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Abstract. In this series of papers, we introduce t-categories, which are additive categories with some
kind of Auslander-Reiten sequences. We apply them to study the category of lattices over orders. In
this first paper, we study minimal projective resolutions in functor categories over t-categories. Then
we give a structure theorem of completely graded t-categories using mesh categories.
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In this series of papers, we study the category lat A of lattices over an order A
over a complete regular local ring of dimension d < 2 (Section 2.2). In [1, 2]
and so on, Auslander studied the Abelian category Mod(lat A) of additive func-
tors (lat A)°® — «Ab. He obtained the Existence Theorem of Auslander—Reiten
sequences, which are good complexes in lat A derived from the minimal projec-
tive resolutions of simple objects in Mod(lat A). As an application, one obtains
an invariant A(lat A) called the Auslander—Reiten quiver [5, 20], which displays
terms of Auslander—Reiten sequences. It is a directed graph with a special combi-
natorial structure, called a translation quiver (Section 2.4). Since A(lat A) is much
simpler than A, it is important to consider the relationship between representation
theoretic properties of A and combinatorial properties of A(lat A). In this series of
papers, we develop a basic theory to study such problems. Especially, we solve the
following problem (P;) ford = 1 in [11].

(P;) Give a combinatorial characterization of finite translation quivers which are
realized as an Auslander—Reiten quiver A(lat A) of an order A over a com-
plete regular local ring of dimension d.

Roughly speaking, our method is to compare the following things for a Krull-
Schmidt category C:

(Re) Representation theoretic realization of @, namely an equivalence between @
and the category lat A of some order A;
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(Ca) Categorical properties for @, especially minimal projective resolutions of
simple objects in Mod C;
(Co) Combinatorial properties for A(C).

In particular, we introduce t-categories (Section 2.1), which are Krull-Schmidt
categories with some kind of Auslander—Reiten sequences, and define an invariant
A(@) called the Auslander—Reiten quiver of a t-category € (Section 2.4). In this
paper, we study t-categories and the relationship between (Ca) and (Co). Then, in
[10] and [11], we mainly study the relationship between (Re) and (Ca) using homo-
logical conditions for Noetherian rings which are related to Auslander—Gorenstein
rings [8] and Auslander orders [4].

Auslander’s theory shows that latA is a t-category for any
R-order A which is an isolated singularity with dim R < 2 (Section 2.2). But,
our introduction of t-categories is motivated by another important example more
strongly. In their solution of (Py) [13], Igusa and Todorov introduced t-species (=
modulated translation quiver in [13]), which form an algebraic realization of trans-
lation quivers by division rings and their bimodules (Section 8.3). They defined an
additive category M(@) called the mesh category of a t-species @ (Section 8.4),
which is a generalization of the mesh categories of translation quivers introduced
by Riedtmann [15] and Bongartz and Gabriel [7]. We show that M((Q) forms a
T-category (Section 8.4). Although some partial results for (P;) were given by
Wiedemann [17-19], one shall meet a sheer difficulty to get a general solution for
(P1), which was not existent in (Pg). In fact, we shall need some finiteness condition
for mesh categories of some 7-species, so we study not only lat A but also general
T-categories in these papers. Thanks to our general treatment, we give an answer
to (Py) in [11] as an application of Rejection theory for t-categories in [10], which
generalizes results in [9].

Our study in this first paper is divided into two parts. In Part I, we develop a
ladder theory of a T-category €, which is a study of minimal projective resolutions
of some kind of ¢-modules. First of all, we prove an Existence Theorem of Ladders
(Section 3.3), which is a fundamental of our theory of r-categories, and will be
used frequently in [10, 11]. Then we obtain a Radical Layers Theorem (Section 4.2)
[12], which immediately implies that the associated completely graded category
Ge)isa T-category whenever C itself is a t-category (Section 5.2). In Section 6,
we introduce a concept of invertible ladders and invertible pairs of ¢-modules and
C°P-modules, and study some homological properties. As an application, we obtain
a Recursion Formula (Section 7.1), which allows to build ladders in a mere combi-
natorial fashion. We use it to study the relationship between above (Ca) and (Co).

In Part II, as an application of theorems in Part I, we develop a structure theory
of T-categories, which connect T-categories and t-species. Let 75, be the category
of t-species and T, the category of skeletal t-categories (Section 10.1). There are
functors

M: Tsp —> Tea (mesh categories) (Section 8.4),
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A: Teca —> Tsp  (Auslander—Reiten species) (Section 9.1)
such that Ao M ~ lg, and MoA ~ G (Section 10.2). In particular, the category
Tsp 1s equivalent to Ty, the category of completely graded skeletal t-categories.
This means that t-categories are the natural domain to study mesh categories of
T-species.

Our writtings were inspired by the work of Igusa and Todorov [12, 13], which
extends ring theoretic aspects of the work of Riedtmann [15] and Bongartz and
Gabriel [7]. We have borrowed terminology (such as Ladders and Radical Layers)
from [12]. Once Radical Layers Theorem is established in our general context, we
define t-species and their mesh categories (Section 8) in entirely similar manner as
in [13]. Now we feel that our t-category is rather a natural domain of consideration.
For one thing, our proof of the Radical Layers Theorem is not only more general,
but also simpler, even when restricted to the case of d = 0, than that of [12] where
very restrictive assumptions for valuations of arrows of Auslander—Reiten quiv-
ers are imposed and essentially used in the proof. For another thing a translation
quiver has a two-dimensional geometric realization in the sense of [7] §4, so that
a t-species can be regarded as a two-dimensional analogue of species. Therefore
our Structure Theorem of t-categories can be regarded as a two-dimensional ana-
logue of the well known relationship between species and hereditary categories.
We hope there should exist higher-dimensional 7-categories as well as 7-species
corresponding to each other.

PART I. LADDER THEORY OF 7-CATEGORIES
1. Modules over Krull-Schmidt Categories

An additive category € is called skeletally small if the isomorphism classes of
objects form a set, and called Krull-Schmidt if any object is isomorphic to a finite
direct sum of objects whose endomorphism rings are local. By [14], @ is Krull-
Schmidt if and only if a ring of endomorphism of any object is semiperfect and
idempotents split in @. Recall that H. Bass introduced a definition of semiper-
fect rings, and this notion deals with a theory of projective covers developed by
Eilenberg, Nakayama and Bass.

Throughout this paper, any additive category € is assumed to be skeletally small
and Krull-Schmidt. We denote by (X, Y) the set of morphisms from X to Y, and
by fg € C(X, Z) the composition of f € C(X,Y) and g € C(Y, Z). A C-module
is a contravariant additive functor from © to the category b of Abelian groups.
For @-modules M and M’, we denote by Hom(M, M’) the set of natural transfor-
mations from M to M’. Thus we obtain the Abelian category Mod @€ of @-modules
[1]. We review several basic facts and introduce some (nonstandard) notations.

(1) Krull-Schmidt theorem holds in ¢, namely any object is uniquely isomorphic
to a finite direct sum of indecomposable objects. We denote by ind € the set
of isomorphism classes of indecomposable objects in .
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(2) Define functors H®: ¢ — Mod € and He: @ — Mod € by HS := €C(, X)
and Hé( = C(X, ). We say that a @-module M is finitely generated if there
exists an epimorphism H — M for some X € Ob(E). Then Yoneda’s lemma
shows that H® (respectively, H,,) induces an equivalence from € (respectively,
C°P) to the category of finitely generated projective @-modules (respectively,
C°P-modules).

C is called left Artinian (respectively, right Artinian) if H (respectively, H’@‘ )
has finite length for any X € Ob(@), and called Artinian if it is left Artinian
and right Artinian.

(3) We denote by J. (or &) the Jacobson radical of ¢, which is an ideal of @

such that $( , X) (respectively, (X, )) is the radical (= intersection of all
maximal submodules) of H)e( (respectively, Hg ) for any X € Ob(®). Define
functors S¢: ¢ — Mod € and Se: € — Mod €® by S§ := H% / 4(, X)
and S’@( = Hf( / $(X, ). Then S€ (respectively, S¢) induces a bijection from
ind @ to the set of isomorphism classes of simple ¢-modules (respectively,
C°P-modules).
We simply denote H (respectively, Hy, s$, S&) by Hy (respectively, HY, Sy,
S¥). We denote by pd L the projective dimension of a ¢-module L, and by
ind @ (respectively, ind, @) the subset of ind @ consisting of all X such that
pdSy < n (respectively, pd S¥ < n).

