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Abstract
In this paper we study generalized semi-Markov high dimension regression mod-
els in continuous time, observed at fixed discrete time moments. The generalized 
semi-Markov process has dependent jumps and, therefore, it is an extension of the 
semi-Markov regression introduced in Barbu et  al. (Stat Inference Stoch Process 
22:187–231, 2019a). For such models we consider estimation problems in nonpara-
metric setting. To this end, we develop model selection procedures for which sharp 
non-asymptotic oracle inequalities for the robust risks are obtained. Moreover, we 
give constructive sufficient conditions which provide through the obtained oracle 
inequalities the adaptive robust efficiency property in the minimax sense. It should 
be noted also that, for these results, we do not use neither sparse conditions nor the 
parameter dimension in the model. As examples, regression models constructed 
through spherical symmetric noise impulses and truncated fractional Poisson pro-
cesses are considered. Numerical Monte-Carlo simulations confirming the theoreti-
cal results are given in the supplementary materials.

Keywords Regression model · Generalized semi-Markov processes · Fractional 
Poisson processes · Non-asymptotic estimation · Robust estimation · Model 
selection · Sharp oracle inequalities · Asymptotic efficiency · Adaptive estimation

1 Introduction

1.1  Motivations

In this paper we study the following linear regression model in continuous time
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where the functions (�j)1≤j≤q are known linear independent 1-periodic ℝ → ℝ func-
tions, the duration of observations T is an integer number and (�t)t≥0 is an unobserv-
able noise process defined in Sect. 2. The process (1) is observed only at the fixed 
time moments

where the observation frequency p is some fixed integer number. We consider the 
model (1) in the case when the parameter dimension is greater than the number of 
observations, i.e., q > n . Such models are called big data or high dimension regres-
sion in continuous time (see, for example, Fujimori, 2019 for diffusion processes). 
The problem is to estimate the unknown parameters (�j)1≤j≤q on the basis of the 
observations (2). Usually for such problems one uses either the Lasso algorithm or 
the Dantzig selector method. It should be emphasized that to apply these methods 
one needs to assume sparsity conditions which provide the nonlarge (“reasonable”) 
number of the nonzero unknown parameters and, moreover, the parameter dimen-
sion q must be known (see, for example, Hastie et  al., 2008). It should be noted 
also that the case of unknown parameter dimension q is one of the crucial points in 
important practical problems such as, for example, signal and image statistical pro-
cessing (see, for example, Beltaief et al., 2020 and the references therein).

For the model (1) we consider a nonparametric setting, i.e., this is the setting for 
the estimation problem of the function

i.e.,

where S is an unknown 1-periodic function, S ∶ ℝ → ℝ, such that the restriction 
of S to the interval [0,  1] belongs to L2[0, 1]. This model means that we observe 
T times, i.e. on the interval [0,  T],   the same function S defined on [0,  1],   with 
values in ℝ. Here we do not assume neither sparsity conditions, nor the condition 
that the parameter dimension is known; in particular, we can assume that q = +∞. 
Now the problem is to estimate the unknown function S in the model (3) on the 
basis of observations (2). Originally, such problems were considered in the frame-
work “signal+white noise” models (see, for example, Ibragimov and Khasminskii, 
1981; Kutoyants, 1994; Pinsker, 1981). Later, these models were extended to the 
“colour noise” models defined through non Gaussian Ornstein-Uhlenbeck pro-
cesses (see Barndorff-Nielsen and Shephard, 2001; Konev and Pergamenshchikov, 
2012, 2015). The problem here is that the dependence defined on the basis of the 

(1)dyt =

(
q∑
j=1

�j�j(t)

)
dt + d�t , 0 ≤ t ≤ T ,

(2)(ytj )0≤j≤n , tj =
j

p
and n = pT ,

S(t) =

q∑
j=1

�j�j(t) ,

(3)dyt = S(t)dt + d�t , 0 ≤ t ≤ T ,
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Ornstein-Uhlenbeck processes disappears very fast, i.e., at a geometric rate. This 
means that such models are asymptotically equivalent to models with independent 
observations. To keep the dependence in the observations for large time periods for 
the estimation problem on the complete data, in the article (Barbu et al., 2019a) it is 
proposed to define the model (3) through semi-Markov processes with jumps. Such 
models considerably extend the potential applications of statistical results in many 
important practical fields such as finance, insurance, signals and image process-
ing, reliability, biology (see, for example, Barbu et al., 2019a; Barbu and Limnios, 
2008 and the references therein). In this paper we extend the semi-Markov regres-
sion models to the generalized semi-Markov processes by introducing an additional 
dependence in jump sizes of (�t)t≥0.

1.2  Methods

In order to estimate the 1-periodic function S defined on the interval [0,  1],   we 
develop model selection methods using the quadratic risks defined as

where ŜT (⋅) is some estimate based on T periods of the observations of the model 
(3) (i.e. any 1—periodical function measurable with respect to the observations 
�{yt0 ,… ytn} given in (2)) and �Q,S is the expectation with respect to the distribu-
tion �Q,S of the process (3) corresponding to the unknown noise distribution Q in 
the Skorokhod space D[0, T] and to the function S. We assume that this distribution 
belongs to some distribution family QT specified in Sect.  2. To study the proper-
ties of the estimators uniformly over the noise distribution (what is really needed in 
practice), we use the robust risk defined as

It should be noted that statistical procedures that are optimal in the sense of this risk 
possess stable mean square accuracy uniformly over all possible admissible noise 
distributions in the model (3). This means that the corresponding statistical optimal 
algorithms have high noise immunity and, therefore, significantly improve the qual-
ity and reliability of statistical inference obtained on their basis.

To construct model selection procedures on the basis of the discrete data (2) we 
use the approach proposed in Konev and Pergamenshchikov (2015). It should be 
noted that the main analytic tool in that paper is based on the exponential decrease 
rate of the dependence in Ornstein-Uhlenbeck models, and, therefore, we cannot 
apply those methods to the semi-Markov models of the current work, since these 
models can retain a dependence in noises for a long time. So, in this paper, to study 
the estimation problem based on the discrete observations (2) for the model (3) with 
noises defined through semi-Markov processes, we develop new methods based on 
the special renewal theory from Barbu et al. (2019a); based on these techniques we 

(4)RQ(ŜT , S) = �Q,S ‖ŜT − S‖2 , ‖f‖2 = ∫
1

0

f 2(s)ds ,

(5)R∗
T
(ŜT , S) = sup

Q∈QT

RQ(ŜT , S) .
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can analyse the approximation errors in the discrete observations and obtain non-
asymptotic sharp oracle inequalities. Moreover, as a consequence, we found con-
structive sufficient conditions on the observation frequency that provide the robust 
efficiency for proposed model selection procedures in an adaptive setting, i.e., in the 
case when the regularity properties of the function S are unknown.

1.3  Main contributions of this paper

As previously mentioned, in this paper we use for the first time nonparametric adap-
tive methods for estimation problems in the framework of the big data generalized 
semi-Markov regression models. To this end, we develop model selection proce-
dures and corresponding analytical tools providing, under some constructive suffi-
cient conditions, the optimality in the sharp oracle inequality sense and the robust 
adaptive efficiency in the minimax sense for the proposed estimators. It turns out 
that these conditions hold true for important practical cases such as, for example, 
regression models constructed through truncated fractional Poisson processes intro-
duced in Barbu et al. (2019b). Moreover, in this paper, we extend for the first time 
the model from Barbu et  al. (2019a) using the generalized semi-Markov models 
obtained by introducing a dependence structure in the sizes of the jumps. As an 
example, we use spherically symmetric random variables, which play very impor-
tant role in many practical applications (see, for example, Fourdrinier and Perga-
menshchikov, 2007 and the references therein).

1.4  Organization of the paper

The rest of the paper is organized as follows. In Sect. 2 we state the main condi-
tions under which we consider the model (3). In Sect. 3 we present the truncated 
fractional Poisson process and its main properties. In Sect.  4 we construct model 
selection procedures on the basis of weighted least squares estimates. In Sect. 5 we 
state the main results. In Sect. 6 we develop the stochastic calculus for the general-
ized semi-Markov processes. Section 7 gives the proofs of the main results. Some 
auxiliary tools are given in an Appendix.

