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Abstract
Let fY|X,Z(y|x, z) be the conditional probability function of Y given (X, Z), where Y 
is the scalar response variable, while (X, Z) is the covariable vector. This paper pro-
poses a robust model selection criterion for fY|X,Z(y|x, z) with X missing at random. 
The proposed method is developed based on a set of assumed models for the selec-
tion probability function. However, the consistency of model selection by our pro-
posal does not require these models to be correctly specified, while it only requires 
that the selection probability function is a function of these assumed selective prob-
ability functions. Under some conditions, it is proved that the model selection by the 
proposed method is consistent and the estimator for population parameter vector is 
consistent and asymptotically normal. A Monte Carlo study was conducted to evalu-
ate the finite-sample performance of our proposal. A real data analysis was used to 
illustrate the practical application of our proposal.
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1 Introduction

Model selection has been a hot spot in statistical analysis for a long time. Sig-
nificant practicality and theoretical advances have been made in the field of model 
selection over the past five decades. The main advances, however, focus on the 
case where data are observed completely (see, e.g., Mallow 1973; Claeskens and 
Hjort, 2003; Jiang et  al., 2008; Rolling and Yang, 2014; Shao and Yang, 2017; 
Zhang et al., 2017), while less attention has been paid to the case of missing data 
(see, e.g., Hens et al., 2006; Claeskens and Consentino, 2008; Ibrahim et al., 2008; 
Jiang et  al., 2015; Wei et  al., 2021). Missing data occur commonly in the study 
of many practical problems such as socioeconomic research, medical research, 
observational research and so on. Therefore, it is of great practical importance 
to develop model selection strategies which are applicable to missing data. This 
paper considers the model selection problem in the presence of missing data.

In many scientific areas, a basic task is to assess the simultaneous influence 
of several factors (covariates) on a quantity of interest (response variable) (Wang 
and Rao, 2002a). In this paper, we are interested in the model selection problem 
for the conditional probability function of Y given (X, Z), denoted by fY|X,Z(y|x, z) , 
where Y is the scalar response variable, while (X,  Z) is the covariable vector. 
Throughout this paper, a generic notation fV1|V2

(v1|v2) is utilized to denote the 
conditional probability function of the variable V1 given the variable V2 . Miss-
ing data mechanism plays an important role in the study of missing data prob-
lems. In this paper, we consider the case where X is missing at random (MAR) 
which has been commonly assumed in the analysis of missing data. See, e.g, Lit-
tle and Rubin (2002). In short, this paper considers the model selection problem 
for fY|X,Z(y|x, z) with X missing at random.

There are several alternative model selection approaches that can be applied 
for the considered model selection problem. These approaches can be roughly 
classified into the following four types. The first type of approach is developed 
based on Bayesian point of view (see, e.g., Celeux et  al., 2006; Gelman et  al., 
2005). A drawback of this type is that it needs to set prior distributions for param-
eters in the candidate models. In general, it is not easy to obtain reasonable priors 
and meanwhile make sure that these priors are not in conflict with each other. The 
second type of approach is established based on the expectation-maximization 
(EM) algorithm (see, e.g., Claeskens and Consentino, 2008; Ibrahim et al., 2008; 
Jiang et al., 2015). A drawback of this type is that it requires a correctly specified 
parametric model for the condition probability function fX|Z(x|z) . In practice, it 
may be hard to get a correct specification for fX|Z(x|z) , not mention X is missing. 
The third type is the bias corrected model selection criterion of Wei et al. (2021), 
and it does not need that fX|Y ,Z(x|y, z) is specified correctly. Hence, it improves 
the model selection approaches based on EM algorithm. However, it requires a 
correctly specified parametric model for the selection probability function. The 
final type of approach is the weighted AIC (Hens et al., 2006) which is developed 
based on the inverse probability weighted (IPW) method (Horvitz and Thompson, 
1952; Robins et  al., 1994), a widely used method in the study of missing data 
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problems. Comparing to the previous three types of approaches, the advantages 
of the weighted AIC are that it is a frequentist model selection approach so that it 
does not need to set prior distributions, and its calculation is irrelevant to fX|Z(x|z) 
or fX|Y ,Z(x|y, z) , so that it does not need to specify parametric model for fX|Z(x|z) 
or fX|Y ,Z(x|y, z) . However, a drawback of the weighted AIC is that it requires a 
consistent estimate of the selection probability function. If the selection proba-
bility function is estimated parametrically, then a correctly specified parametric 
model for the selection probability function is required. And if the selection prob-
ability function is estimated nonparametrically, the problem of “curse of dimen-
sion” occurs. Unfortunately, the theoretical properties of the weighted AIC are 
lacked in Hens et al. (2006).

