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Abstract
In various applications of regression analysis, in addition to errors in the depend-
ent observations also errors in the predictor variables play a substantial role and 
need to be incorporated in the statistical modeling process. In this paper we con-
sider a nonparametric measurement error model of Berkson type with fixed design 
regressors and centered random errors, which is in contrast to much existing work 
in which the predictors are taken as random observations with random noise. Based 
on an estimator that takes the error in the predictor into account and on a suitable 
Gaussian approximation, we derive finite sample bounds on the coverage error of 
uniform confidence bands, where we circumvent the use of extreme-value theory 
and rather rely on recent results on anti-concentration of Gaussian processes. In a 
simulation study we investigate the performance of the uniform confidence sets for 
finite samples.

Keywords Berkson errors-in-variables · Deconvolution · Gaussian approximation · 
Uniform confidence bands

1 Introduction

In mean regression problems a predictor variable X, either a fixed design point or a 
random observation, is used to explain a response variable Y in terms of the condi-
tional mean regression function g(x) = �[Y|X = x] . The case of a random covariate 
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occurs when both X and Y are measured during an experiment and the case of fixed 
design corresponds to situations in which covariates can be set by the experimenter 
such as a machine setting, say, in a physical or engineering experiment. Writing 
� = Y − �[Y|X] gives the standard form of the nonparametric regression model 
Y = g(X) + �, that is, the response is observed with an additional error but the pre-
dictor can be set or measured error-free. In many experimental settings this is not a 
suitable model assumption since either the predictor can also not be measured pre-
cisely, or since the presumed setting of the predictor does not correspond exactly 
to its actual value. There are subtle differences between these two cases, which we 
illustrate by the example of drill core measurements of the content of climate gases 
in the polar ice. Assume that the content of climate gas Y at the bottom of a drill 
hole is quantified. The depth of the drill hole X is measured independently with error 
� giving the observation W. A corresponding regression model is of the following 
form

where W, � and � are independent, � and � are centered, and observations of (Y, W) 
are available. This model is often referred to as classical errors-in-variables model. 
A change in the experimental set-up might require a change in the model that is 
imposed. Assume that in our drill core experiment we fix specific depths w at which 
the drill core is to be analyzed. However, due to imprecisions of the instrument we 
cannot accurately fix the desired value of w, rather the true (but unknown) depth 
where the measurement acquired is w + � . In this case a corresponding model, 
referred to as Berkson errors-in-variables model (Berkson 1950), is of the form

where � and � are independent and centered, w is set by the experimenter and Y is 
observed. In this paper we construct uniform confidence bands in the nonparametric 
Berkson errors-in-variables model with fixed design (2).

In particular, we provide finite sample bounds on the coverage error of these 
bands. We also address the question how to choose the grid when approximating the 
supremum of a Gaussian process on [0, 1]. For Berkson-type measurement errors, a 
fixed design as considered in the present paper seems to be of particular relevance in 
experimentation in physics and engineering. Instead of using the classical approach 
based on results from extreme-value theory (Bickel and Rosenblatt 1973), we pro-
pose a simulation based procedure and construct asymptotic uniform confidence 
regions by using anti-concentration properties of Gaussian processes which were 
recently derived by Chernozhukov et al. (2014). For an early, related contribution 
see Neumann and Polzehl (1998), who develop the wild bootstrap originally pro-
posed by Wu (1986) to construct confidence bands in a nonparametric heteroscedas-
tic regression model with irregular design. While their method could potentially also 
be adopted in our setting, we preferred to work with the simulation based method 
which allows for a more transparent analysis.

There is a vast literature on errors-in-variables models, where most of the earlier 
work is focused on parametric models (Berkson 1950; Anderson 1984; Stefanski 

(1)Y = g(X) + �, W = X + �,

(2)Y = g(w + �) + �,
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1985; Fuller 1987). A more recent overview of different models and methods can 
be found in the monograph by Carroll et al. (2006). In a nonparametric regression 
context, Fan and Truong (1993) consider the classical errors-in-variables setting (1), 
construct a kernel-type deconvolution estimator and investigate its asymptotic per-
formance with respect to weighted Lp-losses and L∞-loss and show rate-optimality 
for both ordinary smooth and super smooth known distributions of errors �. The case 
of Berkson errors-in-variables with random design is treated, e.g., in Delaigle et al. 
(2006), who also assume a known error distribution, Wang (2004), who assumes a 
parametric form of the error density, and Schennach (2013), whose method relies 
on the availability of an instrumental variable instead of the full knowledge of the 
error distribution. Furthermore, Delaigle et al. (2008) consider the case in which the 
error-distribution is unknown but repeated measurements are available to estimate 
the error distribution. A mixture of both types of errors-in-variables is considered in 
Carroll et al. (2007) and the estimation of the observation-error variance is studied 
in Delaigle and Hall (2011).

However, in the aforementioned papers the focus is on estimation techniques and 
the investigation of theoretical as well as numerical performance of the estimators 
under consideration. In the nonparametric setting only very little can be found about 
the construction of statistical tests or confidence statements. Model checks in the 
Berkson measurement error model are developed in Koul and Song (2008, 2009), 
who construct goodness-of-fit tests for a parametric point hypothesis based on an 
empirical process approach and on a minimum-distance principle for estimating the 
regression function, respectively. The construction of confidence statements seems 
to be discussed only for classical errors in variables models with random design in 
Delaigle et al. (2015), who focus on pointwise confidence bands based on bootstrap 
methods and in Kato and Sasaki (2019), who provide uniform confidence bands.

This paper is organized as follows. In Sect. 2 we discuss the mathematical details 
of our model and describe nonparametric methods for estimating the regression 
function in the fixed design Berkson model. In Sect. 3 we state the main theoretical 
results and in particular discuss the construction of confidence bands in Sect. 3.2, 
where we also discuss the choice of the bandwidth. The numerical performance of 
the proposed confidence bands is investigated in Sect. 4. Section 5 outlines an exten-
sion to error densities for which the Fourier transform is allowed to oscillate. Some 
auxiliary lemmas are stated in Sect.  6. Technical proofs of the main results from 
Sect. 3 are provided in Sect. 7, while details and proofs for the extension in Sect. 5 
along with some additional technical details are given in an online supplement. In 
the following, for a function f, which is bounded on some given interval [a, b], we 
denote by ‖f‖ = ‖f‖[a,b] = supx∈[a,b] �f (x)� its supremum norm. The Lp-norm of f 
over all of ℝ is denoted by ‖f‖p . Further, for w ∈ ℝ we set ⟨w⟩ ∶= (1 + w2)

1

2.

