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Abstract
A novel estimator for the parameters governing spatial–temporal point processes 
is proposed. Unlike the maximum likelihood estimator, the proposed estimator is 
fast and easy to compute, and does not require the computation or approximation 
of a computationally expensive integral. This parametric estimator is based on the 
Stoyan–Grabarnik (sum of inverse intensity) statistic and is shown to be consistent, 
under quite general conditions. Simulations are presented demonstrating the perfor-
mance of the estimator.

Keywords  Conditional intensity · Cox process · Hawkes process · Maximum 
likelihood estimation · Poisson process · Space-time point process

1  Introduction

A realization of a spatial–temporal point process is often characterized via its condi-
tional intensity � , the parameters of which are typically fit via maximum likelihood 
estimation (MLE) or Markov chain Monte Carlo (MCMC) methods. Specifically, for 
a realization {(ti, xi, yi)}ni=1 = {�i}

n
i=1

 of the point process N, one typically estimates 
the parameter vector � by computing

Such estimates are, under quite general conditions, consistent, asymptotically nor-
mal, asymptotically unbiased, and efficient, with standard errors readily constructed 

(1)𝜃̂MLE = argmax
𝜃∈Θ

(∑
i

log 𝜆(𝜏i;𝜃) − ∫
T

0 ∫ ∫ 𝜆(𝜏;𝜃)dtdxdy

)
.
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using the diagonal elements of the inverse of the Hessian (Krickeberg, 1982; Ogata, 
1978). Unfortunately, for many point processes, the integral term on the right in 
Eq. (1) is often extremely difficult to compute (Harte, 2010; Ogata, 1998) especially 
when the conditional intensity � is highly volatile, as in this situation the user must 
approximate the integral of a highly variable and often high-dimensional stochastic 
process, which is not at all easy to do.

Approximation methods proposed for certain processes such as Hawkes pro-
cesses suggest a computationally intensive numerical integration method (Ogata 
and Katsura, 1988; Schoenberg, 2013), but in general, the problem of computa-
tion or estimation of the integral term in the log-likelihood can be burdensome 
(Harte, 2010; Reinhart, 2018). Despite computational limitations, maximum like-
lihood remains the most common method for estimating the parameters of point 
process intensities (Reinhart, 2018).

We propose an alternative class of estimators based on the Stoyan–Grabarnik 
summed inverse intensity statistic introduced in Stoyan and Grabarnik (1991). 
The Stoyan–Grabarnik (“SG”) statistic

was introduced as the exponential “mean mark” in the context of the Palm distribu-
tion of marked Gibbs processes (Stoyan and Grabarnik, 1991). As a primary prop-
erty of Eq. (2), it is noted in Stoyan and Grabarnik (1991) that the expectation of the 
sum of the exponential marks corresponding to the points observed in some region 
is equal to the Lebesgue measure �(⋅) of that region. For the purposes of this paper, 
we define the SG statistic corresponding to a parameter vector � and a realization 
{�i}

n
i=1

 of the point process N on spatial–temporal region I  as

The SG statistic has been suggested as a goodness-of-fit model diagnostic for point 
processes (Baddeley et al., 2005) and, more recently, has been proposed for finding 
the optimum bandwidth for kernel smoothing to estimate the intensity of a spatial 
Poisson process (Cronie and Van Lieshout, 2018). Here, we consider a general spa-
tial–temporal point process and suggest dividing the observation region into cells 
and estimating the parameters of the process by minimizing the sum of squared dif-
ferences between the Stoyan–Grabarnik statistic and its expected value. We show 
that the resulting estimator is generally consistent and far easier to compute than the 
MLE.

We begin with notational definitions and basic characterizations of the proper-
ties of point processes in Sect. 2. Section 3 formally introduces the Stoyan–Gra-
barnik statistic and estimator, and in Sect.  4, we prove the consistency of two 
Stoyan–Grabarnik-type estimators. Section 5 provides some discussion and exam-
ples of the analytical properties and extensions of the estimator, and Sect. 6 con-
tains a brief simulation study.

(2)m̄ =
1

𝜆

SI(�) =
∑
i∶�i∈I

1

�(�i;�)
.
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2 � Preliminaries

A point process is a measurable mapping from a filtered probability space 
(Ω,F,P) onto N  , the set of ℤ+-valued random measures (counting measures) on 
a complete separable metric space (CSMS) X  (Daley and Jones, 2003), where ℤ+ 
denotes the set of positive integers. Following convention (e.g., Daley and Jones 
(2003)), we will restrict our attention to point processes that are boundedly finite, 
i.e., processes having only a finite number of points inside any bounded set. For 
a spatial–temporal point process, X  is a portion of ℝ+ ×ℝ

2 or ℝ+ ×ℝ
3 where ℝ+ 

and ℝd represent the set of positive real numbers and d-dimensional Euclidean 
space, respectively. The point process is assumed to be adapted to the filtration 
{Ft}t≥0 containing all information on the process N at all locations and all times 
up to and including time t. In what follows we will assume the spatial domain of 
the point process S is a finite and bounded portion of the plane ℝ2 and denote 
point i of the process as �i = (ti, xi, yi) , though the results here extend in obvious 
ways to the case where the spatial domain is a portion of ℝ3.

A process is F -predictable if it is adapted to the filtration generated by the left 
continuous processes F(−) . Intuitively, F(−) represents the history of a process up 
to, but not including time t. A rigorous definition of F(−) can be found in Daley 
and Vere-Jones (2007). Assuming it exists, the F -conditional intensity � of N is 
an integrable, non-negative, F -predictable process, such that

where �(x,y),� is a ball centered at location (x, y) with radius � , and Ft− represents the 
history of the process N up to but not including time t.