This paper proposes a robust inverse probability weighting Kullback–Leibler 
divergence (RIPW-KL) criterion-based method by estimating the weight function 
semiparametrically. The main idea of this method can be described as follows. We 
first postulate several possible parametric models for the selection probability func-
tion and then combine the information contained in these estimated parametric mod-
els through a nonparametric smoothing method to get a semiparametric estimator 
of a conditional probability function conditional on the assumed models. With the 
inverse of this estimator as the weight, an inverse probability weighted estimator 
of the Kullback–Leibler divergence can be obtained immediately. And further, the 
proposed criterion can be established by minimizing the weighted Kullback–Leibler 
divergence with a suitable penalty term. Under some conditions, we prove that the 
model selection by our proposed criterion is consistent and the estimator of popula-
tion parameter vector corresponding to the selected model is asymptotically normal. 
Unlike the weighted AIC which makes a choice between parametric and nonpara-
metric methods, our semiparametric weighting criterion makes a balance between 
these two kinds of methods and thus alleviates the problems of model misspecifica-
tion and “curse of dimension” simultaneously. Concretely, under certain conditions, 
it is shown that the consistency of model selection by our proposal is valid as long 
as the selection probability function is a function of its assumed models. Hence, 
comparing to the parametrically weighted AIC, our proposed RIPW-KL criterion is 
more robust to misspecification of the selection probability function. This alleviates 
the problem of model misspecification. Besides, for the purpose of weights, our pro-
posal applies the kernel smoothing method to estimate regression on the assumed 
models for the selection probability function, while the nonparametrically weighted 
AIC applies the kernel smoothing method to estimate the selection probability 
regression function on the observed variables. Usually, the number of these assumed 
models is far smaller than the number of the observed variables, and thus, the pro-
posed method also alleviates the problem of “curse of dimension”. That is, the pro-
posed method has following significant advantages over the existing methods: 

1. The RIPW-KL criterion does not need to set prior distributions as Bayesian meth-
ods;

2. The RIPW-KL criterion does not need a correct specification for fX|Z(x|z) or 
fX|Y ,Z(x|y, z) comparing to EM algorithm.
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3. The RIPW-KL criterion does not need a correct specification of the selection 
probability function as the parametrically weighted AIC method due to Hens 
et al. (2006) and the corrected method due to Wei et al. (2021).

4. The RIPW-KL criterion alleviates the problem of “curse of dimension” compar-
ing to the nonparametrically weighted AIC method due to Hens et al. (2006).

The rest of this paper is organized as follows. In Sect.  2, we describe the model 
framework and then establish the RIPW-KL criterion. In Sect.  3, the theoretical 
properties of our proposal are presented, and the finite-sample performance of our 
proposal is investigated through a Monte Carlo study in Sect.  4. And a real data 
analysis is implemented in Sect. 5. And all the technical details are relegated in the 
“Appendix”.

2  Methodology

Let {(Yi,Xi, Zi, �i), 1 ≤ i ≤ n} be the independent and identically distributed sample 
from (Y ,X, Z, �) , where Yi and Zi are observed completely, and �i = 0 if Xi is miss-
ing, otherwise �i = 1 . Throughout this paper, we assume that X is missing at random 
(MAR), that is,

Suppose that a finite set of candidate parametric models can be obtained for 
fY|X,Z(y|x, z) . For the candidate model M, we have a parametric model gM(y|x, z;�M) , 
where �M is an unknown parameter vector, while gM(⋅|x, z;�M) is a known function. 
It’s well known that the Kullback–Leibler (KL) divergence is a widely used measure 
on the closeness between the assumed parametric model and the true model that 
generates data. For the candidate model M, the KL divergence from fY|X,Z(y|x, z) to 
gM(y|x, z;�M) is

Clearly, we take E
{
log gM(Y|X, Z;�M)

}
 to measure the closeness of fY|X,Z(y|x, z) to 

gM(y|x, z;�M) and denote it by D(M, �M) , since E
{
log fY|X,Z(Y|X, Z)

}
 is irrelevant to 

the candidate models. Clearly, the larger D(M, �M) is, the smaller KL divergence is.
We assume a parametric model 𝜋(y, z;�̄�) for the selection probability function 

P(� = 1|y, z) , where �̄� is the unknown parameter vector. Inspired by Hens et  al. 
(2006), an inverse probability weighting estimator of D(M, �M) is given by

where �̂� is the maximum likelihood estimate (MLE) of �̄�.
For writing convenience, we abbreviate 𝜋(y, z;�̄�) to 𝜋(�̄�) . Obviously, if 𝜋(�̄�) is 

misspecified, D̂(M, �̂�, 𝜃M) defines an inconsistent estimator for D(M, �M) . In this 
case, one may use the augmented inverse probability weighting approach. This 

P(� = 1|Y ,X, Z) = P(� = 1|Y , Z) ∶= �(Y , Z).

(1)KL(M, �M) = E
{
log fY|X,Z(Y|X, Z)

}
− E

{
log gM(Y|X, Z;�M)

}
.

D̂(M, �̂�, 𝜃M) =
1

n

n∑

i=1

𝛿i

𝜋(Yi, Zi;�̂�)
log gM(Yi|Xi, Zi;𝜃M),
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method, however, needs that fX|Y ,Z(x|y, z) is specified correctly when 𝜋(�̄�) is mis-
specified. Nevertheless, it is impractical to specify fX|Y ,Z(x|y, z) correctly since 
fY|X,Z(y|x, z) is unknown, not to mention that X is missing. Another strategy is to 
use the nonparametric kernel method to estimate the selecting probability function. 
However, this approach leads to “curse of dimension” problem if the dimension of 
(Y, Z) is large. These motivate us to develop a robust model selection approach based 
on the inverse probability weighting KL divergence with a semiparametric weight.

Specify multiple possible parametric models {�j(y, z;�j), j = 1,… , J} for �(y, z) . 
Define 𝜙𝜋(y, z;𝛼) =

(
𝜋1
(
y, z;𝛼1

)
,… ,𝜋J

(
y, z;𝛼J

))⊤ , where 𝛼 =
(
𝛼⊤
1
,… , 𝛼⊤

J

)⊤ . Usu-
ally, the number of the assumed models J is less than the dimension of the observed 
variables.

