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Abstract
We study the nonparametric regression estimation problem with a random design in 
ℝ

p with p ≥ 2 . We do so by using a projection estimator obtained by least squares 
minimization. Our contribution is to consider non-compact estimation domains in 
ℝ

p , on which we recover the function, and to provide a theoretical study of the risk 
of the estimator relative to a norm weighted by the distribution of the design. We 
propose a model selection procedure in which the model collection is random and 
takes into account the discrepancy between the empirical norm and the norm asso-
ciated with the distribution of design. We prove that the resulting estimator auto-
matically optimizes the bias-variance trade-off in both norms, and we illustrate the 
numerical performance of our procedure on simulated data.

Keywords  Nonparametric estimation · Nonparametric regression · Hermite basis · 
Model selection

1  Introduction

We consider the following random design regression model:

where the variables Xi ∈ ℝ
p are independent but not necessarily identically distrib-

uted, the noise variables �i ∈ ℝ are i.i.d. centered with finite variance �2 and inde-
pendent from the Xi s, and b ∶ ℝ

p
→ ℝ is a regression function. We seek to recover 

the function b on a domain A ⊂ ℝ
p from the observations (Xi, Yi)i=1,…,n.

Yi = b(Xi) + �i, i = 1,… , n,
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More precisely, we consider the following framework. We assume that the vari-
ance of the noise �2 is known. We assume that the variables Xi are independent but 
not identically distributed, we call �i the distribution of Xi , but we do not assume 
that �i is known. However, we fix � a reference measure on A and we assume 
that �∶= 1

n

∑n

i=1
�i admits a bounded density with respect to � , so that we have 

L2(A,𝜇) ⊂ L2(A, 𝜈) . In particular, this assumption implies that supp (𝜇) ⊂ A . Finally, 

we consider domains A ⊂ ℝ
p of the form A1 ×⋯ × Ap where Ak ⊂ ℝ and we con-

sider a measure � on A that is of the form 𝜈1 ⊗⋯⊗ 𝜈p with �k supported on Ak . Our 
goal is to estimate the regression function b on the domain A and to control the expected 
error with respect to the norm ||⋅||� associated with the distribution of the Xis:

We can interpret the error with respect to this norm as a prediction risk: if X�
1
,… ,X�

n
 

are independent copies of X1,… ,Xn , then we have:

which is the mean quadratic error of a new observation drawn uniformly from one of 
the distributions �i.

Nonparametric regression problems have a long history, and a large number of 
methods have been proposed. In this introduction, we focus on two main families 
of methods: kernel estimators and projection estimators. For reference books on the 
subject, see Efromovich (1999) regarding the projection method and Györfi et  al. 
(2002) for the kernel method.

The classical estimator of Nadaraya (1964) and Watson (1964) consists of a quo-
tient of estimators �bf∕f̂  , where b̂f  and f̂  are kernel estimators of the functions bf and 
f (the function f being the common density of the Xi s in the i.i.d case). This estima-
tor can also be interpreted as locally fitting a constant by averaging the Yi s, the local-
ity being determined by the kernel, see the book of Györfi et al. (2002) or Tsybakov 
(2009). This method can then be generalized by replacing the local constant by a 
local polynomial, leading to the so-called local polynomial estimator.

The main drawback of the Nadaraya–Watson estimator is that it relies on an esti-
mator of the density of the Xi s. As such, the rate of convergence depends on the reg-
ularity of f, and two smoothing parameters have to be chosen. A popular solution is 
to choose the same bandwidth for both estimators using leave-one-out cross-valida-
tion. This method works well in practice and has been proven consistent by Härdle 
and Marron (1985) (see also Chapter 8 in Györfi et al. (2002)). Recently, Comte and 
Marie (2021) have proposed to use the Penalized Comparison to Overfitting method 
(PCO), a bandwidth selection method developed by Lacour et  al. (2017) for ker-
nel density estimation, to select separately the bandwidths of the numerator and the 
denominator of the Nadaraya–Watson estimator. Their estimator matches the perfor-
mances of the single bandwidth CV estimator when the noise is high, but the latter 

∀t ∈ L2(A,�), ||t||2
�
∶=

∫A

t(x)2 d�(x) =
1

n

n∑
i=1

∫A

t(x)2 d�i(x).

∀b̂ estimator,
|||
|||b − b̂

|||
|||
2

𝜇
=

1

n

n∑
i=1

�

[(
b(X�

i
) − b̂(X�

i
)
)2||||X1,… ,Xn

]
,
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is better when the noise is small. Other bandwidth selection methods exist such as 
plug-in or bootstrap; see Köhler et al. (2014) for an extensive survey and compari-
son of the different bandwidth selection methods for the local linear estimator.

Another approach is to use a projection estimator. The idea is to minimize a least 
squares contrast over finite-dimensional spaces of functions {Sm ∶ m ∈ Mn} called 
models:

the model collection Mn being allowed to depend on the number of observations. 
This method overcomes the problems of the Nadaraya–Watson estimator: it does 
not need to estimate the density of the Xi s, and only one model selection proce-
dure is required. Moreover, it can provide a sparse representation of the estimator. 
This approach was developed in a fixed design setting by Birgé and Massart (1998); 
Barron et al. (1999) and Baraud (2000). In particular, the papers of Baraud (2000, 
2002) provide a model selection procedure that optimizes the bias-variance compro-
mise under weak assumptions on the moments of the noise distribution. They obtain 
an estimator that is adaptive both in the fixed and random design setting when the 
domain A is compact.

The non-compact case has been studied recently in the simple regression setting 
( p = 1 ) by Comte and Genon-Catalot (2020a, 2020b). They use non-compactly sup-
ported bases, specifically the Hermite basis (supported on ℝ ) and the Laguerre basis 
(supported on ℝ+ ), to construct their estimator. Significant attention has been paid 
to these bases in the past years since they exhibit nice mathematical properties that 
are useful for solving inverse problems (Mabon, 2017; Comte and Genon-Catalot, 
2018; Sacko, 2020). Non-compactly supported bases also avoid issues concerning 
the choice of support. When A is compact, the theory assumes it is fixed a priori. In 
practice, however, the support is generally determined using the data, although this 
dependency between data and support is not taken into account in the theoretical 
development. Working with a non-compact domain, for example ℝ or ℝ+ , allows us 
to bypass this issue.

Concerning the regression problem, difficulties arise when we go from the com-
pact case to the non-compact case. When A is compact, it is usual to assume that the 
density of the Xi s is bounded from below by some positive constant f0 . In the non-
compact case, this assumption fails. Instead, the study of the minimum eigenvalue 
of some random matrix must be done. This question has been studied in the simple 
regression case ( p = 1 ) by Cohen et  al. (2013) by using the matrix concentration 
inequalities of Tropp (2012). However, their results are obtained under the assump-
tion that the regression function is bounded by a known quantity and they do not 
provide a model selection procedure.

We make the following contributions in our paper. We extend the results of 
Comte and Genon-Catalot (2020a) to the multiple regression case ( p ≥ 2 ) with 
more general assumptions on the design, and we improve their result on the ora-
cle inequality under the empirical norm (see Theorem 2). Our work generalizes the 
results of Baraud (2002) to the non-compact case and improves their results in the 

b̂m∶= argmin t∈Sm

1

n

n∑
i=1

(
Yi − t(Xi)

)2
,



734	 F. Dussap 

1 3

compact case (see Theorem 3). We do so by combining the fixed design results of 
Baraud (2000) with a more refined study of the discrepancy between the empirical 
norm and the �-norm. This discrepancy is expressed in terms of the deviation of 
the minimum eigenvalue of a random matrix, of which we control the probability 
with the concentration inequalities of Tropp (2012) and Gittens and Tropp (2011). 
Finally, our estimator is constructed as a projection estimator on a tensorized basis 
whose coefficients are computed using hypermatrix calculus and can be imple-
mented in practice. This feasibility is illustrated in Sect. 5 which also shows that the 
procedure works well.

Outline of the paper In Sect. 2, we define the projection estimator. In Sect. 3, we 
study the probability that the empirical norm and the �-norm depart from each other 
and we derive an upper bound on the �-risk of our estimator. In Sect. 4, we propose 
a model selection procedure and we prove that it satisfies an oracle inequality both 
in empirical norm and in �-norm. Finally, in Sect. 5, we study numerically the per-
formance of our estimator. All the proofs are gathered in Sect. 7.

Notations

–	 �X∶=�
[
⋅|X1,… ,Xn

]
 , ℙX∶=ℙ

[
⋅|X1,… ,Xn

]
 , Var X∶=Var ( ⋅ |X1,… ,Xn) , where 

X = (X1,… ,Xn).
–	 If � is a measure on A, we write ||⋅||� and ⟨⋅, ⋅⟩� the norm and the inner product 

weighted by the measure �.
–	 We denote by ⟨⋅, ⋅⟩n and ||⋅||n the empirical inner product and the empirical 

norm1, defined as ⟨t, s⟩n∶= 1

n

∑n

i=1
t(Xi)s(Xi) and ��t��2

n
∶=

1

n

∑n

i=1
t(Xi)

2 . If u ∈ ℝ
n 

is a vector, we also write ��u��2
n
∶=

1

n

∑n

i=1
u2
i
.

2 � Projection estimator

In our setting, the domain is a Cartesian product A = A1 ×⋯ × Ap and 
𝜈 = 𝜈1 ⊗⋯⊗ 𝜈p where �k is supported on Ak . For each i ∈ {1,… , p} , we consider 
(�i

j
)j∈ℕ an orthonormal basis of L2(Ai, d�i) and we form an orthonormal basis of 

L2(A, d�) by tensorization:

For m ∈ ℕ
p

+ , we set Sm∶=Span (�j ∶ j ≤ m − 1) and we write Dm∶=m1 ⋯mp its 
dimension. We estimate b by minimizing a least squares contrast on Sm:

If we expand b̂m on the basis (�j)j∈ℕp , this problem can be written as:

∀j ∈ ℕ
p, ∀x ∈ A, 𝜑j(x)∶=(𝜑

1
j1
⊗⋯⊗𝜑

p

jp
)(x)∶=𝜑1

j1
(x1) ×⋯ × 𝜑

p

jp
(xp).

b̂m∶= argmin t∈Sm

1

n

n∑
i=1

(
Yi − t(Xi)

)2
.

1  in general, it is a semi-norm but we will only consider subspaces on which it is a norm.



735

1 3

Nonparametric multiple regression by projection

where Y∶=(Y1,… , Yn) ∈ ℝ
n and �̂m ∈ ℝ

n×m is defined as:

Using Lemma 8 in Appendix, the problem (1) has a unique solution if and only if 
�̂m is injective and in that case:

where [�̂
∗

m
]j,i = [�̂m]i,j and where Ĝm is the Gram hypermatrix of (�j)j≤m−1 rela-

tively to the empirical inner product ⟨⋅, ⋅⟩n:

Notice that �̂m is injective if and only if Ĝm is invertible, that is if and only if ||⋅||n is 
a norm on Sm.

3 � Bound on the risk of the estimator

Let us start with the classical bias-variance decomposition of the empirical risk. 
In our context, this result is given by the next Proposition.

Proposition 1  If Ĝm is invertible, then we have:

As a consequence, if Ĝm is invertible a.s, then we have:

Hereafter, we always assume that Ĝm is invertible a.s.
If we want to obtain a similar result for the �-norm, we need to understand 

how the empirical norm can deviate from the �-norm. More generally, we need 
to understand the relations between the different norms we have on the subspace 
Sm ( ||⋅||n , ||⋅||� , ||⋅||� and ||⋅||∞ ). It is well known that all norms are equivalent 
on finite-dimensional spaces; our question concerns the constants in this equiva-
lence. We introduce the following notation: if ||⋅||� and ||⋅||� are two norms on a 
space S, we define:

(1)b̂m =
∑

j≤m−1

â
(m)

j
𝜑j, â

(m)∶= argmin a∈ℝm

|||
|||Y − ��m ×p a

|||
|||
2

ℝn
,

∀i ∈ {1,… , n} ∀j ≤ m − 1,
[
�̂m

]
i,j
∶=�j(Xi).