2  The Berkson errors‑in‑variables model with fixed design

The Berkson errors-in-variables model with fixed design that we shall consider is 
given by
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where wj = j∕(n an) , j = −n,… , n , are the design points on a regular grid, an is 
a design parameter that satisfies an → 0 , nan → ∞ , and �j and �j are unobserved, 
centered, independent and identically distributed errors for which Var[𝜖1] = 𝜎2 > 0 
and �|𝜖1|M < ∞ for some M > 2 . The density f� of the errors �j is assumed to be 
known. For ease of notation, we consider an equally spaced grid of design points 
here. However, this somewhat restrictive assumption can be relaxed to more general 
designs with a mild technical effort, as we elaborate in Section II of the supplemen-
tary material. For random design Berkson errors-in-variables models, Delaigle et al. 
(2006) point out that identification of g on a given interval requires an infinitely 
supported design density if the error density is of infinite support. This corresponds 
to our assumption that asymptotically, the fixed design exhausts the whole real line, 
which is assured by the requirements on the design parameter an . Meister (2010) 
considers the particular case of normally distributed errors � and bounded design 
density, where a reconstruction of g is possible by using an analytic extension. If we 
define � as the convolution of g and f�(−⋅), that is, �(w) = ∫

ℝ
g(z)f�(z − w) dz, then 

�[Yj] = �(wj) , and the calibrated regression model (Carroll et  al. 2006) associated 
with (3) is given by

Here the errors �j are independent and centered as well but no longer identically dis-
tributed since their variances �2(wj) = �[�2

j
] depend on the design points. To be pre-

cise, we have that

This reveals the increased variability due to the errors in the predictors.
The following considerations show that ignoring the errors in variables can lead to 

misinterpretations of the data at hand. To illustrate, in the setting of simulation Sect. 4, 
scenario 2, Fig. 1 (upper left panel) shows the alleged data points (wj, Yj) , that is, the 
observations at the incorrect, presumed positions, for a sample of size n = 100 . In addi-
tion to the usual variation introduced by the errors �i in y-direction this display shows 
a variation in x-direction introduced by the errors in the wj . The upper right panel 
shows the actual but unobserved data points (wj + �j, Yj) that only contain the varia-
tion in y-direction. Ignoring the errors-in-variables leads to estimating � instead of g, 
which introduces a systematic error. The functions � (solid line) and g (dashed line) 
are both shown in the lower right panel of Fig. 1. The corresponding variance function 
is shown in the lower left panel of Fig. 1 (solid line) in comparison with the constant 
variance �2 (dotted line). Apparently, there is a close connection between the calibrated 
model (4) and the classical deconvolution regression model as considered in Birke et al. 
(2010) and Proksch et al. (2015) in univariate and multivariate settings, respectively. 
In contrast to the calibrated regression model (4), in both works an i.i.d. error struc-
ture is assumed. Also, our theory provides finite sample bounds and is derived under 
weaker assumptions, requiring different techniques of proof. In particular, the previous, 

(3)Yj = g(wj + �j) + �j,

(4)Yj = �(wj) + �j, �j = g(wj + �j) − �(wj) + �j.

(5)𝜈2(wj) = �
(
g(wj + 𝛿) − 𝛾(wj)

)2
f𝛥(𝛿) d 𝛿 + 𝜎2 ≥ 𝜎2 > 0.
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asymptotic, results are derived under a stronger assumption on the convolution function 
f� . To estimate g, we estimate the Fourier transform of �,

An estimator for g is then given by

�� (t) = ∫ eitw�(w) dw, by �̂� (t) =
1

nan

n∑
j=−n

Yje
itwj .

(6)ĝn(x;h) =
1

2𝜋 ∫
ℝ

e−itx𝛷k(ht)
�̂�𝛾 (t)

𝛷f𝛥
(−t)

dt.

Fig. 1  Alleged data points (wj,Yj) , actual data points (wj + �j,Yj) , a comparison between g (dashed line) 
and � (solid line) and a comparison between �2 (dashed line) and �2 (solid line) (clockwise from upper 
left to lower left)
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Here h > 0 is a smoothing parameter called the bandwidth, and �k is the Fourier 
transform of a bandlimited kernel function k that satisfies Assumption 2 below. 
Notice that both �� and �f�

 tend to zero as |t| → ∞ such that estimation of �� in (6) 
introduces instabilities for large values of |t|. Since the kernel k is bandlimited, the 
function �k is compactly supported and the factor �k(ht) discards large values of t, 
therefore serving as regularization. The estimator can be rewritten in kernel form as 
follows:

where the deconvolution kernel K(⋅;h) is given by

3  Theory

By Wm(ℝ) we denote the Sobolev spaces Wm(ℝ) = {g � ‖𝛷g(⋅) ⟨ ⋅ ⟩m‖2 < ∞} , 
m > 0 , where we recall that ⟨w⟩ ∶= (1 + w2)

1

2 for w ∈ ℝ . We shall require the fol-
lowing assumptions.

Assumption 1 The functions g and f� satisfy 

 (i) g ∈ W
m(ℝ) ∩ Lr(ℝ) for all r ≤ M and for some m > 5∕2,

 (ii) f� is a bounded, continuous, square-integrable density,
 (iii) The function � decays sufficiently fast in the following sense: 

 for some s > 1∕2 , where s may depend on n.

Assumption 1 (i) stated above is a smoothness assumption on the function g. In 
Lemma 1 in Sect. 6.1 we list the properties of g that are frequently used through-
out this paper and that are implied by this assumption. In particular, by Sobolev 
embedding, m > 5∕2 implies that the function g is twice continuously differenti-
able, which is used in the proof of Lemma 5. Assumption 1 (iii) will be discussed 
in more detail in Section III of the supplementary material.

Assumption 2 Let �k ∈ C2(ℝ) be symmetric, �k(t) ≡ 1 for all t ∈ [−D,D], 
0 < D < 1, |�k(t)| ≤ 1 for D < |t| ≤ 1 , and 𝛷k(t) = 0, |t| > 1.

ĝn(x;h) =
1

nanh

n∑
j=−n

YjK

(
wj − x

h
;h

)
,

(7)K(w;h) =
1

2� ∫
ℝ

e−itw
�k(t)

�f�
(−t∕h)

d.

∫�z�>1∕an
⟨z⟩s�𝛾(z)�2 dz < ∞,
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In contrast to kernel-estimators in a classical nonparametric regression context, 
the kernel K(⋅;h) , defined in (7), depends on the bandwidth h and hence on the 
sample size via the factor 1∕�f�

(−t∕h) . For this reason, the asymptotic behavior of 
K(⋅;h) is determined by the properties of the Fourier transform of the error-density 
f� . The following assumption on �f�

 is standard in the nonparametric deconvolution 
context (see, e.g., Kato and Sasaki 2019; Schmidt-Hieber et al. 2013) and will be 
relaxed in Sect. 5 below.