Let

and

where hn is a scalar bandwidth, K(⋅) is the multivariate kernel function. Then, a 
robust estimator of D(M, �M) can be defined as follows:

where 𝛼n is the MLE of � , p̂𝛼,bn (v) = p̂𝛼,n(v)r̂𝛼,bn (v)∕r̂𝛼,n(v) , bn is a positive con-
stant sequence tending to 0, and r̂𝛼,bn (v) = max{r̂𝛼,n(v), bn} . It is obvious that 
D̂IP(M, 𝜃M , 𝛼n) is a dimension reduction estimation comparing to the nonparametric 
inverse probability weighting approach since J is usually taken less than the dimen-
sion of (Y, Z). Specially, J is taken to be 1 if one can specify a correct model for 
�(y, z).

Further, let us denote the maximizer of D̂IP(M, 𝜃M , 𝛼n) with respect to �M as �̂�IP
M

 , 
that is,

where ΘM is the parameter space of �M . Then, the proposed RIPW-KL criterion is 
given by

where dM is the dimension of the unknown parameter vector �M and �n is a positive 
tuning parameter tending to zero. Define

(2)p̂𝛼,n(v) =

∑n

l=1
K

�
{v−𝜙𝜋 (Yl,Zl;𝛼)}

hn

�

𝛿l

∑n

l=1
K

�
{v−𝜙𝜋 (Yl,Zl;𝛼)}

hn

� ,

(3)r̂𝛼,n(v) =
1

nhJ
n

n∑

l=1

K

(
{v − 𝜙𝜋(Yl, Zl;𝛼)}

hn

)

𝛿l,

(4)D̂IP(M, 𝜃M , 𝛼n) =
1

n

n∑

i=1

{
𝛿i

p̂𝛼n,bn

(
𝜙𝜋

(
Yi, Zi;�̂�n

)) log gM(Yi|Xi, Zi;𝜃M)

}

,

(5)�̂�IP
M
= argmax

𝜃M∈ΘM

D̂IP(M, 𝜃M , 𝛼n),

(6)ICIP(M) = −D̂IP(M, �̂�IP
M
, 𝛼n) + 𝜆ndM ,
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where M is the set of all the candidate models. Then, M̂IP is the selected model and 
the parameter vector can be estimated using �̂�IP

M̂IP

.

3  Theoretical properties

Before giving the main results, we first give some notations and some required 
conditions. To prove the consistency of model selection by the proposed crite-
rion, firstly, we need to prove the asymptotic normality of the estimator �̂�IP

M
 in (5) 

for each candidate model M. Let f�(⋅) be the density function of ��(y, z;�) . Clearly, 
r̂𝛼,n(v) in (3) is the J-dimensional kernel density estimate of f�(v) . And denote 
r�(v) = p�(v)f�(v) , where p�(v) = E{� ∣ ��(Y , Z;�) = v} . Then, p̂𝛼,n(v) in (2) is the 
nonparametric regression estimate of p�∗ (v) where �∗ is the probability limit of 𝛼n . 
And denote || ⋅ || as Euclidean norm. Now, we present the required conditions as 
follows. 

 (C.1) ΘM is a compact set. And the KL divergence KL(M, �M) has a unique minimum 
point at �∗

M
 , where �∗

M
 is an inner point of ΘM.

 (C.2) E
{

−
�2 log gM(Y|X,Z;�M)

��M��
T
M

|�M=�∗M

}

 is positive definite. �
3 log gM(y|x,z;�M )

��3
M

 is continuous 
with respect to �M . And E{ sup

𝜃M∈ΘM

log2 gM(Y|X, Z;𝜃M)} < ∞.

 (C.3) p�(v) , f�(v) have bounded partial derivatives up to order k(k > J).
 (C.4) infy,z p(𝛿 = 1|Y = y,Z = z) > 0.
 (C.5) (i)  ||��(y, z;�) − ��(y, z;�

�

)|| ≤ l(y, z)||� − �
�

|| ,  with El(Y , Z) ≤ ∞ .  (ii) 
E[sup𝛼 ||∇𝛼p𝛼(𝜙𝜋(Y , Z;𝛼))||] < ∞ and E[sup𝛼 ||∇𝛼r𝛼(𝜙𝜋(Y , Z;𝛼))||] < ∞ . (iii) 
supz,x E[Y

2|Z = z,X = x] < ∞.
 (C.6) The multivariate function K(v) is bounded and continuous kernel function of 

order k(k > J) defined on the compact support.
 (C.7) bn is a constant sequence satisfying 

√
nhJ+1

n
b2
n
∕ log n → ∞,

√
nh𝜅

n
∕b2

n
→ 0, 𝜅 > J + 1.

 (C.8) 
√
nE

�
�
�
�

1

p𝛼∗ (𝜙𝜋 (Y ,Z;𝛼
∗))

�
�
�
I[f𝛼∗ (𝜙𝜋(Y , Z;𝛼

∗)) < bn]
�

→ 0 , where I is the indicator func-
tion.