(4) Recall that an epimorphism Hy % L s called a projective cover of a
C-module L if ¢ is essential, or equivalently, Ker¢ € J(, X) holds. In this
sense C is semiperfect, i.e. any finitely generated G-module has a projective
cover. Recall that an exact sequence Hy, 11;1 e }13 Hy, 4 Hy, > Lo~ 0
is called a minimal projective resolution of a ¢-module Lo if Hy, - L; — 0
is a projective cover for any i (0 < i < n), where we put L; := ImH,
1<i<n).

(5) Let I be an ideal of @. We write f € [ if f € I(X,Y) for some X,Y €
Ob(@). For a @¢-module L, define a subobject IL of L by (IL)(X):=
ZYEOb(e) I(X,Y)L(Y). Then the radical of a finitely generated ¢-module L
is given by § L.

(6) For two complexes A and A’ over @, we write A ~ A’ if A is isomorphic to A’
as a complex. Any morphism in @ is regarded as a two-termed complex, and
any object in C is regarded as a one-termed complex. Thus, for objects X and
Y in @, we write X ~ Y if X is isomorphic to Y.

It is often used that, for any f € @, there exists g € & such that f ~ ((1) g)

(7) For a set Q, we will denote by ZQ (respectively, NQ) the free Abelian group
(respectively, free Abelian monoid) generated by Q, and regard Q as a subset
of NQ. Introduce an inner product ( , ) on ZQ by taking Q as an orthonormal
base, and for any X € ZQ, define X, X_ € NOby X = X, — X_ and
(X4, X_) = 0. For a subset S of O, we denote by |s: ZQ — ZS the natural
projection.

For example, we can identify Ob(®)/ &~ with Nind C.
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2. t-Categories

2.1. Let @ be a Krull-Schmidt category and n > 0. Let @: Mod @ — Mod @°P be
the left exact functor defined by («(L))(X) := Hom(L, H)e(), and R"a: Mod @ —
Mod @°P the nth derived functor of «, namely (R"«(L))(X) = Ext"(L, H)@(). Du-
ally, R"a: Mod @°° — Mod C is defined [8].

We denote by Mod,, ¢ the full subcategory of Mod € consisting of L which has
a minimal projective resolution (Section 1(4)) Hy, }Ei’ e 11;2 Hy, Pil Hy, —
L — 0(X; € Ob(@)). For such L, put Tr,_; (L) := Cok H/* and Tr(L) := Tro(L).
Notice that Tr, (L) gives a minimal lifting of J, (L) in [3].

(1) @ is called a right t-category if S, € Ob(Mod, ©) and Tr;(Sy) is semi-
simple for any X € Ob(@). Dually, @ is called a left T-category if S* ¢
Ob(Mod, @°) and Tr; (S¥) is semisimple for any X € Ob(@®).

(2) A right (respectively, left) t-category € is called right strict (respectively,
left strict) if pdSy < 2 (respectively, pd S¥ < 2) for any X € Ob(C).
A t-category Q is called strict if @ is right strict and left strict.

(3) Assume that X € Ob(@) satisfies Sy € Ob(Mod, @) (respectively, s¥ e

+ +
Ob(Mod, @°P)). Then we denote by (X]e = (t7X e 0tX - X) (respec-
- - H 4 o
tively, [X)e = (X =5 6=X 5 t=X))acomplex such that H_, , = Hy., —

v n
Hy — Sy — 0 (respectively, H* ¥ gy ogx o 0) gives a
minimal projective resolution. We omit the index € for simplicity.
Immediately, (X] (respectively, [X)) is unique up to isomorphism, and
(X @ Y]~ (X] & (Y] holds for any X, ¥ € Ob(¢). Moreover, X is an inde-
composable object if and only if (X] (respectively, [X)) is indecomposable as
a complex.

Moreover, indi @ = {x € ind @ | 7¥x = 0} and indf @ = {x € ind € | #Fx = 0}

hold ((3) of Section 1).

2.2. EXAMPLES. (1) Let A be a Noetherian semiperfect ring and € := pr A the
category of finitely generated projective A-modules. Then Mod @ is equivalent to
the category of left A-modules. In particular, @ is a strict T-category if and only
if gl.dim A < 2 and Ext} (S, A) is semisimple for any simple left or right A-
module S. By 2.3 below, this is also equivalent to gl.dim A < 2, Exti\(S ,A)=0
(i =0, 1) and Ext3 (S, A) is simple for any simple left or right A-module S with
pdS =2.

(2) Let R be a complete regular local ring of dimension d > 0. An R-algebra
A is called an R-order if it is finitely generated free as an R-module. Assume that
A is an R-order. A left A-module L is called a A-lattice if it is finitely generated
free as an R-module. We denote by lat A the category of A-lattices, which forms a
Krull-Schmidt category [6]. Then ()* = Homg(, R) gives a duality between lat A
and lat A°P. Let rin A := (pr A°P)* be the category of relative injective A-lattices.
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Assume that A is an R-order which is an isolated singularity, namely
gl.dim A > d and gl.dim R, ® g A = ht g for any nonmaximal prime ideal p of R.
For any X € ind(lat A) —ind(pr A) (respectively, Y € ind(lat A) —ind(rin A)), the
Auslander—Reiten sequence [2] gives (X] ~ [t+X) (respectively, [Y) ~ (t7Y]).

In particular, if d < 2 and A is an R-order which is an isolated singularity, then
lat A is a strict T-category. Moreover, indfr (lat A) = ind(pr A) and ind; (lat A) =
ind(rin A) ifd =0or 1, and indf(lat A) =0 =ind] (latA) if d = 2.

(3) (Section 8.4) If ¢ is the mesh category of a T-species, then € is a T-category.

Proof. (2) The former assertion is immediate from the definition. Let J, be
the Jacobson radical of A, P € ind(pr A) and / € ind(rin A). If d < 1, then
(P~ (0 — J\P - P)and [I) = (I — (I*Jp)* — 0).If d = 2, then the
almost split sequence in the sence of [16] 2.1 gives (P] ~ [tT P) (respectively,
[1) ~ (z7ID. o

2.3. THEOREM. Let @ be a t-category. Then Tri(Sy) = st Rloz(SX) =0
and (X] ~ [t*X) hold for any X € ind @ —indfr C. Dually, Tri(SY) = Sy
Rla(SY) = 0and [Y) ~ (= Y] hold for any Y € ind @ —ind] @. Hence t* and
T~ give mutually inverse bijections between ind @ — indir C and ind € —ind| C.

2.3.1. (1) If L € Ob(Mod, @) satisfies Tr;(L) € Ob(Mod, €°P), then R'a(Tr; (L))
=0 holds.

(2) Let I be the ideal of Mod @ consisting of morphisms which factor through
a projective object, and Mod € := (Mod @)/ the stable category [3]. Then there
exists a bijection (Mod @°P)(Tr, (L), M) — (Mod @)(Tt,(M), L) for any n > 0,
L € Ob(Mod,;; @) and M € Ob(Mod, ;| C°).

H H
Proof. (1) Take minimal projective resolutions Hy, — Hy, — Hy, > L—0

h 8
andg’ 5 g Lo oo (L) — 0. Then there exists f’ such that f = hf’.

For any a € KerH,, we obtain af = ahf’ = 0. Hence a € ImH, holds. Thus
Rla(Tri (L)) = 0 holds.

(2) The assertion for n = 0 is immediate since Tr gives a duality between
H
. L . I
Mod, ¢ and Mod, . Letn > 0 and take minimal projective resolutions Hy | !
Hfl Hén+1 HE1

-—>HXO—>L—>OandHY"+' — . — H"® - M — 0.For ¢ €
(Mod @°?)(Tr, (L), M), take the following commutative diagram.

H/1 H/2 H/n+1
HXO HX1 . HXn+1 Tr,(L)—0
\LH“rH»l \LHan \LHHO llqb
Hén+1 Hé" HS!1
HYn+l HYn e HYO M N 0
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Define ¥ by the following commutative diagram.