Assumption 3 Assume that �f�
(t) ≠ 0 for all t ∈ ℝ and that there exist constants 

𝛽 > 0 and 0 < c < C , 0 < CS such that

A standard example of a density that satisfies Assumption 3 is the Laplace den-
sity with parameter a > 0,

In this case we find � = 2 , C = a2 ∨ 1 , c = a2 ∧ 1 and CS = 2∕a2 ∨ 2a2.

Remark 1 Our asymptotic theory cannot accommodate the case of exponential decay 
of the Fourier transform of the density f� , as the asymptotic behavior of the estima-
tors in the supersmooth case and the ordinary smooth case differs drastically. While 
for the ordinary smooth case considered here ĝ(x) and ĝ(y) are asymptotically inde-
pendent if x ≠ y , convolution with a supersmooth distribution is no longer local and 
causes dependencies throughout the domain. This leads to different properties of the 
suprema supx∈[0,1] |ĝ(x;h) − �[ĝ(x;h)]|, which play a crucial role in the construction 
of our confidence bands. In particular, the asymptotics strongly depend on the exact 
decay of the characteristic function �f�

 and needs a treatment on a case to case basis 
(more details on the latter issue can be found in van Es and Gugushvili 2008).

3.1  Simultaneous inference

Our main goal is to derive a method to conduct uniform inference on the regression 
function g, which is based on a Gaussian approximation to the maximal deviation of 
ĝn from g. We consider the usual decomposition of the difference g(x) − ĝn(x;h) into 
deterministic and stochastic parts, that is

where

(S)c⟨t⟩−� ≤ ��f�
(t)� ≤ C⟨t⟩−� and ���(1)

f�
(t)�� ≤ CS⟨t⟩−�−1.

(8)f�,0(a;x) =
a

2
e−a�x� with �f�,0

(a;t) = ⟨t∕a⟩−2.

g(x) − ĝn(x;h) = g(x) − �[ĝn(x;h)] + �[ĝn(x;h)] − ĝn(x;h),

(9)ĝn(x;h) − �[ĝn(x;h)] =
1

nanh

n∑
j=−n

𝜂jK

(
wj − x

h
;h

)
.
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If the bias, the rate of convergence of which is given in Lemma 5 in Sect. 6, is taken 
care of by choosing an undersmoothing bandwidth h, the stochastic term (9) in the 
above decomposition dominates.

Theorem 1 below is the basic ingredient for the construction of the confidence 
statements under Assumption  3. It guarantees that the random sum (9) can be 
approximated by a distribution free Gaussian version, uniformly with respect to 
x ∈ [0, 1] , that is, a weighted sum of independent, normally distributed random vari-
ables such that the required quantiles can be estimated from this approximation. In 
the following assumption conditions on the bandwidth and the design parameter are 
listed which will be needed for the theoretical results.

Assumption 4 

 (i) ln(n)n
2

M
−1∕(anh) +

h

an
+ ln(n)2h + ln(n)an +

1

nanh
1+2�

= o(1),

 (ii) 
√
nanh

2m+2� +
�

na2s+1
n

h2 + 1∕
√
nanh

2 = o(1∕
√
ln(n)).

The following example is a short version of a lengthy discussion given in Section 
III of the supplementary material. More details can be found there.

Example 1 When estimating a function g nonparametrically, the bandwidth is typi-
cally chosen such that bias and standard deviation of the estimator are balanced. It 
is well known from the literature that such a choice will not result in asymptotically 
correct coverage of the true function by our confidence bands. Therefore, we aim at 
choosing the bandwidth h slightly smaller than this, which is called undersmoothing 
(see, e.g., Giné and Nickl 2010; Chernozhukov et al. 2014; Kato and Sasaki 2018 or 
Yano and Kato 2020 for recent theoretical studies that employ undersmoothing and 
see also Sect. 3.3 for a more detailed discussion of the issue of bandwidth selection). 
The conditions listed in Assumption 4 are satisfied if h is such an undersmooth-
ing bandwidth. To see this, consider the case of a function g ∈ W

m(ℝ),m > 5∕2, 
of bounded support, f� as in (8) and �[𝜖4

1
] < ∞ . Then � = 2 and Assumption 1 (iii) 

holds for s = sn = O(1∕(ln ln(n)an)) such that an can be chosen to be of logarithmic 
order in n (which is shown in Section III of the supplementary material). In the cur-
rent setting, applying Theorem 1 and Lemma 5, a bias variance trade-off yields

If we choose an undersmoothing bandwidth of order h ∼ h∗∕ ln(n), an ∼ 1∕ ln(n) and 
sn ∼ ln(n)∕ ln ln(n) , Assumption 4 (ii) becomes ln(n)1−2m−2�(1 + o(1)) = o(1), which 
is satisfied since m > 5∕2 and 𝛽 > 0.

The first term in Assumption 4 (i) stems from the Gaussian approximation and 
becomes less restrictive if the number of existing moments, M , of the errors �i 
increases. The last term in (i) guarantees that the variance of the estimator tends 
to zero. The terms in between are only weak requirements and are needed for the 

(10)h∗ ∼

(
ln(n)

nan

) 1

2(�+m)

.
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estimation of certain integrals. Assumption 4 (ii) guarantees that the bias is negli-
gible under Assumption  3. The first term guarantees undersmoothing, the second 
term stems from the fact that only observations from the finite grid [−1∕an, 1∕an] are 
available, while the third term accounts for the discretization bias. It is no additional 
restriction if 𝛽 > 1∕2 . For a given interval [a, b], recall that ‖f‖ = ‖f‖[a,b] denotes 
the supremum norm of a bounded function on [a, b].

Theorem  1 Let Assumptions 2–3 and 4 (i) be satisfied. For some given interval 
[a, b] of interest, let �̂�n be a nonparametric estimator of the standard deviation in 
model (4) such that �̂� > 𝜎∕2 and

 

1. There exists a sequence of independent standard normally distributed random 
variables (Zn)n∈ℤ such that for 

 we have that for all � ∈ (0, 1)

 where q‖�n‖(�) is the �-quantile of ‖�n‖ and for some constant C > 0

2. If, in addition, Assumption 4 (ii) and Assumption 1 are satisfied, �[ĝn(x;h)] in (12) 
can be replaced by g(x) with an additional error term of order 
rn,2 =

√
nanh

2m+2� +
�

na2s+1
n

h2 + 1∕
√
nanh

2.

In particular, Theorem  1 implies that limn→∞ ℙ
�‖𝔻n‖ ≤ q‖𝔾n‖(�)

�
= � for all 

� ∈ (0, 1) . Regarding assumption (11), properties of variance estimators in a hetero-
scedastic nonparametric regression model are discussed in Wang et al. (2008).