A point process is simple if with probability one, all the points are distinct. 
Since the conditional intensity � uniquely determines the finite-dimensional dis-
tributions of any simple point process (Proposition 7.2.IV of Daley and Jones 
(2003)), one typically models a simple spatial–temporal point process by specify-
ing a model for � . A point process is stationary if the specified model has a struc-
ture which is invariant over shifts in space or time.

An important spatial–temporal point process result sometimes called the mar-
tingale formula states that, for any non-negative predictable process f,

where the expectation is with respect to P.
For a rigorous derivation of the martingale formula using Campbell measures, 

see Proposition 14.2.1 of Daley and Vere-Jones (2007). This result is the moti-
vating impetus for exploring the Stoyan–Grabarnik estimator below. The martin-
gale formula is a generalization of the Campbell formula which accommodates 
a non-negative deterministic function f (Cronie and Van Lieshout, 2018) and the 

�(�) = lim
h,�↓0

�[N
(
[t, t + h) × �(x,y),�

)|Ft−]

h��2
.

𝔼

[∑
i

f (�i)

]
= 𝔼

[
∫
ℝd

f (�)�(�)d�

]
;
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Georgii–Nyugen–Zessin formula which accommodates an analogous equality 
using Papangelou intensities in a purely spatial context (Baddeley et al., 2005).

3 � The Stoyan–Grabarnik estimator

Suppose the spatial–temporal domain X  is partitioned into p cells {Ij}
p

j=1
 . Define the 

estimator

Because � is non-negative and predictable, so is 1∕� , and therefore, by the martin-
gale formula, at the true value of the parameter vector �∗,

where the expectation is with respect to P . Thus, the computationally intensive inte-
gral term necessary to find the MLE is replaced with a term which is computation-
ally trivial to compute, namely the volume of the cell Ij . Therefore, in practice, it is 
convenient to plug in the volume of Ij for �

[
SIj

(�)
]
 and thus define the SG estimator 

as

The SG estimator is closely related to the scaled residual random field described in 
Baddeley et al. (2005). Specifically, for a fixed spatial–temporal kernel density K(⋅) 
with fixed bandwidth b, let

for s any location in space-time. Then if X  is the observation window,

(3)

𝜃̂ = argmin
𝜃∈Θ

p�
j=1

⎛⎜⎜⎝
�

i∶(𝜏i)∈Ij

1

𝜆(𝜏i;𝜃)
− �

⎡⎢⎢⎣
�

i∶(𝜏i)∈Ij

1

𝜆(𝜏i;𝜃)

⎤⎥⎥⎦

⎞⎟⎟⎠

2

= argmin
𝜃∈Θ

p�
j=1

�
SIj

(𝜃) − �

�
SIj

(𝜃)
��2

.

�

⎡⎢⎢⎣
�

i∶(�i)∈Ij

1

�(�i;�
∗)

⎤⎥⎥⎦
= �

�
∫
Ij

�(�;�∗)

�(�;�∗)
d�

�
= �(Ij)

(4)

𝜃 = argmin
𝜃∈Θ

p�
j=1

⎛⎜⎜⎝
�

i∶𝜏i∈Ij

1

𝜆(𝜏i;𝜃)
− �

⎡⎢⎢⎣
�

i∶𝜏i∈Ij

1

𝜆(𝜏i;𝜃
∗)

⎤⎥⎥⎦

⎞⎟⎟⎠

2

= argmin
𝜃∈Θ

p�
j=1

�
SIj

(𝜃) − �[SIj
(𝜃∗)]

�2

= argmin
𝜃∈Θ

p�
j=1

�
SIj

(𝜃) − �Ij�
�2

.

Q(s) =

n∑
i=1

K(s − �i)

�(�i;�)
− 1,
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where the approximation in (6) stems from the fact that the integral over X  of the 
kernel density will be close to unity provided the bandwidth is sufficiently small 
in relation to the size of the observation window X  . Ignoring such edge effects, the 
SG estimator minimizes the sum of squares of the integral of this residual field over 
cells in the partition, but one may alternatively find parameters � minimizing some 
other criterion, such as for example the integral of Q2(s) over X  , or over cells of the 
partition. Given unbiased edge correction, (5) is exactly equal to zero.

4 � Results

This section establishes the consistency of 𝜃̂ and 𝜃 , for a simple and stationary spa-
tial–temporal point process N with conditional intensity �(�;�) , where � = {t, x, y} is 
a location in space-time, and � depends on the parameter vector � which is an ele-
ment of some parameter space Θ . Let �∗ denote the true parameter vector, and sup-
pose N is observed on the spatial–temporal domain X = [0, T) × S , where S repre-
sents the spatial domain equipped with Borel measure � , and X  is some CSMS. The 
following assumptions regarding N, Θ and S are useful in establishing consistency 
of the estimators.

4.1 � Assumptions

Assumption A1  The spatial observation region S allows a partitioning scheme

such that 𝜇(Sj) > 0 ∀j ∈ {1,… , p} , for some fixed finite number p. We further 
assume that p is large enough that for any �1 and �2 , if �1 ≠ �2 , then

or equivalently

(5)�

[
∫
X

Q(s)d�

]
= �

[
∫
X

n∑
i=1

K(s − �i)

�(�i;�)
d�(s)

]
− |X|

(6)

= �

[
n∑
i=1

1

�(�i;�) ∫X

K(s − �i)d�(s)

]
− |X|

≈ �

[
n∑
i=1

1

�(�i;�)

]
− |X|

= |X| − |X| = 0,

S =

p⋃
j=1

Sj

(7)�[SIj
(�1)] ≠ �[SIj

(�2)]
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∀j ∈ {1,… , p} , where Ij = Sj × [0, T).