Remark Condition (C.1) is the same as Condition 3 and Condition 5 of Fang and 
Shao (2016), which is an identifiability condition in model selection. Condition 
(C.2) defines the smoothness of log gM(Y|X, Z;�M) . Condition (C.5)(i) controls the 
complexity of the multiple possible models ��(y, z;�) for �(y, z) , which is identical 
to the Condition (C.3) in Wang et al. (2021). Condition (C.7) is a regular condition 
in nonparametric regression (see, Condition (C.hn ) in Wang and Rao (2002a) and 
Conditions (C.5), (C.6) in Wang et al. (2021). Condition (C.8) is similar to Condi-
tion (C.gmbn ) in Wang and Rao (2002a), which controls the rates of bn tending to 
zero.

(7)M̂IP = argmin
M∈M

ICIP(M),
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Theorem 1 Under Conditions (C.1)–(C.8), we have 
√
n(�̂�IP

M
− 𝜃∗

M
) is asymptotically 

mean-zero normal if �(y, z) is a function of ��(y, z;�
∗).

Before establishing the consistency of model selection of the proposed method, 
we first present the definition of correct model. If gM(y|x, z;�M) is a correctly speci-
fied model for fY|X,Z(y|x, z) , then we say that the model M is a correct model. Oth-
erwise, we say that the model M is an incorrect one. Let Mopt be the optimal model 
with the smallest dimension among all correct models in the class of candidate mod-
els. To prove the consistency of model selection by our proposal, we assume that 
there is at least one correct model among the class of candidate models. Such an 
assumption guarantees the existence of Mopt and is commonly used in the model 
selection literature such as Jiang et al. (2015); Fang and Shao (2016) and Wei et al. 
(2021).

Theorem 2 Under Conditions (C.1)-(C.8), if �n → 0 , 
√
n�n → ∞ and satisfies that 

�(y, z) is a function of ��(y, z;�
∗) , then we have P(M̂IP = Mopt) → 1 as n → ∞.

Theorem 2 indicates that the model selection by our proposed criterion is consist-
ent. Our proposed criterion is robust to the model specifications for �(y, z) as long 
as �(y, z) is a function of ��(y, z;�

∗) . In addition, according to Theorem 2, it is clear 
that Theorem 1 is still valid if M in Theorem 1 is replaced by M̂IP.

There are many choices of �n that meet its restrictions given in Theorem 2. This 
arouses the interest of a referee in the question of how to select �n . As pointed out 
by Fang and Shao (2016), no optimal solution has been derived for this question in 
the model selection literature even for the case of no missing data. In this article, 
we mainly put our efforts into developing model selection methods with consist-
ency of model selection rather than finding the best ways of choosing �n , because 
the latter is to some extent outside the scope of this article and we leave it for future 
study. At last, it should be pointed out that, following the strategy taken in Fang and 
Shao (2016), the tuning parameter �n was set to be {0.25 log log n}0.25n−1∕2 in the 
following simulation studies and the real data analysis. And based on our simulation 
results, we believe that this setting of �n is, if not the best, quite competitive.

4  Simulations

In this section, we conduct a Monte Carlo study with two designs to investigate the 
finite-sample performance of the proposed RIPW-KL criterion. The first design 
is concerned with the case where the assumed models {�j(y, z;�j), j = 1,… , J} 
are all misspecified, but �(y, z) is approximately a function of ��(y, z;�

∗) . And 
the second design is considered with the case where one of the assumed models 
{�j(y, z;�j), j = 1,… , J} is correctly specified. A comparison between our pro-
posal and two related existing model selection strategies based on KL divergence 
are made. The first model selection strategy uses classical Bayesian information 
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criterion (BIC; Schwartz, 1978) with complete-case analysis which just ignores 
all the individuals that contain the missing. And we term this method as CC-KL. 
The second model selection strategy is the weighted AIC whose weight is selected 
by Akaike’s information criterion (Claeskens and Hjort, 2008) from the assumed 
models {�j(y, z;�j), j = 1,… , J} . We term this method as wAIC-KL. We also con-
sider the classical BIC based on the complete data as a gold standard and term this 
method as CD-KL. The details and results of the Monte Carlo study are given below.

Design 1: In this design, we consider the case where {�j(y, z;�j), j = 1,… , J} are 
all misspecified, while �(y, z) is a function of ��(y, z;�

∗) . The data-generating pro-
cess is

where {Zi,1, Zi,2,Xi, ei} are independent standard normal random variables for 
i = 1, 2,⋯ , n . The selection probability function is

where Φ(⋅) is the cumulative distribution function of the standard normal distribu-
tion. We consider the following two settings of �̃� = (�̃�0, �̃�1, �̃�2)

⊤

The corresponding average missing rates are approximated 30% and 50% , respec-
tively. For the conditional probability function fY|X,Z(y|x, z) , we consider the follow-
ing four candidate models:

According to the data-generating process (8), it is easy to see that M2 is the optimal 
model. For the selection probability function �(y, z) , we consider the following two 
parametric models,

According to (9), it is easy to see that both �1(y, z;�1) and �2(y, z;�2) are misspeci-
fied, and �(y, z) is neither a function of �1(y, z;�1) nor a function of �2(y, z;�2) . Con-
sider the following function of �1(y, z;�1) and �2(y, z;�2),

(8)Yi = 𝜗0 + 𝜗1Zi,1 + 𝜗2Zi,2 + 𝜗3Xi + ei, (𝜗0, 𝜗1, 𝜗2, 𝜗3)
⊤ = (0,−0.5, 0, 1)⊤,

(9)𝜋(y, z) = Φ(�̃�0 + �̃�1z1y + �̃�2z2y),

Case 1 ∶ �̃� = (0.9, 0.5,−0.5)⊤, Case 2 ∶ �̃� = (0.2, 0.5,−0.5)⊤.