The following theorem is concerned with suitable grid widths of discrete grids 
Xn,m ⊂ [a, b] such that the maximum over [a, b] and the maximum over Xn,m behave 
asymptotically equivalently.

Theorem  2 For some given interval [a,  b] of interest, let Xn,m ⊂ [a, b] a grid 
of points a = x0,n ≤ x1,n ≤ ⋯ ≤ xm,n = b. Let ‖f‖Xn,m

∶= maxx∈Xn,m
�f (x)�. If 

(11)ℙ

����
1

�̂�
−

1

𝜈

���[a,b] >
n2∕M√
nanh

�
= o(1).

(12)
�n(x) ∶=

√
nanhh

𝛽

�̂�(x)

�
ĝn(x;h) − �[ĝn(x;h)]

�
,

�n(x) ∶=
h𝛽√
nanh

n�
j=−n

ZjK
�

wj−x

h
;h
�
,

(13)
���ℙ
�‖𝔻n‖ ≤ q‖𝔾n‖(�)

�
− �

��� ≤ rn,1,

rn,1 = ℙ

����
1

�̂�
−

1

𝜈

��� >
n2∕M√
nanh

�
+ C

�
1

n
+

n2∕M
√
ln(n)3)√

nanh

�
.
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|Xn,m| ∶= max1≤i≤m |xi,m − xi−1,m| ≤ h1∕2∕(nan)
1∕2, i.e., the grid is sufficiently fine, 

under the assumptions of Theorem 1, the following holds. 

1. For all � ∈ (0, 1)

2. If, in addition, Assumption 4 (ii) and Assumption 1 are satisfied, �[ĝn(x;h)] in (14) 
can be replaced by g(x) with an additional error term of order 
rn,2 =

√
nanh

2m+2� +
�

na2s+1
n

h2 + 1∕
√
nanh

2.

3.2  Construction of the confidence sets

In this section we present an algorithm which can be used to construct uniform con-
fidence sets based on Theorem 1. Let �n(x) be the statistic defined in (12). In order 
to obtain quantiles that guarantee uniform coverage of a confidence band, generate B 
times ‖�n‖Xn,m

 , where |Xn,m| = o(h3∕2a
1∕2
n ∕ ln(n)) (see Theorem 2), that is, calculate 

�̂�n(x) for x ∈ Xn,m , generate B times 2n + 1 realizations of independent, standard nor-
mally distributed random variables Z1,j,… , Z2n+1,j, j = 1,… ,B. Calculate 
�n,j ∶= maxx∈Xn,m

|�n,j(x)|. Estimate the (1 − �)-quantile of ‖�n‖ from 
�n,1,… ,�n,B and denote the estimated quantile by q̂‖�n‖Xn,m (1 − 𝛼). From Theo-
rem 1 we obtain the confidence band

Remark 2 

 (i) Given a suitable estimator for the variance �2 , Theorem 1 and Example 1 imply 
that the coverage error of the above bands will be of order 

 provided that both functions g and f� decay sufficiently fast. The first term 
in (16) is determined by the accuracy of the Gaussian approximation and 
is negligible if the distribution of the errors �i possesses sufficiently many 
moments, while the second term is of order ln(n)1−2m−2� if a bandwidth of 
order h ∼ h∗∕ ln(n) is chosen, where h∗ is given in (10).

 (ii) If the surrogate function �[ĝn] is considered instead of g, the coverage error 
of the confidence bands decays polynomially fast.

 (iii) If the function � decays only polynomially fast, the design parameter an impacts 
the convergence rates, as it can no longer be chosen to be of logarithmic order 

(14)
���ℙ
�‖𝔻n‖ ≤ q‖𝔾n‖Xn,m (�)

�
− �

��� ≤ rn,1(1 + o(1)).

(15)ĝn(x;h) ± q̂‖�n‖Xn,m (1 − 𝛼)
�̂�n(x)√
nanh

1∕2+𝛽
, x ∈ [a, b].

(16)n2∕M
√
ln(n)∕

√
nanh +

�
nanh

2m+2� ,
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only. This is due to the fact that, in this case, sufficient amount of information 
on the function g is only gathered slowly as n increases. In this case, the term √
na2s+1

n
h2 in the coverage error is no longer negligible, which seems to be 

characteristic for Berkson EIV models.

Remark 3 In nonparametric regression without errors-in-variables the widths of uni-
form confidence bands are of order 

√
ln(n)∕

√
nh (see, e.g., Neumann and Polzehl 

1998). Our bands (15) are wider by the factor 1∕(anh�) which is due to the ill-posed-
ness ( � ) and the, possibly slow, decay of � (expressed in terms of an).

3.3  Choice of the bandwidth

Selecting the rate optimal bandwidth does not lead to asymptotically correct cover-
age for the true function, as is well known in the literature (see, e.g., Bickel and 
Rosenblatt 1973; Hall 1992). One way of overcoming this difficulty would be to 
introduce a bias correction, i.e., subtracting a suitably estimated bias from ĝ (see, 
e.g., Hall 1992; Eubank and Speckman 1993). This is, however, quite intricate in 
practice as it requires the estimation of derivatives of the function g. In this paper, 
we follow the very common strategy of undersmoothing. In the remaining part of 
this section, we sketch a way of choosing the bandwidth accordingly. For the choice 
of the bandwidth, Giné and Nickl (2010) (see also Chernozhukov et al. 2014) con-
vincingly demonstrated how to use Lepski’s method to adapt to unknown smooth-
ness when constructing confidence bands. In our framework, choose an exponen-
tial grid of bandwidths hk = 2−k for k ∈ {kl,… , ku} , with kl, ku ∈ ℕ being such that 
2−ku ≃ 1∕n and 2−kl ≃

(
(ln n)∕(nan)

)1∕(𝛽+m̄) and where m̄ corresponds to the max-
imal degree of smoothness to which one intends to adapt. Then for a sufficiently 
large constant CL > 0 choose the index k according to

and choose an undersmoothing bandwidth according as ĥ = hk̂∕ ln n . A result in 
analogy to Giné and Nickl (2010) would imply that under an additional self-simi-
larity condition on the regression function g, using ĥ in (15) produces confidence 
bands of width (ln n∕(n an))(m−1∕2)∕(�+m) (ln n)�+1∕2 if g has smoothness m. Techni-
calities in our setting would be even more involved due to the truncated exhaustive 
design involving the parameter an . Therefore, we refrain from going into the techni-
cal details. In the subsequent simulations we use a simplified bandwidth selection 
rule which, however, resembles the Lepski method.