Note on Assumption A1: The assumption that p is sufficiently large that condi-
tion (7) or equivalently (8) holds is needed for the identifiability of 𝜃̂ and 𝜃 . The 
minimal value of p to satisfy this condition appears to depend on the underlying 
structure of the conditional intensity � . In practice, a large value of p can be 
selected to ensure that condition (7) is met, although the computational expense 
of the estimator increases as p increases, and more importantly, the efficiency of 
the estimator appears to decrease as p grows (see Fig. 5). For finite datasets, p 
must not be chosen to be too small so as to ensure that N(Ij) > 0 ∀j . Note also 
that the cells Sj need not necessarily be connected, closed, or otherwise regular.

Assumption A2  Θ is a complete separable metric space and 𝜃∗ ⊂ Θ . Further, Θ 
admits a finite partition of compact subsets {Θ1

T
,… ,Θ

q

T
} such that �(�;�) is a con-

tinuous function of � within Θj

T
 ∀j ∈ {1,… , q}.

Note on Assumption A2: A2 ensures that 𝜃, ̂𝜃 ∈ Θ , i.e., that our estimator for 
�∗ exists within the parameter space.

Assumption A3  Given an open neighborhood U(�∗) around �∗ , �(�;�∗) − �(�;�) is 
uniformly bounded away from zero for � ∉ U(�∗).

Note on Assumption A3: A3 ensures that �∗ is identifiable. In particular, this 
assumption excludes the case where � does not depend on �.

Assumption A4  � is finite and bounded away from zero across all cells Ij , i.e., 
∃𝜁 > 0 such that

for j in 1, 2,… , p.

Note on Assumption A4: This assumption is needed for uniform integrability 
and precludes cases such as �(�;�) = exp(−�t) where only finitely many points 
occur as T → ∞ , and therefore, � is not consistently estimable via the SG esti-
mator (or via MLE, for that matter). Similarly, because we restrict to stationary 
point processes, we similarly ensure that there are never finitely many points 
that occur as T → ∞ which a parameter to be estimated is dependent on.

(8)�

[
�
Ij

�(�∗)

�(�1)
d�

]
≠ �

[
�
Ij

�(�∗)

�(�2)
d�

]

𝜁 < ∫
Ij

𝜆(𝜃)d𝜇 < ∞
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4.2 � Results

Theorem 1  Under Assumptions A1–A4, the estimate 𝜃̂ defined in (3) is a consistent 
estimator of �∗.

Proof  For any 𝜖 > 0 and any neighborhood U(�∗) around �∗ , for all sufficiently large 
T,

We begin with demonstrating that

for � ∈ Θ as T → ∞ . For a partition of X  with index j, let

Cj(�, T) is a F -martingale since 1∕� is F−predictable. By Jensen’s inequality, 
Cj(�, T)

2 is a F−sub-martingale as g(x) = x2 is a convex function. Letting

M is a F−sub-martingale. It follows from martingale convergence, and the fact that 
� is absolutely continuous as a function of � from Assumptions A2 and A4, that 
M(�, T) → �[M(�, T)] uniformly.

We next demonstrate that

concluding this result in lines (18) and (19). Note that for a given cell j in the 
partition,

for all � ∈ Θ . One can find the second moment, as follows:

If � = �∗ , then

ℙ(𝜃̂T ∉ U(𝜃∗)) < 𝜖.

M(�, T) =

p�
j=1

⎛⎜⎜⎝
�

i∶�i∈Ij

1

�(�i;�)
− �

⎡⎢⎢⎣
�

i∶�i∈Ij

1

�(�i;�)

⎤⎥⎥⎦

⎞⎟⎟⎠

2

→

a.s. E[M(�, T)]

Cj(�, T) =
�

i∶�i∈Ij

1

�(�i;�)
− �

⎡⎢⎢⎣
�

i∶�i∈Ij

1

�(�i;�)

⎤⎥⎥⎦
.

M(�, T) =

p∑
j=1

Cj(�, T)
2,

(9)�∗ = argmin
�∈Θ

�[M(�, T)],

�[Cj(�, T)] = �

⎡⎢⎢⎣
�

i∶�i∈Ij

1

�(�i;�)
− �

⎡⎢⎢⎣
�

i∶�i∈Ij

1

�(�i;�)

⎤⎥⎥⎦

⎤⎥⎥⎦
= 0

�[Cj(�, T)
2] = var(Cj(�, T)) + �[Cj(�, T)]

2 = var(Cj(�, T)).
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by applying the Martingale formula to both the first and last terms in (10). The mid-
dle cross-term can be evaluated as follows:

(10)

var(Cj(�, T)) = var

⎛
⎜⎜⎝
�

i∶�i∈Ij

1

�(�i;�
∗)

− �

⎡
⎢⎢⎣
�

i∶�i∈Ij

1

�(�i;�
∗)

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= var

⎛
⎜⎜⎝
�

i∶�i∈Ij

1

�(�i;�
∗)

− �Ij�
⎞
⎟⎟⎠

= var

⎛
⎜⎜⎝
�

i∶�i∈Ij

1

�(�i;�
∗)

⎞
⎟⎟⎠

= �

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎝
�

i∶�i∈Ij

1

�(�i;�
∗)

⎞
⎟⎟⎠

2⎤
⎥⎥⎥⎦
−

⎡
⎢⎢⎣
�

�
i∶�i∈Ij

1

�(�i;�
∗)

⎤
⎥⎥⎦

2

= �

⎡⎢⎢⎣
�

i∶�i∈Ij

�
1

�(�i;�
∗)

