (except in particular cases, such as central extensions,
where the answer turns out to be affirmative [29]; and Frobenius extensions, which
are also both left and right QF [23]).

A powerful characterization of a Frobenius extension s: R → A is the existence
of a Frobenius system – see the paragraph preceding Theorem 4.7. In the following
lemma a generalization to quasi-Frobenius extensions is introduced:

LEMMA 5.1.

(1) An algebra extension s: R → A is left QF if and only if the module RA is fi-
nitely generated and projective and there exist finite sets {ψk} ⊂ RHomR(A, R)

and {∑i u
k
i ⊗ vk

i } ⊂ A ⊗
R

A satisfying
∑

i,k

uk
i s ◦ ψk(v

k
i ) = 1A

and
∑

i,k

auk
i ⊗ vk

i = uk
i ⊗ vk

i a for all a ∈ A.

The datum {ψk,
∑

i u
k
i ⊗ vk

i } is called a left QF-system for the extension
s: R → A.

(2) An algebra extension s: R → A is right QF if and only if the module AR is fi-
nitely generated and projective and there exist finite sets {ψk} ⊂ RHomR(A, R)

and {∑i u
k
i ⊗ vk

i } ⊂ A ⊗
R

A satisfying
∑

i,k

s ◦ ψk(u
k
i ) vk

i = 1A

and
∑

i,k

auk
i ⊗ vk

i = uk
i ⊗ vk

i a for all a ∈ A.

The datum {ψk,
∑

i u
k
i ⊗ vk

i } is called a right QF-system for the extension
s: R → A.

Proof. Let us spell out the proof in the case (1). Suppose that there exists a left
QF system {ψk,

∑
i u

k
i ⊗ vk

i } for the extension s: R → A. The bimodule AAR
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is a direct summand in a finite direct sum of copies of A[RHom(A, R)]R by the
existence of A–R bimodule maps

�k: RHom(A, R) → A, φ �→
∑

i

uk
i s ◦ φ(vk

i ) and

�′
k: A → RHom(A, R), a �→ ψk( a)

satisfying
∑

k �k ◦ �′
k = A.

Conversely, in terms of the A–R bimodule maps {�k: RHom(A, R) → A}
and {�′

k: A → RHom(A, R)}, satisfying
∑

k �k ◦ �′
k = A, and the dual bases,

{bj } ⊂ A and {βj } ⊂ RHom(A, R) for the module RA, a left QF system can be
constructed as

ψk := �′
k(1A) ∈ RHomR(A, R)

and
∑

i

uk
i ⊗ vk

i :=
∑

j

�k(βj ) ⊗ bj ∈ A ⊗
R

A. �

Lemma 5.1 implies, in particular, that for a left/right QF extension R → A, A is
finitely generated and projective also as a right/left R-module.

THEOREM 5.2. The following properties of a Hopf algebroid A = (AL, AR, S)

are equivalent:

(1.a) sR: R → A is a left QF extension.
(1.b) tL: Lop → A is a left QF extension.
(1.c) The modules AR and L(A∗)L – defined by λ∗ · l := λ∗ ↼ sL(l) – are finitely

generated and projective.
(1.d) The module AR is finitely generated and projective and the module L(A∗)L

is flat.
(1.e) The module AR is finitely generated and projective and the invariants of the

left A-module LA⊗L(A∗)L – defined via left multiplication in the first factor
– with respect to AL are the elements of LL(A) ⊗ L(A∗)L.

(1.f) There exist finite sets {�k} ⊂ L(A) and {λ∗
k} ⊂ L(A∗) satisfying

∑
k λ∗

k ◦
S(�k) = 1R.

(1.g) The left A-module AA∗ – defined by a · φ∗ := φ∗ ↼ S(a) – is finitely
generated and projective with generator set {λ∗

k} ⊂ L(A∗).

The following properties of A are also equivalent:

(2.a) sL: L → A is a right QF extension.
(2.b) tR: Rop → A is a right QF extension.
(2.c) The modules LA and RR(∗A) – defined by r · ∗ρ := sR(r) ⇁ ∗ρ – are

finitely generated and projective.
(2.d) The module LA is finitely generated and projective and the module RR(∗A)

is flat.
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(2.e) The module LA is finitely generated and projective and the invariants of
the right A-module RR(∗A) ⊗ AR – defined via right multiplication in the
second factor – with respect to AR are the elements of RR(∗A) ⊗ R(A)R.

