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Abstract
The main purpose of the present work is to investigate kernel-type estimate of a 
class of function derivatives including parameters such as the density, the condi-
tional cumulative distribution function and the regression function. The uniform 
strong convergence rate is obtained for the proposed estimates and the central limit 
theorem is established under mild conditions. Moreover, we study the asymptotic 
mean integrated square error of kernel derivative estimator which plays a fundamen-
tal role in the characterization of the optimal bandwidth. The obtained results in this 
paper are established under a general setting of discrete time stationary and ergodic 
processes. A simulation study is performed to assess the performance of the esti-
mate of the derivatives of the density function as well as the regression function 
under the framework of a discretized stochastic processes. An application to finan-
cial asset prices is also considered for illustration.
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1  Introduction

Over years ago, Parzen (1962) studied some properties of kernel density estima-
tors introduced by Akaike (1954) and Rosenblatt (1956). Since then, nonparamet-
ric estimation of the density and regression functions received an intense investi-
gation by statisticians for several years and a large variety of estimation methods 
were developed. Kernel-based nonparametric function estimation methods have 
received the interest of the statistics community and several theoretical results 
along with interesting applications, including economics, finance, biology and 
environmental science, were considered in the literature. For an exhaustive dis-
cussion on the topic the reader can be referred to the following pioneer papers 
Tapia and Thompson (1978), Wertz (1978), Devroye and Györfi (1985), Devroye 
(1987), Nadaraya (1989), Härdle (1990), Wand and Jones (1995), Eggermont and 
LaRiccia (2001), Devroye and Lugosi (2001) and the references therein.

The estimation of function derivatives is a versatile tool in statistical data anal-
ysis. For instance, Genovese et al. (2013) introduced a test statistics for the modes 
of a density based on the second order density derivative. Noh et  al. (2018) 
showed that the optimal bandwidth of kernel density estimation depends on the 
second-order density derivative. Moreover, as discussed in Silverman (1986) and 
Wand and Jones (1995), the optimal choice of the bandwidth for a local constant 
estimator of the density depends on the second derivative of the density function. 
Notice also that the estimation of density derivatives is an instrumental tool in 
statistical data analysis in many applications. For example, the first-order density 
derivative is the fundamental feature for the mean shift clustering seeks modes of 
the data density, see Fukunaga and Hostetler (1975), Yizong (1995) and Coman-
iciu and Meer (2002). A statistical test for modes of the data density is based 
on the second order density derivative (Genovese et al. 2013). The second-order 
density derivative appears also in the bias of nearest-neighbor Kullback–Leibler 
divergence estimation, for details refer to Noh et al. (2018). Härdle et al. (1990) 
and Chacón and Duong (2013) consider the problem of estimating the the den-
sity derivative and obtained the optimal bandwidth selection. Sasaki et al. (2016) 
proposed a novel method that directly estimates density derivatives without going 
through density estimation. In short, the estimation of the density derivatives is 
a subject of great interest and received a lot of attention, we can refer to Meyer 
(1977), Silverman (1978), Cheng (1982), Karunamuni and Mehra (1990), Jones 
(1994), Abdous et  al. (2002), Horová et  al. (2002), Henderson and Parmeter 
(2012a, 2012b), Wu et al. (2014), Schuster (1969).

More applications in fundamental statistical problems such as regression, 
Fisher information estimation, parameter estimation, and hypothesis testing 
are discussed in Singh (1976, 1977, 1979). For instance the conditional bias, 
the conditional variance and the optimal local bandwidth selection of the local 
polynomial regression estimator depend on high order derivatives of the regres-
sion function [see Fan and Gijbels (1995) for more details]. Yu and Jones (1998) 
showed that the mean square error of the local linear quantile regression estima-
tor, and consequently the choice of the optimal bandwidth, depend on the second 
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derivative, with respect to the covariate, of the conditional cumulative distri-
bution function. Most of the time, when it comes to the numerical implemen-
tation of the optimal choice of the bandwidth, we plug-in the derivative of the 
above mentioned quantities (density, regression or CDF) by their empirical ver-
sions without necessarily deeply studying the properties of the estimates of those 
derivatives.

Furthermore, it has been noted that the estimation of the first- or higher-order 
derivatives of the regression function is also important for practical implementa-
tions including, but not limited to, the modeling of human growth data (Ramsay and 
Silverman 2002), kidney function for a lupus nephritis patient (Ramsay and Silver-
man 2005), and Raman spectra of bulk materials (Charnigo et  al. 2011). Deriva-
tive estimation is also needed in nonparametric regression to construct confidence 
intervals for regression functions (Eubank and Speckman 1993), to select kernel 
bandwidths (Ruppert et al. 1995), and to compare regression curves (Park and Kang 
2008). Härdle and Gasser (1985) considered an homoscedastic regression model 
and proposed kernel M-estimators to estimate nonparametrically the first derivative 
of the regression function. They heuristically extend their proposal to higher order 
derivatives. The derivative of the regression function, that is used in modal regres-
sion, which is an alternative approach to the usual regression methods for exploring 
the relationship between a response variable and a predictor variable, we may refer 
to Herrmann and Ziegler (2004); Ziegler (2001, 2002, 2003) and to Bouzebda and 
Didi (2021) for recent references. The estimation of the regression function was con-
sidered from theoretical and practical point of view by Nadaraja (1969), Rice and 
Rosenblatt (1983), Gasser and Müller (1984), Georgiev (1984) and Delecroix and 
Rosa (1996). However, less attention was devoted to the study of the derivatives of 
the regression function.

In the present work, we are interested in studying the asymptotic properties of 
function derivatives nonparametric estimates. We do not assume anything beyond 
the stationarity and the ergodicity of the underlying process. For more details about 
ergodicity assumption, one can refer the reader to Bouzebda et al. (2015), Bouzebda 
et al. (2016), Bouzebda and Didi (2017a, 2017b) and Krebs (2019) among others. 
Notice that in the statistical literature, it is commonly assumed that the data are 
either independent or satisfy a certain form of mixing assumption. Mixing condi-
tion can be seen as some kind of asymptotic independence assumption which can 
be unrealistic and excludes several stochastic processes characterized by a strong 
dependence structure (such as long memory processes) or their mixing coefficient 
does not vanish asymptotically (for instance an autoregressive model with discrete 
innovation). Moreover, one of the arguments invoked by Leucht and Neumann 
(2013) motivating the usage of the ergodicity assumption is the existence of exam-
ple of classes of processes where the ergodicity property is much easier to prove 
than the mixing one. Hence, the ergodicity condition seems to be more natural to 
adopt as far as it provides a more general dependence framework which includes 
non-mixing stochastic processes such those generated by noisy chaos.