�2

+
�

i∶�i∈Ij

�
k∶�k∈Ij,k≠i

1

�(�i;�
∗)�(�k;�

∗)

⎤⎥⎥⎦

−

⎡⎢⎢⎣
�

�
i∶�i∈Ij

1

�(�;�∗)

⎤⎥⎥⎦

2

(11)

= �

�
�
Ij

1

�(�∗)
d�

�
+ �

⎡
⎢⎢⎣
�

i∶�i∈Ij

�
k∶�k∈Ij,k≠i

1

�(�i;�
∗)�(�k;�

∗)

⎤⎥⎥⎦

−

�
��

Ij

d�

�2

,

(12)

�

⎡⎢⎢⎣
�

i∶𝜏i∈Ij

�
k∶𝜏k∈Ij,k≠i

1

𝜆(𝜏i;𝜃
∗)𝜆(𝜏k;𝜃

∗)

⎤
⎥⎥⎦

= �

⎡⎢⎢⎢⎢⎢⎢⎣

�
Ij

�
Ij∶t<u

1

𝜆(𝜃∗, t)𝜆(𝜃∗, u)
dN(t)

���������������������������������������

Predictable w.r.t. filtrationFt<u

dN(u)

⎤⎥⎥⎥⎥⎥⎥⎦
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Therefore, combining (11) and (14),

Solving for the second moment of Cj(�, T) when � ≠ �∗ , one similarly obtains

(13)

= �

[
∫
Ij
∫
Ij∶t<u

𝜆(𝜃∗, u)

𝜆(𝜃∗, t)𝜆(𝜃∗, u)
dN(t)d𝜇(u)

]

= ∫
Ij

�

[
∫
Ij∶t<u

1

𝜆(𝜃∗, t)
dN(t)

]
d𝜇(u)

= ∫
Ij

�
[
𝜇(Sj) ⋅ u

]
d𝜇(u)

(14)

= �(Sj)�

[
∫
Ij

ud�(u)

]

= �(Sj)
2 T

2

2

=
|Ij|2
2

.

�[C2
j
(�, T)|� = �∗] =�

[
∫
Ij

1

�(�∗)
d�

]
−

|Ij|2
2

.
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again applying the Martingale formula to the first and third terms in (15). Equation 
(17) is obtained from (16) using the same logic as in lines 12-13.

Consider the division of X  into two regions: the spatial–temporal locations where

(15)

�[Cj(�, T)
2�� ≠ �∗] = var

⎛
⎜⎜⎝
�

i∶�i∈Ij

1

�(�i;�)
− �

⎡
⎢⎢⎣
�

i∶�i∈Ij

1

�(�i;�)

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= var

⎛
⎜⎜⎝
�

i∶�i∈Ij

1

�(�i;�)

⎞
⎟⎟⎠

= �

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎝
�

i∶�i∈Ij

1

�(�i;�)

⎞
⎟⎟⎠

2⎤
⎥⎥⎥⎦
−

⎡
⎢⎢⎣
�

�
i∶�i∈Ij

1

�(�i;�)

⎤
⎥⎥⎦

2

= �

⎡
⎢⎢⎣
�

i∶�i∈Ij

�
1

�(�i;�)

�2⎤
⎥⎥⎦

+ �

⎡⎢⎢⎣
�

i∶�i∈Ij

�
k∶�k∈Ij,k≠i

1

�(�i;�)�(�k;�)

⎤⎥⎥⎦

− �

⎡⎢⎢⎣
�

i∶�i∈Ij

1

�(�;�)

⎤⎥⎥⎦

2

(16)

= �

�
�
Ij

�(�∗)

�(�)2
d�

�
+ �

⎡
⎢⎢⎣
�

i∶�i∈Ij

�
k∶�k∈Ij,k≠i

1

�(�i;�)�(�k;�)

⎤⎥⎥⎦

− �

�
�
Ij

�(�∗)

�(�)
d�

�2

(17)

= �

[
�
Ij

𝜆(𝜃∗)

𝜆(𝜃)2
d𝜇

]

+ �

[
�
Ij

𝜆(𝜃∗, u)

𝜆(𝜃, u) �
Ij∶t<u

𝜆(𝜃∗, t)

𝜆(𝜃, t)
d𝜇(t)d𝜇(u)

]

− �

[
�
Ij

𝜆(𝜃∗)

𝜆(𝜃)
d𝜇

]2

≡ g(𝜃, 𝜃∗, Ij),
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and

for 𝛿1 + 𝛿2 < 1. That is, we can express g(�, �∗, Ij) as the sum of three integrals:

where

We proceed by evaluating cases C1 and C2 separately for notational simplicity. In 
Case C1, we show that �[Cj(𝜃, T)

2|𝜃 = 𝜃∗] < �[Cj(𝜃, T)
2|𝜃 ≠ 𝜃∗] as follows:

Therefore, �[Cj(𝜃, T)
2|𝜃 = 𝜃∗] < �[Cj(𝜃, T)

2|𝜃 ≠ 𝜃∗] , since given the assumptions 
of Case C1,

1 <
𝜆(𝜃∗, 𝜏)

𝜆(𝜃, 𝜏)
Case C1

0 < 𝛿1 <
𝜆(𝜃∗, 𝜏)

𝜆(𝜃, 𝜏)
≤ 1 − 𝛿2 Case C2

g(�, �∗, Ij) =

3∑
h=1

g(�, �∗, Ij ∩Ah)

=

2∑
h=1

g(�, �∗, Ij ∩Ah)

A1 ={X ∩ {𝜆(𝜃, 𝜏) < 𝜆(𝜃∗, 𝜏)}}

A2 ={X ∩ {𝜆(𝜃, 𝜏) > 𝜆(𝜃∗, 𝜏)}}

A3 ={X ∩ {𝜆(𝜃, 𝜏) = 𝜆(𝜃∗, 𝜏)}} = �.