2  Main conditions

First, we assume that the noise process (�t)t≥ 0 in the model (3) is defined as

where �1 , �2 and �3 are unknown coefficients, (wt)t≥ 0 is a standard Brownian motion, 
Lt = ∫ t

0
∫
ℝ∗

x(�(ds, dx) − �̃(ds, dx)) , �(ds dx) is the jump measure with deterministic 
compensator �̃(ds dx) = ds�(dx) , �(⋅) is the Lévy measure on ℝ∗ = ℝ ⧵ {0} (see, 
for example, Liptser and Shiryaev, 1989 for details), with

(6)�t = �1wt + �2Lt + �3zt ,
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Here we use the usual notations for �(|x|m) = ∫
ℝ
|z|m �(dz) . Note that �(|x|) may 

be equal to +∞ . In this paper we assume that the “dependent part” in the noise (6) is 
modelled by the generalized semi-Markov process (zt)t≥ 0 defined as

where (�i)i≥ 1 are random variables satisfying the following conditions:
(�1) For any i ≥ 1, we have � �i = 0 , � �2

i
= 1 and 𝜁∗ = supl≥1 � 𝜁4

l
< ∞;

(�2) � �i �j = 0 for any i ≠ j;
(�3) For any 1 ≤ k1 < k2 < k3 < k4, the random variables (�ki )1≤i≤4 are such that 

� �
�1
k1
�
�2
k2
�
�3
k3
�
�4
k4
= 0 for any �1,… , �4 ∈ {0, 1, 2, 3} for which 3 ≤ ∑4

i=1
�i ≤ 4 and at 

least one among them is equal to one.
Now we give some examples for the correlation conditions (�1)–(�3) . To 

this end, we first remind the definition of spherically symmetric distribution 
(see, for example, Fourdrinier and Pergamenshchikov, 2007). A random vec-
tor � = (�1,… , �d)

� is called spherically symmetric if its density in ℝd has the 
form �(| ⋅ |2) for some nonnegative function � . Here the prime denotes the trans-
position. Note that there is a very important particular case of the spherically 
symmetric vectors represented by Gaussian mixture distributions. The vector 
� = (�1,… , �d)

� is called a Gaussian mixture in ℝd if it has the spherically sym-
metric distribution with

where � is a non-negative random variable. It should be emphasized that in radio-
physics such distributions are very popular for statistical signal processing (see, for 
example, Middleton, 1979; Kassam, 1988). Using these definitions it is easy to see 
that the following random variables satisfy the conditions (�1)–(�3):

– (�j)j≥ 1 that are i.i.d. random variables satisfying condition (�1);
– For some d > 1, a random vector (�1,… , �d)

� that has a spherically symmetric 
distribution in ℝd, with � �2

1
= 1 , � 𝜁4

1
< ∞ and such that the random variables 

(𝜁j)j> d are independent and satisfy condition (�1);
– For some d ≥ 1, a random vector (�1,… , �d)

� that is a Gaussian mixture with 
mixture variable � for which � �2 = 1 and � �4 < ∞.

Note that the process Nt in (8) is a general counting process defined as

(7)𝛱(x2) = 1 and 𝛱(x8) < ∞ .

(8)zt =

Nt∑
i=1

�i,

(9)�(t) = �
1

(2��)d∕2
e
−

t

2�2 ,

(10)Nt =

∞�
k=1

��∑k

l=1
�l≤t

�,
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with (�l)l≥ 1 an i.i.d. sequence of positive integrated random variables with distribu-
tion � and mean 𝜏 = �Q 𝜏1 > 0. We assume that the processes (Nt)t≥0 , (Yi)i≥ 1 and 
(Lt)t≥0 are independent. In the sequel we will use the renewal measure defined as

where �(l) is the lth convolution power of the measure �.

Remark 1 Note that in the case when the random variables (�j)j≥1 are i.i.d., then (8) 
is the semi-Markov process used in Barbu et al. (2019a).

To use the renewal methods from Barbu et al. (2019a) we assume that the dis-
tribution � has a density g for which the following conditions hold true.

(�1 ) Assume that, for any x ∈ ℝ, there exist the finite limits g(x−) = limz→x− g(z) 
and g(x+) = limz→x+ g(z) and, ∀K > 0 , ∃𝛿 = 𝛿(K) > 0 for which

(�2 ) ∀𝛾 > 0, the upper bound supz≥0 z𝛾 |2g(z) − g(z−) − g(z+)| < ∞.
(�3 ) There exists 𝛽 > 0 such that ∫

ℝ+
e𝛽x g(x) dx < ∞.

(�4 ) There exists t∗ > 0 such that the Fourier transformation ĝ(� − it) belongs 
to L1(ℝ) for any 0 ≤ t ≤ t∗ , where ĝ(z) = (2�)−1 ∫

ℝ
eizvg(v)dv.

Moreover, to check these conditions, we will use the following assumption.
(�∗

4
 ) The density g is two times continuously differentiable with g(0) = 0 

and there exists 𝛽 > 0 such that ∫ +∞

0
e𝛽x

(
g(x) + |g�

(x)| + |g��

(x)|)dx < ∞ and 
limx→∞ e�x

(
g(x) + |g�

(x)|) = 0.
It is clear that the conditions (�1)–(�3) hold true in this case. To obtain the 

condition (�4) it suffices to calculate the integral in ĝ, integrating by parts two 
times. For example, one can take the gamma distribution of order m ≥ 2

It should be noted that, in view of Proposition 5.2 from Barbu et al. (2019a), Condi-
tions (�1)–(�4) imply that the renewal measure (11) has a continuous density � such 
that for any � > 0

Note that this implies

(11)� =

∞∑
l=1

�(l) ,

sup
|x|≤K �

𝛿

0

|g(x + t) + g(x − t) − g(x+) − g(x−)|
t

dt < ∞.

(12)g(x) =
�mxm−1

m!
e−�x�{x≥0} and � > 0 .

sup
x≥0

x�|𝛶 (x)| < ∞ and 𝛶 (x) = 𝜌(x) −
1

𝜏
.

(13)�𝜌�∗ = sup
t≥0

�𝜌(t)� < ∞ and ‖𝛶 ‖1 = �
+∞

0

�𝛶 (x)� dx < ∞ .



931

1 3

Adaptive efficient estimation for generalized semi‑Markov…

Remark 2 It should be noted that Condition (�4) does not hold for the exponential 
random variable (�j)j≥1 since its density is not continuous in zero. But for exponen-
tial random variables, i.e. in the case when (Nt)t≥0 is a Poisson process, the renewal 
density can be calculated directly, i.e. �(x) ≡ 1∕� and � ≡ 0.

Now we describe the class of possible admissible noise distributions used in the 
robust risk (5). To this end we set

As to the parameters in (6), we assume that

where the unknown bounds 0 < 𝜍∗ ≤ 𝜍∗ can be functions of T, i.e. �∗ = �∗(T) and 
�∗ = �∗(T) , such that for any � > 0

We denote by QT the family of all distributions of the process (6) in D[0, T] satisfy-
ing the properties (15)–(16).

Remark 3 As we will see later, the parameter (14) is the limit of the Fourier trans-
form of the noise process (6). This limit is called variance proxy (see Konev and 
Pergamenshchikov, 2012).

3  Truncated fractional Poisson processes

As an example of the process (10) that satisfies Conditions (�1)–(�4), we give the 
truncated fractional Poisson process introduced in Barbu et al. (2019b). To this end, 
we remind the definition of the fractional Poisson process (see, for example, Biard and 
Saussereau, 2014; Laskin, 2003). The process (10) is called fractional Poisson process 
if the i.i.d. random variables (�j) have the Mittag-Leffler distribution which, for some 
� > 0, is defined as

where 0 < H ≤ 1 is called the Hurst index,

Note that, if H = 1 , then we obtain the exponential distribution with parameter � > 0 
and, therefore, the process (10) is a Poisson process. If 0 < H < 1 , then the density 

(14)�Q = �2
1
+ �2

2
+

�2
3

�
.

(15)�∗ ≤ �Q ≤ �∗ ,

(16)lim
T→∞

T� �∗(T) = +∞ and lim
T→∞

�∗(T)

T�
= 0 .

(17)�(𝜏1 > t) = EH(−�t
H) ,

EH(z) =

∞∑
k=0

zk

Γ(1 + Hk)
and Γ(x) = ∫

+∞

0

tx−1 e−t dt .
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of the distribution (17) (see, for example, Repin and  Saichev, 2000) can be repre-
sented as

Form here we can directly obtain that

and

In particular, this implies that the Mittag-Leffler distribution has a heavy tail, i.e.

i.e. ��1 = +∞ . Therefore, the condition (�3) does not hold for the distribution 
(17). To correct this effect, in Barbu et  al. (2019b) it is proposed to replace the 
Mittag-Leffler random variables in (10) with i.i.d. random variables distributed as 
�∗
1
= min(X�

∗
,X∗) , where X∗ is a Mittag-Leffler random variable with 0 < H < 1 , 

0 < � ≤ H∕3 and X∗ is a positive random variable satisfying the condition (�∗
4
) . 

Such processes are called truncated Poisson processes. Using the asymptotic prop-
erties (19) and (20) one can check directly that the random variable �∗

1
 satisfies the 

condition (�∗
4
) and, therefore, the conditions (�1)–(�4) hold true for this case.

Remark 4 It should be noted also that the process (10) with the Mittag-Leffler ran-
dom variables has a “memory” in its increments (see, for example, Maheshwari 
and Vellaisamy, 2016) in the sense that, for any 𝛿 > 0 and s > 0, the correlation 
coefficient

It should be noted that this property is very important for many practical problems 
and it essentially allows to expand the possible applications of statistical results.