In the following we illustrate the discussion above through an example of processes 
which are ergodic but do not necessarily satisfy the mixing condition. For this let 
{(Ti, �i) ∶ i ∈ ℤ} be a strictly stationary process such that Ti ∣ Ti−1 is a Poisson process 
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with parameter �i , where Ti be the �-field generated by (Ti, �i, Ti−1, �i−1,…) . Assume 
that �i = f (�i−1, Ti−1) , where f ∶ [0,∞) × ℕ → (0,∞) is a given function . This 
process is not mixing in general (see Remark 3 in Neumann 2011). It is known that any 
sequence (�i)i∈ℤ of i.i.d. random variables is ergodic. Consequently, one can observe 
that (Yi)i∈ℤ with Yi = �((… , �i−1, �i), (�i+1, �i+2,…)), for some Borel-measurable 
function �(⋅) , is also ergodic (see Proposition 2.10, page 54 in Bradley 2007 for more 
details).

To the best of our knowledge, the results presented here, respond to a problem that 
has not been studied systematically up to the present, which was the basic motivation of 
the paper. To prove our results, we base our methodology upon the martingale approxi-
mation which allows to provide an unified nonparametric time series analysis setting 
enabling one to launch systematic dependent data studies, which are quite different of 
existing procedures in the i.i.d. setting.

The remainder of the paper is organized as follows. General notation and definitions 
of the kernel derivatives estimators are given in Sect. 2. The assumptions and asymp-
totic properties of the kernel derivative estimators are given in Sect. 3, which includes 
the uniform strong convergence rates, the asymptotic normality and the AMISE of 
the family of nonparametric function derivative estimators. Section 4 is devoted to an 
application for the regression function derivatives. The performance of the proposed 
procedures is evaluated through simulations in the context of the regression derivatives 
in Sect. 5. In Sect. 6, we illustrate the estimation methodology on real data. Some con-
cluding remarks and future developments are given in Sect. 7. To avoid interrupting the 
flow of the presentation, all mathematical developments are relegated to the Sect. 8.

2 � Problem formulation and estimation

We start by giving some notation and definitions that are needed for the forthcoming 
sections. Let (�,�) be a random vector, where � = (X1,… ,Xp) ∈ ℝ

p and 
� = (Y1,… , Yq) ∈ ℝ

q . The joint distribution function [df] of (�,�) is defined as 
F(�, �) ∶= ℙ(� ≤ �,� ≤ �), for � ∈ ℝ

p and � ∈ ℝ
q. In the sequel, for 

�� = (v�
1
,… , v�

r
) ∈ ℝ

r and ��� = (v��,… , v��) ∈ ℝ
r , we set �′ ≤ �′′ whenever v′

j
≤ v′′

j
 

for j = 1,… , r . We denote by � and � two fixed subsets of ℝp such that 
� =

∏p

j=1
[aj, bj] ⊂ � =

∏p

j=1
[cj, dj] ⊂ ℝ

p, where 
−∞ < cj < aj < bj < dj < ∞ for j = 1,… , p. We assume that (�,�) has a joint den-
sity function defined as

with respect to the Lebesgue measure d� × d� , and denote

f�,�(�, �) ∶=
�p+q

�x1 … �xp�y1 … �yq
F(�, �) on � ×ℝ

q,

f�(�) = ∫
ℝq

f (�, �)d�, for � ∈ �,
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the marginal density of � (which is only assumed to exist on � ). For a nonnegative 
integer vector � = (s1,… , sp) ∈ ({0} ∪ ℕ)p , define |�| ∶= s1 +⋯ + sp and

The operator D|�| is assumed to be well defined and interchange with integration in 
our setting. Let � ∶ ℝ

q
→ ℝ be a measurable function. In this paper, we are primar-

ily interested in the estimation of the following derivatives

An extension to the derivative of the regression function m(�,�) = �(�(�) ∣ � = �), 
whenever it exists, will be considered.

2.1 � Kernel‑type estimation

Let {�i,�i}i≥1 be a ℝp ×ℝ
q-valued strictly stationary ergodic process defined on a 

probability space (Ω,A,ℙ) . We now introduce a kernel function {K(�) ∶ � ∈ ℝ
p} , 

fulfilling the conditions below. 

	(K.i)	 ∫
ℝp K(�)d� = 1.

	(K.ii)	 For given � ∈ ({0} ∪ ℕ)p , the partial derivative D|�|K ∶ ℝ
p
→ ℝ exists and 

We need the smoothness condition (K.ii) on the kernel function K(⋅) in order to 
make the operator D|�| well defined and interchange with integration. The conditions 
(K.i) and (K.ii) will be assumed tacitly in the sequel. For each n ≥ 1 , and for each 
choice of the bandwidth hn > 0 , we define the kernel estimators

Notice that hn is a positive sequence of real numbers such that

The condition (i) is used to obtain the asymptotic unbiasedness of the kernel (den-
sity or regression) type estimators. We need more restrictive assumption on hn for 
the consistency, this is given by the condition (ii), one can refer to Parzen (1962). 
In general, the strong consistency fails to hold when either (i) or (iii) is not satisfied.

Remark 1  For notational convenience, we have chosen the same bandwidth sequence 
for each margins. This assumption can be dropped easily. If one wants to make use 

D|�| ∶= �|�|

�x
s1
1
⋯ �x

sp

d

.

D|�|r(� ;�) ∶= D|�|
𝔼(�(�) ∣ � = �)f�(�) = ∫

ℝq

�(�)D|�|f (�, �)d�, and D|�|r(1;�) = D|�|f�(�).

sup
�∈ℝp

|D|�|K(�)| < ∞.

f�;n(�, hn) =
1

nhn

n∑
i=1

K

(
� − �i

h
1∕p
n

)
, rn(� ;�, hn) =

1

nhn

n∑
i=1

�(�i)K

(
� − �i

h
1∕p
n

)
.

(i) lim
n→∞

hn = 0, (ii) lim
n→∞

nhn = +∞, or (iii) lim
n→∞

nhn

log n
= +∞.
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of the vector bandwidths (see, in particular, Chapter  12 of Devroye and Lugosi 
2001). With obvious changes of notation, our results and their proofs remain true 
when hn is replaced by a vector bandwidth �n = (h(1)

n
,… , h

(p)
n ) , where min h(i)

n
> 0 . 

In this situation we set hn =
∏p

i=1
h(i)
n

 and, for any vector � = (v1,… , vp) , we replace 
�∕hn by (v1∕h(1)n

,… , v1∕h
(p)
n ) . For ease of presentation we chose to use real-valued 

bandwidths throughout.

Our aim is to provide estimators of the |�|-th derivatives D|�|f�(�) and D|�|r(� ;�) , 
respectively, and to establish their asymptotic properties. The natural choices 
for these estimators are (for a suitable choice of hn > 0 ) the |�|-th derivatives of 
f�;n(�, hn) and rn(� ;�, hn) , respectively defined as:

Notice that the kernel density derivative estimators D|�|f�;n(�, hn) is a particular case 
of D|�|rn(� ;�, hn) , that is

Remark 2  The general kernel-type estimator of m(⋅,�) = �(�(Y) ∣ � = ⋅) is given, 
for � ∈ ℝ

p , by

By setting, for q = 1 , �(y) = y (or �(y) = yk ) into (4) we get the classical Nadaraya–
Watson (1964, 1964) kernel regression function estimator of m(�) ∶= �(Y ∣ � = �) 
given by

Nadaraya (1964) established similar results to those of Parzen (1962) for m̂n;hn
(�) as 

an estimator for �(Y ∣ � = �).