(2.f) There exist finite sets {℘k} ⊂ R(A) and {∗ρk} ⊂ R(∗A) satisfying
∑

k ∗ρk ◦
S(℘k) = 1L.

(2.g) The right A-module ∗AA – defined by ∗φ · a := S(a) ⇁ ∗φ – is finitely
generated and projective with generator set {∗ρk} ⊂ R(∗A).

If furthermore the antipode is bijective, then the conditions (1.a)–(1.g) and
(2.a)–(2.g) are equivalent to each other and also to

(1.h) The left ∗A-module on A – defined by ∗φ ·a := ∗φ ⇁ a – is finitely generated
and projective with generator set {�k} ∈ L(A).

(2.h) The right A∗-module on A – defined by a · φ∗ := a ↼ φ∗ – is finitely
generated and projective with generator set {℘k} ∈ R(A).

Proof. (1.a) ⇔ (1.b) It follows from part (1) of Proposition 2.3 that the mod-
ule AL is finitely generated and projective if and only if RA is, and the datum
{ψk,

∑
i u

k
i ⊗ vk

i } is a left QF system for the extension sR: R → A if and only if
{πL ◦ sR ◦ ψk,

∑
i u

k
i ⊗ vk

i } is a left QF system for tL: Lop → A.
(1.a) ⇒ (1.c) The module AR is finitely generated and projective by Lemma 5.1.

In terms of the left QF system, {ψk,
∑

i u
k
i ⊗ vk

i } for the extension sR: R → A,
the dual bases for the module L(A∗)L are given with the help of the map (4.12) as
{EA∗(ψk)} ⊂ L(A∗) and {κk := πL[∑i sR ◦ (uk

i ) vk
i ]} ⊂ HomL(L(A∗)L, L).

The right L-linearity of the maps κk: L(A∗) → L is checked similarly to
the right L-linearity of the map (4.19). Notice that for any R–R bimodule map
ψ : RAR → R we have

EA∗(ψ) ↼ sL(l) =
∑

j

[χ−1(βj
∗ )ψ] ↼ sL(l)S2(bj )

=
∑

j

[χ−1(t∗ ◦ πL ◦ tR ◦ πR ◦ tL(l) βj
∗ )ψ] ↼ S2(bj )

=
∑

j

[χ−1(βj
∗ ) t∗ ◦ πR ◦ tL(l) ψ] ↼ S2(bj )

=
∑

j

[χ−1(βj
∗ ) s∗ ◦ πR ◦ tL(l) ψ] ↼ S2(bj )

=
∑

j

[χ−1(s∗ ◦ πL ◦ tR ◦ πR ◦ tL(l) βj
∗ ) ψ] ↼ S2(bj )

= EA∗(ψ ↼ sL(l))

for all l ∈ L, where in the first step we used (4.12) and (4.9), in the second step
the property of the dual bases {bj } ⊂ A and {βj

∗ } ⊂ A∗ that
∑

j β
j
∗ ⊗ sL(l)bj =

∑
j t∗(l)β

j
∗ ⊗bj for all l ∈ L as elements of LA∗ ⊗AL, in the third step the identity
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χ−1 ◦ t∗ = t∗ ◦ πR ◦ sL, in the fourth step the fact that by the left R-linearity of ψ

we have t∗(r)ψ = s∗(r)ψ for all r ∈ R, in the fifth step χ−1 ◦ s∗ = s∗ ◦ πR ◦ sL,
and finally

∑
j β

j
∗ ⊗ bj sL(l) = ∑

j s∗(l)β
j
∗ ⊗ bj , holding true for all l ∈ L as an

identity in LA∗ ⊗ AL.
The dual basis property of the sets {EA∗(ψk)} and {κk} is verified by the property

that
∑

i,k EA∗(ψk ↼ sL ◦ κk(λ
∗)) = λ∗ for all λ∗ ∈ L(A∗), which is checked

similarly to (4.21).
(1.c) ⇒ (1.d) is a standard result.
(1.d) ⇒ (1.e) If the module AR – equivalently, by Lemma 2.6 the module AL

– is finitely generated and projective then the invariants of any left A-module M

with respect to AL are the elements of the kernel of the map

ζM : M → LA∗ ⊗ ML, m �→
(∑

i

βi
∗ ⊗ bi · m

)
− πL ⊗ m,

where the right L module ML is defined via tL, and the sets {bi} ⊂ A and {βi∗} ⊂ A∗
are dual bases for the module AL.

