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Abstract. In this series of papers, we introduce τ -categories, which are additive categories with some
kind of Auslander–Reiten sequences. We apply them to study the category of lattices over orders. In
this first paper, we study minimal projective resolutions in functor categories over τ -categories. Then
we give a structure theorem of completely graded τ -categories using mesh categories.
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In this series of papers, we study the category lat � of lattices over an order �

over a complete regular local ring of dimension d � 2 (Section 2.2). In [1, 2]
and so on, Auslander studied the Abelian category Mod(lat �) of additive func-
tors (lat �)op → Ab. He obtained the Existence Theorem of Auslander–Reiten
sequences, which are good complexes in lat � derived from the minimal projec-
tive resolutions of simple objects in Mod(lat �). As an application, one obtains
an invariant A(lat �) called the Auslander–Reiten quiver [5, 20], which displays
terms of Auslander–Reiten sequences. It is a directed graph with a special combi-
natorial structure, called a translation quiver (Section 2.4). Since A(lat �) is much
simpler than �, it is important to consider the relationship between representation
theoretic properties of � and combinatorial properties of A(lat �). In this series of
papers, we develop a basic theory to study such problems. Especially, we solve the
following problem (Pd) for d = 1 in [11].

(Pd) Give a combinatorial characterization of finite translation quivers which are
realized as an Auslander–Reiten quiver A(lat �) of an order � over a com-
plete regular local ring of dimension d.

Roughly speaking, our method is to compare the following things for a Krull–
Schmidt category C:

(Re) Representation theoretic realization of C, namely an equivalence between C
and the category lat � of some order �;
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(Ca) Categorical properties for C, especially minimal projective resolutions of
simple objects in Mod C;

(Co) Combinatorial properties for A(C).

In particular, we introduce τ -categories (Section 2.1), which are Krull–Schmidt
categories with some kind of Auslander–Reiten sequences, and define an invariant
A(C) called the Auslander–Reiten quiver of a τ -category C (Section 2.4). In this
paper, we study τ -categories and the relationship between (Ca) and (Co). Then, in
[10] and [11], we mainly study the relationship between (Re) and (Ca) using homo-
logical conditions for Noetherian rings which are related to Auslander–Gorenstein
rings [8] and Auslander orders [4].

Auslander’s theory shows that lat � is a τ -category for any
R-order � which is an isolated singularity with dim R � 2 (Section 2.2). But,
our introduction of τ -categories is motivated by another important example more
strongly. In their solution of (P0) [13], Igusa and Todorov introduced τ -species (=
modulated translation quiver in [13]), which form an algebraic realization of trans-
lation quivers by division rings and their bimodules (Section 8.3). They defined an
additive category M̂(Q) called the mesh category of a τ -species Q (Section 8.4),
which is a generalization of the mesh categories of translation quivers introduced
by Riedtmann [15] and Bongartz and Gabriel [7]. We show that M̂(Q) forms a
τ -category (Section 8.4). Although some partial results for (P1) were given by
Wiedemann [17–19], one shall meet a sheer difficulty to get a general solution for
(P1), which was not existent in (P0). In fact, we shall need some finiteness condition
for mesh categories of some τ -species, so we study not only lat � but also general
τ -categories in these papers. Thanks to our general treatment, we give an answer
to (P1) in [11] as an application of Rejection theory for τ -categories in [10], which
generalizes results in [9].

Our study in this first paper is divided into two parts. In Part I, we develop a
ladder theory of a τ -category C, which is a study of minimal projective resolutions
of some kind of C-modules. First of all, we prove an Existence Theorem of Ladders
(Section 3.3), which is a fundamental of our theory of τ -categories, and will be
used frequently in [10, 11]. Then we obtain a Radical Layers Theorem (Section 4.2)
[12], which immediately implies that the associated completely graded category
Ĝ(C) is a τ -category whenever C itself is a τ -category (Section 5.2). In Section 6,
we introduce a concept of invertible ladders and invertible pairs of C-modules and
Cop-modules, and study some homological properties. As an application, we obtain
a Recursion Formula (Section 7.1), which allows to build ladders in a mere combi-
natorial fashion. We use it to study the relationship between above (Ca) and (Co).

In Part II, as an application of theorems in Part I, we develop a structure theory
of τ -categories, which connect τ -categories and τ -species. Let Tsp be the category
of τ -species and Tca the category of skeletal τ -categories (Section 10.1). There are
functors

M̂: Tsp −→ Tca (mesh categories) (Section 8.4),
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Â: Tca −→ Tsp (Auslander–Reiten species) (Section 9.1)

such that Â ◦ M̂ � 1Tsp and M̂ ◦ Â � Ĝ (Section 10.2). In particular, the category
Tsp is equivalent to Tgca the category of completely graded skeletal τ -categories.
This means that τ -categories are the natural domain to study mesh categories of
τ -species.

Our writtings were inspired by the work of Igusa and Todorov [12, 13], which
extends ring theoretic aspects of the work of Riedtmann [15] and Bongartz and
Gabriel [7]. We have borrowed terminology (such as Ladders and Radical Layers)
from [12]. Once Radical Layers Theorem is established in our general context, we
define τ -species and their mesh categories (Section 8) in entirely similar manner as
in [13]. Now we feel that our τ -category is rather a natural domain of consideration.
For one thing, our proof of the Radical Layers Theorem is not only more general,
but also simpler, even when restricted to the case of d = 0, than that of [12] where
very restrictive assumptions for valuations of arrows of Auslander–Reiten quiv-
ers are imposed and essentially used in the proof. For another thing a translation
quiver has a two-dimensional geometric realization in the sense of [7] §4, so that
a τ -species can be regarded as a two-dimensional analogue of species. Therefore
our Structure Theorem of τ -categories can be regarded as a two-dimensional ana-
logue of the well known relationship between species and hereditary categories.
We hope there should exist higher-dimensional τ -categories as well as τ -species
corresponding to each other.

PART I. LADDER THEORY OF τ -CATEGORIES

1. Modules over Krull–Schmidt Categories

An additive category C is called skeletally small if the isomorphism classes of
objects form a set, and called Krull–Schmidt if any object is isomorphic to a finite
direct sum of objects whose endomorphism rings are local. By [14], C is Krull–
Schmidt if and only if a ring of endomorphism of any object is semiperfect and
idempotents split in C. Recall that H. Bass introduced a definition of semiper-
fect rings, and this notion deals with a theory of projective covers developed by
Eilenberg, Nakayama and Bass.

Throughout this paper, any additive category C is assumed to be skeletally small
and Krull–Schmidt. We denote by C(X, Y ) the set of morphisms from X to Y , and
by fg ∈ C(X, Z) the composition of f ∈ C(X, Y ) and g ∈ C(Y, Z). A C-module
is a contravariant additive functor from C to the category Ab of Abelian groups.
For C-modules M and M ′, we denote by Hom(M, M ′) the set of natural transfor-
mations from M to M ′. Thus we obtain the Abelian category Mod C of C-modules
[1]. We review several basic facts and introduce some (nonstandard) notations.

(1) Krull–Schmidt theorem holds in C, namely any object is uniquely isomorphic
to a finite direct sum of indecomposable objects. We denote by ind C the set
of isomorphism classes of indecomposable objects in C.
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(2) Define functors HC : C → Mod C and HC : C → Mod Cop by HC
X := C( , X)

and HX
C := C(X, ). We say that a C-module M is finitely generated if there

exists an epimorphism HC
X → M for some X ∈ Ob(C). Then Yoneda’s lemma

shows that HC (respectively, HC) induces an equivalence from C (respectively,
Cop) to the category of finitely generated projective C-modules (respectively,
Cop-modules).
C is called left Artinian (respectively, right Artinian) if HC

X (respectively, HX
C )

has finite length for any X ∈ Ob(C), and called Artinian if it is left Artinian
and right Artinian.

(3) We denote by JC (or J) the Jacobson radical of C, which is an ideal of C
such that J( , X) (respectively, J(X, )) is the radical (= intersection of all
maximal submodules) of HC

X (respectively, HX
C ) for any X ∈ Ob(C). Define

functors SC : C → Mod C and SC : C → Mod Cop by SC
X := HC

X / J( , X)

and SX
C := HC

X / J(X, ). Then SC (respectively, SC) induces a bijection from
ind C to the set of isomorphism classes of simple C-modules (respectively,
Cop-modules).
We simply denote HC

X (respectively, HX
C , SC

X, SX
C ) by HX (respectively, HX, SX,

SX). We denote by pd L the projective dimension of a C-module L, and by
ind+

n C (respectively, ind−
n C) the subset of ind C consisting of all X such that

pd SX � n (respectively, pd SX � n).

(4) Recall that an epimorphism HX

φ→ L is called a projective cover of a
C-module L if φ is essential, or equivalently, Ker φ ⊆ J( , X) holds. In this
sense C is semiperfect, i.e. any finitely generated C-module has a projective

cover. Recall that an exact sequence HXn

Hfn→ · · · Hf2→ HX1

Hf1→ HX0
→ L0 → 0

is called a minimal projective resolution of a C-module L0 if HXi
→ Li → 0

is a projective cover for any i (0 � i � n), where we put Li := Im Hfi

(1 � i � n).
(5) Let I be an ideal of C. We write f ∈ I if f ∈ I (X, Y ) for some X, Y ∈

Ob(C). For a C-module L, define a subobject IL of L by (IL)(X) :=
∑

Y∈Ob(C) I (X, Y )L(Y ). Then the radical of a finitely generated C-module L

is given by J L.
(6) For two complexes A and A′ over C, we write A ≈ A′ if A is isomorphic to A′

as a complex. Any morphism in C is regarded as a two-termed complex, and
any object in C is regarded as a one-termed complex. Thus, for objects X and
Y in C, we write X ≈ Y if X is isomorphic to Y .
It is often used that, for any f ∈ C, there exists g ∈ J such that f ≈ (1 0

0 g

)
.