(18)

�[Cj(𝜃, T)
2|𝜃 ≠ 𝜃∗] = �

[
�
Ij

𝜆(𝜃∗)

𝜆(𝜃)
⋅

1

𝜆(𝜃)
d𝜇

]

+ �

[
�
Ij

𝜆(𝜃∗, u)

𝜆(𝜃, u) �
Ij∶t<u

𝜆(𝜃∗, t)

𝜆(𝜃, t)
d𝜇(t)d𝜇(u)

]

− �

[
�
Ij

𝜆(𝜃∗)

𝜆(𝜃)
d𝜇

]2

> �

[
�
Ij

1

𝜆(𝜃)
d𝜇

]
+ �

[
�
Ij

1 ⋅ �
Ij∶t<u

1 ⋅ d𝜇(t)d𝜇(u)

]

− �

[
�
Ij

𝜆(𝜃∗)

𝜆(𝜃)
d𝜇

]2

= �

[
�
Ij

1

𝜆(𝜃)
d𝜇

]
+

|Ij|2
2

− �

[
�
Ij

𝜆(𝜃∗)

𝜆(𝜃)
d𝜇

]2

.
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Equivalently,

and by the assumption of Case C1,

Assumption A3 guarantees that ∃𝛿0 > 0 such that 𝜆(𝜃∗) − 𝜆(𝜃) > 𝛿0 and therefore 
this condition is satisfied given Assumption A4.

In Case C2, as T → ∞

and therefore �[Cj(𝜃, T)
2|𝜃 = 𝜃∗] < �[Cj(𝜃, T)

2|𝜃 ≠ 𝜃∗] , since

Note that ∀�1 ∈ (0, 1) , ∃�2 ∈
�
2−1

�
1 −

√
2

�
�2
1
+ 1

�
, 1

�
 , so the LHS of relation 

(20) is positive. The RHS is nonzero by the assumption of Case C2 and the fact that 
∫ �(�)d� is nonzero as given by Assumption A4. As M(�, T) is the sum of Cj(�, T)

2 
for each partition j ∈ {1,… , p} , we can therefore conclude that for any 𝜃̌ ∉ U(𝜃∗) , 
∃𝛿 > 0 such that

Finally, by Assumption A2, and given that M(𝜃̂, T) → �[M(𝜃∗, T)] uniformly, 
and inf𝜃∈Θ

{
�[M(𝜃̌, T) −M(𝜃∗, T)]

}
> 𝛿 as proven above, we conclude that for 

�

[
∫
Ij

1

𝜆(𝜃)
d𝜇

]
+

|Ij|2
2

− �

[
∫
Ij

𝜆(𝜃∗)

𝜆(𝜃)
d𝜇

]2

> �

[
∫
Ij

1

𝜆(𝜃∗)
d𝜇

]
+

|Ij|2
2

−

(
∫
Ij

d𝜇

)2

.

�

[
∫
Ij

𝜆(𝜃∗) − 𝜆(𝜃)

𝜆(𝜃∗)𝜆(𝜃)
d𝜇

]
>�

[
∫
Ij

𝜆(𝜃∗)

𝜆(𝜃)
d𝜇

]2

− �

[
∫
Ij

𝜆(𝜃∗)

𝜆(𝜃∗)
d𝜇

]2

,

�

[
∫
Ij

𝜆(𝜃∗)

𝜆(𝜃)
d𝜇

]2

− �

[
∫
Ij

𝜆(𝜃∗)

𝜆(𝜃∗)
d𝜇

]2

> 0.

(19)

�[Cj(𝜃, T)
2|𝜃 ≠ 𝜃∗] > �

[
�
Ij

𝛿1

𝜆(𝜃)
d𝜇

]
+

(
𝛿1 ⋅ |Ij|

)2
2

− �

[
�
Ij

(1 − 𝛿2)d𝜇

]2

(20)

�

[
∫
Ij

𝛿1

𝜆(𝜃)
d𝜇

]
+

(
𝛿1 ⋅ |Ij|

)2
2

− 2(1 − 𝛿2)
2
|Ij|2
2

> �

[
∫
Ij

1

𝜆(𝜃∗)
d𝜇

]
−

|Ij|2
2

|Ij|2
(
𝛿2
1
+ 2𝛿2 − 1

2

)
> �

[
∫
Ij

𝜆(𝜃) − 𝛿1 ⋅ 𝜆(𝜃
∗)

𝜆(𝜃∗)𝜆(𝜃)
d𝜇

]
.

inf
𝜃∈Θ

{
�[M(𝜃̌, T) −M(𝜃∗, T)]

}
> 𝛿.
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sufficiently large T (or equivalently, sufficiently large space-time volume |X| ) and 
∀𝛼, 𝜖 > 0,

	�  ◻

Theorem 2  The estimator

is a consistent estimator for �∗ . This estimator will be henceforth referred to as the 
SG estimator.