â
(m) = (��

∗

m
×1

��m)
−1 ×p

��
∗

m
×1 Y

=
1

n
�G
−1

m
×p

��
∗

m
×1 Y,

∀j, k ≤ m − 1,
�
Ĝm

�
j,k
∶=⟨�j,�k⟩n.

�X
|||
|||b − b̂m

|||
|||
2

n
= inf

t∈Sm
||b − t||2

n
+ 𝜎2

Dm

n
.

�
|||
|||b − b̂m

|||
|||
2

n
≤ inf

t∈Sm
||b − t||2

𝜇
+ 𝜎2

Dm

n
.
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and when S = Sm , we use the notation K�
�
(m)∶=K�

�
(Sm) . The next lemma gives the 

value of K�
� (S) when the norms are Euclidean.

Lemma 1  Let (S, ⟨⋅, ⋅⟩�) be a d-dimensional Euclidean vector space equipped with 
an orthonormal basis (�1,… ,�d) . Let ⟨⋅, ⋅⟩� be another inner product on E and let 
G be the Gram matrix of the basis (�1,… ,�d) relatively to ⟨⋅, ⋅⟩� , that is:

We have:

The proof of Lemma 1 is identical to the proof of Lemma 3.1 in Baraud (2000), 
so we leave it out.

The next lemma provides a way to compute K∞
�
(S) from an orthonormal basis 

when ||⋅||� is Euclidean. It is essentially the same as Lemma 1 in Birgé and Massart 
(1998).

Lemma 2  Let S be a space of bounded functions on A such that d∶= dim(S) is finite. 
Let ⟨⋅, ⋅⟩� be an inner product on S. If (�1,… ,�d) is an orthonormal basis of S, then 
we have:

The question we are interested in is how close are the norms ||⋅||n and ||⋅||� on Sm . 
Following a similar idea of Cohen et al. (2013), let us define the event:

The key decomposition of the �-risk of b̂m is given by the following Proposition.

Proposition 2  For all � ∈ (0, 1) , we have:

K�
�
(S)∶= sup

t∈S⧵{0}

||t||2
�

||t||2
�

,

G∶=
�⟨�j,�k⟩�

�
1≤j,k≤d

.

K�
�
(S) = ||G||op = �max(G), K�

�
(S) =

|||
|||G

−1|||
|||op =

1

�min(G)
.

K∞
�
(S) =

||||||

||||||

d∑
j=1

�2
j

||||||

||||||∞
.

(2)

∀� ∈ (0, 1), �m(�)∶={∀t ∈ Sm, ||t||2� ≤
1

1 − �
||t||2

n
} = {K�

n
(m) ≤

1

1 − �
}.

𝔼
|||
|||b − b̂m

|||
|||
2

𝜇
≤

(
1 +

2

1 − 𝛿

[
K∞
𝜇
(m)

(1 − 𝛿)n
∧ 1

])
inf
t∈Sm

||b − t||2
𝜇
+

2𝜎2Dm

(1 − 𝛿)n

+ 2||b||2
𝜇
ℙ
[
𝛺m(𝛿)

c
]
+ 𝔼

[
K𝜇
n
(m)||Y||2

n
1𝛺m(𝛿)

c

]
,
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where K�
n
(m) and K∞

�
(m) are given by Lemmas 1 and 2.

We see that we need an upper bound on the probability of the event �m(�)
c . 

The following proposition is a consequence of the matrix Chernoff bound of Tropp 
(2012) (Theorem 5 in Appendix) .

Proposition 3  For all � ∈ (0, 1) , we have:

where h(�)∶=� + (1 − �) log(1 − �) and K∞
�
(m) is given by Lemma 2.

Remark 1  The quantity K∞
�
(m) is unknown but we have the following upper bound 

using Lemmas 1 and 2:

The quantity |||
|||G

−1
m

|||
|||op is still unknown but can be estimated by plugging in Ĝm.

Comte and Genon-Catalot (2020a) show in their Proposition  8 that, when one 
uses the Hermite or the Laguerre basis, the inverse of the Gram matrix is unbounded 
(it satisfies ‖G−1

m
‖op ≳

√
m ), while it is bounded in the compact case:

where f0 is a positive lower bound of the covariates density. Hence, the least squares 
minimization problem will become highly unstable as the dimension of the projec-
tion space grows. That is why a form of regularization is needed if we want to con-
trol the �-risk of the estimator. For � a positive constant, let us consider the follow-
ing model collection:

Gathering Propositions 2 and 3, we obtain the following bound on the �-risk of b̂m 
when m belongs to M(1)

n,�
.

Theorem 1  Let us assume that b ∈ L2r(�) for some r ∈ (1,+∞] and let r� ∈ [1,+∞) 
be the conjugated index of r, that is: 1

r
+

1

r�
= 1 . For all � ∈ (0,

1

2r�+1
) and for all 

m ∈ M
(1)
n,�

 we have:

ℙ
[
�m(�)

c
]
≤ Dm exp

(
−h(�)

n

K∞
�
(m)

)
,

K∞
�
(m) ≤ K∞

�
(m)K�

�
(m) =

(
sup
x∈A

∑
j≤m−1

�j(x)
2

)
|||
|||G

−1
m

|||
|||op.

(3)
|||
|||G

−1
m

|||
|||op = sup

t∈Sm⧵{0}

||t||2
�

||t||2
�

≤
1

f0
,

(4)M
(1)
n,�
∶={m ∈ ℕ

p

+ |K∞
�
(m)

(|||
|||G

−1
m

|||
|||op ∨ 1

)
≤ �

n

log n
}.
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where the constants Cn(�, r
�) and C�(�, r�) are given by:

where �(�, r�) ∈ (0, 1) tends to 1 as � tends to 1

2r�+1
 , and where C′′

(
b, �2, �, r

)
 is 

defined by (18).

Remark 2  Let us make some statements concerning the behavior of Cn(�, r
�) and 

C�(�, r�):

–	 Cn(�, r
�) is bounded relatively to n;

–	 Cn(�, r
�) ≥ 1 and C�(�, r�) ≥ 2;

–	 as � →
1

2r�+1
 with n fixed, Cn(�, r

�) and C�(�, r�) tend to +∞;
–	 as n → +∞ with � and r′ fixed, Cn(�, r

�) tends to 1.

4 � Adaptive estimator

We consider the empirical version of the model collection Mn,� defined by (4):

with � a positive constant. We choose m̂1 ∈ M̂
(1)

n,�
 by minimizing the following 

penalized least squares criterion:

Based on a result of Baraud (2000) for fixed design regression, we prove that b̂m̂1
 

automatically optimizes the bias-variance compromise in empirical norm on Mn,� , 
up to a constant and a remainder term.

Theorem 2  If b ∈ L2r(�) for some r ∈ (1,+∞] and if �||�1||q is finite for some q > 6 , 
then there exists a constant 𝛼𝛽,r′ > 0 depending on � and r′ (the conjugated index of 
r) such that for all � ∈ (0, ��,r� ) , the following upper bound on the risk of the estima-
tor b̂m̂1

 with m̂1 defined by (5) holds:

�
|||
|||b − b̂m

|||
|||
2

𝜇
≤ Cn(𝛼, r

�) inf
t∈Sm

||b − t||2
𝜇
+ C�(𝛼, r�) 𝜎2

Dm

n
+

C��
(
b, 𝜎2, 𝛼, r

)
n log n

,

Cn(�, r
�)∶=1 +

2

1 − �(�, r�)

(
�(

1 − �(�, r�)
)
log n

∧ 1

)
, C�(�, r�)∶=

2

1 − �(�, r�)
,

M̂
(1)

n,�
∶={m ∈ ℕ

p

+ |K∞
�
(m)

(||||
||||Ĝ

−1

m

||||
||||op ∨ 1

)
≤ �

n

log n
},

(5)m̂1∶= argmin
m∈�M

(1)

n,𝛽

(
−
|||
|||b̂m

|||
|||
2

n
+ (1 + 𝜃)𝜎2

Dm

n

)
, 𝜃 > 0.
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where C(�)∶=(2 + 8�−1)(1 + �) , and where:

with �(�, �) a positive constant satisfying 𝜅(𝛼,𝛽)
r�

> 1 and �(�,�)
r�

→ 1 as � → ��,r′.

Remark 3  The term �(�, q) is finite if q > 6 . Indeed, let 2𝜖∶=( q
2
− 2) − 1 > 0 , we 

have:

where we use Theorem 7 in Appendix.

Remark 4  The constant ��,r′ is increasing with � and goes from 0 to 1

2r�+1
 . It is also 

decreasing with r′ (so increasing with r) and tends to 0 as r� → +∞ (as r → 1).

To transfer the previous adaptive result from the empirical norm into the �-norm, we 
use once again concentration inequalities on the matrix Ĝm . However, we need to make 
a distinction between the compact case and the non-compact case. Indeed, when A is 
compact, we can make the usual assumption that the density d�

d�
 is bounded from below 

and apply the matrix Chernoff bound of Gittens and Tropp (2011), see Lemma 6. This 
lemma relies critically on the “bounded from below” assumption so it cannot work in 
the non-compact case.

To handle the non-compact case, we make use of the matrix Bernstein bound 
of Tropp (2012) instead (Theorem 6 in appendix), see Lemma 7. This inequality 
is different from the matrix Chernoff bounds we have used so far, so we have to 
consider smaller model collections to make it work. In the following, we consider 
two cases: 

1.	 Compact case. We assume that there exists f0 > 0 such that for all x ∈ A , 
d𝜇

d𝜈
(x) > f0 . In that case, Gm is always invertible and we have |||

|||G
−1
m

|||
|||op ≤

1

f0
 , see 

(3).
2.	 General case. We consider smaller model collections: 

�
|||
|||b − b̂m̂1

|||
|||
2

n
≤ C(𝜃) inf

m∈M(1)
n,𝛼

(
inf
t∈Sm

||b − t||2
𝜇
+ 𝜎2

Dm

n

)
+ 𝜎2𝛴(𝜃, q)

n
+ Rn,

�(�, q)∶=C��(�, q)
𝔼||�1||q
�q

∑
m∈ℕ

p

+

D
−(

q

2
−2)

m , Rn∶=C
�(||b||L2r(�), �

2)
(log n)(p−1)∕r

�

n�(�,�)∕r
�

,

∑
m∈ℕ

p

+

D
−(

q

2
−2)

m =

+∞∑
d=1

Card {m ∈ ℕ
p

+ |Dm = d} × d
−(

q

2
−2)

≤

+∞∑
d=1

o (d𝜖)

d1+2𝜖
< +∞,

M
(2)
n,�
∶={m ∈ ℕ

p

+ |K∞
�
(m)

(|||
|||G

−1
m

|||
|||
2

op
∨ 1

)
≤ �

n

log n
},

M̂
(2)

n,�
∶={m ∈ ℕ

p

+ |K∞
�
(m)

(||||
||||Ĝ

−1

m

||||
||||
2

op

∨ 1

)
≤ �

n

log n
},
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 where � and � are positive constants and we choose m̂2 ∈ M̂
(2)

n,�
 as: 

Theorem  3  Let r ∈ (1,+∞] , let r� ∈ [1,+∞) be its conjugated index and let us 
assume that b belongs to L2r(�) and that �||�1||q is finite for some q > 6.

∙ Compact case. Let f0 > 0 such that d�
d�
(x) ≥ f0 for all x ∈ A , there exists 𝛽f0,r′ > 0 

such that for all � ∈ (0, �f0,r� ) , there exists 𝛼𝛽,r′ > 0 such that for all � ∈ (0, ��,r� ) , the 
following upper bound on the risk of the estimator b̂m̂1

 with m̂1 defined by (5) holds:

where the remainder term is given by:

with 𝜆(𝛽, r, f0) > 1 and 𝜅(𝛼,𝛽)
r�

> 1.

∙ General case. Let B∶=(|||
|||
d�

d�

|||
|||∞ +

2

3
)−1 , there exists 𝛽B,r′ > 0 such that for all 

� ∈ (0, �B,r� ) , there exists 𝛼̃𝛽,r′ > 0 such that for all 𝛼 ∈ (0, 𝛼̃𝛽,r� ) , the following upper 
bound on the risk of the estimator b̂m̂2

 with m̂2 defined by (6) holds:

where the remainder term is given by:

with 𝜆(𝛽, r,B) > 1 and 𝜅̃(𝛼,𝛽)
r�

> 1.