(7) For a set Q, we will denote by ZQ (respectively, NQ) the free Abelian group
(respectively, free Abelian monoid) generated by Q, and regard Q as a subset
of NQ. Introduce an inner product 〈 , 〉 on ZQ by taking Q as an orthonormal
base, and for any X ∈ ZQ, define X+, X− ∈ NQ by X = X+ − X− and
〈X+, X−〉 = 0. For a subset S of Q, we denote by |S : ZQ → ZS the natural
projection.
For example, we can identify Ob(C)/ ≈ with N ind C.
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2. τ -Categories

2.1. Let C be a Krull–Schmidt category and n � 0. Let α: Mod C → Mod Cop be
the left exact functor defined by (α(L))(X) := Hom(L, HC

X), and Rnα: Mod C →
Mod Cop the nth derived functor of α, namely (Rnα(L))(X) = Extn(L, HC

X). Du-
ally, Rnα: Mod Cop → Mod C is defined [8].

We denote by Modn C the full subcategory of Mod C consisting of L which has

a minimal projective resolution (Section 1(4)) HXn

Hfn→ · · · Hf2→ HX1

Hf1→ HX0
→

L → 0 (Xi ∈ Ob(C)). For such L, put Trn−1(L) := Cok Hfn and Tr(L) := Tr0(L).
Notice that Trn(L) gives a minimal lifting of Jn(L) in [3].

(1) C is called a right τ -category if SX ∈ Ob(Mod2 C) and Tr1(SX) is semi-
simple for any X ∈ Ob(C). Dually, C is called a left τ -category if SX ∈
Ob(Mod2 Cop) and Tr1(SX) is semisimple for any X ∈ Ob(C).

(2) A right (respectively, left) τ -category C is called right strict (respectively,
left strict) if pd SX � 2 (respectively, pd SX � 2) for any X ∈ Ob(C).
A τ -category C is called strict if C is right strict and left strict.

(3) Assume that X ∈ Ob(C) satisfies SX ∈ Ob(Mod2 C) (respectively, SX ∈
Ob(Mod2 Cop)). Then we denote by (X]C = (τ+X

ν+
X→ θ+X

µ+
X→ X) (respec-

tively, [X)C = (X
µ−

X→ θ−X
ν−
X→ τ−X)) a complex such that Hτ+X

H
ν
+
X→ Hθ+X

H
µ

+
X→

HX → SX → 0 (respectively, Hτ−X H
ν
−
X→ Hθ−X H

µ
−
X→ HX → SX → 0) gives a

minimal projective resolution. We omit the index C for simplicity.
Immediately, (X] (respectively, [X)) is unique up to isomorphism, and
(X ⊕ Y ] ≈ (X] ⊕ (Y ] holds for any X, Y ∈ Ob(C). Moreover, X is an inde-
composable object if and only if (X] (respectively, [X)) is indecomposable as
a complex.

Moreover, ind±
1 C = {x ∈ ind C | τ±x = 0} and ind±

0 C = {x ∈ ind C | θ±x = 0}
hold ((3) of Section 1).

2.2. EXAMPLES. (1) Let � be a Noetherian semiperfect ring and C := pr � the
category of finitely generated projective �-modules. Then Mod C is equivalent to
the category of left �-modules. In particular, C is a strict τ -category if and only
if gl.dim � � 2 and Ext2�(S, �) is semisimple for any simple left or right �-
module S. By 2.3 below, this is also equivalent to gl.dim � � 2, Exti�(S, �) = 0
(i = 0, 1) and Ext2�(S, �) is simple for any simple left or right �-module S with
pd S = 2.

(2) Let R be a complete regular local ring of dimension d � 0. An R-algebra
� is called an R-order if it is finitely generated free as an R-module. Assume that
� is an R-order. A left �-module L is called a �-lattice if it is finitely generated
free as an R-module. We denote by lat � the category of �-lattices, which forms a
Krull–Schmidt category [6]. Then ( )∗ = HomR( , R) gives a duality between lat �
and lat �op. Let rin � := (pr �op)∗ be the category of relative injective �-lattices.
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Assume that � is an R-order which is an isolated singularity, namely
gl.dim � > d and gl.dim R℘ ⊗R � = ht ℘ for any nonmaximal prime ideal ℘ of R.
For any X ∈ ind(lat �)− ind(pr �) (respectively, Y ∈ ind(lat �)− ind(rin �)), the
Auslander–Reiten sequence [2] gives (X] ≈ [τ+X) (respectively, [Y ) ≈ (τ−Y ]).

In particular, if d � 2 and � is an R-order which is an isolated singularity, then
lat � is a strict τ -category. Moreover, ind+

1 (lat �) = ind(pr �) and ind−
1 (lat �) =

ind(rin �) if d = 0 or 1, and ind+
1 (lat �) = ∅ = ind−

1 (lat �) if d = 2.
(3) (Section 8.4) If C is the mesh category of a τ -species, then C is a τ -category.

Proof. (2) The former assertion is immediate from the definition. Let J� be
the Jacobson radical of �, P ∈ ind(pr �) and I ∈ ind(rin �). If d � 1, then
(P ] ≈ (0 → J�P → P) and [I ) ≈ (I → (I ∗J�)∗ → 0). If d = 2, then the
almost split sequence in the sence of [16] 2.1 gives (P ] ≈ [τ+P) (respectively,
[I ) ≈ (τ−I ]). �
2.3. THEOREM. Let C be a τ -category. Then Tr1(SX) = Sτ+X, R1α(SX) = 0
and (X] ≈ [τ+X) hold for any X ∈ ind C − ind+

1 C. Dually, Tr1(SY ) = Sτ−Y
,

R1α(SY ) = 0 and [Y ) ≈ (τ−Y ] hold for any Y ∈ ind C − ind−
1 C. Hence τ+ and

τ− give mutually inverse bijections between ind C − ind+
1 C and ind C − ind−

1 C.

2.3.1. (1) If L ∈ Ob(Mod2 C) satisfies Tr1(L) ∈ Ob(Mod2 Cop), then R1α(Tr1(L))

= 0 holds.
(2) Let I be the ideal of Mod C consisting of morphisms which factor through

a projective object, and Mod C := (Mod C)/I the stable category [3]. Then there
exists a bijection ( Mod Cop)(Trn(L), M) → ( Mod C)(Trn(M), L) for any n � 0,
L ∈ Ob(Modn+1 C) and M ∈ Ob(Modn+1 Cop).

Proof. (1) Take minimal projective resolutions HX2

Hg→ HX1

Hf→ HX0
→ L → 0

and HY Hh

→ HX1
Hg

→ HX2 → Tr1(L) → 0. Then there exists f ′ such that f = hf ′.
For any a ∈ Ker Hh, we obtain af = ahf ′ = 0. Hence a ∈ Im Hg holds. Thus
R1α(Tr1(L)) = 0 holds.

(2) The assertion for n = 0 is immediate since Tr gives a duality between

Mod1 C and Mod1 Cop. Let n > 0 and take minimal projective resolutions HXn+1

Hfn+1→
· · · Hf1→ HX0

→ L → 0 and HYn+1
Hgn+1→ · · · Hg1→ HY0 → M → 0. For φ ∈

(Mod Cop)(Trn(L), M), take the following commutative diagram.

HX0 Hf1−−−−→HX1 Hf2−−−−→· · · Hfn+1−−−−→HXn+1−−−−→Trn(L)−−−−→0

↓Han+1 ↓Han ↓Ha0 ↓φ

HYn+1 Hgn+1−−−−→ HYn Hgn−−−−→· · · Hg1−−−−→ HY0 −−−−→ M −−−−→0
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Define ψ by the following commutative diagram.

0←−−−− L ←−−−− HX0

Hf1←−−−−HX1

Hf2←−−−−· · · Hfn+1←−−−−HXn+1

↑ψ ↑Han+1 ↑Han ↑Ha0

0←−−−−Trn(M)←−−−− HYn+1

Hgn+1←−−−− HYn

Hgn←−−−−· · · Hg1←−−−− HY0

It is easily checked that φ is zero in Mod Cop if and only if there exists bi ∈
C(Yi, Xn−i+2) (1 � i � n + 1) such that ai = bifn−i+2 + gi+1bi+1 holds for any
i (1 � i � n) if and only if ψ is zero in Mod C. Thus we obtain a well defined
injection ( Mod Cop)(Trn(L), M) → ( Mod C)(Trn(M), L). This is surjective since
we obtain the inverse map by the dual argument. �
2.3.2. Proof of 2.3. Put M := Tr1(SX). Then we have an epimorphism M =
Cok Hν+

X → Sτ+X. Since C is a τ -category, M is semisimple. Hence Tr1(M) is
semisimple again, and Sτ+X is a direct summand of M . Since M is not projective,
we obtain ( Mod Cop)(M, M) �= 0. Hence ( Mod C)(Tr1(M), SX) �= 0 holds by
2.3.1(2). Thus SX is a direct summand of Tr1(M) since Tr1(M) is semisimple and
SX is simple. Since R1α(Tr1(M)) = 0 holds by 2.3.1(1), we obtain R1α(SX) = 0.

Hence HX H
µ

+
X→ Hθ+X H

ν
+
X→ Hτ+X → M → 0 is a projective resolution. Since (X]

is indecomposable by 2.1(3), M is indecomposable and this resolution is minimal.
Thus M = Sτ+X and (X] ≈ [τ+X) hold. In particular, τ+X is indecomposable and
X ≈ τ−τ+X holds. Hence τ+X ∈ ind C − ind−

1 C holds. �
2.4. DEFINITION. (1) Q = (Q, Qp, Qi, τ+, d, d ′) is called a translation quiver
if Q is a set, Qp and Qi are subsets of Q, τ+ is a bijection Q − Qp → Q − Qi ,
and d and d ′ are maps Q × Q → N�0 such that d(Y, X) = d ′(τ+X, Y ) holds for
any X ∈ Q − Qp and Y ∈ Q, and d( , X) = 0 implies X ∈ Qp.