Recently, in the context of Gaussian process regression, Yang et al. (2017) pro-
pose a fixed target smoothness approach in their frequentist analysis of Bayesian 
credible bands. The idea is to fix the target smoothness and to display the asymptotic 
behavior of the confidence bands in over-smooth, smoothness matching and under-
smooth cases. While this approach would shed more light on the precise behavior of 

k̂ = min
�
k ∈ {kl,… , ku} ∣ ‖ĝ(⋅;hk) − ĝ(⋅;hl)‖ ≤ CL

�
ln n

n an h
1+2 𝛽

l

�1∕2

∀ k ≤ l ≤ ku
�
,
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our confidence bands in the over-smooth and smoothness matching case, we focus 
on the under-smooth case, as only in this case the confidence bands are asymptoti-
cally valid, guaranteeing the nominal coverage.

4  Simulations

In this section we investigate the numerical performance of our proposed meth-
ods in finite samples. We consider several different computational scenarios. As 
regression functions we consider ga(x) = (1 − 4(x − 0.1)2)5I[0,1](2|x − 0.1|), and 
gb(x) = (1 − 4(x + 0.4)2)5I[0,1](2|x + 0.4|) + (1 − 4(x − 0.3)2)5I[0,1](2|x − 0.3|).

For the error distribution f� we chose two densities of a Laplace distribution as 
defined in (8) with a =

0.1√
2
 and a =

0.05√
2
 , i.e., standard deviations �� = 0.1 and 

�� = 0.05 , respectively. Finally, an = 2∕3 in all simulations discussed below. Our 
estimation is based on an application of the Fast Fourier transform implemented in 
python/scipy. The integration used a damped version of a spectral cut off with cut-
off function I(�) = 1 − exp(−

1

(�⋅h)2
) in spectral space.

Construction of the confidence bands requires the selection of a regularization 
parameter for the estimator ĝ . In our simulations, we have chosen this parameter 
by a visual inspection of a sequence of estimates for the regularization param-
eter, covering a range from over- to under-smoothing, see Fig.  2. We chose the 
minimal regularization parameter for which the estimates do not change system-
atically in overall amplitude, but appear to only exhibit additional random fluc-
tuations at smaller values of the parameter. In the case shown here, we chose 
a regularization parameter of 0.27. The same procedure was followed for other 
combinations of n, �, �� and signal ga resp. gb ) and the results can be found in 
Table 1. This regularization parameter was then kept fixed for each combination 
of n, �, �� and signal g ∈ {ga, gb} . Figures  3 and  4 show four random examples 
each for estimates of ga and gb , respectively, together with the associated confi-
dence bands from 250 bootstrap simulations. Solid lines represent the true signal 
ga and gb and dashed lines the estimates ĝn together with their associated confi-
dence bands. Again, in both cases, n = 100 , � = 0.1 and �� = 0.1 . Next, we dis-
cuss the practical performance of the bootstrap confidence bands in more detail 
for the first scenario, where the model is correctly specified and the errors in the 
predictors are taken into account as well. The results are shown in Tables 2 and 3 
for the simulated rejection probabilities (one minus the coverage probability) at 
a nominal value of 5% and for the (average) width of the confidence bands. In 

Table 1  Regularization 
parameter used in the 
subsequent simulations

See text for details on its selection

n = 100 n = 100 n = 750 n = 750

� = �� = 0.1 � = �� = 0.05 � = �� = 0.1 � = �� = 0.05

ga 0.25 0.24 0.21 0.12
gb 0.20 0.22 0.22 0.11
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Table 2  Simulated rejection 
probabilities for bootstrap 
confidence bands

n = 100 (%) n = 100 (%) n = 750 (%) n = 750 (%)
� = �� = 0.1 � = �� = 0.05 � = �� = 0.1 � = �� = 0.05

ga 5.8 7.2 5.1 5.6

gb 1.8 5.3 5.0 5.0

Table 3  Average width of 
bootstrap confidence bands

n = 100 n = 100 n = 750 n = 750

� = �� = 0.1 � = �� = 0.05 � = �� = 0.1 � = �� = 0.05

ga 0.44 0.16 0.21 0.14
gb 0.86 0.28 0.24 0.22

Fig. 2  Sequence of estimates for increasing regularization parameter from a random sample of observa-
tions of signal gb with n = 100 and � = �� = 0.1
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all cases, we performed simulations based on 500 random samples of data and 
nominal rejection probability 5% (i.e., confidence bands with nominal coverage 
probability of 95% ). For each of these data samples, we repeated 250 times the 
following scenario.

First, we determined the width of the confidence bands from 250 bootstrap 
simulations and second, we evaluated whether the confidence bands cover the 
true signal everywhere in an interval of interest. The numbers shown in the table 
give the percentage of rejections, i.e., of where the confidence bands do not over-
lap the true signal everywhere in such an interval. Here, the intervals of inter-
est are chosen as an interval where the respective signal is significantly different 
from 0. The intention of this is that in many practical applications the data analyst 
is particularly interested in those parts of the signal. Here, we chose the interval 
[−0.7, 0.6] as ’interval of interest’ for ga and gb . From the tables we conclude that 
the method performs well, particularly for n = 750 , where the confidence bands 
are substantially less wide.

Fig. 3  True signal (solid line), observable signal (dash-dotted line) and estimates and associated confi-
dence bands (dashed lines) from four random samples for ga for n = 100 (top) and n = 750 (bottom) and 
� = �� = 0.1
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5  Extensions

The following assumption is less restrictive than Assumption 3, (S).

Assumption 5 Assume that �f�
(t) ≠ 0 for all t ∈ ℝ and that there exist constants 

𝛽 > 0 and 0 < c < C , 0 < CW such that

An example for a density that satisfies Assumption 5 but not Assumption 3 is given 
by the mixture

(W)c⟨t⟩−� ≤ ��f�
(t)� ≤ C⟨t⟩−� and ���(1)

f�
(t)�� ≤ CW⟨t⟩−� .

(17)f�,1(1;x) =
�

2
f�,0(1;x − �) +

�

2
f�,0(1;x + �) + (1 − �)f�,0(1;x),

Fig. 4  True signal (solid line), observable signal (dash-dotted line) and estimates and associated confi-
dence bands (dashed lines) from four random samples for gb for n = 100 (top) and n = 750 (bottom) and 
� = �� = 0.1
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where � ∈ (0, 1∕2) and � ≠ 0 , and f�,0 is the Laplace density defined in (8). We find 
�f�,1

(t) = (1 − � + � cos(�t))⟨t⟩−2, which yields � = 2 , c = 1 − 2� and CW = �� + 4. 
Technically, Assumption 3, (S) allows for sharper estimates of the tails of the decon-
volution kernel (7) than does Assumption 4, (W), see Lemma 4 in Sect. 6. In this 
case we have to proceed differently as the approximation via a distribution free pro-
cess such as �n can no longer be guaranteed and we can only find a suitable Gauss-
ian approximation depending on the standard deviation �.