M
1

∶ Y
i
= �

0

+ �
3

X
i
+ �e

i
,

M
2

∶ Y
i
= �

0

+ �
1

Z
i,1
+ �

3

X
i
+ �e

i
,

M
3

∶ Y
i
= �

0

+ �
2

Z
i,2
+ �

3

X
i
+ �e

i
,

M
4

∶ Y
i
= �

0

+ �
1

Z
i,1
+ �

2

Z
i,2
+ �

3

X
i
+ �e

i
.

�1(y, z;�1) =
exp(�10 + �11z1y)

1 + exp(�10 + �11z1y)
, �2(y, z;�2) =

exp(�20 + �22z2y)

1 + exp(�20 + �22z2y)
.

l�(�1(y, z;�1),�2(y, z;�2)) = c−1
1

log

{
�1(y, z;�1)

1 − �1(y, z;�1)

}

+ c−1
2

log

{
�2(y, z;�2)

1 − �2(y, z;�2)

}

,
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where c1 and c2 are some suitable constants. We analyze the relationship between 
�(y, z) and l�(�1(y, z;�1),�2(y, z;�2)) based on 500 simulated sample points. And the 
result is displayed in Fig. 1.

From Fig. 1, it can be seen that �(y, z) is a function of l�(�1(y, z;�∗
1
),�2(y, z;�

∗
2
)) , 

and hence a function of { �1(y, z;�∗
1
),�2(y, z;�

∗
2
) }. This means that the assumed 

models {�1(y, z;�∗
1
),�2(y, z;�

∗
2
)} for the selection probability function can approxi-

mately recover information of �(y, z) . This actually presents an example that the 
function is nonlinear since l�(⋅, ⋅) is nonlinear.

In order to implement our proposal, following Wang et al. (2021), we use the 
Epanechnikov kernel function of order 4 which is

and set hn = 1.5n−1∕(J+4+1), bn = cn−1∕4(J+4+1) log n , where c is a constant. The 
sample size is considered to be n = 100, 200 and 400. Table 1 reports the number 
of times that a model is selected in 1000 simulation runs for the considered four 
methods.

From Table  1, some simulation results can be summarized as follows. First, 
our proposed RIPW-KL criterion is significantly better than wAIC-KL and 
CC-KL for all the combinations of simulation conditions. In addition, under the 
same average missing rate, the performance of our proposed criterion gets better 
and gets closer to the performance of CD-KL as the sample size increases. This 
is a significant advantage of our proposal over other model selection methods. 
Finally, it is worth noting that when the average missing rate is high, both wAIC-
KL and CC-KL perform poorly even if the sample size is large. The reason may 
be that wAIC-KL depends on a correct specification of �(y, z) and CC-KL may 
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)) based on 500 simulated sample points
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lead to inconsistency of model selection. The simulation results suggest that our 
proposed criterion is robust to the misspecified models for �(y, z) as long as the 
selection probability function is a function of its assumed models.

Design 2: In this design, we consider the case where one of the assumed mod-
els {�j(y, z;�j), j = 1,… , J} is correctly specified. In fact, it is almost impossible to 
correctly specify one of the assumed models for the selection probability function 
�(y, z) . However, in order to make a comparison with Design 1 and fully understand 
the effect of misspecified parametric model for �(y, z) on our proposed criterion, we 
take this special case into consideration. The current design is the same as Design 
1 except for the following three changes. The selection probability function is now 
changed to the following

And the settings of �̃� are changed to the following two cases

such that the corresponding average missing rates are also approximated 30% and 
50%, respectively. Furthermore, we change �1(y, z;�1) to

and keep �2(y, z;�2) unchanged, so that �1(y, z;�1) now becomes a correct specifica-
tion for the selection probability function �(y, z) in (10), and �2(y, z;�2) is misspeci-
fied. Table 2 reports the number of times that a model is selected in 1000 simulation 
runs with the considered four methods.

(10)𝜋(y, z) =
exp(�̃�0 + �̃�1z1y + �̃�2z2y)

1 + exp(�̃�0 + �̃�1z1y + �̃�2z2y)
.

Case 1 ∶ �̃� = (1.2, 0.5,−0.5)⊤, Case 2 ∶ �̃� = (0.2, 0.5,−0.5)⊤,

�1(y, z;�1) =
exp(�10 + �11z1y + �12z2y)

1 + exp(�10 + �11z1y + �12z2y)
,

Table 1  Number of times that 
each candidate model was 
selected by the considered four 
methods in 1000 simulation 
runs under Design 1