Unfortunately, we can’t use directly the fractional Poisson process in the regres-
sion model (3) since the impulse noise of the fractional Poisson processes will be 
very rare, since the time between jumps is not integrable, i.e. very large and, there-
fore, they have almost negligible influence in the observation models. On the con-
trary, the truncated process has an exponential moment, i.e. the same property as 
Poisson processes, and, moreover, it keeps a dependence on large time intervals.

(18)fH(t) =
� sin(�H)

� ∫
+∞

0

xH e−tx

x2H + �2 + 2�xH cos(�H)
dx .

(19)fH(t) ∼ tH−1 , f
�

H
(t) ∼ tH−2 , f

��

H
(t) ∼ tH−3 as t → 0

(20)fH(t) ∼ t−H−1 , f
�

H
(t) ∼ t−H−2 , f

��

H
(t) ∼ t−H−3 as t → ∞ .

(21)�(𝜏1 > t) ∼ t−H as t → ∞ ,

Corr
((
Ns+� − Ns

)
,
(
Nt+� − Nt

))
∼ t

−
3−H

2 as t → ∞ .
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4  Model selection

In this section we construct a model selection procedure for estimating the unknown 
function S given in (3) starting from the discrete-time observations (2) and we estab-
lish the oracle inequality for the associated risk. To this end, note that for any func-
tion f ∶ [0, T] → ℝ from L2[0, T] , the integral

is well defined, with �Q IT (f ) = 0 . Moreover, as it is shown in Lemma 1 under the 
conditions (�1)–(�4),

In this paper we assume that the observations frequency p in (2) is odd and we will 
use the trigonometric basis (�j)j≥ 1 in L2[0, 1] defined as

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd j, [x] denotes 
the integer part of x. Note, that these functions are orthonormal on the points 
(tj)1≤j≤p , i.e. for any 1 ≤ i, j ≤ p

In the sequel we denote by ‖x‖2
p
= (x, x)p . Now note that, for any 1 ≤ l ≤ p,

Using the approach from Konev and Pergamenshchikov (2015), we estimate the 
Fourier coefficients �j,p on the basis of the observations from the interval [0, T] as

Note here that the functions (�j,p)1≤j≤p are 1-periodic and orthonormal on the inter-
val [0, 1], i.e. in L2[0, 1],

The Fourier coefficients of S for this basis in L2[0, 1] can be represented as

(22)IT (f ) = ∫
T

0

f (s)d�s

(23)�Q I2
T
(f ) ≤ 𝜘Q �

T

0

f 2(s)d s and 𝜘Q = �2
1
+ �2

2
+ �2

3
|�|∗ .

(24)�1 = 1 , �j(x) =
√
2 Trj(2�[j∕2]x) , j ≥ 2 ,

(25)(�i,�j)p =
1

p

p∑
l=1

�i(tl)�j(tl) = �{i=j} .

(26)S(tl) =

p∑
j=1

�j,p �j(tl) and �j,p = (S,�j)p .

(27)�𝜃j,p =
1

T �
T

0

𝜓j,p(t)d yt, and 𝜓j,p(t) =

n∑
l=1

𝜙j(tl)1{tl−1<t≤tl} .

(28)(�j,p,�i,p) = ∫
1

0

�j,p(t)�i,p(t)d t = (�j,�i)p = �{i=j} .
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where hj,p(S) =
∑p

l=1
∫ tl
tl−1

�j(tl)(S(t) − S(tl))d t . Taking into account here that the 
functions (�j,p)1≤j≤p are 1-periodic and using the observation model (3) in (27) we 
obtain, that

Therefore,

As in Barbu et al. (2019a), we use the model selection procedures based on the fol-
lowing weighted least squares estimators

where the weight vector � = (�(1),… , �(p))� belongs to some finite set � from 
[0, 1]p . Here the prime ′ denotes the transposition. Moreover, we set

where card (�) is the cardinal number of the set � . We assume that �∗ ≤ T  . Now we 
use the same criteria as in Barbu et al. (2019a) to choose a weight vector in � , i.e., 
we minimize the empirical error

which can be represented as

Note that the Fourier coefficients (�j,p)j≥ 1 are unknown. Therefore, using the 
approach from Barbu et al. (2019a) to minimize this function we replace the terms 
�̂j,p�j,p by their estimators

(29)�j,p = (S,�i,p) = ∫
1

0

S(t)�i,p(t)d t = �j,p + hj,p,

�̂j,p =
1

T ∫
T

0

�i,p(t)S(t)d t +
1

T ∫
T

0

�i,p(t)d�t

[2mm] = ∫
1

0

�i,p(t)S(t)d t +
1

T ∫
T

0

�i,p(t)d �t .

(30)�̂j,p = �j,p +
1√
T
�j,p and �j,p =

1√
T
IT (�j,p) .

(31)Ŝ�(t) =

p∑
j=1

�(j)�̂j,p�j,p(t) , 0 ≤ t ≤ 1 ,

(32)�∗ = card (𝛬) and 𝛬∗ = max
𝜆∈𝛬

p∑
j=1

�{𝜆(j)>0} ,

(33)Err (�) = ‖Ŝ� − S‖2 ,

(34)Err (�) =

p�
j=1

�2(j)�̂2
j,p
− 2

p�
j=1

�(j)�̂j,p�j,p + ‖S‖2 .

�̃j,p = �̂2
j,p
−

�Q

T
,
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where the proxy variance �Q is defined in (15). In the case when this variance is 
unknown we use its estimator, i.e.

Now, using this estimator we define the penalty term as

In the case when the variance �Q is known we set

Finally, we define the cost function as

where 𝛿 > 0 is some threshold which will be specified later. Now we set the model 
selection procedure as

In the case when �̂  is not unique we take one of them.

5  Main results

5.1  Oracle inequalities

First, we obtain non-asymptotic oracle inequalities for the procedure (39).

Theorem  1 Assume that the conditions (�1)–(�3) and (�1)–(�4) hold true. Then, 
there exists some constant �∗ > 0 such that for any T ≥ 1 and any noise distribu-
tion Q ∈ QT and 0 < 𝛿 ≤ 1∕6 , the procedure (39) satisfies the following oracle 
inequality

In the case when �Q is known, the inequality (40) has the form given in the next 
result.

(35)�̃j,p = �̂2
j,p
−

�̂T
T

and �̂T =
T

p

p�
j=[

√
T]

�̂2
j,p
.

(36)P̂T (�) =
�̂T |�|2
T

and |�|2 =
p∑
j=1

�2(j) .

(37)PT (�) =
�Q|�|2

T
.

(38)JT (�) =

p∑
j=1

�2(j)�̂2
j,p
− 2

p∑
j=1

�(j)�̃j,p + � P̂T (�),

(39)Ŝ∗ = Ŝ�̂ and �̂ = argmin�∈�JT (�) .

(40)
RQ(Ŝ∗, S) ≤1 + 3�

1 − 3�
min
�∈�

RQ(Ŝ�, S)

+ �∗
�∗

�T

(
�Q + �∗ �Q|�̂T − �Q|

)
.
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Corollary 1 Assume that the conditions (�1)–(�3) and (�1)–(�4) hold true and that 
the proxy variance �Q is known. Then there exists some constant �∗ > 0 such that for 
any T ≥ 1 and for any noise distribution Q ∈ QT and 0 < 𝛿 ≤ 1∕6 , the procedure 
(39) with �̂T = �Q satisfies the following oracle inequality

Now we study the estimator �̂T defined in (35).

Proposition 1 Assume that the conditions (�1)–(�3) and (�1)–(�4) hold true for the 
model (3) and that S(⋅) is continuously differentiable. Then, there exists a constant 
�∗ > 0 such that for any T ≥ 4 , Q ∈ QT and p >

√
T ,

where �∗
T ,p

=
√
T∕p + 1∕

√
p.

Now Theorem 1 and this proposition imply directly the following result.

Theorem  2 Assume that the function S is continuously differentiable and that the 
conditions (�1)–(�3) and (�1)–(�4) hold true. Then there exists some constant 
�∗ > 0 such that for any continuously differentiable function S for any T ≥ 4 , for any 
noise distribution Q ∈ QT , p >

√
T  and 0 < 𝛿 ≤ 1∕6,

Now, to study asymptotic properties of the term �∗
T ,p

 as T → ∞ and to provide 
an efficient estimation for the function S,  we have to assume some condition on 
the frequency of the observations p.

(�5 ) Assume that the frequency p is a function of T, i.e. p = pT , such that 

Remark 5 This condition is the same as in Konev and Pergamenshchikov (2015) 
(see (3.41)). Note that it is not too restrictive since we use only observations of the 
process (3) at discrete time moments. It should be noted also that, to provide optimal 
asymptotic properties for the model selection procedure (39), one needs to approxi-
mate the model (3) on the basis of the observations (2) such that to minimise the 
right-hand side of the inequality (42). To do this, we need to find a family of optimal 
estimators Ŝ�∈� and, moreover, we need to minimise the estimation accuracy for the 
variance �Q . For these reasons we have to use the lower bound (43).

RQ(Ŝ∗, S) ≤ 1 + 3�

1 − 3�
min
�∈�

RQ(Ŝ�, S) + �∗
�Q�∗

�T
.