This result shows that there is a range of values for the constant � that depends on 
the integrability of b and on f0 (compact case) or |||

|||
d�

d�

|||
|||∞ (general case), such that for 

the �-norm, the estimator b̂m̂ automatically optimizes the bias-variance trade-off (up 
to a constant and a rest) on Mn,� for all � in a range that depends on �.

(6)m̂2∶= argmin
m∈�M

(2)

n,𝛽

(
−
|||
|||b̂m

|||
|||
2

n
+ (1 + 𝜃)𝜎2

Dm

n

)
, 𝜃 > 0.

�
|||
|||b − b̂m̂1

|||
|||
2

𝜇
≤ C(𝜃, 𝛽, r) inf

m∈M(1)
n,𝛼

(
inf
t∈Sm

||b − t||2
𝜇
+ 𝜎2

Dm

n

)

+ C�(𝛽, r)𝜎2𝛴(𝜃, q)

n
+ Rn,

Rn = C��
(||b||L2r(�), �

2, �, r
)(

n
−

�(�,�)

r� (log n)
p−1

r� + n−�(�,r,f0) (log n)
p−1

r�
−1
)
,

�
|||
|||b − b̂m̂2

|||
|||
2

𝜇
≤ C(𝜃, 𝛽, r) inf

m∈M(2)
n,𝛼

(
inf
t∈Sm

||b − t||2
𝜇
+ 𝜎2

Dm

n

)

+ C�(𝛽, r)𝜎2𝛴(𝜃, q)

n
+ Rn,

Rn = C��
(||b||L2r(𝜇), 𝜎

2, 𝛽, r
)(

n
−

𝜅̃(𝛼,𝛽)

r� (log n)
p−1

r� + n−𝜆(𝛽,r,B) (log n)
p−1

r�
−1
)
,
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Remark 5  Theorem 3 improves previous results in the literature: 

1.	 In the compact case, we improve the result of Baraud (2002). Indeed in this arti-
cle, the model collections considered are built by picking an “envelope model”, 
that is a linear space Sn with finite dimension Nn , whose all models are a sub-
space. Their assumptions concern the space Sn : they assume that K∞

�
(Sn) ≤ C2Nn 

for some constant C > 0 and they require that Nn ≤ C−1
√
n∕(log n)3 . In compari-

son, our procedure avoids the choice a priori of an envelope model, and uses a 
looser constraint on the dimension of the models.

2.	 In the non-compact case, we extend the results of Comte and Genon-Catalot 
(2020a) to the case p ≥ 2 without losing much on the assumptions: their result 
requires a moment of order 6 on the noise whereas our result is obtained with a 
moment of order q, with q > 6 . We also generalize their result by considering a 
non i.i.d. design and by using a more general moment assumption on the regres-
sion function.

Remark 6  (Unknown variance) During all of our work, we assume that �2 is known. 
To handle the case of an unknown variance, we can use the same method proposed 
by Baraud (2000) in the fixed design setting. Using a residual least-squares estimator 
of �2 in the penalized criterion for choosing the model, they prove (Theorem 6.1) that 
the resulting estimator of the regression function satisfies an oracle inequality. Starting 
from Baraud’s result, and using the same arguments we used in this paper, we think one 
can obtain an oracle inequality for a projection estimator, in the random design frame-
work with unknown variance. We omit such development for the sake of conciseness.

5 � Numerical illustrations

In this section, we compare our estimator with the Nadaraya–Watson estimator on 
simulated data in the case p = 1 and p = 2.

Regression function We consider the following regression functions: 

1.	 b1(x) = exp((x − 1)2) + exp((x + 1)2),

2.	 b2(x)∶=
1

1+x2
,

3.	 b3(x)∶=x cos(x),

4.	 b4(x)∶=|x|,
5.	 b5(x1, x2)∶= exp(−

1

2
[(x1 − 1)2 + (x2 − 1)2]) + exp(−

1

2
[(x1 + 1)2 + (x2 + 1)2]),

6.	 b6(x1, x2)∶=1∕(1 + x2
1
+ x2

2
),

7.	 b7(x1, x2)∶= cos(x1) sin(x2),
8.	 b8(x1, x2)∶=

||x1x2||.
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The functions b2 and b6 are smooth bounded functions and have a unique maximum 
at 0, so they should be an easy case. The functions b1 and b5 are smooth and bounded 
with two maximums. The functions b3 and b7 are smooth oscillating functions. 
Finally, the functions b4 and b8 are not smooth nor bounded, and should be a harder 
case.

Distribution of X For the sake of simplicity, we consider the case where X1,… ,Xn 
are i.i.d. and have a density with respect to Lebesgue measure (i.e. � = Leb ). For the 
case p = 1 , we consider the following distributions: X ∼ N(0, 1) , and X ∼ Laplace . 
Both distributions are symmetric and centered at 0, but the normal distribution is more 
concentrated around its mean than the Laplace distribution. For the case p = 2 , we use 
independent marginals for the distribution of the covariates: X ∼ N(0, 1)⊗N(0, 1) , 
and X ∼ Laplace⊗ Laplace.

Noise distribution We consider the normal distribution: � ∼ N(0, �2) . The vari-
ance �2 is chosen such that the signal-to-noise ratio is the same for each choice of 
regression function and distribution of X , where we define the signal-to-noise ratio 
as:

We consider the following values: SNR = 2 (High noise), and SNR = 20 (Low 
noise).

Parameters of the projection estimator Since the distributions of X are supported 
on ℝ or ℝ2 , we choose the Hermite basis. The Hermite functions are defined as:

and form a basis of L2(ℝ) . We form a basis of L2(ℝ2) by tensorizing the Hermite 
basis as explained in Sect. 2. We choose the parameter m̂ with the model selection 
procedure (6). This procedure requires two additional parameters: the constant � in 
the penalty and the constant � in the model collection M̂

(2)

n,�
.

We choose � such that the model collection M̂
(2)

n,�
 is not too small, especially for 

small sample sizes. Indeed, we find that the operator norm 
||||
||||Ĝ

−1

m

||||
||||op can grow very 

fast with m , which can result in model collections with very few models. In our case, 
we choose � = 104.

The constant �∶=1 + � in front of the penalty is chosen following the “minimum 
penalty heuristic” (Arlot and Massart 2009). On several preliminary simulations, we 
compute the selected dimension Dm̂ as a function of � and we find �min such that for 
𝜅 < 𝜅min the dimension is too high and for 𝜅 > 𝜅min it is acceptable. Then, we choose 
𝜅⋆ = 2𝜅min . In our case, we find 𝜅⋆ = 2 when p = 1 and p = 2.

Nadaraya–Watson estimator Let us define the Nadaraya–Watson estimator in 
the case p = 1 . For all h ∈ (0, 1) , let Kh be the pdf of the N(0, h) distribution. The 
Nadaraya–Watson estimator is defined as:

SNR∶=
||b||2

�

�2
.

�j(x)∶=cj Hj(x) e
−

x2

2 , Hj(x)∶=(−1)
jex

2 dj

dxj

�
e−x

2
�
, cj∶=

�
2jj!

√
�
�−1∕2

.
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The bandwidth h is selected by leave-one-out cross-validation, that is:

where b̂NW
h,−i

 is the Nadaraya–Watson estimator computed from the data set:

In the case p = 2 , the definition of the estimator is the same but with a couple of 
bandwidths h = (h1, h2) ∈ (0, 1)2 , and with Kh the pdf of the N2(0,H) distribution, 
where H∶=diag(h1, h2).

Computation of the risk We consider samples of size n = 250 and n = 1000 in 
the case p = 1 , and samples of size n = 500 and n = 2000 in the case p = 2 . For 
each choice of regression function, distribution of X and SNR , we generate N = 100 
samples of size n. For each sample, we compute the Hermite projection estimator 
and the Nadaraya–Watson estimator; then, we compute the relative �-error of the 
estimators, that is:

where f is the density of the distribution � . We compute an approximation of 
these integrals: we consider a compact domain I × I with I an interval such that 
ℙ[X ∈ I] = 95% in the case p = 1 and ℙ[X ∈ I × I] = 95% in the case p = 2 . Then, 
we consider a discretization with 200 points of I. In the case p = 1 , we use Simp-
son’s rule with this discretization of I to approximate the integrals. In the case p = 2 , 
we approximate the integrals by a sum over the grid of I × I:

where � is the discretization step.
Results In the case p = 1 , we show our results in Table 1. First of all, we see that 

the results are superior when X has a Normal distribution compared to a Laplace 
distribution. This can be explained by the fact that the Laplace distribution is less 
concentrated around 0 than the normal distribution, so the Xi s are more scattered 
and the mu-risk covers a larger range. In addition, in the normal setting, we see that 
the Hermite estimator is better than the Nadaraya–Watson estimator for estimating 
b1 , b2 and b3 , and both estimators are equivalent for estimating b4 . In the Laplace 
setting, the Hermite estimator is still better for b1 and b2 , but for b3 it has similar 

∀x ∈ ℝ, b̂NW
h

(x)∶=

∑n

i=1
Yi Kh(x − Xi)∑n

i=1
Kh(x − Xi)

.

ĥ∶= argmin h

n∑
i=1

(
Yi − b̂NW

h,−i
(Xi)

)2

,

{
(Xj, Yj) ∶ j ∈ {1,… n} ⧵ {i}

}
.

relative error∶=

|||
|||b̂ − b

|||
|||
2

𝜇

||b||2
𝜇

=
∫
ℝp

|||b̂(x) − b(x)
|||
2

f (x) dx

∫
ℝp b(x)2f (x) dx

,

∬
ℝ2

|||b̂(x) − b(x)
|||
2

f (x) dx ≈

200∑
i=1

200∑
j=1

|||b̂(x1,i, x2,j) − b(x1,i, x2,j)
|||
2

f (x1,i, x2,j)𝛥
2,
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Table 1   Risk comparison, p = 1 . Table showing the relative �-risks of the Hermite projection estima-
tor and the Nadaraya–Watson estimator. For each distribution of X, regression function, SNR and n, we 
display the estimated relative �-risk over N = 100 samples with a 95% confidence interval, multiplied 
by 100. For the projection estimator, we display the mean selected model, and for the Nadaraya–Watson 
estimator, we display the mean selected bandwidth

X distrib. Reg. fun. Estim. SNR = 2 SNR = 20

n = 250 n = 1000 n = 250 n = 1000

Norm. b
1

Hermite 1.23 0.288 0.138 0.034
[1.22, 1.24] [0.284, 0.292] [0.136, 0.140] [0.034, 0.035]
4 5 6 6

NW 1.50 0.468 0.255 0.076
[1.49, 1.51] [0.463, 0.472] [0.253, 0.258] [0.075, 0.076]
0.307 0.212 0.724 0.763

b
2

Hermite 1.00 0.362 0.159 0.047
[0.99, 1.01] [0.358, 0.366] [0.157, 0.161] [0.047, 0.047]
3 5 6 8

NW 1.38 0.475 0.236 0.075
[1.37, 1.40] [0.470, 0.480] [0.234, 0.238] [0.074, 0.076]
0.281 0.214 0.161 0.126

b
3

Hermite 1.77 0.477 0.206 0.050
[1.76, 1.79] [0.472, 0.482] [0.204, 0.208] [0.049, 0.050]
10 12 11 13

NW 2.80 0.823 0.808 0.160
[2.78, 2.82] [0.817, 0.829] [0.799, 0.818] [0.160, 0.161]
0.138 0.107 0.088 0.066

b
4

Hermite 1.94 0.532 0.288 0.116
[1.92, 1.97] [0.528, 0.536] [0.286, 0.290] [0.115, 0.116]
9 12 11 13

NW 1.86 0.585 0.344 0.108
[1.84, 1.88] [0.581, 0.590] [0.341, 0.347] [0.107, 0.108]
0.216 0.162 0.120 0.096

Lap. b
1

Hermite 1.81 0.400 0.162 0.047

[1.78, 1.83] [0.394, 0.405] [0.159, 0.164] [0.046, 0.047]

5 6 6 7

NW 2.20 0.686 0.335 0.104

[2.18, 2.23] [0.681, 0.691] [0.332, 0.338] [0.103, 0.105]

0.347 0.260 0.182 0.147
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performances as the Nadaraya–Watson estimator. For estimating b4 , the latter is bet-
ter, although the difference becomes small as n increases.