Proof  This results can be proven using the same method as in the proof of Theo-
rem 1. A brief sketch of the proof is given below. When � = �∗,

Define

and note that although M̃(𝜃, T) is not generally a sub-martingale, M̃(𝜃∗, T) is. It fol-
lows as in the proof of Theorem  1 that M̃(𝜃∗, T)

a.s.
→ �[M̃(𝜃∗, T)] , and by absolute 

continuity of � with respect to � , this convergence is uniform. Similarly,

because

ℙ(𝜃̂ ∉ U(𝜃∗)) = ℙ

(
M(𝜃̂, T) ≤ inf

𝜃∈U(𝜃∗)
{M(𝜃∗, T)}

)

< ℙ
(
M(𝜃̂, T) ≤ M(𝜃∗, T) − 𝛼

)

= ℙ
(
M(𝜃∗, T) −M(𝜃̂, T) ≥ 𝛼

)

≤ ℙ

(
M(𝜃∗, T) − 𝔼[M(𝜃∗, T)] ≥ 𝛼

3

)

+ ℙ

(
M(𝜃̂, T) − 𝔼[M(𝜃̂, T)] ≥ 𝛼

3

)

+ ℙ

(
𝔼[M(𝜃∗, T) −M(𝜃̂, T)] ≥ 𝛼

3

)

=
𝜖

2
+

𝜖

2
+ 0.

𝜃 = argmin
𝜃∈Θ

p�
j=1

⎛⎜⎜⎝
�

i∶𝜏i∈Ij

1

𝜆(𝜏i;𝜃)
− �Ij�

⎞⎟⎟⎠

2

�

⎡⎢⎢⎣
�

i∶�i∈Ij

1

�(�i;�)

⎤⎥⎥⎦
= �Ij�.

M̃(𝜃, T) =

p�
j=1

⎛⎜⎜⎝
�

i∶𝜏i∈Ij

1

𝜆(𝜏i;𝜃)
− �Ij�

⎞⎟⎟⎠

2

,

argmin
𝜃∈Θ

�[M(𝜃, T)] = argmin
𝜃∈Θ

�[M̃(𝜃, T)] = 𝜃∗
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where C̃j is defined analogously to Cj in Theorem 1, and

Relation (21) follows directly from the fact that

From this one concludes exactly as in Theorem 1 that for any 𝜖 > 0 , for sufficiently 
large T, ℙ(𝜃 ∉ U(𝜃∗)) < 𝜖 . 	� ◻

4.3 � Discussion

In practice, a partitioning scheme and a set value of p must be decided upon before 
computing 𝜃 for realization N given a specified model � . Analogous partitioning 
problems in the context of quadrature schemes needed for numerical approximation 
of likelihoods have been discussed, see Berman and Turner (1992); Baddeley and 
Turner (2005). A general solution or methodology for constructing a partitioning 
scheme which yields maximally accurate SG estimates is a difficult problem and 
future work.

Asymptotically, a very general class of partitioning schemes is sufficient to pro-
duce consistent SG-type estimates of the parameters of conditional intensity func-
tions. As previously noted, cells are not assumed to be connected, closed, regular, or 
disjoint. The primary consideration for choosing a partitioning scheme in an asymp-
totic context is finding p large enough such that Assumption A1 is met and identifi-
ability is ensured.

We therefore suggest that practitioners choose a simple partitioning scheme (e.g., 
a grid or Voronoï tessellation based on some subset of points in N) and some p > 2c 
where c is the cardinality of � . For relatively larger realizations of a process, p > c2 
may be an appropriate choice. This suggestion is only informed by trial and error via 
simulation of Hawkes, Cox and Poisson processes across various p for a given parti-
tioning scheme. In the case of Poisson processes, it appears that for a Poisson intensity 
expressed as a polynomial, p = c + 1 and any grid partitioning scheme is sufficient to 

�[C̃j(𝜃, T)
2|𝜃 = 𝜃∗] = var(C̃j(𝜃, T)

2|𝜃 = 𝜃∗)

(21)

�[C̃j(𝜃, T)
2|𝜃 ≠ 𝜃∗] =�

[
�
Ij

𝜆(𝜃∗)

𝜆(𝜃)2
d𝜇

]

+ �

[
�
Ij

𝜆(𝜃∗, u)

𝜆(𝜃, u) �
Ij∶t<u

𝜆(𝜃∗, t)

𝜆(𝜃, t)
d𝜇(t)d𝜇(u)

]

− 2|Ij|�
[
�
Ij

𝜆(𝜃∗)

𝜆(𝜃)
d𝜇

]
+ |Ij|2

≥ �[Cj(𝜃, T)
2|𝜃 ≠ 𝜃∗].

|Ij|2 ≥ 2|Ij|�
[
�
Ij

�(�∗)

�(�)
d�

]
− �

[
�
Ij

�(�∗)

�(�)
d�

]2

.
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produce consistent SG estimates, where c is the number of polynomial coefficients to 
be estimated. We note that in general, computational expense increases as p increases. 
Further, there appears to be a bias-variance trade-off wherein larger p results in less 
bias but more variance, see Fig.  5. Resultant bias and variance as a function of the 
number of parameters estimated, number of points realized, and selected p is the sub-
ject of future work.

5 � Examples: Estimation of Poisson processes

5.1 � Homogeneous Poisson process

Suppose N is a homogeneous Poisson process, i.e., � = � for some � ∈ ℝ
+ . In this sim-

ple case, an analytical solution for the SG estimator � can be derived.

and setting the derivative to zero:

Thus, 𝜃 satisfies

Equation (22) has an interesting geometric interpretation. For the positive integer 
vector N = N(I1),… ,N(Ip) and the positive real vector I = |I1|,… , |Ip|, we can 
express 𝜆(𝜃) as

𝜃 = arg min
𝜃∈ℝ+

p�
j=1

⎛⎜⎜⎝
�

i∶𝜏i∈Ij

1

𝜃
− �Ij�

⎞⎟⎟⎠

2

= arg min
𝜃∈ℝ∞

p�
j=1

�
N(Ij)

𝜃
− �Ij�

�2

0
!
=

�

��

(
p∑
j=1

(
N(Ij)

�
− |Ij|

)2
)

= −2

p∑
j=1

(
N(Ij)

�
− |Ij|

)(
N(Ij)

�2

)

=

p∑
j=1

(
N(Ij)

2

�3
−

N(Ij) ⋅ |Ij|
�2

)
.