H, H H,
0 L HXO f HX] f HX,H_]
Tl// THanJrl THﬂn TH‘IO
H H H
0 Tr,, (M) Hy Sn+1 Hy &n . 81 Hyo

n+1 n

It is easily checked that ¢ is zero in Mod @ if and only if there exists b; €
CYi, Xy—ivp) (1 <i <n+1)suchthata; = b; f,—i+2 + gi+1bi+1 holds for any
i (1 <i < n)if and only if ¢ is zero in Mod @. Thus we obtain a well defined
injection (Mod ¢°?)(Tr, (L), M) — (Mod @)(Tr, (M), L). This is surjective since
we obtain the inverse map by the dual argument. O

2.3.2. Proof of 2.3. Put M := Tr|(Sy). Then we have an epimorphism M =
CokH'X — S™"X. Since € is a T-category, M is semisimple. Hence Tr;(M) is
semisimple again, and S* ¥ is a direct summand of M. Since M is not projective,
we obtain (Mod @*?)(M, M) # 0. Hence (Mod @)(Tr; (M), Sy) # 0 holds by
2.3.1(2). Thus Sy is a direct summand of Tr; (M) since Tr;(M) is semisimple and
Sy is simple. Since R'a(Tr;(M)) = 0 holds by 2.3.1(1), we obtain Rla(SX) = 0.
ut ot
Hence H¥ & 'Y 5 'Y & M = 0isa projective resolution. Since (X]
is indecomposable by 2.1(3), M is indecomposable and this resolution is minimal.
Thus M = S™ ¥ and (X] ~ [t X) hold. In particular, * X is indecomposable and
X ~ t~t*X holds. Hence t*X € ind @ —ind; @ holds. O

2.4. DEFINITION. (1) O = (Q, 0, Q', t+,d, d’) is called a translation quiver
if Q is aset, Q7 and Q' are subsets of Q, v+ is a bijection Q — Q? — Q — O,
and d and d’ are maps Q x Q — N3 such that d(Y, X) = d'(t*X, ¥) holds for
any X € Q — Q”andY € Q,and d(, X) = 0 implies X € Q”.
Usually, we draw Q as a directed graph: Q is the set of vertices, and we draw
(d(X,Y), d'(X,Y))

valued arrows X Y forany X,Y € Q such that d(X,Y) # 0, and
dotted arrows from X to ™ X forany X € Q — Q7.

(2) For a t-category @, a translation quiver A(C) = (Q, 97, Q',t+,d,d")
called the Auslander—Reiten quiver of € is defined by Q := ind @, Q” := ind] @,
Q' :=ind] C,d(X,Y) :=(01Y, X)andd'(X,Y) := (9~ X, Y) ((7) of Section 1).

A(@) indicates terms of each (X] and [X) (X € ind @) diagrammatically.

3. Existence Theorem of Ladders

In this section, we show basic results 3.1, 3.2 and 3.3, which are proved in 3.5
and 3.6.

3.1. (1) For a Krull-Schmidt category €, we denote by C* (respectively, °C, €*)
the collection of split monomorphisms (respectively, split epimorphisms, isomor-
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phisms) in @. Then it is easily shown that C*+ ¢ < C°*, *C+F < °C and
C* 4+ & C ¢* hold. We have mutually inverse bijections cok: C*/~ — °*C/ ~
and ker: *C/~ — C*/ ~.

(2) For a right t-category €, we denote by C*® u™ (respectively, vt *@) the
collection of a morphism a such that @ = fu} (respectively, a = vy f) for some
X € Ob(@) and f € @°* (respectively, f € °C).

Similarly, for a left T-category @, we denote by i~ °C (respectively, C* v™) the
collection of a morphism a such that a = puy f (respectively, a = fvy) for some
X € Ob(@) and f € °C (respectively, f € C°).

THEOREM. Let @ be a right (respectively, left) T-category. Putting I (f u;) =
v;? cok f (respectively, I”(uy ) := (ker f)vy) for any X € Ob(C) and [ €
C* (respectively, f € °C), we obtain a well defined surjection I*: C* u*/ ~ —
vt *@ / =~ (respectively, |”: n=*C/ ~ — *v~/ =), which preserves direct
SUms.

3.2. Let C be a right t-category and ay € F(X,Y). We say that ayg has a right

ladder (a,)o<, if there exists b, € @* u™ such that a, ~ (%‘) and [1(b,) = a,41

for any n > 0. In other words, there exist a commutative diagram
Y() fi Y] f2 Y2 f3 Y3 fa
b b b b
T 0 T 1 T 2 /]\ 3
ZO 81 Z1 82 22 83 Z3 84 -

Uy+1 € Ob(@) and hy1 € C(Up41, Z,) such that ay ~ (bé’) € C(Zy @ Uy, Yp) and
bnoﬁ»l ;gn+1 (frlt)Jrl
n+1 n

(Yn] ~ (Zn+l @ Un+] — Yn+1 @ Zn — Yn) for any n = 0.

COROLLARY. Each of a,, b, and U, above is uniquely determined up to isomor-
phism.

Put It (ap) := ay, [7¢(ap) := b, and u;} (ap) := U,. We call (a,)o<n<m (m = 0)
a right ladder of length m. Dually, define [, (ao), [, (ao), u, (ap) and a left ladder
of ap.

3.3. Wecalla € (X, Y) special if a + f ~ a holds for any f € $*(X,Y).

THEOREM. Let @ be a right t-category and ayg € $(X, Y).

(1) If ag is special, then ay has a right ladder.

(2) In particular, ag has a right ladder if one of X = 0, ay = v}r or (Cis a
T-category and ag = ;) (Z € Ob(Q)) holds.

(3) If @ is right strict and ay is a special monomorphism, then Lf (ap) ~ [7¢(ay)
is a monomorphism for any n > 0.
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1 r r
34.Leta,b € §. We write a i b (respectively, a>b, b>a, b>a) if sa = bt
holds for some s and ¢ which satisfy s € @* (respectively, s € C* and t € C°,
t€’C,s €°Candt € °Q).

X—4 Y
s M

X/ b Y/

Immediately, a ; b (respectively, b = a) holds if and only if there exists an
epimorphism Cok H* — Cok H (respectively, Cok H, — Cok H,,).

3.5. Proof of 3.1 and 3.2. Assume that € is a right t-category.

3.5.1. DEFINITION. Let a and a’ be morphisms in a right (respectively, left)

T-category C. We write a N (respectively, a’ > a) if there exist f and f’ such
/ ! f

that (X' C5 v @ x {4 v) ~ (v] (respectively, ~ [X7).

3.5.2. (1) Assume that ¢: A — (Y] is the chain morphism below satisfying f3 €

*C. If either (i) A = (X3] or (ii) (@ is a T-category and A = [X)) hold, then f}

and f, are in °C.

A X, X, X3
¢¢ \Lfl ¢f2 \Lf3
Y]ty oty Y

(2) Assume b L a s d 1f either G) b Lo or (i) (@ is a t-category and b’ > b)

hold, then &' > d’.
3)If (§) ~ () holds for b, b’ € * u", then b ~ b’ holds.

Proof. (1)(1) (X3] and (Y] induce minimal projective resolutions of S X and S,
respectively, and ¢ induces a split epimorphism Sy, — S,. Hence, H,, and H ,
are epimorphisms.

(i) By 2.3, there exists I € Nind; @ (Section 1(7)) such that [X) ~ [1)®(X3].
Put ¢ ~ (;’,,,) :[D®(X3] — (Y]. Since ¢” satisfies the assumption of (i), we obtain
the assertion.

() Putsa = bt (1 € *e), and (X' 5 v/ @ x

/ool 8
A=z " weoz Y w), where A~ (W] for () and A ~ [Z)) for (ii).
Since gt € ¢, there exists (¢’ u) such that (¢ ”)(sz) = gt. Then (’0 :‘) (Zl) = (i)t

shows that there exists s” such that s'(a’ f') = (b’ g') (’(; ;’) Thus we obtain a chain

.
2) Y) =~ (Y]. Moreover, put
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morphism A — (Y]. Since ¢t € *°@, (1) shows that s/, (t(; ;‘) € *C. Thus ¢’ € *C.
Hence s'a’ = b’t’ shows b’ >r> a'.
(3) Since b, b’ € * ut, H, (respectively, H,,) gives a minimal projective reso-
lution of Cok H,, (respectively, Cok H,,). Since Cok H o= Cok H,, is isomorphic
0

to CokH(,,,) = Cok H,,, we obtain b ~ b'. O
0

3.5.3. We will show 3.1. Assume a ~ b, a ; a’ and b ; b’. Since b >r> a and a >I> b,

we obtain &' >a’ and @’ > b’ by 3.5.2(2)(i). Hence @’ ~ b’ holds. Thus I* is
well defined. Moreover, [T is surjective since [* ((ker f )/’LX) = vy ¥ f holds for any
f € *¢. Now 3.2 follows immediately from 3.1 and 3.5.2(3). O

3.6. Proof of 3.3.

3.6.1. (1) For any special a, there exists a special b € @* u* such thata ~ (7).
(2) Assume [ (a) =a’ andn > 2.