Usually, we draw Q as a directed graph: Q is the set of vertices, and we draw

valued arrows X
(d(X,Y ), d ′(X,Y ))

� Y for any X, Y ∈ Q such that d(X, Y ) �= 0, and
dotted arrows from X to τ+X for any X ∈ Q − Qp.

(2) For a τ -category C, a translation quiver A(C) = (Q, Qp, Qi, τ+, d, d ′)
called the Auslander–Reiten quiver of C is defined by Q := ind C, Qp := ind+

1 C,
Qi := ind−

1 C, d(X, Y ) := 〈θ+Y, X〉 and d ′(X, Y ) := 〈θ−X, Y 〉 ((7) of Section 1).
A(C) indicates terms of each (X] and [X) (X ∈ ind C) diagrammatically.

3. Existence Theorem of Ladders

In this section, we show basic results 3.1, 3.2 and 3.3, which are proved in 3.5
and 3.6.

3.1. (1) For a Krull–Schmidt category C, we denote by C• (respectively, •C, C×)
the collection of split monomorphisms (respectively, split epimorphisms, isomor-
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phisms) in C. Then it is easily shown that C• + J ⊆ C•, •C + J ⊆ •C and
C× + J ⊆ C× hold. We have mutually inverse bijections cok: C• / ≈ → •C / ≈
and ker: •C / ≈ → C• / ≈.

(2) For a right τ -category C, we denote by C• µ+ (respectively, ν+ •C) the
collection of a morphism a such that a = f µ+

X (respectively, a = ν+
Xf ) for some

X ∈ Ob(C) and f ∈ C• (respectively, f ∈ •C).
Similarly, for a left τ -category C, we denote by µ− •C (respectively, C• ν−) the

collection of a morphism a such that a = µ−
Xf (respectively, a = f ν−

X ) for some
X ∈ Ob(C) and f ∈ •C (respectively, f ∈ C•).

THEOREM. Let C be a right (respectively, left) τ -category. Putting l+(f µ+
X) :=

ν+
X cok f (respectively, l−(µ−

Xf ) := (ker f )ν−
X ) for any X ∈ Ob(C) and f ∈

C• (respectively, f ∈ •C), we obtain a well defined surjection l+: C• µ+/ ≈ →
ν+ •C / ≈ (respectively, l−: µ− •C / ≈ → C• ν−/ ≈), which preserves direct
sums.

3.2. Let C be a right τ -category and a0 ∈ J(X, Y ). We say that a0 has a right
ladder (an)0�n if there exists bn ∈ C• µ+ such that an ≈ (

bn

0

)
and l+(bn) = an+1

for any n � 0. In other words, there exist a commutative diagram

Y0
f1←−−−− Y1

f2←−−−− Y2
f3←−−−− Y3

f4←−−−− · · ·
↑b0 ↑b1 ↑b2 ↑b3 · · ·
Z0

g1←−−−−Z1
g2←−−−−Z2

g3←−−−−Z3
g4←−−−−· · · ,

Un+1 ∈ Ob(C) and hn+1 ∈ C(Un+1, Zn) such that a0 ≈ (
b0
0

) ∈ C(Z0 ⊕ U0, Y0) and

(Yn] ≈ (Zn+1 ⊕ Un+1

(
bn+1 −gn+1

0 hn+1
)

−→ Yn+1 ⊕ Zn

(
fn+1
bn

)−→ Yn) for any n � 0.

COROLLARY. Each of an, bn and Un above is uniquely determined up to isomor-
phism.

Put l+n (a0) := an, l+,e
n (a0) := bn and u+

n (a0) := Un. We call (an)0�n�m (m � 0)
a right ladder of length m. Dually, define l−n (a0), l−,e

n (a0), u−
n (a0) and a left ladder

of a0.

3.3. We call a ∈ J(X, Y ) special if a + f ≈ a holds for any f ∈ J2(X, Y ).

THEOREM. Let C be a right τ -category and a0 ∈ J(X, Y ).

(1) If a0 is special, then a0 has a right ladder.
(2) In particular, a0 has a right ladder if one of X = 0, a0 = ν+

Z or (C is a
τ -category and a0 = µ−

Z ) (Z ∈ Ob(C)) holds.
(3) If C is right strict and a0 is a special monomorphism, then l+n (a0) ≈ l+,e

n (a0)

is a monomorphism for any n � 0.
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3.4. Let a, b ∈ J. We write a
l
> b (respectively, a

l� b, b
r
> a, b

r� a) if sa = bt

holds for some s and t which satisfy s ∈ C• (respectively, s ∈ C• and t ∈ C•,
t ∈ •C, s ∈ •C and t ∈ •C).

X a−−−−→Y

s↑ ↑t

X′ b−−−−→Y ′

Immediately, a
l
> b (respectively, b

r
> a) holds if and only if there exists an

epimorphism Cok Ha → Cok Hb (respectively, Cok Hb → Cok Ha).

3.5. Proof of 3.1 and 3.2. Assume that C is a right τ -category.

3.5.1. DEFINITION. Let a and a′ be morphisms in a right (respectively, left)

τ -category C. We write a
+� a′ (respectively, a′ −� a) if there exist f and f ′ such

that (X′ (a′ f ′)−→ Y ′ ⊕ X
(f

a)−→ Y ) ≈ (Y ] (respectively, ≈ [X′)).

3.5.2. (1) Assume that φ: A → (Y ] is the chain morphism below satisfying f3 ∈
•C. If either (i) A = (X3] or (ii) (C is a τ -category and A = [X1)) hold, then f1

and f2 are in •C.

A : X1 −−−−→ X2 −−−−→X3

↓φ ↓f1 ↓f2 ↓f3

(Y ]:τ+Y−−−−→θ+Y−−−−→ Y

(2) Assume b
r
> a

+� a′. If either (i) b
+� b′ or (ii) (C is a τ -category and b′ −� b)

hold, then b′ r� a′.
(3) If

(
b

0

) ≈ (
b′
0

)
holds for b, b′ ∈ C• µ+, then b ≈ b′ holds.

Proof. (1)(i) (X3] and (Y ] induce minimal projective resolutions of SX3
and SY

respectively, and φ induces a split epimorphism SX3
→ SY . Hence, Hf2

and Hf3

are epimorphisms.
(ii) By 2.3, there exists I ∈ N ind−

1 C (Section 1(7)) such that [X1) ≈ [I )⊕(X3].
Put φ ≈ (

φ′
φ′′

) : [I )⊕(X3] → (Y ]. Since φ′′ satisfies the assumption of (i), we obtain
the assertion.

(2) Put sa = bt (t ∈ •C), and (X′ (a′ f ′)−→ Y ′ ⊕ X
(f

a)−→ Y ) ≈ (Y ]. Moreover, put

A = (Z′ (b′ g′)−→ W ′ ⊕ Z
(g

b)−→ W), where A ≈ (W ] for (i) and A ≈ [Z′) for (ii).
Since gt ∈ J, there exists (t ′ u) such that (t ′ u)

(
f

a

) = gt . Then
(
t ′ u

0 s

)(
f

a

) = (
g

b

)
t

shows that there exists s ′ such that s ′(a′ f ′) = (b′ g′)
(
t ′ u

0 s

)
. Thus we obtain a chain
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morphism A → (Y ]. Since t ∈ •C, (1) shows that s ′,
(
t ′ u

0 s

) ∈ •C. Thus t ′ ∈ •C.

Hence s ′a′ = b′t ′ shows b′ r� a′.
(3) Since b, b′ ∈ C• µ+, Hb (respectively, Hb′) gives a minimal projective reso-

lution of Cok Hb (respectively, Cok Hb′). Since Cok H
(b

0)
= Cok Hb is isomorphic

to Cok H
(b′

0)
= Cok Hb′ , we obtain b ≈ b′. �

3.5.3. We will show 3.1. Assume a ≈ b, a
+� a′ and b

+� b′. Since b
r� a and a

r� b,

we obtain b′ r� a′ and a′ r� b′ by 3.5.2(2)(i). Hence a′ ≈ b′ holds. Thus l+ is
well defined. Moreover, l+ is surjective since l+((ker f )µ+

X) = ν+
Xf holds for any

f ∈ •C. Now 3.2 follows immediately from 3.1 and 3.5.2(3). �
3.6. Proof of 3.3.

3.6.1. (1) For any special a, there exists a special b ∈ C• µ+ such that a ≈ (
b

0

)
.

(2) Assume l+(a) = a′ and n � 2.

(i) For any b′ ∈ a′ + Jn, there exists b ∈ a + Jn such that l+(b) = b′.
(ii) If a is special, then so is a′.

(iii) Assume that C is right strict. If a is a monomorphism, then so is a′.

Proof. (1) Put a = f µ+
X. By (6) of Section 1, there exist g ∈ C• and h ∈ J such

that f ≈ (
g

h

)
. Then a ≈ (gµ+

X

hµ+
X

) ≈ (
gµ+

X
0

)
holds since a is special and

( 0
hµ+

X

) ∈ J2.

Put b := gµ+
X ∈ C• µ+. For any r ∈ J2,

(
b+r

0

) = (
b

0

) + (
r

0

) ≈ (
b

0

)
holds since a is

special. Hence b + r ≈ b holds by 3.5.2(3).

(2) Put (X′ (a′ f ′)−→ Y ′ ⊕ X
(f

a)−→ Y ) ≈ (Y ].
(i) Take

(
r

r ′
) ∈ Jn−1 such that b′ −a′ = (a′ f ′)

(
r

r ′
)
. Put

(
g

b

) := (1+r 0
r ′ 1

)−1(f

a

)
. Then

b ∈ a + Jn and l+(b) = b′ hold by the following commutative diagram.