(1)D|�|f�;n(�, hn) =
1

nh
1+|�|∕p
n

n∑
i=1

D|�|K

(
� − �i

h
1∕p
n

)
,

(2)D|�|rn(� ;�, hn) =
1

nh
1+|�|∕p
n

n∑
i=1

�(�i)D
|�|K

(
� − �i

h
1∕p
n

)
.

(3)D|�|f�;n(�, hn) = D|�|rn(1;�, hn).

(4)m̂n;hn
(�,�) ∶=

∑n

i=1
�(�i)K

(
� − �i

h
1∕p
n

)

∑n

i=1
K

(
� − �i

h
1∕p
n

) .

m̂n;hn
(�) ∶=

∑n

i=1
YiK

(
� − �i

h
1∕p
n

)

∑n

i=1
K

(
� − �i

h
1∕p
n

) , or m̂n;hn
(�) ∶=

∑n

i=1
Yk
i
K

(
� − �i

h
1∕p
n

)

∑n

i=1
K

(
� − �i

h
1∕p
n

) .
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Remark 3  By setting ��(�) = 1[� ≤ �] , for � ∈ ℝ
q , into (4) we obtain the kernel esti-

mator of the conditional distribution function F(�|�) ∶= ℙ(� ≤ �|� = �), given by

These examples motivate the introduction of the function �(⋅) in our setting, refer 
to Deheuvels (2011) for more discussion.

Remark 4  Local polynomial regression has emerged as a dominant method for 
nonparametric estimation and inference. The local linear variant was proposed by 
Stone (1977) and Cleveland (1979), see Fan (1992) and Fan and Gijbels (1996) for 
an extensive treatment of the local polynomial estimator. However, Racine (2016) 
mentioned that one feature of local polynomial estimators that may not be widely 
appreciated is that the local polynomial derivative estimator does not, in general, 
coincide with the analytic derivative of the local polynomial regression estima-
tor infinite-sample settings. This can cause problems, particularly in the context of 
shape constrained estimation. The problem arises when the object of interest is the 
regression function itself and constraints are to be imposed on derivatives of the 
regression function, however the regression estimate and derivative estimate are not 
internally consistent, i.e., the derivative of the local polynomial regression estimate 
does not coincide with the local polynomial derivative estimate.

3 � Assumptions and asymptotic properties

We will denote by Fi the �−field generated by (�1,… ,�i) . For any i = 1,… , n 
define fFi−1

�i

(⋅) as the conditional density of �i given the �−field Fi−1 . Let Gn be the �-
field generated by {(�i,�i) ∶ 1 ≤ i ≤ n} , and let f Gi−1

�,�
(⋅) be the conditional density of 

(�,�) given the �−field Gi−1 . Let us define the �−field Sn = �
(
(�k ,�k);(�n+1) ∶ 1 ≤ k ≤ n

)
, 

and the projection operator

Moreover, if �(⋅) is a real-valued random function which satisfies �(u)∕u → 0 a.s. 
as u → 0, we write �(u) = o a.s. (u) . In the same way, we say that �(u) is O a.s. (u) if 
�(u)∕u is a.s. bounded as u → 0.

The following assumptions will be needed throughout the paper. 

(K.1)	    

	 (i)	 The kernel K(⋅) is a symmetric compactly supported probability density 
function,

F̂n;hn
(�|�) ∶=

∑n

i=1
1(�i ≤ �)K

(
� − �i

h
1∕p
n

)

∑n

i=1
K

(
� − �i

h
1∕p
n

) .

Pk� = �
(
� ∣ Gk

)
− �

(
� ∣ Gk−1

)
.
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	 (ii)	 The kernel derivatives D|�|K(⋅) , s = 0, 1,… , are assumed to 
be Lipschitz function with ratio CK,s < ∞ and order �  , i.e., 
�D���K(�) − D���K(��

)� ≤ CK,s‖� − �
�‖� , for (�, �

�

) ∈ ℝ
2p;

	 (iii)	 ∫
ℝp ‖�‖D���K(�)d� < ∞, for s = 0, 1,…

	 (iv)	 ∫
ℝp

(
D|�|K(�)

)2
d� < ∞.

(C.1)		  (i)	 The conditional density f Gi−1

�i

(⋅) exists and belongs to the space 
C
|�|(ℝ) , here C|�|(ℝp) denotes the space of all continuous real-valued func-

tions that are |�|-times continuously differentiable on ℝp;
	 (ii)	 The partial derivative D|�|f Gi−1

�i

(⋅) is continuous and has bounded partial 
derivatives of order � , that is, there exists a constant 0 < ℭ1 < ∞ such 
that 

(C.2)	 For any � ∈ ℝ
p , 

(C.3)		  (i)	 The density f�(⋅) is continuous and has bounded partial derivatives 
of order � , that is, there exists a constant 0 < ℭ2 < ∞ such that 

	 (ii)	 The density f�,�(⋅, ⋅) is continuous and has bounded partial derivatives 
of order � , that is, there exists a constant 0 < ℭ3 < ∞ such that 

(C.4)	 There exists a positive constant f⋆ < ∞ such that 

 holds with probability 1.
(C.5)	 sup�

∑∞

i=1

���P1D
���f Gi−1

�i

(�)
���
2

< ∞.

sup
�∈�

||||||
𝜕�D|�|f Gi−1(�)

𝜕x
k1
1
… 𝜕x

kp

d

||||||
≤ ℭ1, k1,… , kp ≥ 0, 0 < k1 +⋯ + kp = �;

lim
n→∞

1

n

n∑
i=1

f
Gi−1

�i

(�) = f (�), in the a.s. and L2 sense .

sup
�∈�

||||||
𝜕rf�(�)

𝜕x
k1
1
… 𝜕x

kp

d

||||||
≤ ℭ2, k1,… , kp ≥ 0, 0 < k1 +⋯ + kp = �;

sup
�∈�

||||||
𝜕𝓁f�,�(�, �)

𝜕x
k1
1
… 𝜕x

kp

d

||||||
≤ ℭ3, k1,… , kp ≥ 0, 0 < k1 +⋯ + kp = 𝓁;

sup
�∈ℝp

D|�|f G0

�1
(�) ≤ f⋆,
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(R.1)		  (i)	 �(|�(�i)||Si−1) = �(|�(�r)| ∣ �i) = m(�i, |�|);
	 (ii)	 there exist constants C𝜓 > 0 and 𝛽 > 0 such that, for any couple 

(�, ��) ∈ ℝ
2p , 

	 (iii)	 For any k ≥ 2 , �(|�k(�i)||Si−1) = �(|�k(�i)||�i) , and the function 

 is continuous in the neighborhood of �.