In the case p = 2 , we show our results in Table 2. In the normal setting, the Her-
mite projection estimator is better for estimating b5 , b6 and b7 . For b8 , its perfor-
mances are worse than the kernel estimator on small samples but they are equivalent 
on large samples. In the Laplace setting, our estimator is better for estimating b5 and 
b6 , but it is worse for estimating b7 . Moreover, the Hermite estimator has very poor 
performances for estimating b8 . We think that the functions b7 and b8 are hard to 
approximate with the Hermite basis, so that the Hermite projection estimator per-
forms poorly. This can be seen by looking at the mean selected dimension, which 
grows quickly as n grows, showing that the estimator needs a large number of coef-
ficients to reconstruct the regression function. This is especially true for b8 , as it is a 
non differentiable and unbounded function.

In addition, we observe that the Hermite estimator is faster to compute than 
the Nadaraya–Watson estimator with leave-one-out cross-validation. The differ-
ence is small when n is small, but for example, when n = 2000 and p = 2 , the 
Hermite estimator is about 3 time faster. In conclusion, the Hermite projection 
estimator is a good alternative to the Nadaraya–Watson estimator.

Table 1   (continued)

X distrib. Reg. fun. Estim. SNR = 2 SNR = 20

n = 250 n = 1000 n = 250 n = 1000

b
2

Hermite 1.45 0.426 0.202 0.064

[1.43, 1.47] [0.421, 0.430] [0.199, 0.204] [0.063, 0.064]

3 5 7 9

NW 1.94 0.725 0.0337 0.113

[1.92, 1.95] [0.720, 0.731] [0.334, 0.339] [0.112, 0.114]

0.315 0.249 0.180 0.145

b
3

Hermite 4.56 0.985 1.39 0.121

[4.49, 4.63] [0.979, 0.991] [1.32, 1.47] [0.120, 0.123]

19 27 20 29

NW 3.57 0.974 1.09 0.258

[3.52, 3.61] [0.968, 0.980] [1.06, 1.11] [0.254, 0.261]

0.225 0.184 0.155 0.137

b
4

Hermite 8.61 1.04 1.59 0.177

[8.23, 8.98] [1.04, 1.05] [1.53, 1.65] [0.175, 0.180]

19 28 20 29

NW 2.30 0.729 0.454 0.133

[2.28, 2.33] [0.724, 0.733] [0.451, 0.457] [0.133, 0.134]

0.294 0.224 0.171 0.127
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Table 2   Risk comparison,  p = 2 . Table showing the relative �-risks of the Hermite projection estima-
tor and the Nadaraya–Watson estimator. For each distribution of X , regression function, SNR and n, we 
display the estimated relative �-risk over N = 100 samples with a 95% confidence interval, multiplied by 
100. For the projection estimator, we display the mean selected dimension, and for the Nadaraya–Watson 
estimator, we display the mean selected bandwidths

X distrib. Reg. fun. Estim. SNR = 2 SNR = 20

n = 500 n = 2000 n = 500 n = 2000

Norm. b
5

Hermite 1.69 0.587 0.294 0.067
[1.68, 1.71] [0.583, 0.591] [0.191, 0.196] [0.066, 0.067]
12 16 21 25

NW 2.31 0.845 0.566 0.217
[2.29, 2.32] [0.841, 0.848] [0.564, 0.568] [0.216, 0.218]
(0.382, 0.388) (0.295, 0.297) (0.231, 0.238) (0.190, 0.188)

b
6

Hermite 1.41 0.732 0.333 0.094
[1.40, 1.43] [0.728, 0.735] [0.331, 0.336] [0.094, 0.095]
5 14 26 29

NW 2.80 1.10 0.630 0.249
[2.78, 2.81] [1.09, 1.10] [0.628, 0.633] [0.248, 0.250]
(0.327, 0.356) (0.273, 0.272) (0.213, 0.210) (0.172, 0.172)

b
7

Hermite 3.32 0.916 0.650 0.123
[3.29, 3.35] [0.912, 0.919] [0.645, 0.654] [0.123, 0.124]
26 35 43 59

NW 3.72 1.45 1.29 0.420
[3.70, 3.74] [1.45, 1.46] [1.28, 1.29] [0.419, 0.421]
(0.280, 0.285) (0.229, 0.225) (0.181, 0.192) (0.151, 0.147)

b
8

Hermite 9.00 2.01 4.80 0.847
[8.89, 9.12] [2.00, 2.02] [3.66, 4.93] [0.841, 0.853]
50 67 51 70

NW 5.47 2.08 2.56 0.769
[5.44, 5.49] [2.07, 2.08] [2.55, 2.57] [0.767, 0.771]
(0.255, 0.250) (0.197, 0.197) (0.179, 0.174) (0.138, 0.137)

Lap. b
5

Hermite 1.91 0.703 0.366 0.076

[1.90, 1.93] [0.698, 0.708] [0.359, 0.373] [0.076, 0.077]

12 17 21 27

NW 3.79 1.66 1.01 0.404

[3.77, 3.80] [1.66, 1.67] [1.01, 1.02] [0.403, 0.405]

(0.451, 0.441) (0.354, 0.357) (0.252, 0.254) (0.212, 0.208)
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6 � Concluding remark

In this paper, we have considered the nonparametric regression problem with a ran-
dom design. The covariates are assumed to be independent but not identically dis-
tributed, and the variance of the noise is assumed to be known. We estimate the 
regression function on a non-compact domain of ℝp with a projection estimator, 
using tensorized orthonormal bases. The projection space is chosen by a penal-
ized criterion, as in Birgé and Massart (1998) and Baraud (2000). Our model col-
lection depends on the design and is thus random. Indeed, we consider subspaces 
Sm on which the operator norm of the Gram hypermatrix associated with the least 
squared minimization problem is constrained. This constraint on the operator norm 
comes from a refined study of the discrepancy between the norms ||⋅||n and ||⋅||� on 
Sm . This study relies on Matrix concentration inequalities of Tropp (2012) and Git-
tens and Tropp (2011), as it has been suggested by the work of Cohen et al. (2013). 
Doing so, we obtain oracle bounds for the selected estimator, in both norms. Our 

Table 2   (continued)

X distrib. Reg. fun. Estim. SNR = 2 SNR = 20

n = 500 n = 2000 n = 500 n = 2000

b
6

Hermite 2.09 0.962 0.416 0.172

[2.07, 2.11] [0.956, 0.968] [0.412, 0.420] [0.171, 0.173]

7 18 27 39

NW 4.21 1.80 0.944 0.401

[4.19, 4.22] [1.79, 1.80] [0.941, 0.947] [0.400, 0.402]

(0.422, 0.403) (0.324, 0.339) (0.231, 0.236) (0.203, 0.199)

b
7

Hermite 10.3 5.56 14.3 1.49

[10.1, 10.5] [5.50, 5.62] [13.9, 14.6] [1.46, 1.52]

30 115 76 128

NW 7.43 2.80 3.02 0.931

[7.40, 7.46] [2.80, 2.81] [3.01, 3.03] [0.929, 0.933]

(0.350, 0.391) (0.292, 0.235) (0.230, 0.201) (0.187, 0.167)

b
8

Hermite 415 74.1 330 71.2

[406, 424] [72.1, 76.0] [322, 338] [69.5, 72.9]

77 136 79 135

NW 9.59 3.34 6.20 1.75

[9.55, 9.64] [3.33, 3.35] [6.17, 6.23] [1.74, 1.76]

(0.351, 0.356) (0.284, 0.275) (0.257, 0.264) (0.211, 0.209)
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work extends and improves the results of Baraud (2002) and Comte and Genon-
Catalot (2020a), as explained by Remark 5.

Different extension of our work can be pursued. A natural extension would be 
to consider the heteroskedastic regression model, in which the observations (Xi, Yi) 
satisfy:

were �i s have unit variance. Using the same projection estimator, Comte and Genon-
Catalot (2020b) have obtained similar results for this model in the one-dimensional 
case. The extension to the multivariate case could be done in two ways. The first 
way would be to generalize the fixed design results of Baraud (2000) to the case of 
noise variables with different variance, and then to apply the same arguments we 
used in this paper to deduce the results for the random design setting. The second 
way would be to follow the approach of Comte and Genon-Catalot (2020b), that is 
based on Talagrand’s inequality, and to see if it can be extended to the multivariate 
case.

Another extension of our work would be to investigate the use of more general 
approximation spaces Sm , as does Baraud (2002). We want to know if the same 
method we used could handle approximation spaces that are not constructed from 
an orthonormal basis. A typical example we have in mind is splines approximation. 
We suspect that our results on the comparison between the norms ||⋅||n and ||⋅||� still 
hold in this context, so that adaptive strategies could be derived from it.

7 � Proofs

7.1 � Proofs of Sect. 2

Proposition 1  Let � (n)
m  be the projector on Sm for the empirical inner product. We 

have the decomposition:

Taking the expected value in this equality, we obtain:

Yi = b(Xi) + �(Xi)�i,

�X
|||
|||b − b̂m

|||
|||
2

n
=
|||
|||b −𝛱 (n)

m
b
|||
|||
2

n
+ �X

|||
|||b̂m −𝛱 (n)

m
b
|||
|||
2

n

= inf
t∈Sm

||b − t||2
n
+ �X

|||
|||𝛱

(n)
m
�
|||
|||
2

n

= inf
t∈Sm

||b − t||2
n
+ 𝜎2

Tr
(
𝛱

(n)
m

)
n

= inf
t∈Sm

||b − t||2
n
+ 𝜎2

Dm

n
.
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	�  ◻

7.2 � Proofs of Sect.3

Lemma 2  Let x ∈ A and let t =
∑d

j=1
aj �j ∈ S . The family of functions (�1,… ,�d) 

is orthonormal with respect to ⟨⋅, ⋅⟩� , so by the Cauchy–Schwarz inequality we have:

with equality if (�1,… , �d) is proportional to (�1(x),… ,�d(x)) . Hence, we have:

Taking the supremum for x ∈ A , we obtain:

that is:

	�  ◻

To prove Proposition 3 and Theorem 2, we need the following lemma.

Lemma 3  Let (�1,… ,�Dm
) be an orthonormal basis of Sm relatively to an inner 

product ⟨⋅, ⋅⟩� . Let Ĥm be the Gram matrix of this basis relatively to the empirical 
inner product and let Hm∶=�[Ĥm] , that is:

For all � ∈ (0, 1), we have:

�
|||
|||b − b̂m

|||
|||
2

n
= �

[
inf
t∈Sm

||b − t||2
n

]
+ 𝜎2

Dm

n
≤ inf

t∈Sm
�||b − t||2

n
+ 𝜎2

Dm

n

= inf
t∈Sm

�||b − t||2
𝜇
+ 𝜎2

Dm

n
.

t2(x) =

(
d∑
j=1

aj �j(x)

)2

≤

(
d∑
j=1

a2
j

)(
d∑
j=1

�2
j
(x)

)
= ||t||2

�

d∑
j=1

�2
j
(x),

d∑
j=1

�2
j
(x) = sup

t∈S⧵{0}

t2(x)

||t||2
�

.

sup
x∈A

d∑
j=1

�2
j
(x) = sup

x∈A

sup
t∈S⧵{0}

t2(x)

||t||2
�

= sup
t∈S⧵{0}

supx∈A t
2(x)

||t||2
�

,

||[||
] d∑
j=1

�2
j

∞

= sup
t∈S⧵{0}

||t||2
∞

||t||2
�

=∶K∞
�
(S).

∀j, k ∈ {1,… ,Dm},
�
Ĥm

�
j,k
∶=⟨�j,�k⟩n and

�
Hm

�
j,k
∶=⟨�j,�k⟩�.
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with h(�)∶=� + (1 − �) log(1 − �) and where K∞
�
(m) is given by Lemma 2.