(i) Forany b’ € a’ + §", there exists b € a + " such that [T (b) = b’
(ii) If a is special, then so is a’.
(iii) Assume that C is right strict. If @ is a monomorphism, then so is a’.

Proof. (1) Puta = fu}. By (6) of Section 1, there exist g € @* and i € J such

that f ~ (). Then a ~ (i"%) ~ (g“X) holds since a is special and (h +) e g°

Putb := gu} € @*pu*. Forany r € g7, (b+r) = (g) + (p) =~ (0) holds since a is
special. Hence b + r & b holds by 3.5.2(3).
, s
QP X' L yex Dy~
(i) Take () € "' such that ' —a’ = (@’ £/)("). Put (¢) := ("7 97" (/). Then
b e€a+ 3" and " (b) = b’ hold by the following commutative diagram.

r
(Y] X/ (a f) Y/ @ X (a)

l+r 0

I WOF [
Ty 4
X v x }) y

(ii) For any b’ € a’ + §°, there exists b € a + $* such that [t(b) = b’ by (i).
Since a is special, we obtain b &~ a. Hence b’ ~ a’ holds by 3.1.

(iii) Assume ga’ = 0. Since gf'a = —ga’f = 0 implies gf’ = 0, we obtain
g(@ f’) = 0. Since Q is right strict, we obtain g = 0. a

3.6.2. We will show 3.3. There exists a unique special morphism by € C* u't such
that ay ~ (h(;’) by 3.6.1(1). Then a; := [T (by) is special by 3.6.1(2)(ii). Thus (1)
follows inductively, and (3) follows from 3.6.1(2)(iii). For (2), we will show that
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ap := v is special. For any f € 92, there exists f' € ¢ such that f = aof'.
Hence ap + f = ap(1 + f') ~ ap holds by 3.1(1). A similar argument shows that
W is special. O

4. Minimal Projective Resolutions

In the rest of this paper, put " := @ forany n < 0 and §* = ﬂ@o 4". For

a @-module L, put §™ L := 9" L/ §"™ L and $"™ L := 9" L) g™ L for any
n<m.

4.1. THEOREM. Let @ be a right t-category, ag a morphism with the right ladder,
I¢(ap) = b, and L := Cok H,,- Then the diagram in 3.2 induces the following
commutative diagram, where each vertical complex gives a minimal projective
resolution of 3" L and each v, is the natural inclusion. If C is right strict and
ao is a monomorphism, then pd $" L < 1 holds for any n > 0.

L Y1 g L Y2 g2 L V3 g3 L Z

T T T T
H, H. H.
i fa f3 fa
HY() HY1 HY2 HY3 < :
THbO THbl THbz THbg
H H Hy, H

Proof. Let¢,: Hy — CokH,, be the natural epimorphism and v,: CokH, —
CokH,, , the morphism induced by f,. Then § CokH, = = (§Hy )¢n—1 =
(ImH ( ))d),, 1 = (mH fn)qﬁ,, 1 = Im ) holds. Thus we only have to show that

by—1

¥, is a monomorphism. Assume s € H, satisfies (s)¢, ¥, = 0. Since (sf,)$,—1 =
0, there exists ¢ such that s, = tb,_;. Then (s — t)(bffl) = 0 shows there exists

(uv)e Hz, 0, such that (s —¢t) = (u v)(%’ _hi"). Hence s = ub, shows (s)¢, =
0. O

4.2. By 3.3, the following theorem implies that the main theorem 4.3 of [12] holds
for any Artin algebra A without any restriction. (Put € := mod A and ay := vy.)

RADICAL LAYERS THEOREM. Let @ be a right t-category, ay a morphism with
the right ladder, b, := [°(ag) and L := Cok H,,- Then we have the following
exact sequences for any i, j,n = 0, where (0 —) is added if C is right strict and
ay is a monomorphism.

. H . .
O0—)g'H, > ¢ H, —FL—>0

. . H .. . .
(0 _>) g(l—l,j—l) Hzn bn g(l,J) HYn — g(n+t,n+/)L -0
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Proof. We only have to show the exactness of the upper sequence. We will use
induction on i. Our assertion for i = O follows from 4.1. Assume that the assertion

. H .
is true for i. Put M := Cok(§' H, 2 gi+! Hy, ). Consider the following com-
mutative diagram of exact sequences, where the lower sequence is exact by our
assumption for i.

. H .
gl HZn bn gl+l HYn M 0
THgn-H Tan+1 T‘/’

an+1 i n+i+1 0
——)ﬂ Hy ——)‘0'1 L——

n+1

i—1
¢ Hy

n+1

bpt1 _gn+l) (_fn+l
hpt1 bn

Since (Z,11 @ U,iq 0—) Y19 Z, — Y,) = (Y,], we obtain the
following exact sequence by applying our assumption for i to ag := v;n and L :=

IH, .

H bpt1 —8n+1 H 1
i1 Co ) ) il
(0 —>) g HZnJrl@UnJrl g HYnJrl@Zn g HYn - O (*)
Hence we can easily check that 1 above is an isomorphism. Thus our assertion
is true for i 4 1. The assertion for (0 —) is immediate by 4.1. O

4.3. PROPOSITION. In 4.2, put U, := u} (ap) and assume gV L = 0 for some
N > 0. Then we have the following exact sequence for any i,n > 0, where k; ,, :=
hi(gi—1-gnst1) € CUy, Z,) and (0 —) is added if C is right strict.

Bt gy, Mg, g0
Zn Y

N
(0 _)) @ gn-l—i—l—l HUI

I=n+1

Proof. If n > N, then the assertion is immediate since Z, = Y, = 0 holds
by 4.1. Assume that our assertion is true for i. Consider the following commutative
diagram, where the lower sequence is exact from our assumption.

N
. (Hy, 1 . H,, .
(0_)) @ gn+l ZHU/ 1, gl HZVL = gl+1 Hyn
I=n+1
H 8n+1
I N A

N
. H
(O_)) < @ g}’l+l*l HU[) ((Hk8n+l)[ 10) (bn+1)
!

=n+2
®d"'Hy

n+1

i—1
g HZn+1€BUn+|

Using the sequence (x) in the proof of 4.2, we can easily show that the upper
sequence is also exact. Thus our assertion is true fori + 1. O
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5. Completion and the Associated Graded Category

5.1. Let @€ be a Krull-Schmidt category.

(1) Define the associated completely graded category G@) of e by
Ob(G(€)) := Ob(e) and G(C)(X,Y) := [[,50 ™ (X.Y) for X, ¥ € Ob(C).
where the composition is given by (f,)n>0 - (8n)n>0 1= (Z;’ZO fi8n—i)n>0. Define
the completion G of @ by Ob(C) := Ob(@) and C(X,Y) := lim, > goOm(x.y)
for X, Y € Ob(@).

Then @ and G(E) are Krull-Schmidt categories with 5 = lir_n,@] g4" and
3@(@) =T g™ Puta[l] := (0,a,0,0,...) € ;l@(e)(/)f, Y)fora e §.(X,Y).

(2) @ is called complete if the natural functor ¢ — ( yields the categorical
equivalence, and called completely graded if there exists a Krull-Schmidt category

€’ such that @ is equivalent to G(C'). '
(3) Assume that Sy, € Ob(Mod; @) holds for any X € Ob(€). Then 37’@

lir_n,@,- g% and gé@(e) = ]_[@i 9™ hold for any i > 0. Thus € is equivalent to G,
and @(@) is complete and equivalent to @(@(@)).

=

Proof. We only show the assertions for @(@).

(1) Fix X € ind ¢. We only have to show that f = (f,).>0 € @(G)(X, X)
is an isomorphism if and only if fy # 0. If g = (g,)n>0 satisfies fg = 1y, then
fogo = 1 implies fy # 0. Conversely, If fo # 0, then g = (g,).>0 satisfies
fg = 1x,where gy := f; ' and g, := —f; ' YI_, figai forn > 0.