(H)		  (i)	 hn → 0 , nh
1+2

( |�|
p

)

n → ∞;

	 (ii)	 hn → 0 , nh
1+s∕p

log n
→ ∞.

3.1 � Comments on the conditions

Conditions (K.1) are very common in nonparametric function estimation litera-
ture. They set some kind of regularity upon the kernels used in our estimates. In 
particular, by imposing the condition (K.1)(iii), the kernel function exploits the 
smoothness of the function D|�|r(� ;�) . Notice that the transformation of the sta-
tionary ergodic process (�i,�i)i≥1 into the process (�2(�i))i≥1 is a measurable 
function. Therefore, making use of Proposition 4.3 of Krengel (1985) and then 
the ergodic theorem, we obtain lim

n→∞
n−1

∑n

i=1
�2(�i) = �

�
�2(�1)

�
 almost surely. 

Conditions (C.1) and (C.3) impose the needed regularity upon the joint, marginal 
and the conditional densities to reach the rates of convergence given below. Con-
ditions (C.2) involves the ergodic nature of the data as given, for instance, see 
Proposition 4.3 and Theorem  4.4 of Krengel (1985) and Delecroix (1987) 
(Lemma 4 and Corollary 1 together with their proofs). The assumption (C.5) is 
assumed by Wu (2003) which is satisfied by various processes including linear as 
well as many nonlinear ones. For more details and examples, see Wu (2003) and 
Wu et al (2010). We refer also to the recent paper of Wu et al (2010) for more 
details on conditions (C.4). The conditions (R.1)(i) and (R.1)(iii) is usual in the 
literature dealing with the study of ergodic processes. The condition (R.1)(ii) is a 
regularity condition upon the regression function.

Remark 5  Our results remain valid when replacing the condition that the kernel 
function K(⋅) has compact support in (K.1)(i) with another condition (K.1)(i)’ whose 
content is as follows: 

	(K.1)(i)’	There exists a sequence of positive real numbers an such that anhdn tends to 
zero when n tends to infinity, and 

||m(�,�) − m(��,�)|| ≤ C�
‖‖� − ��‖‖� ;

Ψk(�,�) = �(|�k(�)||� = �),
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3.2 � Almost sure uniform consistency rates

In the following theorems, we will give the uniform convergence with rate of 
D|�|rn(� ;�, hn) defined in (2).

Theorem 1  Assume that the assumptions H(ii), K(i)–(ii), (K.1)(i)–(iii), (C.1), (C.4), 
(C.5) and (R.1) are fulfilled. We have, as  n → ∞,

Theorem 2  Suppose that the assumptions  H(ii), K(i)–(ii), (K.1)(i)–(iii), (C.1), (C.3)
(ii), (C.4), (C.5) and (R.1)  are satisfied. We have, as  n → ∞,

3.3 � Asymptotic distribution

Let us now state the following theorem, which gives the weak convergence rate of 
the estimator D|�|rn(� ;�, hn) defined in (2). Below, we write Z

D
=N(�, �2) whenever 

the random variable Z follows a normal law with expectation � and variance �2.

Theorem  3  Assume that the conditions   H(i), K(i)–(ii), (K.1), (C.1), (C.2) (C.3), 
(C.4), (C.5) and (R.1) hold. We have, as  n → ∞

where

Theorem  4  Assume that the conditions   H(i), K(i)–(ii), (K.1), (C.1), (C.2) (C.3), 
(C.4), (C.5) and (R.1) hold. In addition we assume

Then, we have, as  n → ∞

√
n∫{‖�‖>an} �K(�)�d� → 0.

sup
�∈�

|||D
|�|rn(� ;�, hn) − �D|�|rn(� ;�, hn)

||| = Oa.s.

(√
log n

nh1+s∕p

)
.

sup
�∈�

|||D
|�|rn(� ;�, hn) − D|�|r(� ;�)

||| = Oa.s.

(√
log n

nh1+s∕p

)
+ O

(
h�∕p
n

)
.

√
nh

1+2
( |�|

p

)

n

(
D|�|rn(� ;�, hn) − �D|�|rn(� ;�, hn)

)
→ N(0, �2

�
(�)),

�2
�
(�) = Ψ2(�)f (�)

(
∫
ℝp

(
D|�|K(�)

)2
d�

)
, and Ψ2(�,�) = 𝔼(�2(�)|� = �).

n1∕2h(|�|+�)∕p+1∕2
n

→ 0 as n → ∞.
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3.4 � Asymptotic mean square error

In the following, we will give asymptotic mean integrated squared error (AMISE) of 
the estimator D|�|rn(� ;�, hn).

Theorem 5  Assume that the conditions K(i)–(ii), (K.1), (C.1), (C.2), (C.3) (ii), (C.4), 
(C.5) and  (R.1)(i)–(ii) hold. We have, as  n → ∞

Remark 6  Keeping in mind the relation (3), one can easily deduce the following 
results concerning the density function derivative, that is,

and

3.5 � Confidence intervals

The asymptotic variance in the central limit theorem depends on the unknown func-
tions, which should be estimated in practice. Let us introduce Ψ̂2,n(�,�) a kernel 
estimator of Ψ2(�,�) defined by

√
nh

1+2
( |�|

p

)

n

(
D|�|rn(� ;�, hn) − D|�|r(� ;�)

)
→ N(0, �2

�
(�)).

AMISE
�
D���rn(� ;�, hn)

�
=∫

ℝp

Bias
�
D���rn(� ;�, hn)

�2
d� + ∫

ℝp

Var
�
D���rn(� ;�, hn)

�
d�

=O
�
h2�∕p
n

�
+ O

⎛⎜⎜⎝
1

nh
1+2

���
p

n

⎞⎟⎟⎠
.

sup
�∈�

|||D
|�|f�;n(�, hn) − D|�|f�(�)

||| = Oa.s.

(√
log n

nh1+s∕p

)
+ O

(
h�∕p
n

)
,

√
nh

1+2
( |�|

p

)

n

(
D|�|f�;n(�, hn) − D|�|f�(�)

)
→ N

(
0, f (�)

(
∫
ℝp

(
D|�|K(�)

)2
d�

))
,

AMISE
�
D���f�;n(�, hn)

�
=∫

ℝp

Bias
�
D���f�;n(�, hn)

�2
d� + ∫

ℝp

Var
�
D���f�;n(�, hn)

�
d�

=O
�
h2�∕p
n

�
+ O

⎛⎜⎜⎝
1

nh
1+2

���
p

n

⎞⎟⎟⎠
.
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This permits to estimate asymptotic variance �2
�
(�) by

Furthermore, from Theorem  4, the approximate confidence interval of D|�|r(� ;�) 
can be obtained as

where c� , denotes the (1 − �)−quantile of the normal distribution.