Proof  We use Theorem  5 in Appendix. Indeed, Ĥm can be written as a sum 
Z1 +…+ Zn where

so we have using Lemma 2:

Therefore, applying inequality (29) of Theorem  5 with �min = �min(Hm) and 
R =

1

n
K∞
�
(m) yields:

	�  ◻

Proposition 3  Let �1,… ,�Dm
 be an orthonormal basis of Sm relatively to the inner 

product ⟨⋅, ⋅⟩� . Let Ĥm be their Gram matrix relatively to the empirical inner prod-
uct. According to Lemma 1, we have K�

n
(m) =

||||
||||Ĥ

−1

m

||||
||||op = �min(Ĥm)

−1 and we have 

�[Ĥm] = Im because (�1,… ,�Dm
) is orthonormal for the inner product associated 

with � , so the event �m(�)
c can be written as:

Applying Lemma 3 yields the result.	� ◻

Proposition 2  We start with the decomposition:

We consider these two terms separately. The expectation of the first term is con-
trolled as in Theorem  3 in Cohen et  al. (2013). On the event �m(�) we have 
(1 − �)||t||2

�
≤ ||t||2

n
 for all t ∈ Sm , so if b(�)m  is the projection of b on Sm for the norm 

||⋅||� , we have:

ℙ

[
�min

(
�̂m

)
≤ (1 − �)�min

(
�m

)]
≤ Dm exp

(
−h(�)

n�min

(
�m

)
K∞
�
(m)

)
,

∀j, k ∈ {1,… ,Dm},
[
Zi

]
j,k
∶=

1

n
�j(Xi)�k(Xi),

�max(Zi) =
||||Zi

||||op = 1

n

Dm∑
k=1

�k(Xi)
2
≤

1

n
||[||

] Dm∑
k=1

�2
k

∞

=
1

n
K∞
�
(m).

ℙ

[
�min(Ĥm) ≤ (1 − �)�min(Hm)

]
≤ Dm exp

(
−h(�)

n�min(Hm)

K∞
�
(m)

)
.

�m(�)
c = {�min(Ĥm) ≤ 1 − �} = {�min(Ĥm) ≤ (1 − �)�min(�[Ĥm])}.

(7)�
|||
|||b − b̂m

|||
|||
2

𝜇
= �

[|||
|||b − b̂m

|||
|||
2

𝜇
1𝛺m(𝛿)

]
+ �

[|||
|||b − b̂m

|||
|||
2

𝜇
1𝛺m(𝛿)

c

]
.
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Taking the expectation, we obtain:

We give an upper bound on the last term in two ways. Firstly, we have:

since K�
n
(m) ≤

1

1−�
 on the event �m(�) , see (2). Let � (n)

m  be the empirical projector 
on Sm , we have:

Thus, we have shown:

Secondly, let g∶=b − b
(�)
m  and let � (n)

m  be the empirical projector on Sm we have:

Let (�1,… ,�Dm
) be an orthonormal basis of Sm for the inner product ⟨⋅, ⋅⟩� , we 

have:

where �m ∈ ℝ
n×Dm is the matrix defined by [�m]i,j∶=�j(Xi) , and where g is the vec-

tor 
(
g(X1),… , g(Xn)

)
∈ ℝ

n . By Lemma 8, c⋆ is given by:

where Hm is the Gram matrix of (�1,… ,�Dm
) relatively to the empirical inner prod-

uct. Using Lemma 1, we get:

|||
|||b − b̂m

|||
|||
2

𝜇
1𝛺m(𝛿)

≤
|||
|||b − b(𝜇)

m

|||
|||
2

𝜇
+
|||
|||b̂m − b(𝜇)

m

|||
|||
2

𝜇
1𝛺m(𝛿)

≤
|||
|||b − b(𝜇)

m

|||
|||
2

𝜇
+ 2

|||
|||b̂m − b(n)

m

|||
|||
2

𝜇
1𝛺m(𝛿)

+ 2
|||
|||b

(n)
m

− b(𝜇)
m

|||
|||
2

𝜇
1𝛺m(𝛿)

≤
|||
|||b − b(𝜇)

m

|||
|||
2

𝜇
+

2

1 − 𝛿

|||
|||b̂m − b(n)

m

|||
|||
2

n
+ 2

|||
|||b

(n)
m

− b(𝜇)
m

|||
|||
2

𝜇
1𝛺m(𝛿)

(8)

�

[|||
|||b − b̂m

|||
|||
2

𝜇
1𝛺m(𝛿)

]
≤
|||
|||b − b(𝜇)

m

|||
|||
2

𝜇
+

2

1 − 𝛿
𝜎2

Dm

n
+ 2�

[|||
|||b

(n)
m

− b(𝜇)
m

|||
|||
2

𝜇
1𝛺m(𝛿)

]
.

�

[|||
|||b

(n)
m

− b(�)
m

|||
|||
2

�
1�m(�)

]
≤ �

[
K�
n
(m)

|||
|||b

(n)
m

− b(�)
m

|||
|||
2

n
1�m(�)

]

≤
1

1 − �
�
|||
|||b

(n)
m

− b(�)
m

|||
|||
2

n

|||
|||b

(n)
m

− b(�)
m

|||
|||
2

n
=
|||
|||�

(n)
m

(
b − b(�)

m

)|||
|||
2

n
≤
|||
|||b − b(�)

m

|||
|||
2

n
.

(9)�

[|||
|||b

(n)
m

− b(�)
m

|||
|||
2

�
1�m(�)

]
≤

1

1 − �
�
|||
|||b − b(�)

m

|||
|||
2

n
=

1

1 − �

|||
|||b − b(�)

m

|||
|||
2

�
.

�

[|||
|||b

(n)
m

− b(�)
m

|||
|||
2

�
1�m(�)

]
= �

[|||
|||�

(n)
m
g
|||
|||
2

�
1�m(�)

]
.

𝛱 (n)
m
g = argmin t∈Sm

||g − t||2
n
=

Dm∑
j=1

c⋆
j
𝜓j, c⋆∶= argmin c∈ℝDm

||||g − 𝛹mc
||||2ℝn ,

c⋆ = (𝛹 ∗
m
𝛹m)

−1𝛹 ∗
m
g =

1

n
H−1

m
𝛹 ∗
m
g,
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Hence, on the event �m(�) we obtain:

Since g = b − b
(�)
m  is orthogonal to �1,… ,�Dm

 relatively to the inner product ⟨⋅, ⋅⟩� , 
we have �[⟨g,�j⟩n] = ⟨g,�j⟩� = 0 , so we get:

where the last equality comes from Lemma 2. Hence, we have shown:

Combining (9) and (10) yields:

For the second term in (7), we have:

We have the following upper bound on |||
|||b̂m

|||
|||
2

𝜇
:

where the last inequality comes from the fact that b̂m is the empirical projection of 
Y . Hence, we get:

���
���𝛱

(n)
m
g
���
���
2

𝜇
= ����c⋆����2ℝDm

≤
���
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m

���
���
2

op

����
����
1

n
𝛹 ∗
m
g
����
����
2

ℝDm

= K𝜇
n
(m)2

Dm�
j=1

⟨g,𝜓j⟩2n.

���
����

(n)
m
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2

�
1�m(�)

≤
1
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Dm�
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�

�
Dm�
k=1
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Dm�
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1

n2
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Dm�
j=1

Var
�
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�

=
1

n2

n�
i=1

�

�
g(Xi)

2

Dm�
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2

�

≤
1
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�
�
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The inequality of Proposition 2 is obtained using (8), (11) and (13) in (7).	�  ◻

Theorem  1  Let m ∈ M
(1)
n,�

 and let � ∈ (0, 1) (we choose it later in the proof). By 
Remark 1, we have by definition of M(1)

n,�
:

so Proposition 2 yields:

with Cn(�, �)∶=
(
1 +

2

1−�

[
�

(1−�) log n
∧ 1

])
 , C�(�)∶= 2

1−�
 and:

For the first term in Rn , we apply Proposition 3 with (14):

For the second term in Rn , since ||⋅||� ≤ ||⋅||∞ and m ∈ M
(1)
n,�

 we have:

and we have using the independence of (Xi)1≤i≤n and (�i)1≤i≤n:

We apply Hölder’s inequality with r, r� ∈ (1,+∞) such that 1
r
+

1

r�
= 1:

(13)𝔼
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c
]
+ 2𝔼

[
K𝜇
n
(m) ||Y||2

n
1𝛺m(𝛿)

c

]
.

(14)K∞
�
(m) ≤ K∞

�
(m)

|||
|||G

−1
m

|||
|||op ≤ �

n

log n
,

�
|||
|||b − b̂m

|||
|||
2

𝜇
≤ Cn(𝛿, 𝛼) inf

t∈Sm
||b − t||2

𝜇
+ C�(𝛿)𝜎2

Dm

n
+ Rn,

Rn∶=2||b||2� ℙ
[
�m(�)

c
]
+ 𝔼

[
K�
n
(m)||Y||2

n
1�m(�)

c

]
.

(15)ℙ
[
�m(�)

c
]
≤ Dm n

−
h(�)

� ≤ n
−

h(�)

�
+1
.

(16)K�
n
(m) ≤ K�

�
(m)K�

n
(m) ≤ K∞

�
(m)

|||
|||G

−1
m

|||
|||op ≤ ⟉

n

log n
,

𝔼
[||Y||2

n
1�m(�)

c

]
=

1

n

n∑
i=1

𝔼

[(
b(Xi) + �i

)2
1�m(�)

c

]

= 𝔼

[
1

n

n∑
i=1

b(Xi)
21�m(�)

c

]
+ �2

ℙ
[
�m(�)

c
]
.

𝔼
[||Y||2

n
1�m(�)

c

]
≤ 𝔼

[(
1

n

n∑
i=1

b(Xi)
2

)r ] 1

r

ℙ
[
�m(�)

c
] 1

r� + �2
ℙ
[
�m(�)

c
]

≤ 𝔼

[
1

n

n∑
i=1

b(Xi)
2r

] 1

r

ℙ
[
�m(�)

c
] 1

r� + �2
ℙ
[
�m(�)

c
]

≤ ||b||2
L2r(�)

n
−

h(�)

�r�
+

1

r� + �2 n
−

h(�)

�
+1
,



754	 F. Dussap 

1 3

and if b ∈ L∞(�) , the last inequality also holds for r = ∞ and r� = 1 (just take the 
limit as r → +∞ ). Hence, we obtain:

If we choose � such that h(�) ≥ (2r� + 1)� , then all the exponents of n in (15) and 
(17) are less than −1 . The function h is an increasing function from [0, 1] to itself so 
it is invertible on [0,  1]. Since � ∈ (0,

1

2r�+1
) , we can choose 

� = �(�, r�)∶=h−1((2r� + 1)�) . For this choice, we obtain:

where Cn(�, �) and C�(�) were defined at the beginning of the proof, and are as 
follows:

	�  ◻

7.3 � Proof of Theorem 2

The proof of Theorem 2 is based on a result for fixed design regression of Baraud 
(2000). Let M̂n be a finite collection of models, that may depend on (X1,… ,Xn) , 
such that for all m ∈ M̂n , Ĝm is invertible. Let m̂ ∈ M̂n be the minimizer of the fol-
lowing penalized least squares criterion:

Theorem 4  (Corollary 3.1 in Baraud (2000)) If �||�1||q is finite for some q > 4 , then 
the following upper bound on the risk of the estimator b̂m̂ with m̂ defined by (19) 
holds:

with:
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where C(�)∶=(2 + 8�−1)(1 + �) and C�(�, q) is a positive constant.

Theorem 2  Let 𝛥n,𝛼,𝛽∶={M
(1)
n,𝛼

⊂ �M
(1)

n,𝛽
} , we have:

For the first term, on �n,�,� we have inf
m∈M̂

(1)

n,�

(…) ≤ infm∈M(1)
n,�
(…) so by applying 

Theorem 4 we obtain:

For the second term, we have:

Using Hölder’s inequality with r, r� ∈ (1,∞) such that 1
r
+

1

r�
= 1 , we obtain:

and if b ∈ L∞(�) , the inequality also holds for r = ∞ and r� = 1 . Since b̂m̂1
 is the 

empirical projection of Y on Sm̂1
 , we have |||
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2

n
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n
 . Hence, we get:

To conclude, we give an upper bound on ℙ
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+ 2

|||
|||b̂m̂1

|||
|||
2

n
1𝛥c

n,𝛼,𝛽
.