(22)

∑p

j=1
N(Ij)

2

𝜃3
=

∑p

j=1
N(Ij) ⋅ �Ij�
𝜃2

1

𝜃

p�
j=1

N(Ij)
2 =

p�
j=1

N(Ij) ⋅ �Ij�

𝜃 =

∑p

j=1
N(Ij)

2

∑p

j=1
N(Ij) ⋅ �Ij�

.
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Note that cos(�) , the angle between N and I , is constrained to 0 ≤ cos(�) ≤ 1 due to 
the signs of N and I.

Equation (23) provides insight into the nature of the partitioning scheme cho-
sen. As N and I become closer to orthogonal, cos(�) approaches 0, forcing 𝜆(𝜃) to 
become arbitrarily large. Alternatively, if N and I are parallel, cos(�) = 1 and in this 
case

Equation (24) achieves the minimum value that 𝜆(𝜃) can attain over � ∈ [0, 1] and 
is possible if there exists � ∈ ℝ such that N(Ij) = � ⋅ |Ij| for all j ∈ {1,… , p} . It 
immediately follows that a partitioning scheme P minimizes Eq. (24) if it is chosen 
such that N(Ij) ∝ |Ij| for all j. This suggests that in the homogeneous Poisson case, 
ideally the partition will have roughly equal numbers of points per unit area in each 
cell.

Note a special case of Eq. (24). If p = 1 , then

In this special case, the SG estimator is equivalent to the MLE and therefore inher-
its the desirable properties of the MLE such as consistency, asymptotic normal-
ity, asymptotic unbiasedness and efficiency (Ogata, 1978). For instance, if N has 
100 points in an observed spatial–temporal region X  such that �(X) = 20 , then 
𝜃̂ = 100∕20 = 5 , as expected.

5.1.1 � Inhomogeneous Poisson with step function intensity

We now assume that N has conditional intensity

for �j ∈ ℝ
+ and � = {�1,… , �p} . Thus, N is homogeneous Poisson within each cell, 

but with an intensity varying from cell to cell.

(23)

∑p

j=1
N(Ij)

2

∑p

j=1
N(Ij) ⋅ �Ij�

=
��N��2

2

N ⋅ I

=
��N��2

2

��N��2��I��2 cos(�)
=

��N��2
��I��2 cos(�) .

(24)𝜆(𝜃) =
��N��2
��I��2 =

����
∑p

j=1
N(Ij)

2

∑p

j=1
�Ij�2

.

∑p

j=1
N(Ij)

2

∑p

j=1
N(Ij) ⋅ �Ij�

=
N(X)

�X� = 𝜃̂MLE.

�(�;�) =

p∑
j=1

�j1{� ∈ Ij}
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The properties of similar processes have been discussed in the context of Poisson 
Voronoi Tessellations (PVTs) (Błaszczyszyn and Schott, 2003, 2005). Total vari-
ation error bounds for approximation of an inhomogeneous Poisson process via a 
mixture of locally homogeneous Poisson processes are provided in Błaszczyszyn 
and Schott (2003), where the error is due to the “spill-over” or overlap of optimal 
cell partitioning. Further, the existence of an approximation for such a decomposi-
tion is described using a modulated PVT ((Błaszczyszyn and Schott, 2003), Proposi-
tion 4.1).

In this case, the SG estimator must satisfy

𝛾̃ in this case is a vector of the p estimates 𝛾j . Each 𝛾j is itself a SG estimator cor-
responding to a disjoint homogeneous Poisson process on the observation region 
Ij . Following the same reasoning as in the homogeneous Poisson case, the result-
ing estimator reduces to when the partitioning scheme is such that Ij is the only 
cell, i.e., the observation region is equal to a single cell and p = 1 . We can therefore 
express the solution for the estimated coefficient within a single cell as

and again is equivalent to the MLE and therefore in this case the SG estimator, like 
the MLE, is consistent, asymptotically normal, asymptotic unbiased and efficient 
(Ogata, 1978). As each estimator 𝛾j is consistent, we can conclude that the sum 𝛾̃ is 
also consistent by Slutsky’s Theorem.

6 � Simulation study

As a proof of concept, we demonstrate that the SG estimates tend to be reasonably 
accurate and become increasingly accurate as T gets large for a variety of simple 
point processes. Figure 1 shows a simulated Cox process directed by intensity

on [0, 1] × [0, 1] × [0, 1] , where � = {�, �, � , �, �} and W(x, y) is a two-dimensional 
Brownian sheet. The estimated intensity using the SG estimator of � closely resem-
bles the true intensity even though T is only 1.

Figure 2 shows a simulated Hawkes process on the unit square and in time inter-
val [0, 1000] with conditional intensity

𝛾̃ = arg min
𝛾∈ℝ

p

+

p�
j=1

⎛⎜⎜⎝
�

i∶𝜏i∈Ij

�
p�
j=1

𝛾j1{𝜏i ∈ Ip}

�−1

− �Ij�
⎞⎟⎟⎠

2

.

𝛾̃j =
N(Ij)

|Ij|

�(t, x, y) = e�x + �ey + �xy + �x2 + �y2 +W(x, y)

𝜆(t, x, y) = 𝜇 + 𝜅
∑
i∶ti<t

g(t − ti)h(x − xi, y − yi),
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where g(t) = 1∕� on [0, �] , h(x, y) = 1∕(�r2) for r ∈ [0, �] . Here, the parameters to 
be estimated are � = {�, �, �, �} and the true values are {1, 0.5, 100, 0.1} . As with 
the Cox process, the conditional intensity estimated using the SG estimator is a 
close approximation of the true conditional intensity for the Hawkes process.