Remark 7  An alternative approach based on resampling techniques might be used 
to estimate confidence intervals. In contrast to the asymptotic confidence intervals, 
the main advantage of such approach is that avoids the estimation of the variance 
of estimators. Below, we give a brief description of the bootstrap-based confidence 
intervals approach. Let {Zi} be a sequence of random variables satisfying the follow-
ing assumption: 

B.	 The {Zi} are independent and identically distributed, with distribution function 
PZ , mean zero and variance 1.

We assume that the bootstrap weights Zi ’s are independent from the data (Xi, Yi) , 
i = 1,… , n . Define,

Let

Ψ̂2,n(�,�) ∶=

∑n

i=1
�2(�i)K

(
� − �i

h
1∕p
n

)

∑n

i=1
K

(
� − �i

h
1∕p
n

) .

�̂2
�
(�) = Ψ̂2,n(�,�)f�;n(�, hn)

(
∫
ℝp

(
D|�|K(�)

)2
d�

)
.

D���r(� ;�) ∈

⎡
⎢⎢⎢⎢⎣
D���rn(� ;�, hn) ± c�

�̂� (�)�
nh

1+2
� ���

p

�

n

⎤
⎥⎥⎥⎥⎦
,

D|�|r∗
n
(� ;�, hn) =

1

nh
1+|�|∕p
n

n∑
i=1

Zi�(�i)D
|�|K

(
� − �i

h
1∕p
n

)
.

�∗
n
=

√
nh

1+2
( |�|

p

)

n

(
D|�|r∗

n
(� ;�, hn) − D|�|rn(� ;�, hn)

)
.
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Let � , be a large integer and Zk
1
,… , Zk

n
 , k = 1,… ,� independent copies of Z. Let 

�∗(k)
n

 be the bootstrapped copies of �∗
n
 . In order to approximate c� , one can use the 

sampling estimator ̂c� , of c� , as the smallest z ≥ 0 such that 1
�

∑�

k=1
1�

�
∗(k)
n ≤z� ≥ 1 − �.

4 � Application to the regression derivatives

In this section, we will follow the same notation as in Deheuvels and Mason 
(2004). We will consider especially the conditional expectation of �(Y) given 
X = x , for p = q = 1 . Recall that

The kernel estimator is given by

Recall the following derivatives

and

In order to estimate the derivatives of m�
�
(x) in (5) and m��

�
(x) in (6) by replacing 

fX(⋅), f �X(⋅) , f
��
X
(⋅) , r(� ;⋅) , r�(� ;⋅) and r��(� ;⋅) by fX;n(⋅, hn) , f �X;n(⋅, hn) , f

��
X;n

(⋅, hn) , 
rn(� ;⋅, hn) , r�n(� ;⋅, hn) and r��

n
(� ;⋅, hn) . We so define m�

� ,n
(x;hn) and m��

� ,n
(x;hn) when 

fX;n(x, hn) ≠ 0 . The definition of m�
� ,n

(x;hn) and m��
� ,n

(x;hn) is completed by setting 
m�

� ,n
(x;hn) = m��

� ,n
(x;hn) = 0 when fX;n(x, hn) = 0.

The following theorem is more or less a straightforward consequence of 
Theorem 2.

Corollary 1  Under the assumptions of Theorem 2, we have

m(x,�) = 𝔼(�(Y) ∣ X = x) =
1

fX(x) ∫ℝ

�(y)fX,Y (x, y)dy =
r(� , x)

fX(x)
.

mn(x,�) =

⎧
⎪⎪⎨⎪⎪⎩

rn(� ;x, hn)
fX;n(x, hn)

if fX;n(x, hn) ≠ 0,

1

n

n�
i=1

�(Yi) if fX;n(x, hn) = 0.

(5)m�
�
(x) =

r�(� , x)

fX(x)
−

r(� , x)f �
X
(x)

f 2
X
(x)

,

m��
�
(x) =

r��(� , x)

fX(x)
−

2r�(� , x)f �
X
(x)

f 2
X
(x)

+
r(� , x){2(f �

X
(x))2 − fX(x)f

��
X
(x)}

f 3
X
(x)

.



750	 S. Bouzebda et al.

1 3

Remark 8  We note that, when |�| ≥ 2 , m(|�|)
� ,n (x, hn) = D|�|(m� ,n(x, hn)) may be 

obtained likewise through the usual Leibniz expansion of derivatives of products 
given by

5 � Simulation study

The first part of this section investigates the estimation of the first derivative of the 
density function whenever X is, respectively, a unidimensional and bidimensional 
stochastic process. Then, we focus on the study of the estimation of the first deriva-
tive of the regression function when the data is generated according to a specific sto-
chastic regression model. Motivated by the extension of numerical results obtained 
in Blanke and Pumo  (2003) and Chaouch and Laïb  (2019), we suppose in the 
sequel that X is an Ornstein-Uhlenbeck (OU) process (it can be unidimensional or 
bidimensional as will be discussed below) solution of the following stochastic dif-
ferential equation (SDE):

where (Wt)t≥0 is a standard Wiener process. Thus, for 0 ≤ t ≤ T  , the solution of 
the SDE given in (6) can be expressed as Xt = e−atX0 + b ∫ t

0
e−a(t−s)dWs , where 

X0 ∼ N(0, 1) independent of W. In the sequel, and following Blanke and Pumo  
(2003), we consider b =

√
2 and a = 1 , since then Xt has a density of a N(0, 1). As 

one can observe the OU process {Xt;0 ≤ t ≤ T} is a continuous time process used 
to model the dynamic of several random variable. For instance OU processes are 
widely used in finance to model and predict asset prices. In real life the process Xt 
cannot be observed at any time between [0, T], it is rather observed at a specific grid, 
say 0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏n = T  , of time representing a discretization of the interval 
[0, T]. Therefore, the simulation of an OU process can be achieved by considering, 
for instance, the iterative Euler–Maruyama scheme, see for instance Kloeden and 
Platen  (1992), which allows to build an approximate solution {X̃t;t = �0, �1,… , �n} 
of the original process {Xt, 0 ≤ t ≤ T}. The discretized version of the above SDE in 
(6) is given as follows:

In this simulation, study a deterministic equidistant discretization scheme, i.e., 
�j+1 − �j = T∕n =∶ �n , called the sampling mesh, is considered. Figure  1 displays 

sup
x∈J

|||m
�
� ,n

(x;hn) − m�
�
(x)

||| = o
ℙ
(1),

sup
x∈J

|||m
��
� ,n

(x;hn) − m��
�
(x)

||| = o
ℙ
(1).

m(|�|)
� ,n

(x, hn) =

|�|∑
|�|=0

C
|�|
|�|r

(|�|)
n

(� ;x, hn)
{
f −1
X;n

(x, hn)
}(|�|−|�|)

, fX;n(x, hn) ≠ 0.