(Y ] :X′ (a′ f ′)−−−−→ Y ′ ⊕ X
(f

a)−−−−→Y

‖ ↓( 1+r 0
r′ 1) ‖

X′ (b′ f ′)−−−−→ Y ′ ⊕ X
(g

b)−−−−→Y

(ii) For any b′ ∈ a′ + J2, there exists b ∈ a + J2 such that l+(b) = b′ by (i).
Since a is special, we obtain b ≈ a. Hence b′ ≈ a′ holds by 3.1.

(iii) Assume ga′ = 0. Since gf ′a = −ga′f = 0 implies gf ′ = 0, we obtain
g(a′ f ′) = 0. Since C is right strict, we obtain g = 0. �

3.6.2. We will show 3.3. There exists a unique special morphism b0 ∈ C• µ+ such
that a0 ≈ (

b0
0

)
by 3.6.1(1). Then a1 := l+(b0) is special by 3.6.1(2)(ii). Thus (1)

follows inductively, and (3) follows from 3.6.1(2)(iii). For (2), we will show that
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a0 := ν+
Z is special. For any f ∈ J2, there exists f ′ ∈ J such that f = a0f

′.
Hence a0 + f = a0(1 + f ′) ≈ a0 holds by 3.1(1). A similar argument shows that
µ−

Z is special. �
4. Minimal Projective Resolutions

In the rest of this paper, put Jn := C for any n � 0 and J∞ := ⋂

n�0 Jn. For

a C-module L, put J(n) L := Jn L/ Jn+1 L and J(n,m) L := Jn L/ Jm L for any
n � m.

4.1. THEOREM. Let C be a right τ -category, a0 a morphism with the right ladder,
l+,e
n (a0) = bn and L := Cok Ha0

. Then the diagram in 3.2 induces the following
commutative diagram, where each vertical complex gives a minimal projective
resolution of Jn L and each ψn is the natural inclusion. If C is right strict and
a0 is a monomorphism, then pd Jn L � 1 holds for any n � 0.

L
ψ1←−−−− J L

ψ2←−−−− J2 L
ψ3←−−−− J3 L

ψ4←−−−−· · ·
↑ ↑ ↑ ↑ · · ·

HY0

Hf1←−−−− HY1

Hf2←−−−− HY2

Hf3←−−−− HY3

Hf4←−−−−· · ·
↑Hb0 ↑Hb1 ↑Hb2 ↑Hb3 · · ·
HZ0

Hg1←−−−− HZ1

Hg2←−−−− HZ2

Hg3←−−−− HZ3

Hg4←−−−−· · ·

Proof. Let φn: HYn
→ Cok Hbn

be the natural epimorphism and ψ ′
n: Cok Hbn

→
Cok Hbn−1

the morphism induced by fn. Then J Cok Hbn−1
= (J HYn−1

)φn−1 =
(Im H

( fn
bn−1

)
)φn−1 = (Im Hfn

)φn−1 = Im ψ ′
n holds. Thus we only have to show that

ψ ′
n is a monomorphism. Assume s ∈ HYn

satisfies (s)φ′
nψn = 0. Since (sfn)φn−1 =

0, there exists t such that sfn = tbn−1. Then (s − t)
(

fn

bn−1

) = 0 shows there exists

(u v) ∈ HZn⊕Un
such that (s − t) = (u v)

(
bn −gn

0 hn

)
. Hence s = ubn shows (s)φn =

0. �
4.2. By 3.3, the following theorem implies that the main theorem 4.3 of [12] holds
for any Artin algebra � without any restriction. (Put C := mod � and a0 := ν+

X .)

RADICAL LAYERS THEOREM. Let C be a right τ -category, a0 a morphism with
the right ladder, bn := l+,e

n (a0) and L := Cok Ha0
. Then we have the following

exact sequences for any i, j, n � 0, where (0 →) is added if C is right strict and
a0 is a monomorphism.

(0 →) Ji−1 HZn

Hbn−→ Ji HYn
→ Jn+i L → 0

(0 →) J(i−1,j−1) HZn

Hbn−→ J(i,j) HYn
→ J(n+i,n+j) L → 0
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Proof. We only have to show the exactness of the upper sequence. We will use
induction on i. Our assertion for i = 0 follows from 4.1. Assume that the assertion

is true for i. Put M := Cok(Ji HZn

Hbn−→ Ji+1 HYn
). Consider the following com-

mutative diagram of exact sequences, where the lower sequence is exact by our
assumption for i.

Ji HZn

Hbn−−−−→Ji+1 HYn
−−−−→ M −−−−→0

↑Hgn+1 ↑Hfn+1 ↑ψ

Ji−1 HZn+1

Hbn+1−−−−→Ji HYn+1
−−−−→Jn+i+1 L−−−−→0

Since (Zn+1 ⊕ Un+1

(
bn+1 −gn+1

0 hn+1
)

−→ Yn+1 ⊕ Zn

(
fn+1
bn

)−→ Yn) ≈ (Yn], we obtain the
following exact sequence by applying our assumption for i to a0 := ν+

Yn
and L :=

J HYn
.

(0 →) Ji−1 HZn+1⊕Un+1

H
(
bn+1 −gn+1

0 hn+1
)

−→ Ji HYn+1⊕Zn

H
(
fn+1
bn

)−→ Ji+1 HYn
→ 0 (∗)

Hence we can easily check that ψ above is an isomorphism. Thus our assertion
is true for i + 1. The assertion for (0 →) is immediate by 4.1. �
4.3. PROPOSITION. In 4.2, put Un := u+

n (a0) and assume JN L = 0 for some
N � 0. Then we have the following exact sequence for any i, n � 0, where kl,n :=
hl(gl−1 · · · gn+1) ∈ C(Ul, Zn) and (0 →) is added if C is right strict.

(0 →)

N⊕

l=n+1

Jn+i−l−1 HUl

(Hkl,n
)l−→ Ji−1 HZn

Hbn−→ Ji HYn
→ Jn+i L → 0

Proof. If n � N , then the assertion is immediate since Zn = Yn = 0 holds
by 4.1. Assume that our assertion is true for i. Consider the following commutative
diagram, where the lower sequence is exact from our assumption.

(0→)

N⊕

l=n+1

Jn+i−l HUl

(Hkl,n
)l−−−−→ Ji HZn

Hbn→ Ji+1 HYn

‖ ↑
H

(
gn+1
hn+1

) ↑Hfn+1

(0→)

(
N⊕

l=n+2

Jn+i−l HUl

)

⊕ Ji−1 HUn+1

(
(Hkl,n+1

)l 0

0 1
)−−−−→ Ji−1 HZn+1⊕Un+1

H
(
bn+1

0 )→ Ji HYn+1

Using the sequence (∗) in the proof of 4.2, we can easily show that the upper
sequence is also exact. Thus our assertion is true for i + 1. �
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5. Completion and the Associated Graded Category

5.1. Let C be a Krull–Schmidt category.
(1) Define the associated completely graded category Ĝ(C) of C by

Ob(Ĝ(C)) := Ob(C) and Ĝ(C)(X, Y ) := ∏

n�0 J(n)(X, Y ) for X, Y ∈ Ob(C),
where the composition is given by (fn)n�0 · (gn)n�0 := (

∑n
i=0 fign−i )n�0. Define

the completion Ĉ of C by Ob(Ĉ) := Ob(C) and Ĉ(X, Y ) := lim←n�0 J(0,n)(X, Y )

for X, Y ∈ Ob(C).
Then Ĉ and Ĝ(C) are Krull–Schmidt categories with JĈ = lim←n�1 J(1,n) and

ĴG(C)
= ∏

n�1 J(n). Put a[1] := (0, a, 0, 0, . . .) ∈ ĴG(C)
(X, Y ) for a ∈ JC(X, Y ).

(2) C is called complete if the natural functor C → Ĉ yields the categorical
equivalence, and called completely graded if there exists a Krull–Schmidt category
C ′ such that C is equivalent to Ĝ(C ′).

(3) Assume that SX ∈ Ob(Mod1 C) holds for any X ∈ Ob(C). Then Ji

Ĉ
=

lim←n�i J
(i,n) and Ji

̂G(C)
= ∏

n�i
J(n) hold for any i � 0. Thus Ĉ is equivalent to ̂̂C,

and Ĝ(C) is complete and equivalent to Ĝ(Ĝ(C)).

Proof. We only show the assertions for Ĝ(C).
(1) Fix X ∈ ind C. We only have to show that f = (fn)n�0 ∈ Ĝ(C)(X, X)

is an isomorphism if and only if f0 �= 0. If g = (gn)n�0 satisfies fg = 1X, then
f0g0 = 1 implies f0 �= 0. Conversely, If f0 �= 0, then g = (gn)n�0 satisfies
fg = 1X, where g0 := f −1

0 and gn := −f −1
0

∑n
i=1 fign−i for n > 0.