Figure 3 shows a comparison of the root-mean-square error (RMSE) and R com-
putation time for MLE and SG estimates of the process simulated in Fig. 2 observed 
on [0, 1] × [0, 1] × [0, T] for various values of T. For this comparison, the integral 
approximation technique detailed in Schoenberg (2013) is used for MLE and p = 42 
is chosen for the SG estimator.

Figures 4 and 5 show the behavior of SG estimates as T increases for an inho-
mogenous Poisson process on [0, T] × [0, 1] × [0, 1] . We simulated six partitioning 
schemes ranging from p = 12 to p = 322 , and various values of increasingly large T. 
We chose intensity

where the vector of parameters to be estimated is

�(t, x, y) = �x2 + �y2 + �x + �y + �,

� = {�, �, � , �, �} = {1∕3, 2∕3, 1∕2, 1∕4, 1∕5}.
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Fig. 1   Clockwise from top left: a simulated Cox process with intensity dependent on a two-dimen-
sional Brownian sheet. b The true intensity �(t, x, y) = e�x + �ey + �xy + �x2 + �y2 +W(x, y) on 
[0, 1] × [0, 1] × [0, 1] , where W(x, y) is a two-dimensional Brownian sheet with zero drift and standard 
deviation � = 50 . The true parameter vector � = {�, �, � , �, �} = {−2, 3, 4, 5,−6} . c The estimated inten-
sity using the SG estimator of �
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The conditional intensity specified has t constant to avoid an explosive process or 
a process where too few points are observed as T gets larger. The estimates of � are 
seen to converge to � as T → ∞.

7 � Conclusion and future work

The SG estimator is very simple and efficient computationally and, like the MLE, 
is a consistent estimator for a wide class of point process models. We recommend 
its use as a complement to the MLE, in the many cases where the integral term in 
the log-likelihood is computationally burdensome to estimate accurately. This may 
be especially true for the rapidly emerging cases of big data where the observed 
number of points is very large and/or the spatial observation region is very large or 
complex. In situations where MLE is preferred but is sensitive to the choice of start-
ing values in the optimization, a practical option may be to use the SG estimator as 
a starting value.
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Fig. 2   Conditional intensity of a simulated Hawkes process with 
𝜆(t, x, y) = 𝜇 + 𝜅

∑
i∶ti<t

g(t − ti)h(x − xi, y − yi) where g(t) = 1∕� on [0, �] and h(x, y) = 1∕(�r2) for 

r ∈ [0, �] on [0, 1] × [0, 1] × [0,T] . � = {�, �, �, �} = {1, 0.5, 100, 0.1} . Clockwise from top left: a true 
conditional intensity at time T = 100 . b Conditional intensity estimated via SG, at time T = 100 . c True 
conditional intensity at time T = 1000 . d Conditional intensity estimated via SG, at time T = 1000
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Future research should focus on how best to choose the nature and number 
of cells in the partition when implementing SG estimation. For example, in 
some cases, efficiency gains might be achieved via data-dependent partition-
ing schemes, such as Voronoi tessellations. Our preliminary investigations sug-
gest, however, that any reasonable choice of partition will do, provided p is large 

Fig. 3   Comparison of estimate accuracy and computational (time) expense for MLE and SG estimators. 
Conditional intensity of a simulated Hawkes process with 𝜆(t, x, y) = 𝜇 + 𝜅

∑
i∶ti<t

g(t − ti)h(x − xi, y − yi) 

where g(t) = 1∕� on [0, �] and h(x, y) = 1∕(�r2) for r ∈ [0, �] observed on [0, 1] × [0, 1] × [0,T] . 
� = {�, �, �, �} = {1, 0.5, 100, 0.1} . Left: root-mean-square error (RMSE) of parameter estimates for 
MLE and SG estimates across various T. Right: computational runtime in seconds for computing MLE 
and SG estimates
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Fig. 4   Intensity �(t, x, y) = x2∕3 + (2y2)∕3 + x∕2 + y∕4 + 1∕5 estimated using p = 322 partitions. Param-
eter estimates become increasingly accurate as T → ∞ . Horizontal dotted lines indicate true parameter 
values

Fig. 5   Estimates of a single parameter for a Poisson process with intensity 
�(t, x, y) = x2∕3 + (2y2)∕3 + x∕2 + y∕4 + 1∕5. Note that if p = 1 or p = 4 , estimates are not accurate as 
Assumption A1 is violated
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enough to satisfy Assumption A1. Partitions for the case where the spatial dimen-
sion is 3 or higher are also important areas for future study.

As mentioned in Sect. 3, the SG estimator proposed here minimizes the sum of 
squares of the integral of the residual field over cells in a partition, but another area 
for future research would be to consider alternatively minimizing some other crite-
rion, such as for example the integral of Q2(s) . Such an alternative may avoid the 
need for choosing a rather arbitrary partition, but would replace this with the need to 
choose a bandwidth for the kernel smoother.

Another possibility for estimating point process parameters is via partial log-like-
lihood maximization (Diggle et al., 2010), and like the SG estimator, such estima-
tors also do not require the computation or approximation of the integral term in 
the ordinary log-likelihood. As noted in the discussion in Diggle (2006), the partial 
log-likelihood estimate may be less efficient than the MLE but can be much easier 
and faster to compute. Future studies should investigate the advantages and disad-
vantages of such estimators relative to the SG estimator, both in terms of accuracy 
and computation speed.
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