𝔼

[
||b||2

n
1�c

n,�,�

]
≤ 𝔼

[(
1

n

n∑
i=1

b(Xi)
2

)r]1∕r

ℙ

[
�c
n,�,�

]1∕r�
≤ ||b||2

L2r(�)
ℙ

[
�c
n,�,�

]1∕r�
,

(20)

𝔼

[|||
|||b̂m̂1

|||
|||
2

n
1𝛥c

n,𝛼,𝛽

]
≤ 𝔼

[
||Y||2

n
1𝛥c

n,𝛼,𝛽

]
= 𝔼

[
1

n

n∑
i=1

b(Xi)
21𝛥c

n,𝛼,𝛽

]
+ 𝜎2

ℙ

[
𝛥c
n,𝛼,𝛽

]

≤ ||b||2
L2r(𝜇)

ℙ

[
𝛥c
n,𝛼,𝛽

] 1

r�

+ 𝜎2
ℙ

[
𝛥c
n,𝛼,𝛽

]
.

ℙ

[
�c
n,�,�

]
= ℙ

[
∃m ∈ ℕ

p

+, m ∈ M
(1)
n,�

and m ∉ M̂
(1)

n,�

]

≤

∑
m∈M(1)

n,�

ℙ

[
m ∈ M

(1)
n,�

and m ∉ M̂
(1)

n,�

]
.
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we get:

Using Lemma 3 with the inequality K∞
�
(m)

|||
|||G

−1
m

|||
|||op ≤ � n

log n
 for m ∈ M

(1)
n,�

 , we 
obtain:

Hence, we get:

Using Proposition 4 in appendix, we obtain:

with Hn∶=
∑n

k=1

1

k
 and �(�, �)∶=

h(1−
�

�
)

�
− 2 . We know that Hn ∼ log n , so we want 

a condition on � such that the �(�, �) is strictly greater than r′ . Let x∶= �

�
≥ 1 , we 

have:

m ∈ M
(1)
n,𝛼

and m ∉ �M
(1)

n,𝛽

⊂ K∞
𝜈
(m)

(|||
|||G

−1
m

|||
|||op ∨ 1

)
≤ 𝛼

n

log n
∩ K∞

𝜈
(m)

(||||
||||
�G
−1

m

||||
||||op ∨ 1

)
≥ 𝛽

n

log n

⊂

||||
||||
�G
−1

m

||||
||||op

|||
|||G

−1
m

|||
|||op

≥
𝛽

𝛼
= 𝜆min(

�Gm) ≤
𝛼

𝛽
𝜆min(Gm),

(21)ℙ

[
�c
n,�,�

]
≤

∑
m∈M(1)

n,�

ℙ

[
�min(Ĝm) ≤

�

�
�min(Gm)

]
.

∀m ∈ M
(1)
n,�
, ℙ

�
�min(Ĝm) ≤

�

�
�min(Gm)

�
≤ Dm exp

⎛
⎜⎜⎜⎝
h(1 −

�

�
)

n

K∞
�
(m)

���
���G

−1
m

���
���op

⎞⎟⎟⎟⎠
≤ Dm n

−h(1−
�

�
)∕�

.

ℙ

[
�c
n,�,�

]
≤

∑
m∈M(1)

n,�

Dm n
−h(1−

�

�
)∕�

≤ Card (M(1)
n,�
) n

1−h(1−
�

�
)∕�

.

ℙ

[
�c
n,�,�

]
≤ n

2−h(1−
�

�
)∕�

Hp−1
n

= n−�(�,�)Hp−1
n

,
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The function:

is decreasing on [1,+∞) , we have f𝛽,r� (1) > 1 and f�,r� (x) → 0 when x → +∞ , so 
there exists a unique x�,r� ∈ (1,+∞) such that f�,r� (x�,r� ) = 1 . Thus, we have:

where ��,r�∶=
�

x�,r�
 . Hence, if � ∈ (0, ��,r� ) then we have:

with 𝜅(𝛼,𝛽)
r�

> 1 and �(�,�)
r�

→ 1 as � → ��,r′.	�  ◻

Remark 7  If we use the collections M(2)
n,�

 and M̂
(2)

n,�
 instead, we obtain the inequal-

ity (21) with � and � replaced by ��∶=
√
� and ��∶=

√
� . The rest of the proof is 

unchanged.

Remark 4  We have ��,r�∶=
�

x�,r�
 where x�,r′ is the unique solution in (1,+∞) of the 

equation f�,r� (x) = 1 with:

Hence, x� satisfies the relation:

Since the functions f�,r′ are decreasing on (1,+∞) and since ∀x , f�,r� (x) is increas-
ing with � and r′ , we see that x�,r′ is increasing with � and r′ . Thus, the limits of x�,r′ 
when � → 0 and � → +∞ exist. Using the relation (23), we obtain:

and we have x�,r� ∼ (2 + r�)� when � → +∞ . Thus, the limits of ��,r′ are:

(22)

𝜅(𝛼, 𝛽) > r� ⟺ h

(
1 −

𝛼

𝛽

)
> (2 + r�)𝛼

⟺ 1 −
𝛼

𝛽
+

𝛼

𝛽
log

(
𝛼

𝛽

)
> (2 + r�)𝛼

⟺ 1 −
1 + log(x)

x
>

(2 + r�)𝛽

x

⟺
1 + (2 + r�)𝛽 + log(x)

x
< 1.

f�,r� (x)∶=
1 + (2 + r�)� + log(x)

x
,

(22) ⟺ x ∈ (x�,r� ,+∞) ⟺ � ∈ (0, ��,r� ),

ℙ

[
�c
n,�,�

]1∕r�
≤ n

−
�(�,�)

r� H
p−1

r�

n ,

f�,r� (x)∶=
1 + (2 + r�)� + log x

x
.

(23)x�,r� − log x�,r� = 1 + (2 + r�)�.

lim
�→0

x�,r� = 1, lim
�→+∞

x�,r� = +∞, lim
r�→∞

x�,r� = +∞,
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Since x�,r′ is increasing with r′ , we see that ��,r′ is decreasing with r′ . Finally, using 
the relation (23) again, we have:

It is easy to see that the function x ↦ 1 −
1

x
−

log x

x
 is increasing on [1,+∞) so ��,r′ is 

also increasing with � . 	�  ◻

7.4 � Proof of Theorem 3

Before proving Theorem 3, we need some preliminary results.

Lemma 4  For all x > 0 and all m ∈ ℕ
p

+ we have:

Proof  The set {�j ∶ j ≤ m − 1} has cardinality Dm so let {�1,… ,�Dm
} be its ele-

ments. We define the matrix Ĥm as:

and we denote its expectation Hm , of which the components are ⟨�j,�k⟩� . In other 
words, we have reshaped the hypermatrices Ĝm and Gm into Dm × Dm matrices. 
Moreover, this operation preserves the operator norm:

Indeed, let d∶=Dm , we have:

lim
�→0

��,r� = 0, lim
�→+∞

��,r� =
1

2 + r�
, lim

r�→+∞
��,r� = 0.

��,r� =
�

x�,r�
=

1

2 + r�

(
1 −

1

x�,r�
−

log x�,r�

x�,r�

)
.

ℙ

����
���Ĝm −Gm

���
���op ≥ x

�
≤ Dm exp

�
−nx2∕2

K∞
�
(m)

�����Gm
����op + 2

3
x
�
�

≤ Dm exp

⎛⎜⎜⎝
−nx2∕2

K∞
�
(m)

����
���
d�

d�

���
���∞ +

2

3
x
�
⎞⎟⎟⎠
.

∀j, k ∈ {1,… ,Dm},
�
Ĥm

�
j,k
∶=⟨�j,�k⟩n,

||||Gm
||||op = ||||Hm

||||op.
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Since the sets {�j ∶ j ≤ m − 1} and {�1,… ,�d} are equal, these two quantities are 
also equal. Hence, we have:

so we work on Ĥm and Hm from now on. We write:

and we use the Matrix Bernstein bound (Theorem 6 in appendix). 

1.	 Bound on ||||Zi
||||op : 

 where the last inequality comes from Lemma 2. Hence, ||||Zi
||||op ≤ R , with 

R∶=
K∞
�
(m)

n
.

2.	 Bound on ���
���
∑n

i=1
�
�
Z2
i

����
���op : 

 since �Zi = 0 . We compute the variance: 

����Gm
����op = sup

a ∈ ℝ
m

��a��
ℝm = 1

���
���Gm ×p a

���
���
2

ℝm
= sup

a ∈ ℝ
m

��a��
ℝm = 1

�
�≤m−1

� �
k≤m−1

⟨�� ,�k⟩ak
�2

,

����Hm
����op = sup

a ∈ ℝ
d

��a��
ℝd = 1

����Hma
����2ℝd = sup

a ∈ ℝ
d

��a��
ℝd = 1

d�
j=1

�
d�
i=1

⟨�j,�i⟩ai
�2

.

|||
|||Ĝm −Gm

|||
|||op =

|||
|||Ĥm −Hm

|||
|||op,

�Hm −Hm =

n�
i=1

Zi, Zi∶=
1

n

�
ViV

⊤
i
− �

�
ViV

⊤
i

��
, Vi∶=

⎡⎢⎢⎣

𝜙1(Xi)

⋮

𝜙Dm
(Xi)

⎤⎥⎥⎦
,

1

n

|||
|||ViV

⊤
i

|||
|||op =

1

n
||||Vi

||||2 = 1

n

Dm∑
j=1

𝜙j(Xi)
2
≤

K∞
𝜈
(m)

n
,

||[||
] n∑
i=1

�
[
Z2
i

]
op

= sup
||a||=1

n∑
i=1

�

[||||Zi a
||||2

]
= sup

||a||=1

n∑
i=1

Dm∑
j=1

�

[
(Zi a)

2
j

]

= sup
||a||=1

n∑
i=1

Dm∑
j=1

Var
[
(Zi a)j

]
,
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 where ta∶=
∑Dm

k=1
ak �k . Using Lemmas 1 and 2 yields: 

 Hence, ���
���
∑n

i=1
�
�
Z2
i

����
���op ≤

1

n
K∞
�
(m)����Gm

����op=∶v.
Applying Theorem 6 yields:

which is the first inequality of Lemma 4. The second inequality follows from the fol-
lowing upper bound on ||||Gm

||||op:

	�  ◻

In order to prove Theorem 3, let us consider the events:

where �m(�) is defined by (2).

Lemma 5  For � ∈ {1, 2} , we have for all � ∈ (0, 1) and all 𝛾 > 0:

where Hn∶=
∑n

k=1

1

k
 is the n-th harmonic number.

Proof  We use Proposition 3 with Remark 1:

Var
�
(Zi a)j

�
= Var

�
1

n
�j(Xi)

Dm�
k=1

�k(Xi) ak

�
≤

1

n2
�

⎡
⎢⎢⎣

�
�j(Xi)

Dm�
k=1

�k(Xi) ak

�2⎤
⎥⎥⎦

=
1

n
�
�
�j(Xi)

2 ta(Xi)
2
�
,

n∑
i=1

Dm∑
j=1

Var
[
(Zi a)j

]
≤

1

n2

n∑
i=1

�

[
Dm∑
j=1

�j(Xi)
2 ta(Xi)

2

]
≤

1

n
K∞
�
(m) ||||ta||||2�

≤
1

n
K∞
�
(m)K�

�
(m) ||||ta||||2�

=
1

n
K∞
�
(m) ||||Gm

||||op ||a||2.

ℙ

[|||
|||Ĥm −Hm

|||
|||op ≥ x

]
≤ Dm exp

(
−

nx2∕2

K∞
�
(m)

(||||Gm
||||op + 2

3
x
)
)
,

||||Gm
||||op = sup

t∈Sm⧵{0}

||t||2
�

||t||2
�

≤
||||
||||
d�

d�

||||
||||∞.