(3) We only have to show (
∏

n�i
J(n))(

∏

n�1 J(n)) ⊇ ∏

n�i+1 J(n) for any

i � 1. For any f = (fn)n�i+1 ∈ ∏

n�i+1 J(n) HX, take a projective resolution

HY

Ha−→ J HX → 0. For any n � i, we can take gn ∈ Jn such that fn+1 = gna.
Then g := (gn)n�i ∈ ∏

n�i
J(n) HY satisfies g · a[1] = f . �

5.2. THEOREM. Let C be a right τ -category (respectively, left τ -category,
τ -category). Then so are Ĝ(C) and Ĉ. If C is right strict, then so are Ĝ(C) and

Ĉ. Moreover, (X]Ĉ ≈ (X]C and (X]̂G(C)
≈ (τ+X

ν+
X [1]−→ θ+X

µ+
X[1]−→ X) for any

X ∈ Ob(C).
Proof. Applying 4.2 to a0 := ν+

X , we obtain an exact sequence (0 →)J(i−1) Hτ+X
H

ν
+
X→ J(i) Hθ+X

H
µ

+
X→ J(i+1) HX → 0 for any i � 0. Since it is easily shown that

J(i) Hθ+X H
ν
+
X→ J(i+1) Hτ+X → 0 is exact, the assertion for Ĝ(C) follows from

5.1(3). Similarly, since (0 →)lim← J(0,i) Hτ+X

H
ν
+
X→ lim← J(0,i+1) Hθ+X

H
µ

+
X→

lim← J(0,i+2) HX → 0 is exact for any i � 0 by 4.2 again, the assertion for Ĉ

follows. �
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5.3. LEMMA. Let C and C ′ be complete right τ -categories and F : C → C ′ be
an additive functor such that F(X]C ≈ (FX]C′ for any X ∈ Ob(C). If F induces
an isomorphism J(i)

C (X, Y ) → J(i)

C′ (FX, FY ) for any X, Y ∈ Ob(C) and i = 0, 1,
then F is full faithful.

Proof. By 4.2, we obtain the following commutative diagram of exact sequences.

J(i−1)
C (X, τ+Y )

H
ν
+
Y−→ J(i)

C (X, θ+Y )

H
µ

+
Y−→ J(i+1)

C (X, Y ) −→0

↓F ↓F ↓F

J(i−1)

C′ (FX, Fτ+Y )

H
Fν

+
Y−→J(i)

C′ (FX, Fθ+Y )

H
Fν

+
Y−→J(i+1)

C′ (FX, FY )−→0

Inductively, F : J(i)
C (X, Y ) → J(i)

C′ (FX, FY ) is an isomorphism for any i �
0. Hence F : J(0,i)

C (X, Y ) → J(0,i)

C′ (FX, FY ) is an isomorphism for any i � 0.

Thus F : C(X, Y ) = lim← J(0,i)
C (X, Y ) → lim← J(0,i)

C′ (FX, FY ) = C ′(FX, FY ) is an
isomorphism. �
6. Invertible Ladders

6.1. Let C be a τ -category.
(1) Let a0 be a morphism with the right ladder, ai := l+i (a0) ∈ C(Xi, Yi) and

0 � n � ∞. Then Xi |ind−
1 C = 0 holds for any i > 0 since Xi ≈ τ+Yi−1.

A right ladder (ai)0�i�n of length n is called essential if u+
i (a0) = 0 holds for

any i (0 � i � n). For example, if C is strict and a0 is a monomorphism, then
(ai)0�i is essential and any ai is also a monomorphism by 3.3.

A right ladder (ai)0�i�n of length n (n < ∞) is called invertible if ai+1 ∈ µ− •C
and ai = l−(ai+1) hold for any i (0 � i < n). In this case, (ai)0�i<n is an essential
ladder and (an−i )0�i�n gives a left ladder of an.

(2) Assume that HX

Ha0→ HY → L → 0 and HB Hc0→ HA → M → 0 are minimal
projective resolutions of L ∈ Ob(Mod C) and M ∈ Ob(Mod Cop) respectively.
Clearly, L (respectively, M) is indecomposable if and only if a0 (respectively, c0)
is indecomposable as a complex.

We say that L has a right ladder (respectively, M has a left ladder) if so does a0

(respectively, c0). Then Jn L (respectively, Jn M) has a right ladder for any n � 0
by 4.1. Moreover, we call (L, M) an invertible pair of distance n (n � 0) if a0 has
a right ladder, c0 has a left ladder and (l+i (a0))0�i�n is an invertible ladder with
l+n (a0) ≈ c0.

6.2. PROPOSITION. Let C be a τ -category, L a C-module with right ladder, M a

Cop-module with left ladder, HX

Ha0→ HY → L → 0 a minimal projective resolution
and ai := l+i (a0) ∈ C(Xi, Yi).

(1) If (L, M) is an invertible pair of distance n (n � 0), then the following hold.
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(i) J(i) L = SYi
and J(n−i) M = SXi hold for any i (0 � i � n). Hence any

composition factor S of J(0,n) L satisfies pd S � 2, and any composition
factor T of J(0,n) M satisfies pd T � 2.

(ii) Tr(Ji L) = Jn−i M holds for any i (0 � i < n) and Tr(Jn−i M) = Ji L

holds for any i (0 < i � n). If L is indecomposable, then Ji L and
Jn−i M are indecomposable (or zero) for any i (0 � i � n).

(iii) There exists a complex (Xn

(an e)−→ Yn ⊕ X0

( f
a0
)−→ Y0) such that HXn

H(an e)−→

HYn⊕X0

H
( f
a0

)−→ HY0
→ J(0,n) L → 0 and HY0

H
( f
a0

)

−→ HYn⊕X0
H(an e)

−→ HXn →
J(0,n) M → 0 are exact and f , g ∈ Jn.

(2) Assume that L is indecomposable. If Tr(Jn L) = M �= 0 and any composition
factor S of J(0,n) L satisfies pd S � 2, then (L, M) is an invertible pair of
distance n.

6.2.1. Let C be a τ -category, a0 a morphism with right ladder, ai := l+i (a0) ∈
C(Xi, Yi), L := Cok Ha0

and n � 0. Then the condition (1) below implies (2)
and (3) below. Moreover, assume that a0 is indecomposable as a complex and
Xn ⊕ Yn �= 0. Then the conditions (1)–(3) below are equivalent. In this case, ai

is indecomposable as a complex for any i (0 � i � n).

(1) (ai)0�i�n is an invertible ladder.
(2) Yi |ind+

1 C = 0 holds for any i (0 � i < n).

(3) Any composition factor S of J(0,n) L satisfies pd S � 2.

Proof. Since J(i) L = SYi
holds by 4.1, (2) is equivalent to (3). Thus the for-

mer assertion follows from the dual of 6.1(1). We will show the latter assertion
inductively. Assume that ai is indecomposable and Yi |ind+

1 C = 0. Then ai ≈ bi

or ai ∈ C(Ui, 0) holds. The latter case implies n = i since Xi+1 ⊕ Yi+1 = 0.
The former case implies l−(ai+1) = ai since (Yi] = [Xi+1). Hence ai+1 is also
indecomposable since l− preserves direct sums. �
6.2.2. Proof of 6.2. (1) l

+,e
i (a0) = ai holds for any i (0 � i < n) and l

−,e
n−i (c0) = ai

holds for any i (0 < i � n). Thus (i) and (ii) follow immediately from 4.1 and
6.2.1. We will show (iii).

Without loss of generality, a0 is indecomposable. We use the notations in 3.2.
Notice that an = l+,e

n (a0) or Yn = 0 holds since an is indecomposable. Put ei := gi

if ai = l
+,e
i (a0), and ei := hi if Yi = 0. By 4.1, we obtain a commutative diagram

0−−−−→Ker Hai−1
−−−−→HXi−1

Hai−1−−−−→HYi−1
−−−−→Ji−1 L−−−−→0

↑φi ↑Hei ↑Hfi ∪
0−−−−→ Ker Hai

−−−−→ HXi

Hai−−−−→ HYi
−−−−→ Ji L −−−−→0.



312 OSAMU IYAMA

Since (Xi

(ai −ei )−→ Yi ⊕ Xi−1

( fi
ai−1

)−→ Yi−1) ≈ (Yi−1] for any i (0 < i � n), we can
check that φi is an epimorphism. Put f := fn · · · f1 ∈ Jn, e := −en · · · e1 ∈ Jn

and φ := φn · · · φ1. Then the commutative diagram below shows the exactness of
the former sequence since φ is an epimorphism.

0−−−−→Ker Ha0
−−−−→HX0

Ha0−−−−→HY0
−−−−→ L −−−−→0

↑φ ↑H−e ↑Hf ∪
0−−−−→Ker Han

−−−−→HXn

Han−−−−→HYn
−−−−→Jn L−−−−→0

Dually, we can show the exactness of the latter sequence.
(2) Since Cok Han = Tr(Jn L) = M �= 0, (ai)0�i�n is an invertible ladder and

an is indecomposable by 6.2.1. Hence Han gives a minimal projective resolution of
M . Thus the assertion follows. �
6.3. THEOREM. Let C be a τ -category, L a C-module with right ladder, M a
Cop-module with left ladder, n � 0 and φ: Tr(Jn L) → M an epimorphism.

(1) Any composition factor S of J(0,n) M satisfies pd S � 2.
(2) If L = Tr(SX) (X ∈ ind C) and one of (i) or (ii) holds, then φ is an isomor-

phism and (L, M) is an invertible pair of distance n:

(i) Jn M �= 0;
(ii) C is strict, M �= 0 and pd M � 1.

6.3.1. LEMMA. Let C be a τ -category, a0 a morphism with right ladder, c0 a
morphism with left ladder, ai := l+i (a0), bi := l

+,e
i (a0), ci := l−i (c0) and di :=

l
−,e
i (c0). Assume an

l
> c0 for some n � 0.

(1) an−i

l� bn−i

l� ci

l� di holds for any i (0 < i � n).
(2) Assume that a0 = µ−

X (X ∈ ind C) and one of (i) or (ii) holds. Then (ai)0�i�n

is an invertible ladder such that an ≈ d0 and an−i ≈ bn−i ≈ ci ≈ di for any i

(0 < i � n).

(i) The domain of cn is nonzero.
(ii) C is strict and c0 is an epimorphism with domain �= 0.

Proof. (1) We use the induction. Since bn−1
+� an

l
> c0

l� d0
−� c1, we obtain

bn−1
l� c1 by the dual of 3.5.2(2)(ii). Thus an−1

l� bn−1
l� c1

l� d1 holds.
(2) Put ci ∈ C(Ai, Bi).