(6)dXt = −a Xt dt + b dWt, for a > 0, b > 0,

(7)X̃�j+1
= X̃�j

− X̃�j

�
�j+1 − �j

�
+
√
2
�
W�j+1

−W�j

�
, j = 0,… , n.
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an example of OU sample path for n = 105 and �n = 0.4 . Notice that, as discussed in 
Blanke and Pumo  (2003), the sampling mesh �n plays an important role in the esti-
mation of the density function on an OU process. Indeed Blanke and Pumo  (2003) 
discussed, theoretically as well as via simulations, the selection of the optimal mesh 
that minimizes the mean integrated square error (MISE). Chaouch and Laïb  (2019) 
discussed the selection of the sampling mesh for the estimation of the regression 
function when the response variable is affected by a missing at random phenom-
ena. In this section, we are interested in extending the numerical results obtained by 
Blanke and Pumo  (2003) and Chaouch and Laïb  (2019) to the first derivative of the 
density and the regression function, respectively. More precisely, we will discuss the 
numerical selection of the optimal mesh, say 𝛿⋆

n
 , which allows to obtain a consistent 

(in the sense of minimizing the MISE) estimator of the first derivative of the density 
and the regression function. This section contains two parts: in the first one we study 
the optimal selection of the sampling mesh of the first derivative of the density func-
tion of a one-dimensional OU process then we extend the study to the bidimensional 
OU processes. The second part of the simulation deals with the first derivative of the 
univariate regression function.

5.1 � Estimation of the first derivative of density function

5.2 � Case of the one‑dimensional discretized diffusion processes

Now, we consider that Xt is a one-dimensional OU process (see Fig. 1 for an example 
of a sample path obtained with Euler–Maruyama discretization scheme). As discussed 
in Blanke and Pumo  (2003), the OU process (Xt)t≥0 , as a solution of the SDE (6), has 
a Gaussian density function N(0, 1). Our purpose in this subsection is to find the opti-
mal (in terms of minimizing the Mean Integrated Square Error, MISE) sampling mesh 
needed to accurately estimate the first derivative of the density function of Xt. For this, 
we consider a sequence of sampling mesh � , a grid of 50 values of x taken between 
[−4, 4] where the density is locally estimated. Based on N = 1000 independent replica-
tions, we define the MISE as follows:
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1
2

t

Pr
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s 

X

Fig. 1   An example of a univariate OU sample path where �
n
= 0.4 and n = 105
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where � ∶= �n = �j+1 − �j , n = 105 and f �
X,n,k

(x, �) is the estimator of first derivative 
of the density function f �

X
(x) at the point x in the grid obtained with the kth simu-

lated sample path with a specific mesh �.
To estimate nonparametrically the first derivative of density function of the OU 

process Xt , we consider as a kernel the Gaussian density function and the cross-
validation technique is used as a tool to select the optimal bandwidth that is:

where S is a grid of randomly fixed values of x where the first derivative of the den-
sity is estimated. Fig. 2 displays the evolution of the MISE for different values of � . 
One can observe that the optimal sampling mesh minimizing the MISE is 𝛿⋆ = 0.4. 
In other words, in practice, one should sample the underlying OU process with a 
frequency 0.4 to obtain an estimate of the first derivative of the density with a mini-
mum MISE. Moreover, Fig. 2 tells that sampling the OU process with a frequency 
less than 0.4 will lead to an inaccurate estimate of f �

X
(x) because of the high correla-

tion between the observations X̃�j+1
 and X̃�j

 , for j = 0,… , n . Whereas sampling the 
underlying process Xt with a frequency higher than 0.4 will not improve the quality 
of the estimate since one can see that the MISE becomes stable at some level. One 
notices that the discussion made about the interpretation of the MISE plot remains 
valid for the similar graphs in this paper.

Figure 3a displays the shape the density function of the OU process X and Fig. 3b 
shows the true first derivative of the density function as well as its nonparametric 
estimate based on the optimal sampling mesh 𝛿⋆ = 0.4. It is worth noting that this 
first simulation study generalizes some of the results obtained by Blanke and Pumo  

MISE(�) ∶=
1

N

N∑
k=1

∫
(
f �
X,n,k

(x, �) − f �
X
(x)

)2

dx,

(8)hopt = argmin
h

∑
x∈S

(
f �
X,n,h

(x, �) − f �
X
(x)

)2

,
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Fig. 2   MISE(� ) for a one-dimensional OU process where n = 105
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(2003) to the case of the first derivative of the univariate density function. The fol-
lowing simulation aims to extend the results to the bivariate case.

5.3 � Case of the two‑dimensional discretized diffusion processes

In this simulation, we are interested in studying the estimation of the first derivative of 
the density function of a bidimensional OU process �t ∶= (X1,t,X2,t), where X1 and 
X2 are generated independently. Following the same description made above X1,t and 
X2,t are solutions of the SDE (6) and numerically simulated according to the discretiza-
tion scheme given in (7). An example of simulated sample path of the vector of OU 
processes � is displayed in Fig. 4. Because of the independence between X1,t and X2,t 
the density function of � will be the product of the marginals which are both Gaussian. 
Therefore
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Fig. 3   a the Gaussian density of an OU process. b Dark bold line displays the first derivative of the den-
sity function and dotted line its estimation
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Fig. 4   An example of a bidimensional OU path
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Figure 5 displays the joint distribution of the pair (X1,X2). The true first derivative of 
the joint density function is given as follows:

Figure 6a displays the shape of �2f�∕�x1�x2. The kernel considered in the formula of 
the nonparametric estimator (2) is a product kernel where

f�(x1, x2) =
1

2�
exp(−(x2

1
+ x2

2
)∕2), for (x1, x2) ∈ ℝ

2.

f ��
X1X2

(x1, x2) ∶=
�2f�
�x1�x2

(x1, x2) =
x1x2

2�
exp(−(x2

1
+ x2

2
)∕2), for (x1, x2) ∈ ℝ

2.

K

(
� − �

h
1∕2
n

)
= K

(
x1 − X1

h
1∕2
n

)
× K

(
x2 − X2

h
1∕2
n

)
.

Fig. 5   The joint density function 
of a bidimensional OU process
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Fig. 6   MISE(� ) for bidimensional OU processes with n = 105
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For simplicity and without lack of generalization, the same kernel (Gaussian in 
this case) and the same bandwidth are considered for X1 and X2. The bandwidth is 
selected according to the cross-validation criterion given in (8) and adapted to the 
two dimensional case, that is

Moreover, the selection of the optimal sampling mesh is based on the following defi-
nition of the MISE:

Figure 6 displays the evolution of the MISE as a function of � and one can observe 
that the optimal sampling mesh is 𝛿⋆ = 0.074. Compared to the estimation of the 
first derivative of the density function for a one-dimensional OU, high frequency 

(9)hopt = argmin
h

∑
x1∈S

∑
x2∈S

(
f ��
X1X2,n,h

(x1, x2, �) − f ��
X1X2

(x1, x2)
)2

.

MISE(�) ∶=
1

N

N∑
k=1

∫ ∫
(
f ��
X1X2,n,k

(x1, x2, �) − f ��
X1X2

(x1, x2)
)2

dx1dx2.