(24)𝛬(𝜄)
n
(𝛽, 𝛾)∶=�M

(𝜄)

n,𝛽
⊂ M

(𝜄)
n,𝛾
, �𝛺(𝜄)

n
(𝛿, 𝛾)∶=

⋂
m∈M(𝜄)

n,𝛾

𝛺m(𝛿), 𝜄 ∈ {1, 2},

ℙ

[
�̃(�)

n
(�, �)c

]
≤ n

−
h(�)

�
+2

Hp−1
n

,
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where the last inequality comes from Proposition 4.	�  ◻

Lemma 6  (Compact case) We have for all 𝛾 > 𝛽 > 0:

where h(�) = � + (1 − �) log(1 − �) , f0 > 0 is such that d�
d�
(x) ≥ f0 for all x ∈ A and 

Hn∶=
∑n

k=1

1

k
.

Proof  We start with a union bound:

We have the following inclusion of events:

hence we obtain:

ℙ

�
�̃(�)

n
(�, �)c

�
≤

�
m∈M(�)

n,�

ℙ
�
�m(�)

c
�
≤

�
m∈M(�)

n,�

Dm exp

�
−h(�)

n

K∞
�
(m)

�

≤

�
m∈M(�)

n,�

Dm exp

⎛
⎜⎜⎜⎝
−h(�)

n

K∞
�
(m)

���
���G

−1
m

���
���op

⎞
⎟⎟⎟⎠

≤

�
m∈M(�)

n,�

Dm n
−

h(�)

� ≤ n
−

h(�)

�
+2

Hp−1
n

,

ℙ
[
�(1)

n
(�, �)c

]
≤ n

−h(1−
�

�
)
f0

�
+1

Hp−1
n

,

ℙ
[
�(1)

n
(�, �)c

]
= ℙ

[
∃m ∈ ℕ

p

+, m ∈ M̂
(1)

n,�
and m ∉ M

(1)
n,�

]

≤

∑
m ∈ ℕ

p

+

K∞
�
(m) ≤ � n

log n

ℙ

[
m ∈ M̂

(1)

n,�
and m ∉ M

(1)
n,�

]
.

m ∈ �M
(1)

n,𝛽
and m ∉ M

(1)
n,𝛾

⊂ K∞
𝜈
(m)

(||||
||||
�G
−1

m

||||
||||op ∨ 1

)
≤ 𝛽

n

log n
∩ K∞

𝜈
(m)

(|||
|||G

−1
m

|||
|||op ∨ 1

)
≥ 𝛾

n

log n

⊂

|||
|||G

−1
m

|||
|||op

||||
||||
�G
−1

m

||||
||||op

≥
𝛾

𝛽
⊂ 𝜆min(

�Gm) ≥
𝛾

𝛽
𝜆min(Gm),

ℙ
[
�(1)

n
(�, �)c

]
≤

∑
m ∈ ℕ

p

+

K∞
�
(m) ≤ � n

log n

ℙ

[
�min(Ĝm) ≥

�

�
�min(Gm)

]
.
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We apply inequality (30) of Theorem 5 with R =
1

n
K∞
�
(m):

In the compact case, we have |||
|||G

−1
m

|||
|||op ≤

1

f0
 , see (3). Using Proposition 4, we obtain:

	�  ◻

Lemma 7  (General case) We have for all 𝛾 > 𝛽 > 0:

where C(�, �)∶=
�
1 −

√
�∕�

�2

 , B∶=
(|||
|||
d�

d�

|||
|||∞ +

2

3

)−1 and Hn∶=
∑n

k=1

1

k
.

Proof  We start with a union bound:

We have the following inclusion of events:

Let �∶=
√

�

�
− 1 and let � ∈ (0, 1) . We consider the following decomposition:

ℙ

�
�min(Ĝm) ≥

�

�
�min(Gm)

�
≤ exp

⎛
⎜⎜⎜⎝
−h

�
1 −

�

�

�
n

K∞
�
(m)

���
���G

−1
m

���
���op

⎞
⎟⎟⎟⎠
.

ℙ
[
�(1)

n
(�, �)c

]
≤

∑
m ∈ ℕ

p

+

K∞
�
(m) ≤ � n

log n

n
−h(1−

�

�
)
f0

� ≤ n
−h(1−

�

�
)
f0

�
+1
Hp−1

n
.

ℙ
[
�(2)

n
(�, �)c

]
≤ n

−C(�,�) B

2�
+2

Hp−1
n

,

ℙ
[
�(2)

n
(�, �)c

]
= ℙ

[
∃m ∈ ℕ

p

+, m ∈ M̂
(2)

n,�
and m ∉ M

(2)
n,�

]

≤

∑
m ∈ ℕ

p

+

K∞
�
(m) ≤ � n

log n

ℙ

[
m ∈ M̂

(2)

n,�
and m ∉ M

(2)
n,�

]
.

m ∈ �M
(2)

n,𝛽
and m ∉ M

(2)
n,𝛾

⊂ {K∞
𝜈
(m)

�����
����
�G
−1

m

����
����
2

op

∨ 1

�
≤ 𝛽

n

log n
} ∩ K∞

𝜈
(m)

����
���G

−1
m

���
���
2

op
∨ 1

�
≥ 𝛾

n

log n

⊂ {K∞
𝜈
(m)

����
����
�G
−1

m

����
����
2

op

≤ 𝛽
n

log n
} ∩ K∞

𝜈
(m)

����
����
�G
−1

m
−G−1

m

����
����
2

op

≥
�√

𝛾 −
√
𝛽
�2 n

log n

⊂ {
����
����
�G
−1

m

����
����
2

op

≤
𝛽

K∞
𝜈
(m)

n

log n
} ∩ {

����
����
�G
−1

m
−G−1

m

����
����op ≥

��
𝛾

𝛽
− 1

�����
����
�G
−1

m

����
����op}.

||||
||||Ĝ

−1

m
−G−1

m

||||
||||op ≥ �

||||
||||Ĝ

−1

m

||||
||||op = E1 ∪ E2,
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with:

–	 For E1 , we apply Lemma 9 with A∶=Ĝm and B∶=Gm − Ĝm : 

–	 For E2 , we have directly: 

Thus, we obtain:

We now choose � maximizing (1 − �)� ∧ � . This maximum is achieved when 
� = (1 − �)� , that is:

Thus, we obtain:

E1∶={
||||
||||
�G
−1

m
−G−1

m

||||
||||op ≥ 𝜂

||||
||||
�G
−1

m

||||
||||op} ∩

||||
||||
�G
−1

m
(Gm − �Gm)

||||
||||op < 𝜖,

E2∶={
||||
||||
�G
−1

m
−G−1

m

||||
||||op ≥ 𝜂

||||
||||
�G
−1

m

||||
||||op} ∩ {

||||
||||
�G
−1

m
(Gm − �Gm)

||||
||||op ≥ 𝜖}.

E1 ⊂

||||
||||
�G
−1

m

||||
||||
2

op

|||
|||�Gm −Gm

|||
|||op

1 −
||||
||||
�G
−1

m
(Gm − �Gm)

||||
||||op

≥ 𝜂
||||
||||
�G
−1

m

||||
||||op ∩

||||
||||
�G
−1

m
(Gm − �Gm)

||||
||||op < 𝜖

⊂
||||
||||
�G
−1

m

||||
||||op

|||
|||�Gm −Gm

|||
|||op ≥ (1 − 𝜖)𝜂.

E2 ⊂ {
||||
||||
�G
−1

m
(Gm − �Gm)

||||
||||op ≥ 𝜖} ⊂ {

||||
||||
�G
−1

m

||||
||||
|||
|||Gm − �Gm

|||
|||op ≥ 𝜖}.

∀𝜖 ∈ (0, 1), E1 ∪ E2 ⊂
||||
||||
�G
−1

m

||||
||||op

|||
|||Gm − �Gm

|||
|||op ≥ (1 − 𝜖)𝜂 ∧ 𝜖.

� =
�

1 − �
= 1 −

√
�∕�=∶c(�, �) ∈ (0, 1).

ℙ
�
�(2)

n
(�, �)c

�

≤

�
m ∈ ℕ

p

+

K∞
�
(m) ≤ � n

log n

ℙ

⎡⎢⎢⎢⎢⎣

����
����Ĝ

−1

m

����
����
2

op

≤
�

K∞
�
(m)

n

log n
∩
���
���Ĝm −Gm

���
���op ≥

c(�, �)
����
����Ĝ

−1

m

����
����op

⎤⎥⎥⎥⎥⎦

≤

�
m ∈ ℕ

p

+

K∞
�
(m) ≤ � n

log n

ℙ

⎡⎢⎢⎣
���
���Ĝm −Gm

���
���op ≥ c(�, �)

�
K∞
�
(m)

�

log n

n

⎤⎥⎥⎦
.
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Let x∶=c(�, �)
√

K∞
�
(m)

�

log n

n
 and notice that x ≤ 1 if K∞

�
(m) ≤ � n

log n
 . We apply 

Lemma 4 and Proposition 4:

where B∶=(|||
|||
d�

d�

|||
|||∞ +

2

3
)−1.	�  ◻

Now we can prove Theorem 3.

Theorem 3  Let � ∈ (0, 1) and 𝛾 > 𝛽 be constants to be chosen later. Let us intro-
duce the event � (�)

n
(�, � , �)∶=�(�)

n
(�, �) ∩ �̃(�)

n
(�, �) where �(�)

n
(�, �) and �̃(�)

n
(�, �) are 

defined by (24). On the event � (�)
n
(�, � , �) , for all m ∈ M

(�)
n,�

 , for all t ∈ Sm we have:

Taking the expectation yields for all t ∈ Sm:

On the event � (�)
n
(�, � , �)c , we use inequalities (12) and (16):

Using Hölder’s inequality as we did in (20), we obtain:

ℙ
[
�(2)

n
(�, �)c

]

≤

∑
m ∈ ℕ

p

+

K∞
�
(m) ≤ � n

log n

Dm exp

(
−
n

2
c2(�, �)

K∞
�
(m)

�

log n

n

[
K∞
�
(m)

(
||[||

]d�
d� ∞

+
2

3
x

)]−1)

≤

∑
m ∈ ℕ

p

+

K∞
�
(m) ≤ � n

log n

Dm n
−c2(�,�) B

2� ≤ n
−c2(�,�) B

2�
+2

Hp−1
n

,

|||
|||b − b̂m̂𝜄

|||
|||
2

𝜇
≤ 2||b − t||2

𝜇
+ 2

|||
|||b̂m̂𝜄

− t
|||
|||
2

𝜇

≤ 2||b − t||2
𝜇
+

2

1 − 𝛿

|||
|||b̂m̂𝜄

− t
|||
|||
2

n

≤ 2||b − t||2
𝜇
+

4

1 − 𝛿
||b − t||2

n
+

4

1 − 𝛿

|||
|||b − b̂m̂𝜄

|||
|||
2

n
.

(25)�

[|||
|||b − b̂m̂𝜄

|||
|||
2

𝜇
1𝛯 (𝜄)

n (𝛽,𝛾 ,𝛿)

]
≤

(
2 +

4

1 − 𝛿

)
||b − t||2

𝜇
+

4

1 − 𝛿
�
|||
|||b − b̂m̂𝜄

|||
|||
2

n
.

|||
|||b − b̂m̂𝜄

|||
|||
2

𝜇
≤ 2 ||b||2

𝜇
+ 2

|||
|||b̂m̂𝜄

|||
|||
2

𝜇
≤ 2 ||b||2

𝜇
+ 2K𝜇

n
(m̂𝜄)||Y||2n

≤ 2 ||b||2
𝜇
+ 2K∞

𝜈
(m̂𝜄)

||||
||||
�G
−1

m̂𝜄

||||
||||op||Y||

2
n

≤ 2 ||b||2
𝜇
+ 4𝛽

n

log n
||Y||2

n
.
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We see we need to control ℙ
[
� (�)

n
(�, � , �)c

]
 by a term of order n−2r�.