(i) Since a0
l
> dn holds by (1), we have an epimorphism φ: Cok Ha0 → Cok Hdn

by 3.4. Our assumption a0 = µ−
X with X ∈ ind C imply that Cok Ha0 is simple. Our

assumption An �= 0 implies Cok Hdn �= 0. Hence φ is an isomorphism. Thus dn ≈
a0 holds since Hdn gives a minimal projective resolution of Cok Hdn . Hence we may
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assume n > 0. Then a0 ≈ b0 ≈ cn ≈ dn holds by (1). The dual of (1) shows that

cn−i

r� dn−i

r� ai

r� bi holds for any i (0 < i � n). Thus an−i ≈ bn−i ≈ ci ≈ di

holds for any i (0 < i � n). Moreover, l−(d0) = c1 and A0|ind−
1 C = 0 (n > 0)

imply l+(c1) = d0. Thus an = l+(bn−1) ≈ l+(c1) = d0 holds.
(ii) By the dual of 6.1(1), (ci)0�i�n is an essential ladder and each ci is an

epimorphism. By (i), we only have to show An �= 0. Take a minimal i (0 � i � n)
such that Ai = 0. Then Bi = 0 holds since ci is an epimorphism. Thus i > 0 holds
since A0 �= 0. By Bi = τ−Ai−1 and Ai−1|ind−

1 C = 0 by (1), we obtain Ai−1 = 0, a
contradiction. �
6.3.2. Proof of 6.3. Take minimal projective resolutions HX

Ha0→ HY → L → 0 and

HB Hc0→ HA → M → 0, and use notations in 6.3.1. Then bn

l
> c0 holds by 4.1 and

3.4. Thus 6.3 follows immediately from 6.3.1. �
6.4. The following theorem follows from 6.4.1(1).

THEOREM. Let C be a τ -category satisfying J∞ = 0. Assume that X ∈
ind C − ind−

0 C satisfies α(SX) �= 0. Then there exists U ∈ ind C such that (Tr(SX),

HU) is an invertible pair. Hence Tr(SX) has finite length and any composition
factor S of Tr(SX) satisfies pd S � 2.

6.4.1. LEMMA. Let C be a τ -category, X ∈ ind C, ai := l+i (µ−
X) and Ui :=

u+
i (µ−

X).

(1) If Ker Ha0
�⊆J∞ HX, then there exists n � 0 such that Jn HUn �= 0 and

(ai)0�i�n is an invertible ladder with an ∈ C(Un, 0) and Un ∈ ind C.
(2) Assume that C is strict and J∞ = 0. Then µ−

X is a monomorphism if and only
if (ai)0�i is essential.

Proof. (1) (i) Let a0 be a morphism with right ladder and Ui := u+
i (a0). We will

show Ker Ha0
⊆ J∞ HX if Ji HUi = 0 holds for any i.

Put bi := l
+,e
i (a0), then (Yi−1] ≈ (Zi ⊕ Ui

(bi −gi
0 hi

)−→ Yi ⊕ Zi−1

( fi
bi−1

)
−→ Yi−1) holds

for any i � 1 by 3.2. Assume s0a0 = 0. Inductively, we will show that there exists
si−1 such that si−1bi−1 = 0 and s0 = si−1(gi−1 · · · g1) ∈ Ji−1 for any i.

(0 si−1)
(

fi

bi−1

) = 0 implies that there exists (−si ti) such that (0 si−1) =
(−si ti)

(
bi −gi

0 hi

)
. Hence sibi = 0 and si−1 = sigi + tihi hold. Since hi(gi−1 · · · g1) ∈

Ji (Ui, X) = 0, we obtain s0 = si(gi · · · g1).
(ii) We will show the assertion. There exists n � 0 such that Jn HUn �= 0 by (i).

Put c0 := 0 ∈ C(Un, 0) and ci := l−i (c0). Then an

l� c0 holds. By Jn HUn �= 0 and
the dual of 4.1, the domain of cn is nonzero. Hence (ai)0�i�n is an invertible ladder
with an ≈ c0 by 6.3.1(2)(i). By 6.2.1, Un ∈ ind C holds.

(2) The ‘if’ part follows from (1), and the ‘only if’ part follows from 6.1(1). �
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7. Recursion Formula and Some Properties of τ -categories

7.1. THEOREM. Let C be a τ -category and a0 a morphism with right ladder, an :=
l+n (a0) ∈ C(Xn, Yn), bn := l+,e

n (a0) ∈ C(Zn, Yn) and Un := u+
n (a0). Assume that

Cok Ha0 is semisimple. Then the following equations hold, where we use notations
in (7) of Section 1:

Y1 = (θ+Y0 − X0)+, Yn = (θ+Yn−1 − τ+Yn−2)+ (n � 2),

Xn+1 = τ+Yn, Zn = θ+Yn − Yn+1, Un = Xn − Zn (n � 0).

In particular, we can compute the terms Xn, Yn, Zn and Un from (X0, Y0) and
the Auslander–Reiten quiver A(C). Moreover, (an)0�n is essential if and only if the
following equations hold:

Y1 = θ+Y0 − X0, Yn = θ+Yn−1 − τ+Yn−2 (n � 2).

Proof. (i) We will show Jn+1 HUn = 0 and 〈Yn+1, Un〉 = 0 for any n � 0.

Put c0 := 0 ∈ C(Un, 0) and use notations in 6.3.1. Since an

l� c0 holds, we

obtain a0
l� dn by 6.3.1(1). Thus we have an epimorphism Cok Ha0 → Cok Hdn

by 3.4. Hence Cok Hdn is semisimple. Since Cok Hdn = Jn HUn holds by the dual of
4.1, we obtain Jn+1 HUn = 0. By 4.1, we have a natural epimorphism Jn+1 HY0

→
Jn+1 Cok Ha0

= Cok Hbn+1
→ SYn+1

. Hence J(0)(Un, Yn+1) = 0 holds.
(ii) Xn+1 = τ+Yn, Yn+1 +Zn = θ+Yn and Zn +Un = Xn hold for any n � 0 by

3.2. Put Wn := θ+Yn − Xn ∈ Z ind C, then Yn+1 = θ+Yn − Xn + Un = (Wn)+ −
(Wn)− +Un. Since Yn+1 � 0, we obtain Un � (Wn)−. Since 〈Yn+1, Un〉 = 0 by (i),
we obtain Yn+1 = (Wn)+. �
7.2. Let C be a τ -category. For n � 0, define a map θ+

n : N ind C → N ind C by
θ+

0 := 1N ind C , θ+
1 := θ+ and θ+

n X := (θ+θ+
n−1X − τ+θ+

n−2X)+ for n � 2.

(1) θ+
n is a monoid morphism. Thus we can regard θ+

n as elements of
EndZ(Z ind C).

(2) Put τ+
n := θ+ ◦ θ+

n − θ+
n+1. Then, for any X ∈ Ob(C) and a0 ∈ C(0, X),

l+,e
n (a0) ∈ C(τ+

n X, θ+
n X) and u+

n (a0) = τ+θ+
n−1X − τ+

n X hold. In particu-
lar, a minimal projective resolution of Jn HX is given by H

τ+
n X

→ H
θ+
n X

→
Jn HX → 0 for any n � 0.

Proof. (2) Immediate from 7.1.
(1) Take X, Y ∈ Ob(C). Since Jn HX⊕Y = Jn HX ⊕ Jn HY holds, we obtain

θ+
n (X ⊕ Y ) ≈ θ+

n X ⊕ θ+
n Y by (2). �

7.3 (Artinian τ -categories). Let C be a τ -category. Then C is left Artinian ((2) of
Section 1) if and only if, for any X ∈ ind C, there exists n � 0 such that θ+

n X = 0.
In particular, under the assumption ind C < ∞, C is left Artinian if and only if
Jn = 0 for some n � 0 if and only if C is Artinian.
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Proof. We have a projective cover H
θ+
i X

→ Ji HX by 7.2(2). Hence θ+
i X = 0 is

equivalent to Ji HX = 0. Since J(i) HX has finite length, the former assertion fol-
lows from the decreasing sequence HX ⊃ J HX ⊃ J2 HX ⊃ · · · and Nakayama’s
lemma. The latter assertion is immediate. �
7.4 (Strict τ -categories). Let C be a τ -category with J∞ = 0.

(1) C is strict if and only if C is right strict if and only if the right ladder
(l+n (ν+

X))0�n is essential for any X ∈ ind C if and only if τ+ ◦ θ+
n−1 = τ+

n

holds for any n � 1.
(2) If HX|ind−

1 C �= 0 for any X ∈ ind C, then C is a strict τ -category, and the
converse holds if C is right Artinian.

Proof. (1) By definition, C is right strict if and only if ν+
X is a monomor-

phism for any X ∈ ind C. Hence the second equivalence follows from 6.1(1) and
6.4.1(1). The third equivalence follows from 7.2(2). We will show that right strict-
ness implies left strictness, namely α(Sτ−X

) = 0 holds for any X ∈ Ob(C). Take
φ ∈ (Mod C)(Sτ−X

, HY ). Since J∞ = 0, we only have to show that Im φ ⊆ Jn HY

holds for any n � 0. This is true for n = 1 since Sτ−X
= Tr1(SX) does not have a

non-zero projective direct summand. Moreover, since pd Jn HY � 1 holds by 4.1,
we obtain (Mod Cop)(Tr1(J

n HY ), SX) = 0. Hence ( Mod C)(Sτ−X
, Jn HY ) = 0

holds by 2.3.1(2). Thus φ factors through a projective cover H
θ+
n Y

→ Jn HY → 0.
Since any φ′ ∈ (Mod C)(Sτ−X

, H
θ+
n Y

) satisfies Im φ′ ⊆ J H
θ+
n Y

again, we obtain

Im φ ⊆ Jn+1 HY .
(2) To show the former assertion, fix X ∈ ind C and put a0 := 0 ∈ C(0, X) and

Un := u+
n (a0). By (1), we only have to show that Un = 0 holds for any n � 0.