(3) We only have to show ([T,5; #")T,>1 &™) 2 [lysiy & for any
i 2 1L.Forany f = (fi)uzit1 € [Lisin 9™ H,, take a projective resolution

Hy - FHy — 0. For any n > i, we can take g, € §" such that f,,1 = g,a.
Then 8 = (gn)n>i € Hn}i 5((") Hy satisfies g - a[l] = f O

5.2. THEOREM. Let @ be a right t-category (respectively, left t-category,
t-category). Then so are G(C) and C. If @ is right strict, then so are G(Q) and

vy (1] I

C. Moreover, (X1g ~ (X]e and (X]@(e) ~ (17X =— 0tX = X) for any
X € 0Ob(@). _

Proof. Applying 4.2 to ag := vy, we obtain an exact sequence (0 —)gh H,+x
= gl")H9+X i g9tV H, — 0 for any i > 0. Since it is easily shown that

T
. ¢ . ~

goOygoX e gV X 5 0 is exact, the assertion for G(@) follows from

5.1(3). Similarly, since (0 —>)lir_ng’(0”)HT+X =y lim O H,, ey

lir_n g0i+2) Hy — 0 is exact for any i > 0 by 4.2 again, the assertion for cC

follows. O
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5.3. LEMMA. Let @ and @' be complete right t-categories and F: ¢ — C’ be
an additive ﬁmctor such that F (X ]@ ~ (FX]e for any X € Ob(@). If F induces
an isomorphism f,’@ (X,Y) —> 5(6,, (FX, FY) forany X,Y € Ob(C) andi =0, 1,
then F is full faithful.
Proof. By 4.2, we obtain the following commutative diagram of exact sequences.
. H+ . H .+ .
giVx, oty) = g@x,0ty) = gt x,y) —o0

\LF \LF \LF
FIV(FX, Ft+Y) gz(’)(Fx F9+Y) g‘l“)(Fx, FY)—0

Inductively, F: g(')(X Y) — g(’)(FX FY) is an isomorphism for any i >
0. Hence F: gé“”(x Y) —» ge,')(FX FY) is an isomorphism for any i > O.
Thus F: @(X,Y) = lglgg’ X, Y) - lgng(co,’)(FX, FY) = C'(FX, FY)isan
isomorphism. O

6. Invertible Ladders

6.1. Let © be a T-category.

(1) Let ag be a morphism with the right ladder, a; := li+(a0) € C(X;, Y;) and
0 < n < oco. Then Xi|ind;e = 0 holds for any i > 0 since X; ~ t7Y;_;.

A right ladder (a;)o<i<n Of length n is called essential if u;r(ao) = 0 holds for
any i (0 < i < n). For example, if @ is strict and a( is a monomorphism, then
(ai)oxi 1s essential and any a; is also a monomorphism by 3.3.

Arightladder (a;)o<i<, of lengthn (n < oo) is called invertible if a; 1 € u™ *°C
and a; = [" (a;4+1) hold for any i (0 < i < n). In this case, (a;)o<;<» 1S an essential
ladder and (a,—;)o<i<n gives a left ladder of a,,.

(2) Assume that Hy IEQ H, — L — 0and H? % H* — M — 0 are minimal
projective resolutions of L € Ob(Mod @) and M € Ob(Mod C°P) respectively.
Clearly, L (respectively, M) is indecomposable if and only if ay (respectively, cy)
is indecomposable as a complex.

We say that L has a right ladder (respectively, M has a left ladder) if so does a
(respectively, ¢g). Then §" L (respectively, $" M) has a right ladder for any n > 0
by 4.1. Moreover, we call (L, M) an invertible pair of distance n (n > 0) if ay has
a right ladder, ¢y has a left ladder and (l;r (a0))o<i<n 1s an invertible ladder with
l’j_ (ag) ~ cop.

6.2. PROPOSITION. Let C be a t-category, L a C-module with right ladder, M a

H,
C°P-module with left ladder, Hy = Hy — L — 0aminimal projective resolution
and a; := l-+(a0) € C(X;, 1y).

(1) If (L, M) is an invertible pair of distance n (n > 0), then the following hold.
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1) ﬂ(i) L=s, and gt("—” M = S%i hold for any i (0 < i < n). Hence any
composition factor S of 3" L satisfies pd S > 2, and any composition
factor T of 3™ M satisfies pd T > 2.

(i) Tr(g' L) = §"" M holds for anyi (0 <i < n) and Tr(§" " M) = ' L
holds for any i (0 < i < n). If L is indecomposable, then ' L and
9"~ M are indecomposable (or zero) for any i (0 < i < n).

a, e (af Han e
(iii) There exists a complex (X, (—>) Y, ® Xo — Yy) such that Hy, Lo

N O . @) oy, HOUO
Hy,ax, ’HY0_>§I’L—>OandH0—>Hn o —5 HY —
4O M — 0 are exact and f, g € 3"

(2) Assume that L is indecomposable. If Tr(§" L) = M # 0 and any composition
factor S of $O" L satisfies pdS > 2, then (L, M) is an invertible pair of
distance n.

6.2.1. Let @ be a t-category, ay a morphism with right ladder, a; := l;’ (ag) €
C(X;,Y)), L := CokH,, and n > 0. Then the condition (1) below implies (2)
and (3) below. Moreover, assume that a, is indecomposable as a complex and
X, ® Y, # 0. Then the conditions (1)—(3) below are equivalent. In this case, a;
is indecomposable as a complex for any i (0 < i < n).

(1) (ai)o<i<n 1s an invertible ladder.
(2) Yilipgr ¢ = O'holds forany i (0 < i < n).

(3) Any composition factor S of g™ L satisfies pd § > 2.

Proof. Since " L = S, holds by 4.1, (2) is equivalent to (3). Thus the for-
mer assertion follows from the dual of 6.1(1). We will show the latter assertion
inductively. Assume that a; is indecomposable and Y;|; 4+ = 0. Then a; ~ b;
or a; € C(U;,0) holds. The latter case implies n = i since X;11 ® Y;41 = 0.
The former case implies [~ (a;+1) = a; since (¥;] = [X;4+1). Hence a;; is also
indecomposable since [~ preserves direct sums. O

6.2.2. Proof of 6.2. (1) I;"(ap) = a; holds for any i (0 < i < n)andl,*(co) = a;
holds for any i (0 < i < n). Thus (i) and (ii) follow immediately from 4.1 and
6.2.1. We will show (iii).

Without loss of generality, ag is indecomposable. We use the notations in 3.2.
Notice that a,, = l,j “(agp) or Y,, = 0 holds since a,, is indecomposable. Put ¢; := g;
ifa, = lf’e(ao), and e¢; := h; if ¥; = 0. By 4.1, we obtain a commutative diagram

0——KerH, Hy, ,——Hy, ' L——0
19 e A, U
H,, :

0—— KerH, Hy, — Hy, 3'L ——0.
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e G
Since (X; (a’—i’) Y: ® X Y Y1) = (Y;_q]forany i (0 < i < n), we can
check that ¢; is an epimorphism. Put f := f,--- f1 € $",e := —e¢,---e; € "

and ¢ := ¢, - - - ¢;. Then the commutative diagram below shows the exactness of
the former sequence since ¢ is an epimorphism.

H,

ag)

0——KerH,, Hy, Hy, L 0
T¢ TH_(, THf U

0——KerH,, Hy, Hon Hy, J"L 0

Dually, we can show the exactness of the latter sequence.

(2) Since CokH* = Tr(3" L) = M # 0, (a;)o<i<» is an invertible ladder and
a, is indecomposable by 6.2.1. Hence H* gives a minimal projective resolution of
M. Thus the assertion follows. O

6.3. THEOREM. Let @ be a t-category, L a C-module with right ladder, M a
C°P-module with left ladder, n > 0 and ¢: Tr(§" L) — M an epimorphism.

(1) Any composition factor S of $O™ M satisfies pdS > 2.
(2) If L = Tr(S¥) (X € ind @) and one of (i) or (ii) holds, then ¢ is an isomor-
phism and (L, M) is an invertible pair of distance n:

i) §"M #0;

(i) @ is strict, M # 0 andpd M < 1.
6.3.1. LEMMA. Let C be a t-category, ay a morphism with right ladder, cy a
morphism with left ladder, a; = ll.+(a0), b; == l;”e(ao), ¢ :=1;(co) and d; :=

_ I
l; “(co). Assume a, > cq for some n > 0.