(41)�Q,S��𝜎T − 𝜎Q� ≤ �∗ (1 + ‖Ṡ‖2)(1 + 𝜎Q) �
∗
T ,p

,

(42)
RQ(

�S∗, S) ≤1 + 3𝛿

1 − 3𝛿
min
𝜆∈𝛬

RQ(
�S𝜆, S)

+ �∗
�∗

𝛿T
(1 + 𝜎Q)

�
1 + ‖Ṡ‖2�

�
1 + 𝛬∗�

∗
T ,p

�
.

(43)lim inf
T→∞

pT

T5∕6+𝜖
> 0 for some 𝜖 > 0 .
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Moreover, to study the last term of the right-hand side of the inequality (42), we also 
need a condition for weights.

(�6 ) The parameters �∗ and �∗ defined in (32) can be func-
tions of T, i.e., �∗ = �∗(T) and �∗ = �∗(T) , such that  ∀� > 0 
limT→∞ T−��∗(T) = 0    and   limT→∞ T−1∕3−��∗(T) = 0.

Now, Theorem 2 implies the following oracle inequality.

Theorem  3 Assume that the function S is continuously differentiable and that the 
conditions (�1)–(�3) and (�1)–(�6) hold true. Then, for any T ≥ 4 , p >

√
T  and 

0 < 𝛿 < 1∕6, the procedure (39) satisfies the following oracle inequality

where the term �∗
T
> 0 is such that, for any r > 0 and � > 0,

To obtain the efficiency property, we specify the weight coefficients in the procedure 
(39). Consider, for some 0 < 𝜀 < 1, a numerical grid of the form

where k∗ ≥ 1 and � are functions of T, i.e. k∗ = k∗(T) and � = �(T) , such that

for any � > 0 . One can take, for example, for T ≥ 2

where k∗
0
≥ 0 is a fixed constant. For each � = (k, r) ∈ A , we set the vector

through its components which are defined as

where �� =
(
�k r�T

)1∕(2k+1),

and �∗ is introduced in (15). Now we define the set � as

R∗(Ŝ∗, S) ≤ 1 + 3�

1 − 3�
min
�∈�

R∗(Ŝ�, S) +
�∗

T

T�
,

(44)lim
T→∞

sup
‖Ṡ‖≤r

T−��∗
T
= 0 .

(45)A = {1,… , k∗} × {�,… , [1∕�2]�} ,

(46)

{
limT→∞ k∗(T) = +∞ , limT→∞

k∗(T)

ln T
= 0 ,

limT→∞ �(T) = 0 and limT→∞ T��(T) = +∞

�(T) =
1

ln T
and k∗(T) = k∗

0
+
√
ln T ,

�� = (��(j))1≤j≤p

(47)𝜆𝛼(j) = �{1≤j<lnT} +
(
1 − (j∕𝜔𝛼)

k
)
�{ln T≤j≤𝜔𝛼}

,

�k =
(k + 1)(2k + 1)

�2kk
, �T = T∕�∗

(48)� = {�� , � ∈ A} .
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These weight coefficients are used in Konev and Pergamenshchikov (2009a; 2012; 
2015) for continuous time regression models to show the asymptotic efficiency. Note 
also that in this case the cardinal of the set � is �∗ = k∗m . Moreover, taking into 
account that for k ≥ 1 the coefficient 𝜔𝛼 < (r𝜐T )

1∕(2k+1) , we obtain that the norm of 
the set � defined in (32) can be bounded as �∗ ≤ sup�∈A �� ≤ (�T∕�)

1∕3 . There-
fore, the properties (46) imply the condition �6).

5.2  Robust asymptotic efficiency

Now we study the asymptotic efficiency properties for the procedure (39), (48) with 
respect to the robust risks (5) defined by the distribution family (15)–(16). To this 
end, we assume that on the interval [0, 1] the unknown function S in the model (3) 
belongs to the Sobolev ball

where � > 0 , k ≥ 1 are some unknown parameters, C�
per

[0, 1] is the set of � times 
continuously differentiable functions f ∶ [0, 1] → ℝ such that f (i)(0) = f (i)(1) for 
all 0 ≤ i ≤ � . Note, that the class (49) is an ellipsoid, i.e.

where aj =
∑�

i=0
(2�[j∕2])2i and �j = (f ,�j) = ∫ 1

0
f (t)�j(t)dt . Similarly to Barbu 

et al. (2019a) we will show here that the asymptotic sharp lower bound for the nor-
malized robust risk (5) is given by the well-known Pinsker constant defined as

To study efficient properties we need to use the set ΞT of all possible estimators ŜT 
measurable with respect to the sigma-algebra �{yt , 0 ≤ t ≤ T}.

Theorem 4 For the risk (5) with the coefficient rate �T = T∕�∗

Note that, if the radius � and the regularity � are known, i.e. for the nonadaptive 
estimation problem on the continuous observations (yt)0≤t≤T , in Barbu et al. (2019a) 
it is proposed to use the estimate Ŝ�0 defined in (31) with the weights (48)

Now, we show the same result for the discrete observations (2).

(49)W�,� =

�
f ∈ C�

per
[0, 1] ∶

��
j=0

‖f (j)‖2 ≤ �

�
,

(50)W�,� =

{
f =

∑
j≥1

�j�j ∶

∞∑
j=1

aj �
2
j
≤ �

}
,

(51)�∗ = �∗(�) = ((2� + 1)�)1∕(2�+1)
(

�

(� + 1)�

)2�∕(2�+1)

.

(52)lim inf
T→∞

�
2�∕(2�+1)

T
inf

ŜT∈ΞT

sup
S∈W�,�

R∗
T
(ŜT , S) ≥ �∗ .

(53)�0 = ��0 , �0 = (�, r0) and r0 = [�∕�]� .
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Proposition 2 Assume that the conditions (�1)–(�2) and (�1)–(�5 ) hold true. Then

For the adaptive estimation we user the model selection procedure (39) with the 
parameter � defined as a function of T, i.e. � = �T , such that

for any � > 0 . For example, we can take �T = (6 + ln T)−1.

Theorem 5 Assume that the conditions (�1)–(�3) and (�1)–(�6) hold true. Then the 
robust risk (5) for the procedure (39) with the coefficients (48) and the parameter 
� = �T satisfying (55) has the following upper bound

Theorems 4 and 5 imply the following result.

Theorem 6 Assume that the conditions (�1)–(�3) and (�1)–(�6) hold true. Then the 
procedure (39) with the weight coefficients (48) and the parameter � = �T satisfying 
(55) is asymptotically efficient, i.e.

and

Remark 6 It is well known that the optimal (minimax) risk convergence rate for the 
Sobolev ball W�,� is T2�∕(2�+1) (see, for example, Pinsker, 1981; Konev and Perga-
menshchikov, 2009b). We see here that the efficient robust rate is �2�∕(2�+1)

T
 , i.e. if 

the distribution upper bound �∗ → 0 as T → ∞ we obtain a faster rate with respect 
to T2�∕(2�+1) , and if �∗ → ∞ as T → ∞ we obtain a slower rate. In the case when �∗ 
is constant the robust rate is the same as the classical non robust convergence rate.

5.3  Big data analysis for the model (1)

Now we consider the estimation problem for the parameters (�j)1≤j≤q in (3) with 
unknown q. In this case we have to estimate the sequence � = (�j)j≥1 in which �j = 0 
for j ≥ q + 1 . To this end we assume that the functions (�j)j≥1 are orthonormal in 
L2[0, 1] , i.e. (�i, �j) = �{i≠j}.

(54)lim
T→∞

�
2k∕(2k+1)

T
sup

S∈W�,�

R∗
T
(Ŝ�0 , S) ≤ �∗ .

(55)lim
T⟶∞

�T = 0 and lim
T⟶∞

T� �T = +∞

lim sup
T→∞

�
2�∕(2�+1)

T
sup

S∈W�,�

R∗
T
(Ŝ∗, S) ≤ �∗ .

lim
T→∞

inf
ŜT∈ΞT

supS∈W�,�
R∗

T
(ŜT , S)

supS∈W�,�
R∗

T
(Ŝ∗, S)

= 1

lim
T→∞

�
2�∕(2�+1)

T
sup

S∈W�,�

R∗
T
(Ŝ∗, S) = �∗ .
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Indeed, we can use always the Gram-Schmidt orthogonalization procedure 
to provide this property. Thus, in this case we estimate the parameters � = (�j)j≥1 
through the estimator (39) as �̂∗ = (�̂∗,j)j≥1 and �̂∗,j = (�j, Ŝ∗) . Similarly, using the 
weighted estimators (31) we define the basic estimators (�̂�)�∈� as �̂� = (�̂j,�)j≥1 and 
�̂j,� = (�j, Ŝ�) . Taking into account that in this case

��̂∗ − ��2 = ∑∞

j=1
(�̂∗,j − �j)

2 = ‖Ŝ∗ − S‖2 and ��̂� − ��2 = ‖Ŝ� − S‖2 , Theorem  3 
implies the following oracle inequality.