Roughly speaking, we approximate �n(x) in (12) by the process

for a variance estimator �̃�n on growing intervals |x| ≤ n an (1 − �) for some 𝛿 > 0 . 
We then replace the quantiles involving �n in (13), (14) and in (15) by (the con-
ditional quantiles given the sample) of �̃n . Our theoretical developments involve 
a sample splitting, hence are somewhat cumbersome so that details are deferred 
to the supplementary material. We have also simulated a version of the boot-
strap for the extended model. However, as simulations show, the results are 
clearly not as good as for the more restrictive assumptions on f� . We have used 
f�,1(x) =

�

2
⋅ f�,0(a;x − 0.3) + (1 − �) ⋅ f�,0(a;x) +

�

2
⋅ f�,0(a;x + 0.3), with f�,0 again 

the Laplace density defined in (8), a = 0.05∕
√
2 and � = 0.2 . For the signal ga in 

Sect. 4 we find confidence band widths of 0.686 and 0.462 for n = 100 and n = 750 , 
respectively, at simulated coverage probabilities of 6.3% and 4.5% and bandwidths 
of 0.59 and 0.32, for � = �� = 0.1.

6  Auxiliary lemmas

The proofs for the results in this section are given in Sect. 8.

6.1  Properties of g, � and K

Assumption 1 stated above is basically a smoothness assumption on the function g. 
In the following lemma we list the properties of g that are frequently used through-
out this paper and that are implied by Assumption 1.

Lemma 1 Let Assumption 1 hold. 

 (i) The function g is twice continuously differentiable.
 (ii) The function g has uniformly bounded derivatives: ‖g(j)‖∞ < ∞, j ≤ 2.

Given Assumption 1 (ii), the properties of the function g given in Lemma 1 are 
transferred to � = g ∗ f�. This is made precise in the following lemma.

(18)��n(x) =

√
nanh

1+2𝛽

h �̃�n(x)

�
j

�̃�n(𝜔j)Zj K

�
wj − x

h
;h

�
,
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Lemma 2 Let Assumption 1 hold. 

 (i) The function � = g ∗ f� is twice continuously differentiable with derivatives 
� (j) = g(j) ∗ f�.

 (ii) � ∈ W
m(ℝ).

 (iii) The function � has uniformly bounded derivatives: ‖𝛾 (j)‖∞ < ∞, j ≤ 2.

Furthermore, the variance function �2 , defined in (5), is a function that depends 
on f�, � and g. The following lemma lists the properties of �2 , which are implied by 
the previous Lemmas 1 and 2, and that are frequently used throughout this paper.

Lemma 3 Let Assumption 1 hold. 

 (i) The variance function �2 is uniformly bounded and bounded away from zero.
 (ii) The variance function �2 is twice continuously differentiable with uniformly 

bounded derivatives.

For the tails of the kernel, we have the following estimate.

Lemma 4 For any a > 1 and x ∈ [0, 1] we have

Lemma 5 Let Assumptions 1 and 2 be satisfied. Further assume that h∕an → 0 as 
n → ∞ . 

 (i) Then for the bias, we have that 

 (ii) a) For the variance if Assumption 5, (W) holds and nanh1+� → ∞, then we have 
that 

 (ii) b) If actually Assumption 3, (S) holds and nanh1+� → ∞, then 

 Here c, C and � are the constants from Assumption 5 respectively (3).

�{|z|>a}

(
K
(
z − x

h
;h
))2

dz ≤ C
2a

a2 − x2
⋅

{
h−2𝛽 , if Ass. 4, (W) holds,

h−2𝛽+2, if Ass. 3, (S) holds.

sup
x∈[0,1]

||�[ĝn(x;h)] − g(x)|| = O

(
h
m−

1

2 +
1

nanh
𝛽+

3

2

)
+

{
O
(
a
s+1∕2
n h1−𝛽

)
, Ass. 3, (S),

O
(
a
s+1∕2
n h−𝛽

)
, Ass. 5, (W).

𝜎2

2C𝜋
(1 + O(an)) ≤ nanh

1+2𝛽Var[ĝn(x;h)] ≤ 2𝛽 supx∈ℝ 𝜈2(x)

c𝜋
.

𝜈2(x)

C𝜋
(1 + O(an)) ≤ nanh

1+2𝛽Var[ĝn(x;h)] ≤ 𝜈2(x)

c𝜋
(1 + O

(
h∕an

)
).
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6.2  Maxima of Gaussian processes

Let {�t | t ∈ T} be a Gaussian process and � be a semi-metric on T. The pack-
ing number D(T , �, �) is the maximum number of points in T with distance � 
strictly larger than 𝛿 > 0 . Similarly to the packing numbers, the covering num-
bers N(T , �, �) are defined as the number of closed �-balls of radius � , needed to 
cover T. Let further d

�
 denote the standard deviation semi-metric on T, that is, 

d
�
(s, t) =

(
�
[|�t −�s|2

])1∕2
for s, t ∈ T . In the following, we drop the subscript 

if it is clear which process induces the pseudo-metric d.

Lemma 6 There exist constants CE,CÊ
∈ (0,∞) such that 

 (i) N(T , �, d
�n
) ≤ D(T , �, d

�n
) ≤ CE∕(h

3∕2a1∕2
n

�).

 (ii) N(T , �, d
�K̂
n

) ≤ D(T , �, d
�K̂
n

) ≤ C
Ê
∕(h3∕2a1∕2

n
�), where �K̂

n
 is defined as �n with 

K replaced by K̂, where K̂(z;h) = zK(z;h).

Lemma 7 Let (�n,1(t), t ∈ T) and (�n,2(t), t ∈ T) be almost surely bounded, centered 
Gaussian processes on a compact index set T and suppose that for any fixed n ∈ ℕ 
diamd

�n,1

(T) > Dn > 0. If

we have that

7  Proofs of Theorems 1 and 2

In the following, the letter C denotes a generic, positive constant, whose value 
may vary form line to line. The abbreviations Rn and R̃n , possibly with additional 
subscripts, are used to denote remainder terms and their definition may vary from 
proof to proof.

Proof of Theorem  1 We first prove assertion (i). Let �n ∶= n2∕M ln(n)∕
√
nanh and 

notice that

since the distribution of ‖�n‖ is absolutely continuous. Analogously, it holds

d
�n,1

(s, t) ≤ d
�n,2

(s, t) ∀ s, t ∈ T and �[‖�n,2‖] = o(1∕
√
ln(n)),

𝔼
�‖𝕏n,1‖

� ≤ 2𝔼
�‖𝕏n,2‖

�
and hence ‖𝕏n,1‖ = o

ℙ
(1∕

√
ln(n)).