(1) a,—; >l> b,_; >l> Ci >l> d; holds for any i (0 < i < n).

(2) Assume that ap = vy (X € ind €) and one of (i) or (i1) holds. Then (a;)o<i<n
is an invertible ladder such that a, ~ dy and a,_; =~ b,_; =~ ¢; = d; for any i
0 <i<n).

(1) The domain of c, is nonzero.
(1) @ is strict and cy is an epimorphism with domain # .
I
Proof. (1) We use the induction. Since b,_; ; a, ; co > dy > ¢y, we obtain
! I ! !
b,_1>> c; by the dual of 3.5.2(2)(ii). Thus a,_; > b,_ > ¢1 > d, holds.

(2) Put¢; € C(A;, B)).

(i) Since ag ; d, holds by (1), we have an epimorphism ¢: Cok H* — Cok H%
by 3.4. Our assumption ay = uy with X € ind € imply that Cok H* is simple. Our
assumption A, # 0 implies Cok H% # 0. Hence ¢ is an isomorphism. Thus d, ~
ao holds since H% gives a minimal projective resolution of Cok H% . Hence we may
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assume n > 0. Then ay =~ by =~ ¢, = d, holds by (1). The dual of (1) shows that
Cn—i >r> dy—i >r> a; >r> b; holds forany i (0 <i < n). Thusa, ; ® b, ; ~ ¢; ~ d;
holds for any i (0 < i < n). Moreover, [~ (dy) = ¢; and A0|indfe =0(m >0
1mp1y l+(C1) =dy. Thus a, = l+(bn_1) ~ l+(C1) = d, holds.

(i1) By the dual of 6.1(1), (c;)o<i<n 1s an essential ladder and each ¢; is an
epimorphism. By (i), we only have to show A, # 0. Take a minimal i (0 < i < n)
such that A; = 0. Then B; = 0 holds since ¢; is an epimorphism. Thus i > 0 holds
since Ag # 0. By B, =t~ A;_; and Ai—1|ind;e = 0 by (1), we obtain A;_; =0, a
contradiction. O

H(l
6.3.2. Proof of 6.3. Take minimal projective resolutions H — Hy - L — Oand

(,0
AT RN N 0, and use notations in 6.3.1. Then b, i co holds by 4.1 and
3.4. Thus 6.3 follows immediately from 6.3.1. a

6.4. The following theorem follows from 6.4.1(1).

THEOREM. Let @ be a t-category satisfying 3> = 0. Assume that X €
ind @ —ind,, C satisfies a(SX) # 0. Then there exists U € ind @ such that (Tr(S%),
HY) is an invertible pair. Hence Tr(SX) has finite length and any composition
factor S of Tr(S¥) satisfies pd S > 2.

6.4.1. LEMMA. Let @ be a t-category, X € indQG, a; := l;r(u}) and U; =

u; ().

(1) If KerH,, € ™ Hy, then there exists n > 0 such that " HY" # 0 and
(ai)o<i<n is an invertible ladder with a, € €(U,,0) and U, € ind C.

(2) Assume that C is strict and $ = 0. Then py, is a monomorphism if and only
if (a;)o<i 1s essential.

Proof. (1) (i) Let ap be a morphism with right ladder and U; := uf(ao). We will

show KerH,, € ¢ Hy if ' H”" = 0 holds for any i.
bj D) ( fi

Put bi = l?_’e(a()), then (Yi,]] ~ (Z, @ Ui M Yi @ Zi,1 E) Yifl) holds
for any i > 1 by 3.2. Assume soayp = 0. Inductively, we Will show that there exists
s;—1 such that s;_1b;,_1 =0and s) = s;_1(gi—1---81) € (‘,”_1 for any i.

) s,-_l)(b_fi 1) =0 implies that there exists (—s; ;) such that (0s;_;) =
(—si ;) (3 5. Hence s;b; = 0 and s;_; = s;g; +;h; hold. Since h; (gi_1 - &1) €
' (U;, X) = 0, we obtain so = s;(g; -+~ g1)-

(ii) We will show the assertion. There exists n > 0 such that " HY» # 0 by (i).

Putco :=0 € €(U,,0) and ¢; :=I; (cp). Then a, >l> co holds. By " HY» # 0 and
the dual of 4.1, the domain of ¢, is nonzero. Hence (¢;)o<i<, 1S an invertible ladder
with @, = ¢y by 6.3.1(2)(1). By 6.2.1, U,, € ind € holds.

(2) The ‘if’ part follows from (1), and the ‘only if” part follows from 6.1(1). O
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7. Recursion Formula and Some Properties of t-categories

7.1. THEOREM. Let @€ be a t-category and ay a morphism with right ladder, a,, :=
IF(a0) € C(Xn, Yy), by :=1(ap) € C(Z,,Y,) and U, := u;} (ay). Assume that
Cok H% is semisimple. Then the following equations hold, where we use notations
in (7) of Section 1:

Yl = (9+Y0 - X0)+, Yn = (9+Yn—l - f+Yn—2)+ (n P 2)7
Xn+1 = T+Yna Zn = 0+Yn - Yn+1’ Un = Xn - Zn (I’l P O)

In particular, we can compute the terms X,,, Y,, Z, and U, from (X, Yy) and
the Auslander—Reiten quiver A(C). Moreover, (a,)o<, is essential if and only if the
following equations hold:

Y, =01y, — X, Y, =0"Y,_  —1tY,_, (n>=2).
Proof. (i) We will show ¢"*'HY» = 0 and (Y,.1, U,) = 0 for any n > 0.

!
Put ¢y := 0 € C(U,, 0) and use notations in 6.3.1. Since a, > ¢y holds, we

obtain a >I> d, by 6.3.1(1). Thus we have an epimorphism Cok H* — Cok H%
by 3.4. Hence Cok H% is semisimple. Since Cok H* = g" HY" holds by the dual of
4.1, we obtain "' HY» = 0. By 4.1, we have a natural epimorphism g"*" Hy, —
gt CokH,, = CokH, , — Sy .Hence g9U,, Y,41) = 0 holds.

(i) Xpp1 =t Y0, Y1+ Z, =07Y, and Z, + U, = X, hold for any n > 0 by
32.Put W, :=0%Y, — X,, € Zind@, then ¥,y = 01Y, — X, + U, = (W,)4 —
(W,)_+U,. Since Y, > 0, we obtain U, > (W,))_. Since (¥,,,1, U,) = 0by (i),
we obtain Y, 1 = (W,),. O

7.2. Let @ be a t-category. For n > 0, define a map 6;": Nind @ — Nind @ by
0y = INidaes0; =01 and 6 X := (676,_ X — 170 ,X), forn > 2.

(1) 6 is a monoid morphism. Thus we can regard 6 as elements of
Endy(Zind @).

(2) Put 7, := 67 06 — 6. Then, for any X € Ob(€) and a9 € €(0, X),
IF¢(ap) € C(t,X,0X) and uf (ap) = 46" X — ¢} X hold. In particu-
lar, a minimal projective resolution of §" Hy is given by H.y = Hyy —

X
4" Hy — O0foranyn > 0.

Proof. (2) Immediate from 7.1.
(1) Take X, Y € Ob(@). Since §"Hygy = " Hy ® " H, holds, we obtain
X DY)~ 06X ®OFY by (2). O

7.3 (Artinian t-categories). Let C be a t-category. Then € is left Artinian ((2) of
Section 1) if and only if, for any X € ind @, there exists n > 0 such that 6, X = 0.
In particular, under the assumption ind ¢ < oo, C is left Artinian if and only if
4" = 0 for some n > 0 if and only if C is Artinian.
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Proof. We have a projective cover H ., — g! H, by 7.2(2). Hence ;" X = 0 is

equivalent to §' Hy = 0. Since §“ Hy, has finite length, the former assertion fol-
lows from the decreasing sequence Hy D $Hy D $*Hy D --- and Nakayama’s
lemma. The latter assertion is immediate. O

7.4 (Strict T-categories). Let C be a t-category with $ = 0.

(1) @ is strict if and only if @ is right strict if and only if the right ladder
(LF))ogn is essential for any X € ind € if and only if T+ o 0", = ©F
holds for any n > 1.

2) If Hxlindl—@ # 0 for any X € ind G, then @ is a strict T-category, and the
converse holds if € is right Artinian.