Theorem 7 Assume that the function (3) is continuously differentiable and that the 
conditions (�1)–(�3) , (�1)–(�5) and (15)–(16) hold true. Then, for any T ≥ 4 and 
0 < 𝛿 < 1∕6, the following oracle inequality holds true

where the term �∗
T
> 0 satisfies the property (44).

Moreover, Theorem 6 implies the following efficiency property.

Theorem 8 Assume that the conditions (�1)–(�3) and (�1)–(�6) hold true. Then the 
estimator �̂∗ constructed through the procedure (39) with the weight coefficients (48) 
and the parameter � = �T satisfying (55) is asymptotically efficient in the minimax 
sense, i.e.

and

where the infimum is taken over all possible estimators �̂T measurable with respect 
the field �{yt , 0 ≤ t ≤ T} and the lower bound �∗ is defined in (51).

Remark 7 It should be emphasized that the efficiency properties (56) are obtained 
without sparse conditions on the number of nonzero parameters �j in the model (1) 
(see, for example, Hastie et al., 2008). Moreover, we do not use even the parameter 
dimension q which can be equal to +∞.

sup
Q∈QT

�Q,S|�̂∗ − �|2 ≤ 1 + 3�

1 − 3�
min
�∈�

sup
Q∈QT

�Q,S|�̂� − �|2 + �∗
T

T�
,

(56)lim
T→∞

inf�̂T
supS∈W�,�

supQ∈QT
�Q,S|�̂T − �|2

supS∈W�,�
supQ∈QT

�Q,S|�̂∗ − �|2
= 1

lim
T→∞

�
2�∕(2�+1)

T
sup

S∈W�,�

sup
Q∈QT

�Q,S|�̂∗ − �|2 = �∗ ,
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6  Stochastic calculus for generalized semi‑Markov processes

In this section we study some properties of the stochastic integrals (22). First, note 
that using the conditions (�1) and (�2) and the stochastic calculus developed in 
Barbu et al. (2019a) for semi-Markov processes we can show the following Lemmas 
1 and 2.

Lemma 1 Assume that the conditions (�1)–(�2) and (�1)–(�4) hold true. Then, for 
any nonrandom functions f and h from L2[0, T]

where (f , h)t = ∫ t

0
f (s) h(s)ds and � is the density of the renewal measure (11).

It should be noted that this lemma implies directly that the stochastic integral (22) 
satisfies the properties (23).

Lemma 2 Assume that the conditions (�1)–(�2) and (�1)–(�4) hold true. Then, for 
any bounded [0,∞) → ℝ functions f and h and for any k ≥ 1,

where �k =
∑k

j=1
�j and G = �{�l , l ≥ 1}.

Lemma 3 Assume that the conditions (�1)–(�3) and (�1)–(�4) hold true. Then, for 
any nonrandom bounded [0, T] → ℝ functions f and h,

the expectation �Q ∫ T

0
I2
t−
(f )It−(h)h(t)d�t = 0.

Proof Setting Ľt = 𝜚1wt + 𝜚2Lt , we can represent the integral (22) as

where Ǐt(f ) = ∫ t

0
f (u)dĽu and Iz

t
(f ) = ∫ t

0
f (u)dzu . Note that using the condition (7) 

and the inequality for martingales from Novikov (1975) we can obtain that 
�Q sup0≤t≤T Ǐ8

t
(f ) < ∞ . Since Ľt and zt are independent, we get 

�Q ∫ T

0
I2
t−
(f )It−(h)h(t)dĽt = 0 . Moreover, the conditions (�1) – (�3) yield that, for 

any nonrandom (ci,j) and k ≥ 1, �
�∑k−1

j=1
c1,j�j

�2

�k = 0 and 

�
�∑k−1

j=1
c1,j�j

�2 �∑k−1

j=1
c2,j�j

�
�k = 0 . Therefore, taking into account that the 

sequence (�k)k≥1 does not depend on the moments (�k)k≥1 and the process (Ľt)t≥0 , and 
using the same method as in the proof of Lemma 8.4 from Barbu et al. (2019a) we 
obtain

(57)�Q It(f )It(h) = (�2
1
+ �2

2
) (f , h)t + �2

3
(f , h�)t ,

�Q

(
I�k−(f ) I�k−(h) ∣ G

)
= (�2

1
+ �2

2
)(f , h)�k + �2

3

k−1∑
l=1

f (�l) h(�l),

(58)It(f ) = Ǐt(f ) + 𝜚3I
z
t
(f ) ,
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This implies the desired result.   ◻

Now we study the integrals ĨT (f ) = I2
T
(f ) − �QI

2
T
(f ) as functions of f.

Proposition 3 Assume that the conditions (�1)–(�3) and (�1)–(�4) hold true. Then, 
for any [0,∞) → ℝ functions f, h such that |f |∗ ≤ 1 and |h|∗ ≤ 1 , one has

where �̃ = 4�‖� ‖1
�
2 + ����∗ + ‖� ‖1

�
+�(x4) + �∗���∗ , �∗ = supj≥1 ��4j  and 

|f |∗ = supt≥0 |f (t)|.

Proof First of all, note that in view of the Ito formula and using the fact that for the 
process (6) the jumps �zs�Ls = 0 a.s. for any s ≥ 0 , we obtain that

Note also that Lemma 1 yields �QI
2
t
(f ) = (�2

1
+ �2

2
)‖f‖2

t
+ �2

3
‖f√�‖2

t
 with 

‖f‖2
t
= ∫ t

0
f 2(t)dt . Therefore,

where m̌t =
∑

0≤s≤t(𝛥Ls)2 − t and mt =
∑

0≤s≤t(�zs)2 − ∫ t

0
�(s)ds . Thus,

Using here Lemma 3 and, taking into account that (m̌t)t≥0 is a square integrable mar-
tingale, we get

The last integral can be represented as

where J1 = �Q

∑
k≥1 I2

�k−
(f )h2(�k)�{�k≤T} and J2 = ∫ T

0
�Q I2

t
(f )h2(t)�(t)dt . By 

Lemma 2 we get

�Q �
T

0

I2
t−
(f )It−(h)h(t)dzt = �Q

∑
k≥1

�{�k≤T} I
2
�k−

(f )I�k−(h)h(�k)�k = 0 .

(59)|�QĨT (f )̃IT (h)| ≤ �2
Q

(
4 (f , h)2

T
+ 3 T �̃

)
,

dI2
t
(f ) = 2It−(f )dIt(f ) + �2

1
f 2(t)d t

+ �2
2
d
∑
0≤s≤t

f 2(s)(�Ls)
2 + �2

3
d
∑
0≤s≤t

f 2(s)(�zs)
2 .

d�It(f ) = 2It−(f )f (t)d𝜉t + f 2(t)d�mt , �mt = 𝜚2
2
m̌t + 𝜚2

3
mt ,

�QĨT (f )̃IT (h) = �Q ∫
T

0

Ĩt−(f )d̃It(h) + �Q ∫
T

0

Ĩt−(h)d̃It(f ) + �Q [̃I(f ), Ĩ(h) ]T .

�Q ∫
T

0

Ĩt−(f )d̃It(h) = �Q ∫
T

0

Ĩt−(f )h
2(t)dm̃t = �2

3
�Q ∫

T

0

I2
t−
(f )h2(t)dmt .

(60)�Q ∫
T

0

I2
t−
(f )h2(t)dmt = J1 − J2 ,
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where J1,1 = �Q

∑
k≥1 ‖f‖2

�k
h2(�k)�{�k≤T} = ∫ T

0
‖f‖2

t
h2(t)�(t)dt and

Moreover, using Lemma 1 for the last term in (60), we obtain that

and we can represent the expectation in (60) as

Therefore, ��Q ∫ T

0
I2
t−
(f )h2(t)dmt� ≤ 2�2

3
T‖� ‖1 ���∗ and

Furthermore, note that

where Ĩc
t
(f ) = 2�1 ∫ t

0
Is(f )f (s)dws and �T (f , h) =

∑
0≤t≤T �Ĩdt (f )�Ĩdt (h) . In this case 

Ĩd
t
(f ) = 2 ∫ t

0
Is−(f )f (s)d�

d
s
+ ∫ t

0
f 2(s)dm̃s and �d

t
= �2Lt + �3zt . Therefore, in view of 

Lemma 1,

Since |f |∗ ≤ 1 and |h|∗ ≤ 1, we get ∫ T

0
�(f , h� )tf (t)h(t)�dt ≤ T‖� ‖1 and

To study the process �T (f , h) note that ��d
t
�m̃t = �3

2
(�Lt)

3 + �3
3
(�zt)

3 . Note also 
that for any t ≥ 0 the expectation �QIt(f ) = 0 . Therefore, using the definition of the 

J1 = �Q

∑
k≥1

�Q

(
I2
�k−

(f )|G
)
h2(�k)�{�k≤T} = (�2

1
+ �2

2
)J1,1 + �2

3
J1,2 ,

J1,2 = �Q

∑
k≥1

k−1∑
l=1

f 2(�l) h
2(�k)�{�k≤T} = �Q

∑
l≥1

f 2(�l)
∑
k≥l+1

h2(�k)�{�k≤T}

= �
T

0

f 2(x)

(
�

T−x

0

h2(x + t)�(t)dt

)
�(x)dx .