Case 1 Case 2

Method M1 M2 M3 M4 M1 M2 M3 M4

n = 100 CD-KL 2 956 0 42 4 962 1 33
RIPW-KL 338 569 45 48 377 435 118 70
wAIC-KL 127 564 55 254 223 298 161 318
CC-KL 302 407 154 137 343 140 417 100

n = 200 CD-KL 0 975 0 25 0 971 0 29
RIPW-KL 84 864 20 32 185 685 44 86
wAIC-KL 36 481 11 472 156 255 83 506
CC-KL 70 454 106 370 127 130 529 214

n = 400 CD-KL 0 982 0 18 0 990 0 10
RIPW-KL 6 972 1 21 27 887 7 79
wAIC-KL 7 336 1 656 75 196 54 675
CC-KL 1 273 22 704 14 38 447 501
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From Table  2, some results can be summarized as follows. Under this special 
case, the performances of both RIPW-KL and wAIC-KL perform well except for 
CC-KL. It is what we expect since the model selection proposed by wAIC-KL is 
also consistent when �1(y, z;�1) is correctly specified for the selection probability 
function �(y, z) . As the sample size increases, the performance of our proposed 
RIPW-KL gets better. Note that, the performance of our proposed RIPW-KL is 
superior to wAIC-KL when n = 400 . Thus, our proposed RIPW-KL is still compa-
rable in this case. Generally, it is impossible to correctly specify the models for the 
selection probability function �(y, z) in real life as in Design 2. However, it is rela-
tively easy to assume that the selection probability function �(y, z) is a function of 
its assumed models. Hence, the RIPW-KL criterion we propose is more robust and 
more feasible.

All in all, the proposed RIPW-KL criterion performs competitively in the pres-
ence of missing data.

5  Real data analysis

In this section, we apply the proposed criterion to the automobile data set from the 
Machine Learning Repository at the University of California Irvine (http:// mlr. cs. 
umass. edu/ mldat asets/ Autom obile). The raw data contain 205 sample points. And we 
analyze the relationship between the price of the car and its corresponding car attrib-
utes. Following Wei et al. (2021), we take the logarithm of the price of the car as the 
response variable Y and choose normalized-losses (X), wheel-base ( Z1 ), length ( Z2 ), 
width ( Z3 ), height ( Z4 ), curb-weight ( Z5 ), engine-size ( Z6 ), bore ( Z7 ), stroke ( Z8 ), com-
pression-ratio ( Z9 ), horsepower ( Z10 ), peak-rpm ( Z11 ), city-mpg ( Z12 ), highway-mpg 
( Z13 ), symboling ( Z14 ), fuel-type ( Z15 = 1 , diesel; Z15 = 2 , gas), aspiration ( Z16 = 1 , 
std; Z16 = 2 , turbo), num-of-doors ( Z17 ), and num-of-cylinders ( Z18 ) as predictors. 

Table 2  Number of times that 
each candidate model was 
selected by the considered four 
methods in 1000 simulation 
runs under Design 2

Case 1 Case 2

Method M1 M2 M3 M4 M1 M2 M3 M4

n = 100 CD-KL 5 955 0 40 9 947 0 44
RIPW-KL 253 672 19 56 321 565 32 82
wAIC-KL 33 848 6 113 79 721 20 180
CC-KL 215 590 62 133 386 312 192 110

n = 200 CD-KL 0 986 0 14 0 975 0 25
RIPW-KL 79 883 3 35 107 830 10 53
wAIC-KL 1 900 1 98 3 836 2 159
CC-KL 30 726 16 228 162 375 182 281

n = 400 CD-KL 0 988 0 12 0 982 0 18
RIPW-KL 5 982 0 13 5 959 0 36
wAIC-KL 0 919 0 81 0 852 0 148
CC-KL 0 596 0 404 16 304 79 601

http://mlr.cs.umass.edu/mldatasets/Automobile
http://mlr.cs.umass.edu/mldatasets/Automobile
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Among the 18 predictors, the Z14 , Z15 , Z16 , Z17 , and Z18 are discrete predictors and the 
remaining are continuous predictors. Denote Z = (Z1, Z2, ⋅ ⋅ ⋅, Z18) . Note that, there are 
4 sample points in Y and 8 samples points in Z contain missing values, and we simply 
delete these sample points. Thus, the response variable Y and covariates Z are observed 
completely, while there are 34 missing values for covariates X. Further, we standardize 
each continuous predictors based on complete cases. Thus, for the conditional probabil-
ity linear function fY|X,Z(y|x, z) , we have 219 − 1 candidate models. To the candidate 
model M, we have

where T = (Z,X) , ΥM ⊂ {1, 2, ⋅ ⋅ ⋅, 19} , �i is the unknown parameter vector, and e is 
a normal error vector which is independent of T with mean zero and unknown vari-
ance �2 . Clearly, the sheer number of models is not conducive to implementing our 
proposed criterion. Thus, to obtain a series of candidate models, we take full 
advantage of FW/BW procedure in Jiang et al. (2015). Similar to Jiang et al. (2015), 
due to missing data, we calculate RSS(M, T , �) based on the complete cases  
and denote it as RSScc(M, T , �) , where RSS(M, T , �) =

n∑

i=1

(Yi − �0 −
∑

i∈ΥM

�iTi)
2 and 

RSScc(M, T , �) =
n∑

i=1

�i(Yi − �0 −
∑

i∈ΥM

�iTi)
2 . Then, taking FW/BW procedure, we 

can obtain the candidate models for fY|X,Z(y|x, z) based on RSScc(M, T , �).
Similarly, we assume that X is missing at random (MAR). As for the selection prob-

ability function �(y, z) , we consider the following two cases:
Case1:

where �1 , �2 are the corresponding parameter vectors.
Case2:

where �1 , �2 are the corresponding parameter vectors.
Table 3 reports the models selected by the two methods, respectively.
From Table  3, it can be observed that RIPW-KL criterion is more robust than 

wAIC-KL since our proposal selects the same model under two different specifications 

Y = �0 +
∑

i∈ΥM

�iTi + e,

�1(y, z;�1) = exp(�10 + �11y + �11z)∕
{
1 + exp(�10 + �11y + �11z)