ℙ
�‖𝔻n‖ ≤ q‖𝔾n‖(𝛼)

� ≤ ℙ
�‖𝔾n‖ ≤ q‖𝔾n‖(𝛼) + 𝜌n

�
+ ℙ

���‖𝔻n‖ − ‖𝔾n‖�� > 𝜌n
�

≤ 𝛼 + ℙ
�
q‖𝔾n‖(𝛼) ≤ ‖𝔾n‖ ≤ q‖𝔾n‖(𝛼) + 𝜌n

�
+ ℙ

���‖𝔻n‖ − ‖𝔾n‖�� > 𝜌n
�
,
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and therefore

The first term on the right hand side of the inequality is the concentration function 
of the random variable ‖�n‖ , which can be estimated by Theorem 2.1 of Chernozhu-
kov et al. (2014). This gives

By Lemma 6 we have N([0, 1], �, d
�n
) ≤ CE∕(h

3∕2a
1∕2
n �), which allows to estimate 

the expectation �[‖�n‖] as follows.

This yields

We now estimate the term ℙ
���‖𝔾n‖ − ‖𝔻n‖�� > 𝜌n

�
 in several steps. With the 

definition

we find

and thus

Consider first term Rn,2 . Let 𝜅 > 0 be a constant and n sufficiently large such that 
𝜅∕

√
ln(n) < 1 . Then

ℙ
�‖𝔻n‖ ≤ q‖𝔾n‖(𝛼)

� ≥ 𝛼 − ℙ
�
q‖𝔾n‖(𝛼) − 𝜌n ≤ ‖𝔾n‖ ≤ q‖𝔾n‖(𝛼)

�

− ℙ
���‖𝔻n‖ − ‖𝔾n‖�� > 𝜌n

�
,

���ℙ
�‖𝔻n‖ ≤ q‖𝔾n‖(𝛼)

�
− 𝛼

��� ≤ sup
x∈ℝ

ℙ
��‖𝔾n‖ − x� ≤ 𝜌n

�
+ ℙ

���‖𝔾n‖ − ‖𝔻n‖�� > 𝜌n
�
.

���ℙ
�‖𝔻n‖ ≤ q‖𝔾n‖(𝛼)

�
− 𝛼

��� ≤ 4𝜌n
�
𝔼[‖𝔾n‖] + 1

�
+ ℙ

���‖𝔾n‖ − ‖𝔻n‖�� > 𝜌n
�
.

�[‖�n‖] ≤ C�
diamd�n

([0,1])

0

�
ln
�

CE

h3∕2a
1∕2
n �

�
d� ≤ C

√
ln(n).

���ℙ
�‖𝔻n‖ ≤ q‖𝔾n‖(𝛼)

�
− 𝛼

��� ≤ C
√
ln(n)𝜌n + ℙ

���‖𝔾n‖ − ‖𝔻n‖�� > 𝜌n
�
.

(19)�n,0(x) ∶=
h�

�(x)
√
nanh

n�
j=−n

�(wj)ZjK

�
wj − x

h
;h

�
,

ℙ
���‖𝔾n‖ − ‖𝔻n‖�� > 𝜌n

� ≤ ℙ
�‖𝔾n − 𝔻n‖ > 𝜌n

�

≤ ℙ

�
‖𝔾n,0 − 𝔻n‖ >

𝜌n
2

�
+ ℙ

�
‖𝔾n − 𝔾n,0‖ >

𝜌n
2

�
,

ℙ
���‖𝔾n‖ − ‖𝔻n‖�� > 𝜌n

� ≤ ℙ

�
‖𝜈𝔾n,0 − 𝜈n𝔻n‖ >

𝜎𝜌n
8

�

+ ℙ

����
1

𝜈
−

1

�̂�

���‖𝜈𝔾n,0‖ >
𝜌n

4

�
+ ℙ

�
‖𝔾n − 𝔾n,0‖ >

𝜌n

2

�
=∶ Rn,1 + Rn,2 + Rn,3.

Rn,2 ≤ ℙ

����
1

𝜈
−

1

�̂�

��� > 𝜅
𝜌n

4
√
ln(n)

�
+ ℙ

�
‖𝜈𝔾n,0‖ >

√
ln n

𝜅

�
=∶ Rn,2,1 + Rn,2,2.



792 K. Proksch et al.

1 3

The term Rn,2,1 is controlled by assumption and the term Rn,2,2 can be estimated by 
Borell’s inequality. To this end, denote by d the pseudo distance induced by the pro-
cess ��n,0 . It holds that

where the last estimate follows by an application of Lemma 6. By a change of vari-
ables, using that for any a ≤ 1

we obtain

Next,

for sufficiently small � such that �
�
supx∈[0,1] 𝜈(x)�n,0(x)

�
<

√
ln n

4𝜅
 . An application of 

Borell’s inequality yields

where �2
[0,1]

∶= supx∈[0,1] Var[�(x)�n,0(x)] is a bounded quantity by Lemma 6. For 
sufficiently small � , this yields the estimate

Next, we estimate the term Rn,1 , i.e., we consider the approximation of �n by a suit-
able Gaussian process. To this end, consider the standardized random variables 
�j ∶= �j∕�(wj) and write

�

�
sup

x∈[0,1]

�(x)�n,0(x)
� ≤ �[‖��n,0‖] ≤ C�

diam([0,1])

0

√
ln (N(�, [0, 1], d)) d�

≤ C�
diam([0,1])

0

�
ln
�

C

h
3
2 a

1
2
n �

�
d�,

1

a �
a

0

√
− ln(x) dx ≤ √

− ln(a) + 1∕
√
−2 ln(a) ≤ C

√
− ln(a),

(20)�

�
sup

x∈[0,1]

�(x)�n,0(x)
� ≤ �[‖��n,0‖] ≤ C

√
ln(n).

Rn,2,2 ≤ 2ℙ

�
sup

x∈[0,1]

(𝜈𝔾n,0)(x) >
√
ln n

2𝜅

�

= ℙ

�
sup

x∈[0,1]

(𝜈𝔾n,0)(x) − 𝔼
�
sup

x∈[0,1]

(𝜈𝔾n,0)(x)
�
>

√
ln n

2𝜅
− 𝔼

�
sup

x∈[0,1]

(𝜈𝔾n,0)(x)
��

≤ ℙ

�
sup

x∈[0,1]

(𝜈𝔾n,0)(x) − 𝔼
�
sup

x∈[0,1]

(𝜈𝔾n,0)(x)
�
>

√
ln n

4𝜅

�
,

Rn,2,2 ≤ exp

(
−

ln(n)

32�2�2
[0,1]

)
,

Rn,2 ≤ ℙ

����
1

𝜈
−

1

�̂�

��� > 𝜅
𝜌n

4
√
ln(n)