J2 = (�2
1
+ �2

2
)∫

T

0

‖f‖2
t
h2(t)�(t)dt + �2

3 ∫
T

0

‖f√�‖2
t
h2(t)�(t)dt

�Q ∫
T

0

I2
t−
(f )h2(t)dmt = �2

3 ∫
T

0

f 2(x)

(
∫

T

x

h2(t)(� (t − x) − � (t))dt

)
�(x)dx .

(61)��Q �
T

0

Ĩt−(f )d̃It(h)� ≤ 2�4
3
T‖� ‖1 ���∗ .

[�I(f ),�I(h)]T =< �Ic(f ),�Ic(h) >T +�T (f , h) ,

�Q < �Ic(f ),�Ic(h) >T= 4𝜚2
1 ∫

T

0

�Q(It(f )It(h))f (t)h(t)dt

= 4𝜚2
1
(𝜚2

1
+ 𝜚2

2
)∫

T

0

(f , h)t f (t)h(t)dt + 4𝜚2
1
𝜚2
3 ∫

T

0

(f , h𝜌)tf (t)h(t)dt

= 2𝜚2
1
𝜎Q (f , h)2

T
+ 4𝜚2

1
𝜚2
3 ∫

T

0

(f , g𝛶 )tf (t)h(t)dt .

(62)
����Q < �Ic(f ),�Ic(h) >T

��� ≤ 𝜎2
Q

�
2(f , h)2

T
+ 4T𝜏‖𝛶 ‖1

�
.
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process Lt, we obtain through the Fubini theorem that, for any bounded measurable 
nonrandom functions V,  V ∶ [0, T] → ℝ, we have

Moreover, since the processes (Ľt)t≥0 and (zt)t≥0 are independent we get

where the integral Ǐt(f ) is defined in (58) and the Gz = �{zt , t ≥ 0} . Note that the 
condition �3) implies that for any k ≥ 1 and nonrandom (cj)j≥1 �Q

�∑k−1

j=1
cj�j

�
�3
k
= 0 . 

Therefore, �Q

∑
0≤t≤T V(t)Iz

t−
(f )(�zt)

3 = 0 and

So, the expectation of �T (f , h) can be represented as

where �1,T (f , h) =
∑

0≤t≤T It−(f )It−(h)f (t)h(t)(�Lt)
2,

and �3,T (f , h) =
∑

0≤t≤T f 2(t) h2(t)(�m̃t)
2 . First, since �(x2) = 1 , we get

and ��Q �1,T (f , h)� ≤ �Q
�
(f , h)2

T
∕2 + T�‖� ‖1

�
 . Then, taking into account that 

� �2
j
= 1 and using Lemma 2, we find, that

where ��

2,T
(f , h) =

∑
k≥1

∑k−1

l=1
f (�l) h(�l)f (�k)h(�k) �{�k≤T} . Note, that

�Q

∑
0≤t≤T

V(t) It−(f )(�Lt)
3 = �(x3)�

T

0

V(t)�Q It(f )dt = 0 .

�Q

∑
0≤t≤T

V(t)Ǐt−(f )(𝛥zt)
3 = �Q

∑
k≥1

V(�k)𝜁
3
k
�Q

(
Ǐ�k−(f )|Gz

)
= 0 ,

�Q

∑
0≤t≤T

It−(f )f (t)h
2(t)��d

t
�m̃t = �Q

∑
0≤t≤T

It−(h)h(t)f
2(t)��d

t
�m̃t = 0 .

�Q �T (f , h) = 4�2
2
�Q �1,T (f , h) + 4�2

3
�Q �2,T (f , h) + �Q �3,T (f , h) ,

�2,T (f , h) =
∑
0≤t≤T

It−(f )It−(h)f (t)h(t)(�zt)
2

�Q �1,T (f , h) = ∫
T

0

f (t)h(t)�Q It(f )It(h) dt = (�2
1
+ �2

2
) ∫

T

0

f (t)h(t) (f , h)t dt

+ �2
3 ∫

T

0

f (t)h(t) (f , h�)t dt = �Q
(f , h)2

T

2
+ �2

3 ∫
T

0

f (t)h(t) (f , h� )t dt

�Q �2,T (f , h) = �
∑
k≥1

�Q

(
I�k−(f )I�k−(h)|G

)
f (�k)h(�k) �{�k≤T}

= (�2
1
+ �2

2
)�Q

∑
k≥1

(f , h)�k f (�k)h(�k) �{�k≤T} + �2
3
�Q �

�

2,T
(f , h)

= (�2
1
+ �2

2
)�

T

0

(f , h)t f (t)h(t)�(t)dt + �2
3
�Q �

�

2,T
(f , h) ,



945

1 3

Adaptive efficient estimation for generalized semi‑Markov…

i.e.

Furthermore, the expectation of ��

2,T
(f , h) can be represented as

where

Since T ≥ 1 , we can obtain that

and, therefore,

Moreover, using that 𝜁∗ = supj≥1 �𝜁4j < ∞ , we get directly

Therefore, |�Q �T (f , h)| ≤ �2
Q

(
2(f , h)2

T
+ T �̃

)
 , where �̃  is given in (59). Now, using 

(62), we get �Q [̃I(f ), Ĩ(h)]T ≤ �2
Q

(
4(f , h)2

T
+ 2T �̃

)
 . This bound with (61) implies 

(59). Hence the proof is achieved.   ◻

∫
T

0

(f , h)t f (t)h(t)�(t)dt =
1

2�
(f , h)2

T
+ ∫

T

0

(f , h)t f (t)h(t)� (t)dt ,

������
T

0

(f , h)t f (t)h(t)�(t)dt
�����
≤ 1

2�
(f , h)2

T
+ T‖� ‖1 .

�Q �
�

2,T
(f , h) = �Q

∑
l≥1

f (�l) h(�l)
∑
k≥l+1

f (�k)h(�k) �{�k≤T}

= �
T

0

f (x)g(x)

(
�

T−x

0

f (x + t)h(x + t)�(t)dt

)
�(x)dx

=
1

2�
2
(f , h)2

T
+ �

��

2,T
(f , h) ,

�
��

2,T
(f , h) =∫

T

0

f (x)h(x)

(
∫

T−x

0

f (x + t)h(x + t)� (t)dt

)
�(x)dx

+
1

� ∫
T

0

f (x)h(x)

(
∫

T−x

0

f (x + t)h(x + t)� (t)dt

)
� (x)dx .

����

2,T
(f , h)� ≤ �

T

0

�(x)dx‖� ‖1 + 1

�
‖� ‖2

1
≤ T

�
���∗‖� ‖1 + 1

�
‖� ‖2

1

�

��Q �2,T (f , h)� ≤ �Q

�
(f , h)2

T

2�
+ T

�‖� ‖1(1 + ����∗) + ‖� ‖2
1

��
.

�Q �3,T (f , h) ≤ �4
2
�(x4)�

T

0

f 2(t) h2(t)dt + �4
3
�∗ �

T

0

f 2(t) h2(t)�(t)dt

≤ T�2
Q

(
�(x4) + �∗�

2|�|∗
)
.
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In order to prove the oracle inequalities we need to study the conditions intro-
duced in Konev and Pergamenshchikov (2012) for the general semi-martingale 
model (3). To this end, we set for any x ∈ ℝp the functions

where �Q is defined in (15) and �̃j,p = �2
j,p
− �Q�

2
j,p

.

Proposition 4 Assume that the conditions (�1)–(�2) , (�1)–(�5) hold true. Then 
there exists some constant �∗ > 0 such that for any Q ∈ ∪k≥1 Qk

and

where �x�2 = ∑p

j=1
x2
j
 and #(x) =

∑p

j=1
�{xj≠0}.

Proof Firstly, using here Lemma 1, we obtain that

From (13) it follows that ����Q�
2
j,p
− �Q

��� ≤ 2�2
3
‖� ‖1∕T  and, therefore, taking into 

account that #(x) ≤ T  , we obtain the inequality (64). Next, note that

where ĨT (f ) = I2
T
(f ) − �QI

2
T
(f ) . Now Proposition 3 and the property (28) imply, that 

for some constant �∗ > 0 and for |x| ≤ 1

Since #(x) ≤ T  , we obtain the upper bound (65).   ◻

(63)B1,Q(x) =

p∑
j=1

xj

(
�Q�

2
j,p
− �Q

)
and B2,Q(x) =

p∑
j=1

xj �̃j,p ,

(64)
�1,Q = sup

T≥3
sup

x ∈ [−1, 1]p

#(x) ≤ T

|||B1,Q(x)
||| ≤ �∗ �Q

(65)
�2,Q = sup

T≥3
sup

|x| ≤ 1

#(x) ≤ T

�Q B2
2,Q

(x) ≤ �∗ �2
Q
,

��2
j,p

= �2
1
+ �2

2
+

�2
3

T ∫
T

0

�2
j,p
(x) �(x)d x = �Q +

�2
3

T ∫
T

0

�2
j,p
(x)� (x)d x .