Put c0 := 0 ∈ C(Un, 0) and di := l
−,e
i (c0) ∈ C(Ai, Ci). Since an

l� c0 holds, we

obtain an−i

l� di by 6.3.1(1). Since a0 ∈ C(0, X), we obtain Ai |ind−
1 C = 0 for any

i by 6.1. Since J(i) HUn = SAi holds by the dual of 4.1, we obtain HUn|ind−
1 C = 0

by J∞ = 0. Thus Un = 0 holds.
To show the latter assertion, assume that HX|ind−

1 C = 0 holds for some X ∈
ind C. Since C is strict, any composition factor S of HX satisfies α(S) = 0. Since
HX has finite length, we obtain HX = α(HX) = 0, a contradiction. �

PART II. STRUCTURE THEORY OF τ -CATEGORIES

8. τ -Species and Mesh Categories

In this section, first, we review species and their tensor categories. To make tensor
categories Krull–Schmidt, we have to use direct product instead of direct sum. We
use notations in Section 1(7).

8.1. DEFINITION. Q = (Q, DX, XMY ) is called a species if Q is a set, DX is a
skew field for any X ∈ Q and XMY is a (DX, DY )-bimodule for any X, Y ∈ Q.
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Put d(X, Y ) := dimDX XMY and d ′(X, Y ) := dimDY XMY . A species is called
right finite (respectively, left finite) if

∑

X∈Q d(X, Y ) < ∞ (respectively,
∑

X∈Q d ′(Y, X) < ∞) for any Y ∈ Q.

8.1.1. Let Q = (Q, DX, XMY ) be a species and X, Y ∈ Q. Put P0(X, Y ) := 0 if
X �= Y , and DX if X = Y . Put

Pn(X, Y ) :=
⊕

Z1,...,Zn−1∈Q

XMZ1 ⊗DZ1
· · · ⊗DZn−1 Zn−1MY for n > 0,

Pn(A, B) :=
∏

(X,Y )∈Q×Q

Mat〈A,X〉,〈B,Y 〉(Pn(X, Y )) for A, B ∈ NQ and n � 0.

We have a natural map Pn(X, Y ) × Pm(Y, Z) → Pn+m(X, Z), (f, g) �→ fg :=
f ⊗ g for any X, Y, Z ∈ Q. Using matrix multiplication, we have a natural map
Pn(A, B) × Pm(B, C) → Pn+m(A, C) for any A, B, C ∈ NQ.

Define additive categories P̂(Q) and P(Q) by Ob(̂P(Q)) = Ob(P(Q)) := NQ,
and P̂(Q)(A, B) := ∏

n�0 Pn(A, B) and P(Q)(A, B) := ⊕

n�0 Pn(A, B)

for A, B ∈ NQ, where the composition is given by (fn)n�0 · (gn)n�0 :=
(
∑n

i=0 fign−i )n�0.

8.2. PROPOSITION. Let Q be a species. Then P̂(Q) is a Krull–Schmidt cate-
gory called the tensor category of Q. Moreover, if Q is left finite, then P̂(Q) is
a completely graded category with Ji

̂P(Q)
= ∏

n�i Pn for any i � 0.

Proof. By a similar argument as in the proof of 5.1(1), P̂(Q)(X, X) is a local
ring whose maximal ideal is

∏

n�1 Pn(X, X) for any X ∈ Q. Thus the former
assertion holds. The latter assertion follows from a similar argument as in the proof
of 5.1(3). �
8.3. DEFINITION. For a species Q = (Q, DX, XMY ), we put DA := P0(A, A) and
AMB := P1(A, B) for A, B ∈ NQ. Then AMB becomes a (DA, DB)-bimodule.

(1) Q = (Q, DX, XMY , τ+, a, b) is called a right τ -species if (Q, DX, XMY ) is a
right finite species, τ+: NQ → NQ is a monoid morphism, aX: DX → Dτ+X

is a unital ring morphism for any X ∈ Q, and bX,Y : HomDY
(τ+XMY , DY ) →

Y MX is a (DY , DX)-monomorphism for any X, Y ∈ Q where τ+XMY is re-
garded as a left DX-module through aX.

(2) Q = (Q, DX, XMY , τ−, a, b) is called a left τ -species if (Q, DX, XMY ) is a
left finite species, τ−: NQ → NQ is a monoid morphism, aX: DX → Dτ−X

is a unital ring morphism for any X ∈ Q, and bX,Y : HomDY
(Y Mτ−X, DY ) →

XMY is a (DX, DY )-monomorphism for any X, Y ∈ Q.
(3) For a right τ -species Q = (Q, DX, XMY , τ+, a, b), put Qp := {X ∈ Q |

τ+X = 0}. Then Q is called a τ -species if it is left finite, τ+ gives an injection
Q − Qp → Q, and aX and bX,Y are isomorphisms for any X ∈ Q − Qp and
Y ∈ Q. In this case, put Qi := Q − τ+(Q), then we have a translation quiver
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|Q| = (Q, Qp, Qi, τ+, d, d ′) called the underlying quiver of Q, where d and
d ′ are defined by 8.1.

Notice that any τ -species Q = (Q, DX, XMY , τ+, a, b) can be regarded as a
left τ -species (Q, DX, XMY , τ−, a′, b′) as follows: Put τ−X := (τ+)−1X for any
X ∈ Q − Qi and τ−X := 0 for any X ∈ Qi . For any X ∈ Q − Qi and Y ∈ Q,
put a′

X := (aτ−X)−1 and b′
X,Y : HomDY

(Y Mτ−X, DY ) → XMY is induced by bτ−X,Y

naturally.

8.3.1. Since HomDY
(HomDY

(τ+XMY , DY ), Y MX) = τ+XMY ⊗DY Y MX, we can
regard bX,Y as an element of τ+XMY ⊗DY Y MX. Put γ (X) := ∑

Y∈Q bX,Y ∈
P2(τ

+X, X). Then γ (X)f = aX(f )γ (X) holds for any f ∈ DX since bX,Y is
a DX-morphism.

Let I be the ideal of P(Q) generated by {γ (X) | X ∈ Q}. Then we can write

I = ⊕

n�0 In (In ⊆ Pn). Put M̂(Q) := P̂(Q)/Î , where Î := ∏

n�0 In is an ideal
of P̂(Q).

8.4. PROPOSITION. Let Q be a right τ -species (respectively, left τ -species,
τ -species). Then M̂(Q) is a completely graded right τ -category (respectively, left
τ -category, τ -category) called the mesh category of Q.

8.4.1. Fix X, Y ∈ Q. Put τ+XMY = ⊕

1�i�e(Y,X) v
i
Y DY as a right DY -module. Then

we can put Y MX = ⊕

1�i�d(Y,X) DY ui
Y as a left DY -module, where ui

Y ∈ Im bX,Y

and (b−1
X,Y (ui

Y ))(v
j

Y ) = δij 1DY
hold for any i and j (1 � i,j � e(Y, X)).

Put θ+X := ∑

Y∈Q d(Y, X)Y ∈ Ob(̂P(Q)), µ+
X := (ui

Y )Y∈Q,1�i�d(Y,X) ∈
P1(θ

+X, X) and ν+
X := (vi

Y )Y∈Q,1�i�d(Y,X) ∈ P1(τ
+X, θ+X), where vi

Y := 0 ∈
τ+XMY for any i with e(X, Y ) < i � d(X, Y ). Then bX,Y = ∑

1�i�d(Y,X) v
i
Y ⊗ ui

Y

and γ (X) = ν+
Xµ+

X hold in P2(τ
+X, X).

Proof. By definition, bX,Y (f ) = ∑

1�i�d(Y,X) f (vi
Y )ui

Y ∈ Y MX holds for any
f ∈ HomDY

(τ+XMY , DY ). This means bX,Y = ∑

1�i�d(Y,X) v
i
Y ⊗ ui

Y . �
8.4.2. Put P := P̂(Q) and M := M̂(Q). Fix X ∈ Q.

(1) 0 → HP
θ+X

H
µ

+
X−→ J HP

X → 0 and Hθ+X
P

H
ν
+
X−→ J Hτ+X

P → 0 are exact.
(2) I0 = I1 = 0 and In+2( , X) = Pn( , τ+X)γ (X) + In+1( , θ+X)µ+

X holds for
n � 0. Hence Î ( , X) = (HP

τ+X
ν+

X + Î ( , θ+X))µ+
X.

(3) HM
τ+X

H
ν
+
X−→ HM

θ+X

H
µ

+
X−→ J HM

X → 0 and Hθ+X
M

H
ν
+
X−→ J Hτ+X

M → 0 are exact.

Proof. (1) Pn( , θ+X)
·µ+

X−→ Pn+1( , X) is a bijection for any n � 0 since
Pn+1( , X) = ⊕

Y∈Q Pn( , Y )⊗DY Y MX = ⊕

Y Pn( , Y )⊗DY
(
⊕

1�i�d(Y,X) DY ui
Y ) =

⊕

Y,i Pn( , Y )ui
Y . Thus the former sequence is exact. A similar argument shows the

exactness of the latter sequence.
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(2) I0 = I1 = 0 and In+2( , X) = ∑

Y∈Q,i�0 Pn−i ( , τ+Y )γ (Y )Pi(Y, X) hold by
definition. Pn( , τ+X)γ (X)DX = Pn( , τ+X)γ (X) holds by 8.3.1. Pn−i ( , τ+Y )

·γ (Y )Pi(Y, X) = Pn−i ( , τ+Y )γ (Y )Pi−1(Y, θ+X)µ+
X ⊆ In+1( , θ+X)µ+

X holds for
any i > 0 by (1).