The map ζA, corresponding to the left regular A-module, is a left L-module map
LA → LA∗ ⊗ LAL and ζLA⊗L(A∗)L = ζA ⊗ L(A∗)L. Since tensoring with L(A∗)L

is an exact functor by assumption, it preserves the kernels, that is the invariants in
this case.

(1.e) ⇒ (1.f) With the help of the map (4.14) introduce
∑

k

�k ⊗ λ∗
k := α−1

L (πR) ∈ Inv(LA ⊗ L(A∗)L) ≡ LL(A) ⊗ L(A∗)L.

It satisfies
∑

k λ∗
k ◦ S(�k) = αL ◦ α−1

L (πR)(1A) = 1R.
(1.f) ⇒ (1.a) In terms of the sets {�k} ⊂ L(A) and {λ∗

k} ⊂ L(A∗) a left QF
system for the extension sR: R → A can be constructed as {λ∗

k, �
(1)
k ⊗ S(�

(2)
k )}.

The module AR is finitely generated and projective since there exist dual bases
{bi} ⊂ A and {β∗

i } ⊂ A∗ defined by
∑

i bi ⊗ β∗
i = ∑

k �
(1)
k ⊗ λ∗

k[S(�
(2)
k ) ], as

elements of AR ⊗ RA∗. The module AL is finitely generated and projective by
Lemma 2.6, hence so is RA.

(1.f) ⇒ (1.g) In terms of the sets {�k} ⊂ L(A) and {λ∗
k} ⊂ L(A∗) the

dual bases for the module AA∗ are given by {λ∗
k} ⊂ L(A∗) and { ⇀ �k} ⊂

AHom(AA∗, A).
(1.g) ⇒ (1.f) In terms of the dual bases {λ∗

k} ⊂ L(A∗) and {�k} ⊂
AHom(AA∗, A) one defines the required left integrals �k := �k(πR) in A.

The equivalence of the conditions (2.a)–(2.g) follows by applying the above
results to the Hopf algebroid A

op
cop.

Now assume that S is bijective. Then
(1.f) ⇔ (2.f) follows from Scholium 2.10.
(1.f) ⇒ (1.h) Scholium 2.8, (1.b) and Scholium 2.10, (3.c) can be used to show

that in terms of the sets {�k} ⊂ L(A) and {λ∗
k} ⊂ L(A∗) the dual bases for the
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left ∗A-module on A are given by {�k} ⊂ L(A) and {λ∗
k ◦ S ↽ S−1( )} ⊂

∗AHom(A, ∗A).
(1.h) ⇒ (1.f) Let {�k} ⊂ L(A) and {χk} ⊂ ∗AHom(A, ∗A) be dual bases for

the left ∗A-module A. Since for all a ∈ A we have
∑

k �
(1)
k sR ◦ χk(a)(�(2)) = a,

the module AR, and hence by Proposition 2.6 also RA, is finitely generated and
projective. For any value of the index k the element χk(1A) is an invariant of the
left regular ∗A-module, hence a t-integral on AR. By Scholium 2.10 the elements
λ∗

k := χk(1A) ◦ S−1 are s-integrals on AR, satisfying

∑

k

λ∗
k ◦ S(�k) = πR

[∑

k

χk(1A) ⇁ �k

]
= 1R.

(2.f) ⇔ (2.h) follows by applying (1.f) ⇔ (1.h) to the Hopf algebroid A
op
cop. �

If the antipode of a Hopf algebroid A = (AL, AR, S) is bijective then the appli-
cation of Theorem 5.2 to the Hopf algebroid Aop results in equivalent conditions
under which the extensions sR: R → A and tL: Lop → A are right QF, and
sL: L → A and tR: Rop → A are left QF.

In order to show that – in contrast to Hopf algebras over commutative rings
– not any finitely generated projective Hopf algebroid is quasi-Frobenius, let us
give here an example (with bijective antipode) such that the total algebra is finitely
generated and projective as a module over the base algebra (in all the four senses
listed in (2.16)) and the total algebra is neither a left nor a right QF extension of
the base algebra.