(66)�Q

(
p∑
j=2

xj�̃j,p

)2

≤ 1

T2

p∑
j=1

p∑
l=1

|xj| |xl||�Q ĨT (�j,p )̃IT (�l,p)| ,

�Q

�
p�
j=2

xj�̃j,p

�2

≤ �∗
⎛⎜⎜⎝
�x�2 + 1

T

�
p�
j=1

�xj�
�2⎞⎟⎟⎠

≤ c∗
�
1 +

#(x)

T

�
.
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7  Proofs

7.1  Proof of Theorem 1

Using the cost function given in (38), we can rewrite the empirical squared error 
in (34) as follows

where

with �j,p = �Q�
2
j,p
− �Q and �̃j,p = �2

j,p
− �Q�

2
j,p

 . Setting

and using the functions (63) through the penalty term (37), we rewrite (67) as

where �(�) = �∕|�| . Let �0 = (�0(j))1≤j≤ p be a fixed sequence in � and �̂  be defined 
as in (39). Substituting �0 and �̂  in (69), we obtain

where � = �̂ − �0 , �̂ = �(�̂) and �0 = �(�0) . Now, in view of the inequality 
2|ab| ≤ �a2 + �−1b2 we get that

Then, taking into account that |L(�)| ≤ L(�̂) + L(�) ≤ 2�∗ and using the definition 
(64) we get

(67)Err (�) = JT (�) + 2

p�
j=1

�(j)�j,p + ‖S‖2 − �P̂T (�),

�j,p = �̃j,p − �j,p�̂j,p =
1√
T
�j,p�j,p +

1

T
�̃j,p +

1

T
�j,T +

�Q − �̂T

T
,

(68)�(�) =
1√
T

p�
j=1

�(j) �j,p�j,p and L(�) =

p�
j=1

�(j)

(69)
Err (�) = JT (�) + 2

�Q − �̂T

T
L(�) + 2�(�) +

2

T
B1,Q(�)

+ 2
√
PT (�)

B2,Q(�(�))√
�QT

+ ‖S‖2 − �P̂T (�),

Err (�̂) − Err (�0) = JT (�̂) − JT (�0) + 2
�Q − �̂T

T
L(�) +

2

T
B1,Q(�) + 2�(�)

+ 2

�
PT (�̂)

B2,Q(�̂)√
�QT

− 2
√
PT (�0)

B2,Q(�0)√
�QT

− �P̂T (�̂) + �P̂T (�0),

2
√
PT (�)

�B2,Q(�(�))�√
�QT

≤ �PT (�) +
B2
2,Q

(�(�))

��Q T
.
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where B∗
2,Q

= sup�∈� B2
2,Q

((�(�)) . Using now the definitions (36), (37) and the ine-
quality ��0�2 = ∑p

j=1
�2
0
(j) ≤ �∗ , we can estimate the penalty term P̂T (�0) as 

P̂T (�0) ≤ PT (�0) + �∗|�̂T − �Q|∕T  . Therefore, using this in the last inequality, we 
get, that for 0 < 𝛿 < 1

To study here the term �(⋅) we define for any x = (x(j))1≤j≤p ∈ ℝp the function 
Sx =

∑p

j=1
x(j)�j,p�j,p . Then, using the definition of �j,p in (30) we get through (68), 

that �(x) = IT (Sx)∕
√
T  and, therefore, thanks to (23)

Moreover, setting here Z∗ = supx∈�1
TM2(x)∕‖Sx‖2 and �1 = � − �0 , we get

The last term here can be estimated from above as

where �∗ = card (�) . Moreover, note that, for any x ∈ �1,

where �1(x) = T−1∕2
∑p

j=1
x2(j)�j,p�j,p . Taking into account now that, for any 

x ∈ �1 , the components |x(j)| ≤ 1 , we can estimate this term as in (70), i.e. 
�Q �2

1
(x) ≤ 𝜘Q ‖Sx‖2∕T  . Similarly to the previous reasoning setting

Z∗
1
= supx∈�1

T�2
1
(x)∕‖Sx‖2 , we get �Q Z∗

1
≤ 𝜘Q �∗ . Using the same type of argu-

ments as in (71), we can derive

From here and (72), we get

Err (�̂) ≤ Err (�0) + 2�(�) +
2�1,Q

T
+

2B∗
2,Q

��QT
+

4�∗|�̂T − �Q|
T

+ 2�P̂T (�0) ,

Err (�̂) ≤ Err (�0) + 2�(�) +
2�1,Q

T
+

2B∗
2,Q

��QT
+

6�∗|�̂T − �Q|
T

+ 2�PT (�0) .

(70)�Q�
2(x) ≤ 𝜘Q ‖Sx‖

2

T
= 𝜘Q 1

T

p�
j=1

x2(j)�
2

j,p
.

(71)2��(x)� ≤ �‖Sx‖2 + Z∗

T�
.

�QZ
∗ ≤ �

x∈�1

T�Q�
2(x)

‖Sx‖2
≤ �

x∈�1

𝜘Q = 𝜘Q�∗ ,

(72)‖Sx‖2 − ‖Ŝx‖2 =
p�
j=1

x2(j)(�
2

j,p
− �̂2

j,p
) ≤ −2�1(x),

(73)2��1(x)� ≤ �‖Sx‖2 +
Z∗
1

T�
.

(74)‖Sx‖2 ≤ ‖Ŝx‖2
1 − �

+
Z∗
1

T�(1 − �)
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for any 0 < 𝛿 < 1 . Using this bound in (71) yields

Taking into account that |Ŝ�|2 ≤ 2 ( Err (�̂) + Err (�0)) , we obtain

and, therefore,

Note here, that (65) implies �Q B∗
2,Q

≤ ∑
�∈� �QB

2
2,Q

(�(�)) ≤ �∗�2,Q and, therefore, 
taking into account, that 1 − 3� ≥ 1∕2 for 0 < 𝛿 < 1∕6 , we get

Now Lemma 4 yields

Moreover, noting here, that 𝜘Q ≤ (1 + �|�|∗)�Q and using the bounds (64) and (65) 
we obtain the inequality (40). Hence we obtain the desired result.   ◻

7.2  Proof of Proposition 1

Let x�

= (x
�

j
)1≤j≤p with x�

j
= �

{[
√
T]⩽j⩽p}

 . Then (30) and (35) yield

where � is given in (68). Setting x��

= (x
��

j
)1≤j≤p and x��

j
= p−1∕2�

{[
√
T]⩽j⩽p}

 , one can 
write the last term on the right-hand side of (75) as

2M(x) ≤ �‖Ŝx‖2
1 − �

+
Z∗ + Z∗

1

T�(1 − �)
.

2M(�) ≤ 2�( Err (�̂) + Err (�0))

1 − �
+

Z∗ + Z∗
1

T�(1 − �)

Err (�̂) ≤ 1 + �

1 − 3�
Err (�0) +

Z∗ + Z∗
1

T�(1 − 3�)
+

2�1,Q

T(1 − 3�)
+

2B∗
2,Q

�(1 − 3�)�QT

[2mm] +
6�∗|�̂T − �Q|
T(1 − 3�)

+
2�

(1 − 3�)
PT (�0).

RQ(Ŝ∗, S) ≤ 1 + �

1 − 3�
RQ(Ŝ�0 , S) +

4𝜘Q�∗

T�
+

4�1,Q

T
+

4�∗�2,Q

��QT

[2mm] +
12�∗�Q |�̂T − �Q|

T
+

2�

(1 − 3�)
PT (�0).

RQ(Ŝ∗, S) ≤1 + 3�

1 − 3�
RQ(Ŝ�0 , S) +

4𝜘Q�∗

T�
+

4�1,Q

T
+

4�∗�2,Q

��QT

+
12�∗

T
�Q |�̂T − �Q| +

2��1,Q

(1 − 3�)T
.

(75)�̂T =
T

p

p�
j=[

√
T]

(�j,p)
2 +

2T

p
�(x

�

) +
1

p

p�
j=[

√
T]

�2
j,p
,
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where the functions B1,Q and B2,Q are defined in (63). To estimate the first term in 
(75) we note, that 

∑
j≥[√T]

j−2 ≤ 2[
√
T]−1 and 

√
T ≥ 2 . Therefore, using Proposi-

tion 4 and Lemma 6, we come to the following upper bound

In the same way as in (70) through Lemma 6, we obtain

Taking into account, that ∫ 1

0
�Ṡ(t)�dt ≤ ‖Ṡ‖ and �Q ≤ (1 + �|�|∗)�Q and using the 

bounds (64) and (65) we obtain the inequality (41). Hence Proposition 1 holds true.  
 ◻

7.3  Proof of Theorem 2

This proof directly follows from Theorem 1 and Proposition 1.   ◻

7.4  Proof of Theorem 4

First, we denote by Q0 the distribution in D[0, n] of the noise (6) with the parameter 
�1 = �∗ , �2 = 0 and �3 = 0 , i.e., the distribution for the “signal + white noise” model. 
So, we can estimate from below the robust risk R∗

T
(S̃T , S) ≥ RQ0

(S̃T , S) . Now, Theo-
rem 6.1 from Konev and Pergamenshchikov (2009b) yields the bound (52). Hence we 
obtain the desired result.   ◻

7.5  Proof of Proposition 2

First, we note that in view of (31) one can represent the quadratic risk for the empiric 
norm ‖ ⋅ ‖p defined in (25) as

where �p =
∑p

j=1

�
�j,p − �0(j) �j,p

�2

 . First, note that

1

p

p�
j=[

√
T]

�2
j,p

=
1√
p
B2,Q(x

��

) +
1

p
B1,Q(x

�

) +
(p − [

√
T] + 1)�Q

p
,

�Q��𝜎T − 𝜎Q� ≤
16

�∫ 1

0
�Ṡ(t)�dt

�2

T

[
√
T]p

+
2T

p
�Q ��(x

�

)� + �1,Q

p
+

√
�2,Q√
p

+
𝜎Q

√
T

p
.