Fig. 7   a The true first derivative of the joint density function f �(x1, x2) . b The estimate of the first 
derivative of the joint density function f �

n
(x1, x2) . c the solid line for x1 → f

�(x1, x2) versus the estimator 
x1 → f

�
n
(x1, x2) in red dotted line for a fixed x2 . d the solid line for x2 → f

�(x1, x2) versus the estimator 
x2 → f

�
n
(x1, x2) in red dotted line for a fixed x1 (color figure online)
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sampling of the bidimensional OU process is required to perform a consistent esti-
mate of the first derivative of the joint density function f ��

X1X2
(x1, x2) . Figure 7b dis-

plays the nonparametric estimate of f ��
X1X2

(x1, x2) based on the obtained optimal mesh 
𝛿⋆ = 0.074. Moreover, Fig. 7c (resp. (d)) shows the estimation of the first derivative 
of the marginal of X1 (resp. X2).

5.4 � Estimation of the first derivative of the regression function

In this subsection, we are interested in the estimation of the first derivative of the 
regression function. For this, let us consider Xt an OU process solution of equa-
tion (6) and numerically generated as per equation (7). We also suppose that 
�(Yt) = Yt , where the responses Yt are generated following regression model: 
Y�j = m(X�j

) + ��j , j = 0, 1,… , n, where � ’s are generated from a standard normal 
distribution and m(x) ∶= 1

1 + x2
. As discussed in (5), the true first derivative of 

the regression function is define as:

A natural estimator of m�(x) , say m�
n
(x) , can be defined by plugging-in the above 

formula (10) r�
n
(x), f �

n
(x), fn(x) and rn(x) nonparametric estimators of r�(x), f �(x), f (x) 

and r(x), respectively. The calculation of r�
n
(x), f �

n
(x), fn(x) and rn(x) can be obtained 

as described in Sect.  2. One can easily notice that the case of estimating the first 
derivative if the regression function is more complicated than the estimation of the 
first derivative of univariate or bivariate density function. Indeed, in the last case 
we have to select only one bandwidth (or two in the bivariate case), whereas four 
different bandwidths should be selected for the estimation of the first derivative of 
the regression function. This makes the estimation task harder. In this simulation 
a separate cross-validation technique is used to select the optimal bandwidth for 
r�
n
(x), f �

n
(x), fn(x) and rn(x).

Remark 9  Another approach of selecting a global bandwidth for m�
n
(x) could be 

obtained by considering the following cross-validation criterion:

In contrast to the estimation of the regression function, where the cross-validation 
criterion is expressed as a function of the observed values of the response varia-
ble Yi and the estimator of the regression function mn,h(Xi) , the true value of the 
gradient is typically not observed. this makes the problem of bandwidth selection 
more difficult. Rice (1986) suggested the use of a differencing operator and a cri-
terion which was shown to be a nearly unbiased estimator of the Mean Integrated 
Square Error (MISE) between the estimated derivative and the oracle. Müller et al. 
(1987) used Rice’s noise-corrupted suggestion to select the bandwidth based on the 

(10)m�(x) =
r�(x)

f (x)
−

r(x)f �(x)

f 2(x)
.

(11)hopt = argmin
h

∑
x∈S

(
m�

n,h
(x) − m�(x)

)2

.
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natural extension of the least squares cross-validation. More recently, Henderson 
et al. (2015) generalized the previous approaches to the multivariate setting where 
local polynomial estimator was used.

Figure 8 shows that the optimal (in the sense of minimizing the mean squared 
error) sampling mesh for the estimator of the first derivative of the regression 
function is 𝛿⋆ = 0.64 and the corresponding MISE(�) for the first derivative 
regression is defined as follows:

Figure 9a displays the shape of the regression function, whereas Fig. 9b shows the 
true first derivative as well as its estimate based on the obtained optimal sampling 
mesh.

MISE(�) ∶=
1

N

N∑
k=1

∫
(
m�

n,k
(x, �) − m�(x)

)2

dx.
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Fig. 8   MISE(� ) for the first derivative of the regression function with n = 105

−1.0 −0.5 0.0 0.5 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

x

m
(x

)

−1.0 −0.5 0.0 0.5 1.0

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

x

(b)(a)

Fig. 9   a The true regression function m(x). b Dark bold line displays the first derivative of the regression 
function and dotted line its estimation



758	 S. Bouzebda et al.

1 3

6 � Application to real data

In this section, we are interested in illustrating the estimation methodology on 
real data. For this one considers two asset prices which are the oil price (WTI) 
and the gold price. Figure 10 displays the daily time series of those asset prices 
from 02/01/1986 to 28/02/2018. One can observe a high correlation between the 
price of oil and the price of gold which is translated by a correlation coefficient 
equal to 0.8. It is well known that in most of the financial market analysis one can 
be interested in the log-return of the asset price rather that the price itself. For 
this reason we consider:

where n is the number of days from 02/01/1986 to 28/02/2018. Observe that the log-
return processes of oil and gold are stationary.

We are interested in estimating the first derivative of the density function of oil 
and gold separately. Then, one considers the estimation of their joint density func-
tion. In this application to real data section, we consider a Gaussian kernel and 
select the bandwidth according to the cross-validation criterion, as tuning param-
eters. Figure 11a shows the kernel-type estimation of the density function of X1,t 
and Fig. 11b displays the estimation of its first derivative. Similarly, Fig. 12a, b 
correspond to the nonparametric estimate of the density function of X2,t and its 
first derivative respectively. Finally, one considers the pair of log-return of oil and 
gold (X1,t,X2,t) and we are interested in the nonparametric estimation of the first 
derivative of the joint density function. Figure 13 displays the shape of the first 
derivative, with respect to x1 and x2 , of the joint pdf of log-return of oil and gold 
prices. One can observe that the derivative of the joint density is positive high 
values of oil and gold log-returns or whenever the log-return of oil is around zero 
and the log-return of gold is negative. In the contrary, the first derivative of the 
joint pdf is negative for negative log-returns of oil and gold or oil log-return is 
null and gold log-return is positive. Otherwise, the first derivative of the joint pdf 
is around zero.

X1,t = ln(oilt) − ln(oilt−1) and X2,t = ln(goldt) − ln(goldt−1), for t = 2,… , n,
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7 � Concluding remarks

In the present paper, we have considered kernel type derivative estimators. We have 
extended and completed the existing work by relaxing the dependence assumption 
by assuming only the ergodicity of the process. We have obtained the almost sure 
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Fig. 11   a The estimate of density function of the log-return of oil price. b The estimate of the first derivative 
of its density function. The red dotted line corresponds to the y-coordinate equal zero (color figure online)
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figure online)
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convergence rate that is close the i.i.d. framework. We have established the limiting 
distribution of the proposed estimators. An application concerning the regression 
derivatives is discussed theoretically as well as numerically. It would be interesting 
to extend our work to the case of censored data, which requires non trivial math-
ematics, this would go well beyond the scope of the present paper. Another direction 
of research is to enrich our results by considering the uniformity in terms of the 
bandwidth, that is an important question arising in some practical applications.