�
+

C

n
.
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where the processes �+
n
(x), �−

n
(x) and �0

n
(x) are defined in an obvious manner. Define 

the j-th partial sum Sj ∶=
∑j

�=1
�� , set S0 ≡ 0 and write

By assumption, there exists a constant M > 2 such that �[|𝜖1|M] < ∞ . By Lemma 2, 
� is uniformly bounded, which implies �[|�j|M] ≤ M for some M > 0 and all j. By 
Corollary 4, §5 in Sakhanenko (1991) there exist iid standard normally distributed 
random variables Z1,… , Zn such that, for W(j) ∶=

∑n

j=1
Zj the following estimate 

holds for any positive constant C:

Therefore,

where �+
n,0

 is defined in analogy to �+
n
 in (21), with �j replaced by Zj . For 

n sufficiently large, we have an < 1∕2 and thus, for x ∈ [0, 1] we have that 
(wn − x)∕h ∈ [1∕(2anh), 1∕anh] and thus

by (23). Next,

(21)
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h
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)
= Sn�(wn)K

(wn − x

h
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)
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[
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(
wj+1 − x

h
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(
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−
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d
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(
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(
z − x

h
;h
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ℙ

(
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2C

)
≤

n∑
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(

C
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)M
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(
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by equation (S3) in the supplementary material. This yields

Hence,

Since 0 < 𝜎 < 𝜈(wj), �[|�j|M] ≤ M∕�M for all 1 ≤ j ≤ n, we have Rn,2 ≤ C∕n by (22). 
Last, we need to estimate the term Rn,3 . We have

where

Using that by Lemma 3 |�(wj) − �(x)| ≤ C|wj − x| = hC|wj − x|∕h , we find that 
N
�
[0, 1], �, d

R̃n

� ≤ C∕(
√
anh�). Furthermore, there exist positive constants ĉ and Ĉ 

such that

By Theorem 4.1.2 in Adler and Taylor (2007), there exists a universal constant K 
such that, for all u > 2

√
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nanh
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d
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(
h��(z)K
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))|||| dz
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(
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h
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)|||| +

1

h

||||K
�
(
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h
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1
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−
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h
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n
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ĉ
h2

nanh
≤ sup

x∈[0,1]

Var
[
R̃n(x)

] ≤ Ĉ
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where � denotes the tail function of the standard normal distribution. Setting 
u = �n∕8 yields, for sufficiently large n,

Therefore, Rn,3 ≤ C∕n , which concludes the proof of assertion (i). Assertion (ii) is 
again an immediate consequence of Lemma 5.   ◻

Proof of Theorem 2 On the one hand,

by Theorem 1. On the other hand,

Note that (25) implies

Hence,

This yields

By Corollary 2.2.8 in van der Vaart and Wellner (1996) and Lemma 6, we find

Since |Xn,m| ≤ h1∕2∕na
1∕2
n  , we have that �Xn,m�

√
− ln(�Xn,m�)

h3∕2a
1∕2
n

= o(�2
n
) and therefore, by 

Markov’s inequality,

ℙ
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≤ Kn

1
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2
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This yields

where we applied Theorem 2.1 in Chernozhukov et al. (2014). Claim 1 of this theo-
rem now follows. Claim 2 is an immediate consequence of Lemma 5.   ◻

8  Proofs of the auxiliary lemmas

Proof of Lemma 1 Assertion (i) is a direct consequence of Sobolev’s Lemma.
(ii) By an application of the Hausdorff-Young inequality we obtain

Fourier transformation converts differentiation into multiplication, that is,

Since g ∈ W
m(ℝ) for m > 5∕2 by Assumption 1 it follows by an application of the 

Cauchy-Schwarz inequality that ‖(⋅)j𝛷g‖1 < ∞ for j = 0, 1, 2 and the assertion fol-
lows.   ◻

Proof of Lemma 2 Assertion (i) follows from Proposition 8.10 in Folland (1984) 
since f� is a density and is hence integrable.

Assertion (ii) is a direct consequence of Assumption 1 and the convolution theo-
rem: �� = �g∗f�(−⋅)

= �g ⋅�f�
, since �f�

 is bounded.
Assertion (iii) follows in the same manner as the second claim of Lemma 1.   ◻

Proof of Lemma 3 (i) Recall from definition (5) that

Hence, it follows from Lemma 1 (ii) and Lemma 2 (iii) that

ℙ
�
�n ≥ �n

� ≤ C
�Xn,m�

√
− ln(�Xn,m�)

h3∕2a
1∕2
n

1
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‖‖‖∞ ≤ 1

2�

‖‖‖� dj

dxj
g

‖‖‖1, j = 0, 1, 2.

���� dj

dxj
g

���1 = ‖(⋅)j�g‖1, j = 0, 1, 2.

𝜈2(z) = ∫
(
g(z + 𝛿) − 𝛾(z)

)2
f𝛥(𝛿) d 𝛿 + 𝜎2, 𝜎2 > 0.

0 < 𝜎2 ≤ 𝜈2(z) ≤ 𝜎2 + 2(‖g‖2
∞
+ ‖𝛾‖2

∞
) < ∞.
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(ii) By the first assertions of Lemma 1 and Lemma 2, the functions g and � are twice 
continuously differentiable and f� is continuous. This yields for j = 1, 2

Since by Lemmas 1 and 2 the derivatives of g and � are uniformly bounded and f� is 
a probability density, we find for j = 1, 2

  ◻

Proof of Lemma 4 From (7), we deduce for w ∈ ℝ

Hence,

In particular, for all w ∈ ℝ�{0},

Now, let a > 1 . Then

  ◻

Proof of Lemma 5 The proof of Lemma 5 is straightforward but tedious. We there-
fore omit the proof here and defer it to an online supplement.   ◻

dj

dzj
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Proof of Lemma 6 

where the last estimate follows by the Hausdorff-Young inequality and definition (7).
Therefore, by Assumption 3, there exists a constant CE such that 

d
�n
(s, t) ≤ CE|s − t|∕(a

1

2

n h
3

2 ) . Now, consider the equidistant grid

and note that for each s ∈ [0, 1] there exists a tj ∈ Gn,� such that 
|s − tj| ≤ a

1∕2
n h3∕2�∕(2CE) , which implies dGn

(s, tj) ≤ �∕2. Therefore, the closed  
d
�n

-balls with centers tj ∈ Gn,� and radius �∕2 cover the space [0,  1], i.e., 
N([0, 1], �∕2, d

�n
) ≤ CE

h
3
2 a

1
2
n �

.

The relationship N([0, 1], �, d
�n
) ≤ D([0, 1], �, d

�n
) ≤ N([0, 1], �∕2, d

�n
) now 

yields the first claim of the lemma. Using that, by Assumption 3,

the second claim follows along the lines of the first claim.   ◻
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