Proof. (1) By definition, € is right strict if and only if vy is a monomor-
phism for any X € ind @. Hence the second equivalence follows from 6.1(1) and
6.4.1(1). The third equivalence follows from 7.2(2). We will show that right strict-
ness implies left strictness, namely «(S,- ) = 0 holds for any X € Ob(C). Take
¢ € Mod C)(S,- . Hy). Since > = 0, we only have to show thatIm¢ € 7" H,
holds for any n > 0. This is true for n = 1 since S__, = Tr; (S¥) does not have a
non-zero projective direct summand. Moreover, since pd §" H, < 1 holds by 4.1,
we obtain (Mod %) (Tr;($" Hy), S*) = 0. Hence (Mod@)(S,-. #"Hy) =0
holds by 2.3.1(2). Thus ¢ factors through a projective cover H oy 4"H, — 0.
Since any ¢’ € (Mod @)(S
Im¢ C gn—&-l HY'

(2) To show the former assertion, fix X € ind @ and putqy := 0 € (0, X) and
U, := u} (ap). By (1), we only have to show that U, = 0 holds for any n > 0.

—x Hﬁnﬂ’) satisfies Im ¢’ C gHe,jy again, we obtain

!

Put cp := 0 € C(U,,0) and d; := [, “(co) € C(A;, C;). Since a, > ¢) holds, we
I

obtain a,_; >>d; by 6.3.1(1). Since ay € C(0, X), we obtain A; |ind( o = 0 for any

i by 6.1. Since ¢ HY = $* holds by the dual of 4.1, we obtain H";,4- o = 0

by §°° = 0. Thus U,, = 0 holds.
To show the latter assertion, assume that HX|ind1_ ¢ = 0 holds for some X €

ind @. Since C is strict, any composition factor S of HX satisfies a(S) = 0. Since
H* has finite length, we obtain Hy = a(H*) = 0, a contradiction. O

PART II. STRUCTURE THEORY OF 7-CATEGORIES
8. 7-Species and Mesh Categories

In this section, first, we review species and their tensor categories. To make tensor
categories Krull-Schmidt, we have to use direct product instead of direct sum. We
use notations in Section 1(7).

8.1. DEFINITION. @ = (Q, Dx, xMy) is called a species if Q is a set, Dy is a
skew field for any X € Q and xMy is a (Dy, Dy)-bimodule for any X, Y € Q.
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Put d(X,Y) := dimp, xMy and d'(X,Y) := dimp, xMy. A species is called
right finite (respectively, left finite) if ) ,_ 0d(X,Y) < oo (respectively,
ZXEQ d'(Y,X) < oo)forany Y € Q.

8.1.1. Let @ = (Q, Dx, xMy) be a species and X, Y € Q. Put Py(X,Y) := 0if
X #7Y,and Dy if X =Y. Put

P(X.Y):= € xMz &b, ®p,  7,,My forn>0,
VAT Z,—1€0Q

Pn(A,B) = l_[ Mat<A’X>,<B,Y>(P,,(X, Y)) for A, B ENQ and n 20
(X,Y)eOx 0

We have a natural map P,(X,Y) x P,(Y,Z) = Pn(X, Z2),(f,8) — fg:=
f®gforany X, Y, Z € Q. Using matrix multiplication, we have a natural map
P,(A,B) x P,(B,C) = P,1s(A,C) forany A, B, C € NQ.

Diﬁne additive categories f@(@) and P(@Q) by Ob(@(@)) = Ob(P(@Q)) := NQ,
and P(Q)(A, B) = H@o P,(A,B) and P(Q)(A,B) := @@0 P,(A, B)
for A, B € NQ, where the composition is given by (fi)n>0- (8)n>0:=

(X-io fi&n—i)n>o0-

8.2. PROPOSITION. Let @ be a species. Then ﬂﬁ(a) is a Krull-Schmidt cate-
gory called the tensor category of Q. Moreover, if Q is left finite, then P(Q) is
a completely graded category with gf%) = ]_[n% P, foranyi > 0.

Proof. By a similar argument as in the proof of 5.1(1), fP?(@)(X , X) is a local
ring whose maximal ideal is ]_[,121 P,(X, X) for any X € Q. Thus the former
assertion holds. The latter assertion follows from a similar argument as in the proof
of 5.1(3). O

8.3. DEFINITION. For a species @ = (Q, Dx, xMy),weput Dy := Py(A, A) and
AaMp := Pi(A, B) for A, B € NQ. Then 4 Mg becomes a (D4, Dg)-bimodule.

(1) @ = (Q, Dx, xMy, t, a, b) is called a right t-species if (Q, Dx, xMy) is a
right finite species, t7: NQ — NQ is a monoid morphism, ax: Dy — D;+x
is a unital ring morphism for any X € Q, and by y: Homp, (;+xMy, Dy) —
yMy is a (Dy, Dx)-monomorphism for any X, Y € Q where ,+xy My is re-
garded as a left Dy-module through ay.

2) @ = (Q, Dx, xMy,t~,a,b) is called a left t-species if (Q, Dx, xMy) is a
left finite species, t: NQ — NQ is a monoid morphism, ax: Dy — D.-x
is a unital ring morphism for any X € Q, and by y: Homp, (y M.-x, Dy) —
xMy is a (Dyx, Dy)-monomorphism for any X, Y € Q.

(3) For a right t-species @ = (Q, Dx, xMy,t",a,b), put Q7 = {X € Q |
X = 0}. Then @ is called a T-species if it is left finite, T gives an injection
Q0 — 0 — O, and ax and by y are isomorphisms for any X € Q — QO and
Y € Q. In this case, put Q' := Q — t7(Q), then we have a translation quiver
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Q| = (Q, QF, Q, t*,d, d’) called the underlying quiver of @, where d and
d’ are defined by 8.1.

Notice that any t-species @ = (Q, Dx, xMy, t", a, b) can be regarded as a
left T-species (Q, Dy, xMy, t~,a’, b') as follows: Put =X := (r7)~!X for any
XeQ—-Qandt X :=0forany X € Q".Forany X € Q — Q' and Y € Q,
putay := (ar-x)~" and by y: Homp, (yM;-x, Dy) — xMy is induced by b,-x y
naturally. '

8.3.1. Since HOI’I’]DY(HOH]DY(I+XMy, Dy), ny) = r+XMY ®DY ny, we can
regard by y as an element of +xMy ®p, yMx. Put y(X) = ZyeQbX,Y €
P,(t7X, X). Then y(X)f = ax(f)y(X) holds for any f € Dy since by y is
a Dx-morphism.

Let I be the ideal of P(Q) generated by {y(X) | X € Q}. Then we can write
I = @n>0 I, (I, € P,). Put M(Q) := @(@)/i where 1 := ]_[n>0 I, is an ideal
of P(@).

8.4. PROPOSITION. Let @ be a right t-species (respectively, left T-species,
t-species). Then M(Q) is a completely graded right t-category (respectively, left
T-category, T-category) called the mesh category of Q.

84.1.Fix X,Y € Q.Put +xMy = @ ¢icorx) v, Dy as aright Dy-module. Then
we can put yMy = @1<i<d(Y,X) Dyui, as a left Dy-module, where u‘Y € Imbyy
and (by, (u}))(v]) = 8;;1p, hold forany i and j (1 < i,j < e(Y, X)).

Put 67X := ZYEQ d(Y, X)Y € Ob®P(Q)), uy = (u’y)YeQ,lgi_gd(Y,X) €
Pi(#TX, X) and v;(r = (V))veo.i<i<dr.x) € Pi(tX,07X), where v}, =0€
+xMy forany i withe(X,Y) <i <d(X,Y). Thenbyy = Zlgigd(m{) vy ® uly
and y(X) = vy} holdin Py(z+X, X). o

Proof. By definition, by y(f) = Zlgigd(m{) f(vy)uy, € yMx holds for any
f € Homp, (;+x My, Dy). This means by y = Zlgigd(y,X) vy ® uly. O

8.4.2. Put P := P(Q) and M := M(@). Fix X € 0.

1+ V+
(1) 0 —> H. - gH% — 0and H?;X it gLH;:X — 0 are exact.
() Ip=1; = 0and I, .5, X) = Py( T X))y (X) + Lia (, 67 X))y holds for
n>0.Hence I(,X) = (HZ vy +1(,07X)uj.
H , H ,

i
v n HVX
3) HY , — HY, — FH¥ — 0and H) X — FH X — 0 are exact.

s
Proof. (1) P,( ,07X) S P,.1(, X) is a bijection for any n > 0 s‘ince
Pn+1( ) X) = @YGQ Pn( ’ Y)@DyYMX = @y Pn(a Y)@Dy(@]gigd(y,x) DYuly) =

@y, P.(, Y)ul. Thus the former sequence is exact. A similar argument shows the
exactness of the latter sequence.
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@ Io=1 =0and L12(, X) = Yy g 150 Paci(, T7Y)y (V) P(Y, X) hold by
definition. P,( , T X)y(X)Dx = P,(,t"X)y(X) holds by 8.3.1. P,_;(,t"Y)
YR, X) = P (T )Yy (V)P (Y, 07 X))l € Ly (, 67 X)), holds for
any i > 0 by (1).