8 � Mathematical developments

This section is devoted to the proofs of our results. The previously presented nota-
tion continues to be used in the following. The following technical lemma will be 
instrumental in the proof of our theorems.

Lemma 1  Let (Zn)n≥1 be a sequence of real martingale differences with respect to 
the sequence of �-fields  (Fn = �(Z1,… ,Zn))n≥1 , where  �(Z1,… , Zn) is the �-field 
generated by the random variables Z1,… , Zn . Set  Sn =

∑n

i=1
Zi . For any  � ≥ 2 and 

any n ≥ 1 , assume that there exist some nonnegative constants C and dn such that 
�
(|Zn|�|Fn−1

) ≤ C�−2�!d2
n
, almost surely . Then, for any  𝜖 > 0 , we have

where  Dn =
∑n

i=1
d2
i
.

The proof follows as a particular case of Theorem 8.2.2 due to de  la Peña and 
Giné (1999).

ℙ
(|Sn| > 𝜖

) ≤ 2 exp

{
−

𝜖2

2(Dn + C𝜖)

}
,

Fig. 13   The kernel-type 
estimate of the first derivative 
of the joint density function 
f
��
x1x2

(x1, x2).
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GOLD
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Lemma 2  For any � ∈ ℝ
p , we let

Under assumptions (C.4) and (C.5), we have

Proof  Following Wu (2003) and Wu et al (2010), and making use of the Cauchy-
Schwarz inequality, one obtains

Making use of the assumption (C.5), one infer that

Hence the proof is complete. 	�  ◻

Proposition 1  Under the assumptions  (K.1)(i)–(ii), (C.1), (R.1), (R.2), we have

8.1 � Proof of Proposition  1.

Let us introduce the following notation

We next consider the following decomposition

Hn(�) =

n∑
i=1

D|�|f Gi−1

�i

(�) − nD|�|f (�).

sup
�∈ℝp

‖Hn(�)‖2 = O(n).

‖‖Hn(�)
‖‖2 ≤ n

(
n∑
i=1

‖‖‖P1D
|�|f Gi−1

�i

(�)
‖‖‖
2

)
.

sup
�∈ℝp

‖‖Hn(�)
‖‖2 ≤ n

(
sup
�∈ℝp

∞∑
i=1

‖‖‖PkD
|�|f Gi−1

�i

(�)
‖‖‖
)

= O(n).

(12)sup
�∈�

|||D
|�|rn(� ;�, hn) − �D|�|rn(� ;�, hn)

||| = O

(√
log n

nh1+s∕p

)
.

D̃|�|rn(� ;�, hn) =
1

nh
1+|�|∕p
n

n∑
i=1

�

[
�(�i)D

|�|K

(
� − �i

h
1∕p
n

)
∣ Gi−1

]
.

sup
�∈�

|||D
|�|rn(� ;�, hn) − �

(
D|�|rn(� ;�, hn)

)|||
≤ sup

�∈�

|||D
|�|rn(� ;�, hn) − D̃|�|rn(� ;�, hn)

|||
+ sup

�∈�

|||D̃
|�|rn(� ;�, hn) − �D|�|rn(� ;�, hn)

||| = Dn,1 + Dn,2.
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Let {�k, k = 1,… , l} ⊂ � . Consider a the partition {Sk}1≤k≤� of the compact set � by 
a finite number l of spheres Sk centered upon by �k , with radius, for a positive con-
stant a, � = a

(
h
1∕p
n

n

)1∕�

. We have then � ⊂
⋃l

k=1
Sk. We readily infer that

Consider the first term of (13). Making use of the Cauchy-Schwarz inequality we 
readily obtain

Keeping in mind the condition (K.1)(ii), we obtain that, almost surely,

Therefore, by considering the following choice �n =

(
log n

nh
1+|�|∕p
n

)1∕2

 , we have

(13)

Dn,1 = sup
�∈�

|||D
|�|rn(� ;�, hn) − D̃|�|rn(� ;�, hn)

|||
≤max
1≤k≤lsup�∈Sk

|||D
|�|rn(� ;�, hn) − D|�|rn(� ;�k, h)

|||
+ max

1≤k≤l
|||D

|�|rn(� ;�k, h) − D̃|�|rn(� ;�k, h)
|||

+ max
1≤k≤lsup�∈Sk

|||D̃
|�|rn(� ;�k, h) − D̃|�|rn(� ;�, h)

|||
=Dn,1,1 + Dn,1,2 + Dn,1,3.

���D
���rn(� ;�, hn) − D���rn(� ;�k, h)

���
=

������
1
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1+���∕p
n

n�
i=1

�(�i)

�
D���K

�
� − �i

h
1∕p
n

�
− D���K

�
�k − �i

h
1∕p
n

��������

=
1√

nh
1+���∕p
n

�
1

n
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� − �i

h
1∕p
n

�
− D���K
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��2
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.

���D
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���

≤ 1√
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K,s

n�
i=1
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n log n
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In view of the condition (K.1)(ii), we infer that, almost surely,

We have then

We now deal with the term Dn,1,2 of the decomposition give, in equation (13). We 
first observe that we have

where

We observe that the sequence 
{
Ri(�k)

}
0≤i≤n is a sequence of martingale differences. 

For � ≥ 2 , we have

thus, we have

Making use of Jensen’s inequality, we have

���D̃
���rn(� ;�, hn) − D̃���rn(� ;�k, h)

���
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Observe that for any m ≥ 1 , under assumption (R.1)(iii), we have

where C0,� is a positive constant. By a simple change of variable, we obtain that

In the light of the assumption (K.1)(i), we know that the kernel K(⋅) is a compactly 
supported, this implies that D|�|K(�) ≤ ΓK . Making use of the assumption (C.1) in 
combination with an integration by parts repeated |�| times and a Taylor’s expansion 
of order 1, implies that we have
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Since h2(1+|�|∕p)n ≤ h
1+|�|∕p
n  , we readily obtain that

where C = ΓK . By choosing that

we have

where 
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D|�|f Gi−1
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Now, taking �n = �0

(
log n

nh
1+|�|∕p
n

)1∕2

 and an application of Lemma 1 gives that

where C1 is a positive constant. Hence, for � large enough, we obtain

The proof is completed by a routine application of Borel–Cantelli lemma. This, in 
turn, implies that

Hence, we have

By combining the statements (14), (15) and (16), we obtain

Consider now, the second term of the decomposition given in equation (13), under 
assumption (R.1)(i), we infer that
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A simple change of variables and making use of the assumption (R.1)(ii), we obtain

Dn,2 = sup
�∈�
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|||
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where C� =

(
sup
�∈�

|m(�,�)| + O(hn)

)
. Hence we have

Combining the statements (17) and (18), we obtain the desired result given in (12). 	
� ◻
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