�Q �M(x
�

)� ≤
⎛⎜⎜⎝
𝜘Q
T

p�
j=[

√
T]

𝜃
2

j,p

⎞⎟⎟⎠

1∕2

≤ 4(𝜘Q)1∕2 ∫ 1

0
�Ṡ(t)�dt

√
T

.

�Q ‖Ŝ�0 − S‖2
p
=

1

T

p�
j=1

�2
0
(j)�Q �2

j,p
+ �p ,
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where �∗
1,T

= supQ∈QT
�1,Q . Taking into account that �T = T∕�∗ , we get

Recalling here, that �0 = ��0 , we get that

where �0 = ��0
=
(
�kr0�T

)1∕(2k+1) , r0 =
[
�∕�

]
� and �� is given in (47). Indeed, this 

follows immediately from the fact that limT→∞ r0 = � and

Now, from (29) we obtain that for any 0 < �𝜀 < 1

where �p =
∑p

j=1
(1 − �0(j))

2 �2
j,p

 . Moreover, in view of the definition (53)

Note here, that �2
j,p

≤ (1 + �̃)�2
j
+ (1 + �̃−1)(�j,p − �j)

2 for any �𝜀 > 0 . Therefore, in 
view of Lemma 8 using the bound 

∑[�0]

j=[ln T]
j2 ≤ �3

0
 , we get

Through Lemma  7 we have �2,p ≤ (1 + �̃)
∑

j≥[�0]+1
�2
j
+ (1 + �̃−1) � p−2 . Hence, 

�p ≤ (1 + �̃)�∗ + (1 + �̃−1)
(
4�2r�3

0
+ r

)
p−2 , where the first term 

�∗ =
∑

j≥ln T (1 − �0(j))
2 �2

j
 . Moreover, note that

sup
Q∈QT

�Q

p∑
j=1

�2
0
(j) �2

j,p
≤ �∗

T

p∑
j=1

�2
0
(j) + �∗

1,T
.

sup
Q∈QT

�Q ‖Ŝ�0 − S‖2
p
≤ 1

�T

p�
j=1

�2
0
(j) +

�∗
1,T

T
+ �p .

(76)lim
T→∞

∑T

j=1
�2
0
(j)

�
1∕(2�+1)

T

=
2(�� �)

1∕(2�+1) �2

(� + 1)(2� + 1)
,

lim
T→∞

1

�0

�0∑
j=[ln T]

(
1 − (j∕�0)

�
)2

= lim
T→∞

1

�0

�0∑
j=1

(
1 − (j∕�0)

�
)2

[2mm] = ∫
1

0

(1 − t�)2dt =
2 �2

(� + 1)(2� + 1)
.

(77)�p ≤ (1 + �̃)�p + (1 + �̃−1)

p∑
j=1

h2
j,p
,

�p =

[�0]∑
j=[ln T]

(1 − �0(j))
2 �2

j,p
+

p∑
j=[�0]+1

�2
j,p

∶= �1,p + �2,p ,

�1,p ≤ (1 + �̃)

[�0]∑
j=[ln T]

(1 − �0(j))
2 �2

j
+ 4�2r(1 + �̃−1) p−2

[�0]∑
j=[ln T]

j2

≤ (1 + �̃)

[�0]∑
j=[ln T]

(1 − �0(j))
2 �2

j
+ 4�2r(1 + �̃−1)�3

0
p−2 .
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Moreover, W�,� ⊆ W�,2 for any � ≥ 2 . From here and Lemma 9 we get

and, therefore, in view of the condition (�5)

This implies, that

To estimate the term �∗ we set

where the sequence (aj)j≥1 is defined in (50). This leads to the inequality

Using limT→∞ r0 = � , we get lim supT→∞ �T ≤ �−2�
(
�� r

)−2�∕(2�+1) , where the 
coefficient �� is given in (76). This implies immediately that

Therefore, from (76) and (78) it follows that

Using now Lemma 5 and the condition (�5) , we get the upper bound (54). Hence we 
obtain the desired result.   ◻

Appendix

Property of the penalty term

Lemma 4 For any n ≥ 1 and � ∈ �,

sup
S∈W�,1

max
1≤j≤p h

2
j,p

≤ ‖Ṡ‖2 p−2 ≤ r p−2 .

sup
S∈W�,�

p∑
j=1

h2
j,p

≤ r
(
p−1 �{�=1} + 3p−2�{�≥2}

)

lim
T→∞

�
2�∕(2�+1)

T

(
p−1�{�=1} + �3

0
p−2

)
= 0 .

lim sup
T→∞

�
2�∕(2�+1)

T
sup

S∈W�,�

�p ≤ lim sup
T→∞

�
2�∕(2�+1)

T
sup

S∈W�,�

�∗ .

�T = �
2�∕(2�+1)

T
sup
j≥ln T

(1 − �0(j))
2∕aj ,

sup
S∈W�,1

�
2�∕(2�+1)

T
�∗ ≤ �T

∑
j≥1

aj �
2
j
≤ �T� .

(78)lim sup
T→∞

�
2�∕(2�+1)

T
sup

S∈W�,�

�p ≤ �1∕(2�+1)

�2�(��)
2�∕(2�+1)

.

(79)lim
T→∞

�
2�∕(2�+1)

T
sup

S∈W�,�

sup
Q∈QT

�Q ‖Ŝ�0 − S‖2
p
≤ �∗ .
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where the coefficient PT (�) is defined in (68) and �1,Q is defined in (64).

Proof From (30) and (33) we obtain

Now Proposition 4 implies

Hence we obtain the result.   ◻

Properties of the Fourier coefficients

Lemma 5 Let f be an absolutely continuous function, f ∶ [0, 1] → ℝ, with ‖ḟ‖ < ∞ 
and g be a simple function, g ∶ [0, 1] → ℝ of the form g(t) =

∑p

j=1
cj �(tj−1,�j]

(t), 
where cj are some constants. Then, for any 𝜀 > 0, the function � = f − g satisfies the 
following inequalities

Lemma 6 Let the function S(t) in (3) be absolutely continuous and have an abso-
lutely integrable derivative. Then the coefficients (�j,p)1⩽j⩽p defined in (29) satisfy the 
inequalities max2⩽j⩽p j�𝜃j,p� ⩽ 2

√
2 ∫ 1

0
�Ṡ(t)�dt.

Lemma 7 For any p ≥ 2 , 1 ≤ N ≤ p and r > 0 , the coefficients (�j,p)1≤j≤p of func-
tions S from the class W�,1 satisfy, for any �𝜀 > 0 , the following inequality ∑p

j=N
�2
j,p

≤ (1 + �̃)
∑

j≥N �2
j
+ (1 + �̃−1) r p−2.

Lemma 8 For any p ≥ 2 and r > 0 , the coefficients (�j,p)1≤j≤p of functions S satisfy 
the inequality max1≤j≤p supS∈W�,1

�
��j,p − �j� − 2�

√
r j p−1

� ≤ 0.

Lemma 9 For any p ≥ 2 and r > 0 the correction coefficients from (29) satisfy the 
inequality supS∈W�,2

∑p

j=1
h2
j,p

≤ 3r p−2.

Lemmas 5–9 are proven in Konev and Pergamenshchikov (2015).

PT (�) ≤ RQ(Ŝ�, S) +
�1,Q

T
,

Err (�) ≥
p∑
j=1

(
�(j)�̂j,p − �j,p

)2

=

p∑
j=1

(
(�(j) − 1)�j,p +

�(j)

T
�j,p

)2

.

RQ(Ŝ�, S) = �Q Err (�) ≥ 1

T

p∑
j=1

�2(j)�Q �2
j,p

≥ PT (�) −
�1,Q

T
.

‖𝛥‖2 ≤ (1 + �𝜀)‖𝛥‖2
p
+ (1 + �𝜀−1)

‖ḟ‖2
p2

, ‖𝛥‖2
p
≤ (1 + �𝜀)‖𝛥‖2 + (1 + �𝜀−1)

‖ḟ‖2
p2

.
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