(3) By (1), we only have to show Ker H‘M Im H‘M If fe KerH , then
f,uX el(,X) = (H"+X v+ 1(, 0+X));LX holds by (2) Hence f € Hﬁx vy +
1(,67X) by (1). Thus f € ImHY. O

X

8.4.3. Proof of 84. M 1is a right t-category by 8.4.2(3). Moreover, ng =
[1,>i Pa/1y holds fori > 0 since g, = [1,>: P.holds fori > 0 by 8.2. Hence M
is completely graded. O

9. Auslander-Reiten Species of 7-Categories

9.1. DEFINITION. Let @ be a right r-category. We will define a right 7-species
;&5\(6) called the Auslander—Reiten species of ©. Then, it is easily shown that
lA(C)] = A(C) holds.

Put @ = (Q, Dx, xMy,t",a,b), where Q := ind@, Dy := $9(X, X),
yMy = g(l)(Y X), and ax and by y are defined by

(1) Forany f € G(X X), takef € G(0+X 67 X) and f” € C(r* X, 7 X) such

that uf f = f'uy and vl f/ = f"vi. Putax(f) == f".
(2) Let by y be the followmg composition, where ()* := Homp,(, Dy) and

the isomorphism iyy : 4O, 07X) - 99@*X,Y)* is defined by
(xy(fN() = fg.

| H Lt
g90+Xx,Y)* —»g“”(y 07 X) - yMy.

(r+xMy)*

9.2. THEOREM. (1) If @ is a right T-category, then G(@) is equivalent to MA(R)).

(2) An additive category € is a completely graded right t-category (respec-
tively, left T-category, T-category) if and only if C is equivalent to M(@) for some
right T-species (respectively, left T-species, T-species) Q.

9.2.1. For any X € ind @, write 67X ~ P, YUKt x (sh)veoa<i<d.x)
and v;? ~ (t;'/)YeQ,lgigd(Y,X)- Then bX,y = Zlgigd(Y,X) t;; ® S;, holds in P(A(@)).

Proof. Take ¢ € (,+xMy)* and put d := d(Y, X). We will compute éx,y(qb)
from the definition 9.1(2). First, ¢ is mapped to ((fi)i<i<a = Zl<,<d bt fi) €
g0+ X, Y)*. Then it is mapped to (¢ (1}))1<i<a € (¥, 67 X). Hence b,y (¢))
=> 1<i<d gb(ty)sy holds. Thus the assertion follows. O
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9.2.2. Proof of 9.2. By 5.1(3), @ is completely graded if and only if € is equivalent
to @(@). By 8.4, we only have to show (1). Let 715((,‘2) = ]—[@0 P, be the tensor
category of @ := A\(@). Then we have natural identifications Py(X, X) = Dy =

(@())(X, X) and P(X,Y) = xMy = (1)(X Y) for any X,Y € ind C. By our
definition 8.1.1, P,(X,Y) — gl("’(x Y) 1s induced for any X,Y € ind@ and
n > 2. Thus we 0 obtaln a dense functor F': IP’((Q) — G(@) By 9.2.1, we obtain

F(y(X)) = F(v )F(MX) = vX[l] Mx[l] = 0. Thus F induces a dense functor
F': M(@) — G(@). Since F’ induces an isomorphism 3’1(\’%(@) =P — g) =

g%(e) fori = 0, 1 by 8.4.2(2), F' is full faithful by 5.3. O

10. The Category of 7-Categories and the Category of 7-Species

10.1. DEFINITION. (1) Denote by 7. (respectively, 7, Ca, Tea) the category of skele-
tal right T-categories (respectively, left T-categories, T- categorles) whose mor—
phism sets consist of equivalences of categorles Denote by 7y, (respectively, T gca,
Teca) the subcategory of 7 (respectively, 7.\, 7c,) consisting of completely graded
categories.

(2) Denote by 7, the category of right r-species, where 7(Q, Q) @ =
(Q, Dy, xMy,t%,a,b),Q = (Q', Dy, xM},t",a’, b)) consists of F = (F, Fy,
Fy x) satisfying the following conditions (i) and (ii).

(i) F: NQ — NQ'is a monoid isomorphism satisfying Ft+ = t*F, Fx: Dx —
Dy (X € Q)is aring isomorphism and Fy x: yMx — pyMpy (X, Y € Q)
is a (Dy, Dy)-isomorphism.

(i1) There exists 0 # dy € D/, retx (X € Q) which makes the following diagrams
commutative, where Gy (f) := dXF,+x(f)d;1 and Gy x(¢)(g) ;= Fyro¢o
FTZIX’Y(d;Ig) for f € D;+x, 8§ € r+pxM}y and ¢ € Hom p, (+xMy, Dy).

b
Dy —*— D.+x Hom p, (;+xMy, Dy) —~— yMy
F G G F
\L X \L X i/ Y. X \L Y. X
a h,FX.FY

Dyy—"=>D¢ipy Homp,, (c+rxMpy, Dpy) FyMpy

For F € T(@, @) and F' € ”’(@’ @Q"), define their composition F F’ nat-
urally. It is Well defined since dy := diyF/, ., (dx) € D}, . gives datum for
FF'if dx and d} give datum for F and F’ respectlvely

(3) Let Jgp be the full subcategory of 7, consisting of r-species. Define the
category 7. of left T-species by the dual of (2). Then Ty, is regarded as a full

subcategory of 75, (cf. 8.3(3)).

10 2. THEOREM Let x = rl or nothmg Then M, A and G deﬁne functors

M: ‘]'S;f — T A — f"* and G- — T such that AoM is isomorphic
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10 s and Mo R is isomorphic to G. In particular, M and A give equivalences

radd (\'*
between Ty, and 7

Proof. G gives a functor G: T by 5.2.

(1) We will show that A deﬁnes a functor

For F € 7.:(C, C), put @ := = A(@) and @' := A(C)). Define F: NQ — NQ/,
Fx and Fy x from F naturally. Since F is an equlvalence, F(X]e = (FX]e holds
for any X € Q. Thus we obtain the following isomorphism of complexes.

(FXle i1 FEX X gt px M, px
I b I
F(X]e Pt X potx M py

Since @ is skeletal, we can regard dx as an element of D’ Frtx DY TTFX =
Ft*X. Immediately, the left diagram in 10.1(2)(ii) is commutative. The following
diagram shows that the right diagram in 10.1(2)(ii) is commutative.

( rJrlX Y’ Fy) (d ! D / /
Hom py i+ xMy. Dy) —— Hom pr (et xMpy Dpy) == Hom py G+ rxMry- Pry)
¢(\’X i ‘L(['v D ¢("FX’1)
-1
, @'
Hom p,, GDetx v),py) X HomD,F GO Fotx, Fy), D)X HomDF @O @FFX, FY), Dlpy)

|

-1
(Ley )
3O, 0t x) _F, 3O (Fy, Fotx) X, 90 (Fy, 6+ Fx)
+ + +
Hx JFrx WHFX
Fy x
yMx —= FYMpy BT FxMpy

(i1) We will show that M defines a functor.
For F € “‘*((Q @"), take dx in 10.1(2)(ii). Clearly, F defines an equivalence

F: ]P’((fz) — ]P’((Q) The diagram in 10.1(2)(ii) implies F(bx y) = dy lb%X FY

Thus F(y (X)) = dX ¥ (F X) holds. Hence we have an equivalence F': M((Q) —
M(@).
(iii) It is easily shown that AoM is 1somorphlc to 1~* By a similar argument

as in the proof of 9.2, M o A is isomorphic to G. Since the restriction of G to 7 Taca 18
isomorphic to Iz , M and A give equivalences between Teca and T O
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