(3) By (1), we only have to show Ker HM
µ+

X

= Im HM
ν+
X

. If f ∈ Ker HM
µ+

X

, then

f µ+
X ∈ Î ( , X) = (HP

τ+X
ν+

X + Î ( , θ+X))µ+
X holds by (2). Hence f ∈ HP

τ+X
ν+

X +
Î ( , θ+X) by (1). Thus f ∈ Im HM

ν+
X

. �
8.4.3. Proof of 8.4. M is a right τ -category by 8.4.2(3). Moreover, Ji

M =
∏

n�i Pn/In holds for i � 0 since Ji
P = ∏

n�i Pn holds for i � 0 by 8.2. Hence M
is completely graded. �
9. Auslander–Reiten Species of τ -Categories

9.1. DEFINITION. Let C be a right τ -category. We will define a right τ -species
Â(C) called the Auslander–Reiten species of C. Then, it is easily shown that
|Â(C)| = A(C) holds.

Put Q = (Q, DX, XMY , τ+, a, b), where Q := ind C, DX := J(0)(X, X),
Y MX := J(1)(Y, X), and aX and bX,Y are defined by

(1) For any f ∈ C(X, X), take f ′ ∈ C(θ+X, θ+X) and f ′′ ∈ C(τ+X, τ+X) such
that µ+

Xf = f ′µ+
X and ν+

Xf ′ = f ′′ν+
X . Put aX(f ) := f ′′.

(2) Let bX,Y be the following composition, where ( )∗ := HomDY
( , DY ) and

the isomorphism iX,Y : J(0)(Y, θ+X) → J(0)(θ+X, Y )∗ is defined by
(iX,Y (f ))(g) := fg.

(τ+XMY )∗ (H
ν
+
X )∗
� J(0)(θ+X, Y )∗

i−1
X,Y
� J(0)(Y, θ+X)

H
µ

+
X�

Y MX.

9.2. THEOREM. (1) If C is a right τ -category, then Ĝ(C) is equivalent to M̂(Â(C)).
(2) An additive category C is a completely graded right τ -category (respec-

tively, left τ -category, τ -category) if and only if C is equivalent to M̂(Q) for some
right τ -species (respectively, left τ -species, τ -species) Q.

9.2.1. For any X ∈ ind C, write θ+X ≈ ⊕

Y∈Q Y d(Y,X), µ+
X ≈ (si

Y )Y∈Q,1�i�d(Y,X)

and ν+
X ≈ (t iY )Y∈Q,1�i�d(Y,X). Then bX,Y = ∑

1�i�d(Y,X) t
i
Y ⊗ si

Y holds in P̂(Â(C)).

Proof. Take φ ∈ (τ+XMY )∗ and put d := d(Y, X). We will compute bX,Y (φ)

from the definition 9.1(2). First, φ is mapped to ((fi)1�i�d �→ ∑

1�i�d φ(t iY )fi) ∈
J(0)(θ+X, Y )∗. Then it is mapped to (φ(t iY ))1�i�d ∈ J(0)(Y, θ+X). Hence bX,Y (φ)

= ∑

1�i�d φ(t iY )si
Y holds. Thus the assertion follows. �
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9.2.2. Proof of 9.2. By 5.1(3), C is completely graded if and only if C is equivalent
to Ĝ(C). By 8.4, we only have to show (1). Let P̂(Q) = ∏

n�0 Pn be the tensor
category of Q := Â(C). Then we have natural identifications P0(X, X) = DX =
J(0)

C (X, X) and P1(X, Y ) = XMY = J(1)
C (X, Y ) for any X, Y ∈ ind C. By our

definition 8.1.1, Pn(X, Y ) → J(n)
C (X, Y ) is induced for any X, Y ∈ ind C and

n � 2. Thus we obtain a dense functor F : P̂(Q) → Ĝ(C). By 9.2.1, we obtain
F(γ (X)) = F(ν+

X)F (µ+
X) = ν+

X [1] · µ+
X[1] = 0. Thus F induces a dense functor

F ′: M̂(Q) → Ĝ(C). Since F ′ induces an isomorphism J(i)
̂M(Q)

= Pi → J(i)
C =

J(i)
̂G(C)

for i = 0, 1 by 8.4.2(2), F ′ is full faithful by 5.3. �

10. The Category of τ -Categories and the Category of τ -Species

10.1. DEFINITION. (1) Denote by T r
ca (respectively, T l

ca, Tca) the category of skele-
tal right τ -categories (respectively, left τ -categories, τ -categories) whose mor-
phism sets consist of equivalences of categories. Denote by T r

gca (respectively, T l
gca,

Tgca) the subcategory of T r
ca (respectively, T l

ca, Tca) consisting of completely graded
categories.

(2) Denote by T r
sp the category of right τ -species, where T r

sp(Q, Q′) (Q =
(Q, DX, XMY , τ+, a, b), Q′ = (Q′, D′

X, XM ′
Y , τ+, a′, b′)) consists of F = (F, FX,

FY,X) satisfying the following conditions (i) and (ii).

(i) F : NQ → NQ′ is a monoid isomorphism satisfying Fτ+ = τ+F , FX: DX →
D′

FX (X ∈ Q) is a ring isomorphism and FY,X: Y MX → FY M ′
FX (X, Y ∈ Q)

is a (DY , DX)-isomorphism.
(ii) There exists 0 �= dX ∈ D′

Fτ+X
(X ∈ Q) which makes the following diagrams

commutative, where GX(f ) := dXFτ+X(f )d−1
X and GY,X(φ)(g) := FY ◦ φ ◦

F−1
τ+X,Y

(d−1
X g) for f ∈ Dτ+X, g ∈ τ+FXM ′

FY and φ ∈ Hom DY
(τ+XMY , DY ).

DX
aX−−−−→ Dτ+X Hom DY

(τ+XMY , DY )
bX,Y−−−−→ Y MX

↓FX ↓GX ↓GY,X ↓FY,X

D′
FX

a′
FX−−−−→D′

τ+FX Hom DFY
(τ+FXM ′

FY , D′
FY )

b′
FX,FY−−−−→FY M ′

FX

For F ∈ T r
sp(Q, Q′) and F ′ ∈ T r

sp(Q
′, Q′′), define their composition FF ′ nat-

urally. It is well defined since d ′′
X := d ′

FXF ′
τ+FX

(dX) ∈ D′′
F ′Fτ+X

gives datum for
FF ′ if dX and d ′

X give datum for F and F ′ respectively.
(3) Let Tsp be the full subcategory of T r

sp consisting of τ -species. Define the
category T l

sp of left τ -species by the dual of (2). Then Tsp is regarded as a full
subcategory of T l

sp (cf. 8.3(3)).

10.2. THEOREM. Let ∗ = r, l or nothing. Then M̂, Â and Ĝ define functors
M̂: T ∗

sp → T ∗
ca, Â: T ∗

ca → T ∗
sp and Ĝ: T ∗

ca → T ∗
ca such that Â ◦ M̂ is isomorphic
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to 1T ∗
sp

and M̂ ◦ Â is isomorphic to Ĝ. In particular, M̂ and Â give equivalences
between T ∗

gca and T ∗
sp.

Proof. Ĝ gives a functor Ĝ: T ∗
ca → T ∗

ca by 5.2.
(i) We will show that Â defines a functor.
For F ∈ T ∗

ca(C, C ′), put Q := Â(C) and Q′ := Â(C ′). Define F : NQ → NQ′,
FX and FY,X from F naturally. Since F is an equivalence, F(X]C ≈ (FX]C′ holds
for any X ∈ Q. Thus we obtain the following isomorphism of complexes.

(FX]C′ :τ+FX
ν+
FX−−−−→θ+FX

µ+
FX−−−−→FX

↓dX ↓eX ‖
F(X]C :Fτ+X

Fν+
X−−−−→Fθ+X

Fµ+
X−−−−→FX

Since C is skeletal, we can regard dX as an element of D′
Fτ+X

by τ+FX =
Fτ+X. Immediately, the left diagram in 10.1(2)(ii) is commutative. The following
diagram shows that the right diagram in 10.1(2)(ii) is commutative.

Hom DY
(
τ+X

MY ,DY )

(F
−1
τ+X,Y

,FY )

−−−−→ Hom
D′

FY
(
Fτ+X

M ′
FY ,D′

FY )
(d

−1
X

,1)−−−−→ Hom
D′

FY
(
τ+FX

M ′
FY ,D′

FY )

↓(ν
+
X

,1) ↓(Fν
+
X

,1) ↓(ν
+
FX

,1)

Hom DY
(J(0)(θ+X, Y),DY )

(F,FY )−−−−→ Hom
D′

FY
(J(0)(Fθ+X,FY),D′

FY )
(e

−1
X

,1)−−−−→ Hom
D′

FY
(J(0)(θ+FX,FY),D′

FY )

↓ ↓ ↓

J(0)(Y, θ+X) F−−−−→ J(0)(FY, Fθ+X)
(1,e

−1
X

)−−−−→ J(0)(FY, θ+FX)

↓µ
+
X ↓Fµ

+
X ↓µ

+
FX

Y MX

FY,X−−−−→ FY M ′
FX

1−−−−→ FXM ′
FX

(ii) We will show that M̂ defines a functor.
For F ∈ T ∗

sp(Q, Q′), take dX in 10.1(2)(ii). Clearly, F defines an equivalence

F : P̂(Q) → P̂(Q′). The diagram in 10.1(2)(ii) implies F(bX,Y ) = d−1
X b′

FX,FY .
Thus F(γ (X)) = d−1

X γ (FX) holds. Hence we have an equivalence F : M̂(Q) →
M̂(Q′).

(iii) It is easily shown that Â ◦ M̂ is isomorphic to 1T ∗
sp

. By a similar argument
as in the proof of 9.2, M̂ ◦ Â is isomorphic to Ĝ. Since the restriction of Ĝ to T ∗

gca is
isomorphic to 1T ∗

gca
, M̂ and Â give equivalences between T ∗

gca and T ∗
sp. �
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