}
,

�2(y, z;�2) = exp(�21y + �22z)∕
{
1 + exp(�21y + �22z)

}
,

�1(y, z;�1) = exp(�10 + �11y + �12z + �13zy)∕
{
1 + exp(�10 + �11y + �12z + �13zy)

}
,

�2(y, z;�2) = exp(�20 + �21y + �22z)∕
{
1 + exp(�20 + �21y + �22z)

}
,

Table 3  The models selected by 
RIPW-KL criterion, wAIC-KL, 
respectively, for the automobile 
data set

method Case 1 Case 2

RIPW-KL Z
5

,Z
10

,X Z
5

,Z
10

,X
wAIC-KL Z

5

,Z
10

,X Z
3

,Z
5

,Z
10

,X
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of �(y, z) . Clearly, in real data analysis, it is hard to select the true model for the selec-
tion probability function. However, it is relatively reliable to assume some models for 
the selection probability function. Similar to Wang et al. (2021), we can see that the 
spirit of RIPW-KL criterion is like the idea of model averaging that can combine the 
information of each assumed models for the selection probability function, while the 
wAIC-KL simply uses the information of one model in the end. This may be the reason 
that the RIPW-KL criterion is more robust than wAIC-KL.

Appendix

We present proofs of theorems as follows.

Proof of Theorem 1 In order to prove Theorem 1, we need to prove the existence and 
consistency of �̂�IP

M
 defined in (5) firstly. Based on Property 24.1 in Gourieroux and 

Monfort (1995), the existence of �̂�IP
M

 can be guaranteed under (C.1), (C.2), (C.5) and 
(C.6). Recalling the definition of D̂IP(M, 𝜃M , �̂�n) given in (4), based on Theorem 2.1 
in Newey and Mcfadden (1994) and (C.1), (C.2), it suffices to prove the consistency 
of the �̂�IP

M
 by verifying the following equation:

Note that,

where D̃IP(M, 𝜃M , 𝛼
∗) = n−1

n∑

i=1

�
𝛿i

p𝛼∗ (𝜙𝜋(Yi,Zi;𝛼∗))
log gM(Yi�Xi, Zi;𝜃M)

�

 , in which 

p�∗ (��(Y , Z;�
∗)) is defined in the first paragraph of Sect. 3. We need only to prove,

and

According to Lemma 2.4 in Newey and Mcfadden (1994), with (C.1) and (C.2), it is 
direct to prove (12) by noting

Note that,

sup
𝜃M∈ΘM

|D̂IP(M, 𝜃M , �̂�n) − D(M, 𝜃M)| = op(1).

|D̂IP(M, 𝜃M , �̂�n) − D(M, 𝜃M)|

≤ |D̂IP(M, 𝜃M , �̂�n) − D̃IP(M, 𝜃M , 𝛼
∗)| + |D̃IP(M, 𝜃M , 𝛼

∗) − D(M, 𝜃M)|,

(11)sup
𝜃M∈ΘM

|D̂IP(M, 𝜃M , �̂�n) − D̃IP(M, 𝜃M , 𝛼
∗)| = op(1),

(12)sup
𝜃M∈ΘM

|D̃IP(M, 𝜃M , 𝛼
∗) − D(M, 𝜃M)| = op(1).

(13)E{�|��(y, z;�
∗)} = �(y, z).
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where q̂𝛼,n(u) = 1∕p̂𝛼,n(u) , q̂𝛼,bn(u) = 1∕p̂𝛼,bn (u) = q̂𝛼,n(u)r̂𝛼,n(u)∕r̂𝛼,bn (u) , 
q�(u) = 1∕p�(u) , q�,bn(u) = q�(u)r�(u)∕r�,bn (u) , r�,bn (u) = max{r�(u), bn} , in which 
p�(v) and r�(v) are given at the first paragraph of Sect. 3. By (2) and (3), we know 
that the definition of q̂𝛼,n(u) , q̂𝛼,bn(u) , q�(u) and q�,bn(u) are similar to â𝛾 ,n(v) , â𝛾 ,bn (u) , 
a� (u) and a� ,bn (u) in Wang et  al. (2021), respectively. By (C.2), we have 
E{ sup

𝜃M∈ΘM

𝛿 log gM(Y|X, Z;𝜃M)} < ∞ . This together with conditions (C.3)-(C.7) 

proves sup
�M∈ΘM

Qn1 = op(1) and sup
�M∈ΘM

Qn2 = op(1) , respectively, using the similar 

arguments to that of Lemma S1 and S2 in Wang et al. (2021). Clearly,

By (C.2), (C.3) and (C.4), ∀𝜖 > 0 , we then have

This yields

This completes the proof of (11).
Now, in what follows, we prove the asymptotically normality of �̂�IP

M
 . By (14), we 

know that

Lemma 1 in the supplementary material proves that

(14)

D̂IP(M, 𝜃M , 𝛼n) − D̃IP(M, 𝜃M , 𝛼
∗)

=
1

n

n∑

i=1

𝛿i log gM(Yi|Xi, Zi;𝜃M){q̂𝛼n,bn

(
𝜙𝜋

(
Yi, Zi;�̂�n

))
− q̂𝛼∗,bn (𝜙𝜋(Yi, Zi;𝛼

∗))}

+
1

n

n∑

i=1

𝛿i log gM(Yi|Xi, Zi;𝜃M){q̂𝛼∗,bn (𝜙𝜋(Yi, Zi;𝛼
∗)) − q𝛼∗,bn (𝜙𝜋(Yi, Zi;𝛼

∗))}

+
1

n

n∑

i=1

𝛿i log gM(Yi|Xi, Zi;𝜃M){q𝛼∗,bn (𝜙𝜋(Yi, Zi;𝛼
∗)) − q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼

∗))}

∶= Qn1 + Qn2 + Qn3,

|Qn3| ≤
2

n

n∑

i=1

|𝛿i log gM(Yi|Xi, Zi;𝜃M)q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼
∗))|I[r𝛼∗ (𝜙𝜋(Yi, Zi;𝛼

∗)) < bn].