The example is taken from [21, Example 3.1] where it is shown that for any
algebra B over a commutative ring k the k-algebra A := B ⊗

k
Bop has a left

bialgebroid structure, AL, over the base B with structural maps

sL: B → A, b �→ b ⊗ 1B,

tL: Bop → A, b �→ 1B ⊗ b,

γL: A → AB ⊗ BA, b1 ⊗ b2 �→ (b1 ⊗ 1B) ⊗ (1B ⊗ b2),

πL: A → B, b1 ⊗ b2 �→ b1b2. (5.1)

The bialgebroid AL satisfies the Hopf algebroid axioms of [21] with the involutive
antipode S, equal to the flip map

S: B ⊗
k

Bop → Bop ⊗
k

B, b1 ⊗ b2 �→ b2 ⊗ b1. (5.2)

The reader may check that A has a Hopf algebroid structure also in the sense of
this paper with left bialgebroid structure (5.1), antipode (5.2) and right bialgebroid
structure AR = (A, Bop, S ◦ sL, S ◦ tL, (S ⊗ S) ◦ γ

op
L ◦ S, πL ◦ S).

If B is finitely generated and projective as a k-module then all modules ABop
,

Bop
A, AB and BA are finitely generated and projective, and vice versa. What is

more, we have
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LEMMA 5.3. Let B be an algebra over the commutative ring k with trivial center.
The following statements are equivalent:

(1) The extension k → B is left QF.
(2) The extension k → B is right QF.
(3) The extension B → B ⊗

k
Bop, b �→ b ⊗ 1B is left QF.

(4) The extension B → B ⊗
k

Bop, b �→ b ⊗ 1B is right QF.

The equivalence (1) ⇔ (2) is proven in [29] and the rest can be proven using
the techniques of quasi-Frobenius systems.

In view of Lemma 5.3 it is easy to construct a finitely generated projective Hopf
algebroid which is not QF. Let us choose, for example, B to be the algebra of n×n

upper triangle matrices with entries in the commutative ring k. Then B has trivial
center and it is neither a left nor a right QF extension of k, hence A = B ⊗

k
Bop is

neither a left nor a right QF extension of B.
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24. Năstăsescu, C., Van den Bergh, M. and Van Oystaeyen, F.: Separable functors applied to graded

rings, J. Algebra 123 (1989), 397–413.
25. Panaite, F.: A Maschke type theorem for quasi-Hopf algebras, In: S. Caenepeel and A. Ver-

schoren (eds), Rings, Hopf Algebras and Brauer Groups, Marcel Dekker, New York, 1998.
26. Panaite, F. and Van Oystaeyen, F.: Existence of integrals for finite-dimensional quasi-Hopf

algebras, Bull. Belg. Math. Soc. Simon Steven 7(2) (2000), 261–264.
27. Pareigis, B.: When Hopf algebras are Frobenius algebras, J. Algebra 18 (1971), 588–596.
28. Pierce, R. S.: Associative Algebras, Springer, New York, 1982.
29. Rosenberg, Chase, as referred to in [23].
30. Schauenburg, P.: Duals and doubles of quantum groupoids (×R-Hopf Algebras), In: Contemp.

Math. 267, Amer. Math. Soc., Providence, 2000, pp. 273–299.
31. Schauenburg, P.: Weak Hopf algebras and quantum groupoids, Banach Center Publications 61

(2003), 171–181.
32. Sweedler, M. E.: Hopf Algebras, Benjamin, New York, 1969.
33. Sweedler, M. E.: Integrals for Hopf algebras, Ann. Math. 89 (1969), 323–335.
34. Szlachányi, K.: Finite quantum groupoids and inclusions of finite type, Fields Institute

Commun. 30 (2001), 393–407.
35. Szlachányi, K.: Galois actions by finite quantum groupoids, In: L. Vainerman (ed.), Locally

Compact Quantum Groups and Groupoids, IRMA Lect. Math. Theoret. Phys. 2, de Guyter,
Berlin, 2003.

36. Szlachányi, K.: The monoidal Eilenberg–Moore construction and bialgebroids, J. Pure Appl.
Algebra 182 (2003), 287–315.

37. Szlachányi, K.: The double algebraic viewpoint of finite quantum groupoids, J. Algebra 280
(2004), 249–294.

38. Takeuchi, M.: Groups of algebras over A ⊗ Ā, J. Math. Soc. Japan 29 (1977), 459–492.
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