We have decomposed the risk as the sum of (25) and (26). We give different upper 
bounds on these two terms depending on whether we are in the compact case or the 
general case.

∙ Compact case. In equation (25), we apply Theorem 2: for all � ∈ (0, ��,r� ) we 
have:

with 𝜅(𝛼,𝛽)
r�

> 1 . To obtain an upper bound on (26), we apply Lemmas 5 and 6:

where h(�)∶=� + (1 − �) log(1 − �) and Hn∶=
∑n

k=1

1

k
 . In order to obtain a term of 

order n−2r� , we need:

Let us work on the last two conditions. Let x∶= 𝛾

𝛽
> 1 , the conditions on (�, �) 

become:

(26)
𝔼

[|||
|||b − b̂m̂𝜄

|||
|||
2

𝜇
1𝛯 (𝜄)

n (𝛽,𝛾 ,𝛿)c

]
≤ 2 ||b||2

𝜇
ℙ
[
𝛯 (𝜄)

n
(𝛽, 𝛾 , 𝛿)c

]

+ 8𝛽
n

log n

(
||b||2

L2r(𝜇)
ℙ
[
𝛯 (𝜄)

n
(𝛽, 𝛾 , 𝛿)c

]1∕r�
+ 𝜎2

ℙ
[
𝛯 (𝜄)

n
(𝛽, 𝛾 , 𝛿)c

])
.

�

[|||
|||b − b̂m̂1

|||
|||
2

𝜇
1𝛯 (1)

n (𝛽,𝛾 ,𝛿)

]

≤

(
2 +

4

1 − 𝛿

(
1 + C(𝜃)

))
inf

m∈Mn,𝛼

(
inf
t∈Sm

||b − t||2
𝜇
+ 𝜎2

Dm

n

)

+
4𝜎2

1 − 𝛿

𝛴(𝜃, q)

n
+

4

1 − 𝛿
C�
(||b||2

L2r(𝜇)
, 𝜎2

) (log n)(p−1)∕r�
n𝜅(𝛼,𝛽)∕r

�
,

ℙ
[
� (1)

n
(�, � , �)c

]
≤ ℙ

[
�̃(1)

n
(�, �)c

]
+ ℙ

[
�(1)

n
(�, �)c

]

≤

(
n
−

h(�)

�
+2

+ n
−h(1−

�

�
)
f0

�
+1

)
Hp−1

n
,

⎧⎪⎨⎪⎩

h(𝛿)

𝛾
− 2 > 2r�,

h
�
1 −

𝛾

𝛽

�
f0

𝛽
− 1 > 2r�,

⟺

�
h(𝛿) > 2(1 + r�)𝛾 ,

h
�
1 −

𝛾

𝛽

�
> (2r� + 1)

𝛽

f0
,

⟺

⎧⎪⎨⎪⎩

𝛿 > h−1
�
2(1 + r�)𝛾

�
,

𝛾 < 1

2(1+r�)
,

h
�
1 −

𝛾

𝛽

�
> (2r� + 1)

𝛽

f0
.
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The function x ↦ x log x − x + 1 is increasing on (1,+∞) and ranges from 0 to +∞ , 
so there exists xf0,𝛽 > 1 such that for all x > xf0,𝛽 we have x log x − x + 1 > (2r� + 1)

𝛽

f0
 . 

Hence, we need to choose x such that:

This is possible only if xf0,𝛽 < 1

(2r�+2)𝛽
 , that is if:

Let us introduce a new variable y∶=(2r� + 2)� and let R =
2r�+1

2r�+2
 , the last inequality 

becomes:

The function y ↦ R

f0
y +

1+log y

y
 is increasing on (0, 1), it tends to −∞ at 0 and for 

y = 1 it is greater than 1, so there exists yf0,r� ∈ (0, 1) such that the condition (28) is 
satisfied on (0, yf0,r� ) . To sum up, we have shown that there exists �f0,r� ∈ (0,

1

2r�+2
) 

such that for every 𝛽 < 𝛽f0,r′ , the condition (27) is not empty. We choose:

and we obtain that:

where 𝜆(𝛽, r, f0) > 1.

∙ General case. In equation (25), if we follow the proof of Theorem 2 (see Remark 
7), we see that if � ∈ (0, �2

�1∕2,r�
) then we have:

with 𝜅(𝛼
1
2 ,𝛽

1
2 )

r�
> 1 . Thus, we obtain:

{
x < 1

2(1+r�)𝛽
,

x log x − x + 1 > (2r� + 1)
𝛽

f0
.

(27)xf0,𝛽 < x <
1

(2r� + 2)𝛽
.

(2r� + 1)
𝛽

f0
<

1

(2r� + 2)𝛽
log

(
1

(2r� + 2)𝛽

)
−

1

(2r� + 2)𝛽
+ 1.

(28)
R

f0
y +

1 + log y

y
< 1.

�∶=�x, x satisfying (27), �∶=
1 + h−1

(
2(1 + r�)�

)
2

,

�

[|||
|||b − b̂m̂1

|||
|||
2

𝜇
1𝛯 (1)

n (𝛽,𝛾 ,𝛿)c

]
≤ C��(||b||L2r(𝜇), 𝛽, 𝜎

2) n−𝜆(𝛽,r,f0) (log n)
p−1

r�
−1,

�
|||
|||b − b̂m̂2

|||
|||
2

n
≤ C(𝜃)||b − t||2

𝜇
+ 𝜎2

Dm

n
+ 𝜎2𝛴(𝜃, q)

n

+ C�
(||b||2

L2r(𝜇)
, 𝜎2

) (log n)(p−1)∕r�

n𝜅(𝛼
1
2 ,𝛽

1
2 )∕r�

,
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To obtain an upper bound on (26), we apply Lemmas 5 and 7:

where C(�, �)∶=
�
1 −

√
�∕�

�2

 , B∶=(|||
|||
d�

d�

|||
|||∞ +

2

3
)−1 and Hn∶=

∑n

k=1

1

k
 . To obtain a 

term of order n−2r� , we need:

Let x∶=
√
�∕� ∈ (0, 1) , the conditions on (�, �) can be rewritten as:

We choose x maximizing this bound. This maximum is achieved when x2 = (1 − x)2
B

2
 , 

that is x =
√
B∕2

1+
√
B∕2

 . Finally, we choose:

and we obtain that for all � ∈ (0, �B,r� ) with:

we have:

�

[|||
|||b − b̂m̂2

|||
|||
2

𝜇
1𝛯 (2)

n (𝛽,𝛾 ,𝛿)

]

≤

(
2 +

4

1 − 𝛿

(
1 + C(𝜃)

))
inf

m∈M(2)
n,𝛼

(
inf
t∈Sm

||b − t||2
𝜇
+ 𝜎2

Dm

n

)

+
4𝜎2

1 − 𝛿

𝛴(𝜃, q)

n
+

4

1 − 𝛿
C�
(||b||2

L2r(𝜇)
, 𝜎2

) (log n)(p−1)∕r�

n𝜅(𝛼
1
2 ,𝛽

1
2 )∕r�

.

ℙ
[
� (2)

n
(�, � , �)c

]
≤ ℙ

[
�̃(2)

n
(�, �)c

]
+ ℙ

[
�(2)

n
(�, �)c

]

≤

(
n
−

h(�)

�
+2

+ n
−C(�,�) B

2�
+2
)
Hp−1

n
,

�
h(𝛿)

𝛾
− 2 > 2r�,

C(𝛽, 𝛾) B

2𝛽
− 2 > 2r�,

⟺

�
h(𝛿) > 2(1 + r�)𝛾 ,

C(𝛽, 𝛾)B
2
> 2(1 + r�)𝛽,

⟺

⎧
⎪⎨⎪⎩

𝛿 > h−1
�
2(1 + r�)𝛾

�
,

𝛾 < 1

2(1+r�)
,

C(𝛽,𝛾)B

4(1+r�)
> 𝛽.

{
𝛽

x2
< 1

2(1+r�)
,

𝛽 < (1 − x)2
B

4(1+r�)
,

⟺ 𝛽 <
1

2(1 + r�)

(
x2 ∧ (1 − x)2

B

2

)
.

x∶=

√
B∕2

1 +
√
B∕2

, �∶=
�

x2
, �∶=

1 + h−1
�
2(1 + r�)�

�
2

,

�B,r�∶=
1

2(1 + r�)

� √
B∕2

1 +
√
B∕2

�2

,



768	 F. Dussap 

1 3

where 𝜆(𝛽, r,B) > 1.	�  ◻

A Linear algebra

Lemma 8  Let E be a Euclidean vector space and let � ∶ E → ℝ
n be an injective lin-

ear map. For y ∈ ℝ
n , the solution of the problem:

is given by:

where �∗ ∶ ℝ
n
→ E is characterized by the relation ⟨y,�(a)⟩

ℝn = ⟨�∗(y), a⟩E.

Lemma 9  Let A , B be square matrices. If A is invertible and |||
|||A

−1B
|||
|||op < 1 , then 

A + B is invertible and it holds:

B Concentration inequalities

You can find the proofs of the following bounds in Tropp (2012) and Gittens and Tropp 
(2011).

Theorem  5  (Matrix Chernoff bound) Let Z1,… ,Zn be independent random self-
adjoint positive semi-definite matrices with dimension d, such that supk �max(Zk) ≤ R 
a.s. If we define:

then we have:

�

[|||
|||b − b̂m̂2

|||
|||
2

𝜇
1𝛯 (2)

n (𝛽,𝛾 ,𝛿)c

]
≤ C��(||b||L2r(𝜇), 𝛽, 𝜎

2) n−𝜆(𝛽,r,B) (log n)
p−1

r�
−1,

â∶= argmin a∈E ||y − �(a)||2
ℝn

â =
[
(𝓁∗

◦𝓁)−1◦𝓁∗
]
(y),

|||
|||(A + B)−1 − A−1|||

|||op ≤
|||
|||A

−1|||
|||
2

op
||B||op

1 −
|||
|||A

−1B
|||
|||op

.

�min∶=�min

(
n∑

k=1

�[Zk]

)
,

(29)

∀� ∈ (0, 1), ℙ

[
�min

(
n∑

k=1

Zk

)
≤ (1 − �)�min

]
≤ d ×

(
e−�

(1 − �)(1−�)

)�min∕R

,
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Theorem  6  (Matrix Bernstein bound) Let Z1,… ,Zn be independent random self-
adjoint positive semi-definite matrices with dimension d, such that �[Zk] = 0 and 
that supk �max(Zk) ≤ R a.s. If v > 0 is such that:

then for all x > 0 we have:

C Combinatorics

Proposition 4  For n ≥ 1 and p ≥ 2 we have:

where Hn∶=
∑n

k=1

1

k
 is the n-th harmonic number.

Proof  We compute:

	�  ◻

Theorem 7  (Divisor bound) Let N ∈ ℕ+ and let div(N) be the set of divisors of N. 
We have for all 𝜖 > 0:

(30)∀𝛿 > 0, ℙ

[
𝜆min

(
n∑

k=1

Zk

)
≥ (1 + 𝛿)𝜇min

]
≤

(
e𝛿

(1 + 𝛿)(1+𝛿)

)𝜇min∕R

.

|||||
|||||

n∑
k=1

�
[
Z2
k

]|||||
|||||op

≤ v,

ℙ

[
�max

(
n∑

k=1

Zi

)
≥ x

]
≤ d × exp

(
−x2∕2

v +
R

3
x

)
.

Card {m ∈ ℕ
p

+ |m1 ⋯mp ≤ n} ≤ nHp−1
n

,

Card {m ∈ ℕ
p

+ |Dm ≤ n} =

n∑
m1=1

⋯

n∑
mp=1

1m1⋯mp≤n

=

n∑
m1=1

⋯

n∑
mp=1

1mp≤
n

m1⋯mp−1

=

n∑
m1=1

⋯

n∑
mp−1=1

⌈
n

m1 ⋯mp−1

⌉

≤

n∑
m1=1

⋯

n∑
mp−1=1

n

m1 ⋯mp−1

= nHp−1
n

.

Card
(
div(N)

)
= o (N�).
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As a consequence, we have for all 𝜖 > 0:

A proof of this result can be found in Tao (2008).
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