P(| sup
𝜃M∈ΘM

Qn3| > 𝜖)

≤
2

𝜖
E{| sup

𝜃M∈ΘM

𝛿 log gM(Y|X, Z;𝜃M)q𝛼∗ (𝜙𝜋(Y , Z;𝛼
∗))|I[r𝛼∗ (𝜙𝜋(Y , Z;𝛼

∗)) < bn]}

→ 0.

sup
𝜃M∈ΘM

|D̂IP(M, 𝜃M , �̂�n) − D̃IP(M, 𝜃M , 𝛼
∗)|

≤

|
|
|
|
|

sup
𝜃M∈ΘM

Qn1

|
|
|
|
|

+
|
|
|
|
|

sup
𝜃M∈ΘM

Qn2

|
|
|
|
|

+
|
|
|
|
|

sup
𝜃M∈ΘM

Qn3

|
|
|
|
|

= op(1).

D̂IP(M, 𝜃M , �̂�n) = D̃IP(M, 𝜃M , 𝛼
∗) + Qn1 + Qn2 + Qn3.
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Further, according to Lemma 2 in the supplementary material, we have

For Qn3 , by (C.2), (C.8) and Markov’s inequality, we have

where Ci = �i log gM(Yi|Xi, Zi;�M) . Then, we have Qn3 = op(n
−1∕2) . Thus, we have

Let Ψ(u, v) be a general vector-valued or matrix-valued function, and we denote

Then, by (4), we have

where tM,i(�M) =
� log gM(Yi|Xi,Zi;�M)

��M
 , for i = 1, 2, ⋅ ⋅ ⋅, n . With the same technique of 

(18), under (C.2)-(C.8), we can obtain that

(15)
Qn1 =n

−1

n∑

i=1

{𝛿i log gM(Yi|Xi, Zi;𝜃M)}{𝜕q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼
∗))∕𝜕𝛼}(𝛼n − 𝛼∗)

+ op(n
−1∕2).

(16)
Qn2 =n

−1

n∑

i=1

{1 − �iq�∗ (��(Yi, Zi;�
∗))}q�∗ (��(Yi, Zi;�

∗))

× �i log gM(Yi|Xi, Zi;�M) + op(n
−1∕2).

(17)

P(n1∕2�Qn3� > 𝜖)

≤P(n−1∕2
n�

i=1

2��Ciq𝛼∗ (𝜙𝜋(Yi, Zi;𝛼
∗))��I[r𝛼∗ (𝜙𝜋(Yi, Zi;𝛼

∗)) < bn] > 𝜖)

≤ 2𝜖−1E{
√
n��Cq𝛼∗ (𝜙𝜋(Y , Z;𝛼

∗))��I[r𝛼∗ (𝜙𝜋(Y , Z;𝛼
∗)) < bn]} → 0,

(18)D̂IP(M, 𝜃M , 𝛼n) = D̃IP(M, 𝜃M , 𝛼
∗) + Qn1 + Qn2 + op(n

−1∕2).

Ψ
�

{u}
(u, v) =

�Ψ(u, v)

�u
,

KM(𝜃M , 𝛼n) = D̂
�

IP{𝜃M}
(M, 𝜃M , 𝛼n).

KM(𝜃M , 𝛼n) = n−1
n∑

i=1

{
𝛿i

p̂𝛼n,bn

(
𝜙𝜋

(
Yi, Zi;�̂�n

)) tM,i(𝜃M)

}

,

(19)

KM(
̂𝜃M

IP
, 𝛼n) = n−1

n∑

i=1

q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼
∗))𝛿itM,i(

̂𝜃M
IP
)

+ n−1
n∑

i=1

𝛿itM,i(
̂𝜃M

IP
){𝜕q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼

∗))∕𝜕𝛼}(𝛼n − 𝛼∗)

+ n−1
n∑

i=1

{1 − 𝛿iq𝛼∗ (𝜙𝜋(Yi, Zi;𝛼
∗))}q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼

∗))𝛿itM,i(
̂𝜃M

IP
) + op(n

−1∕2).
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From (5), it follows that KM(
̂𝜃M

IP
, �̂�n) = 0 . Thus, applying Taylor expansion to 

KM(
̂𝜃M

IP
, �̂�n) around the point (�∗

M
, �∗) , we have

where �∗ is the probability limit of 𝛼n and �∗
M

 is given in Condition (C.1). Let

And by a standard argument, one can easily obtain the following equation:

where I�∗ = −E[t
�

�
(�){�T}(�

∗)].
Similarly, by the law of larger numbers, we can obtain that

where

Thus, (20) together with (21) and (22), we prove

where

(20)

0 = n−1
n∑

i=1

{

q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼
∗))𝛿itM,i(𝜃

∗
M
) + [1 − 𝛿iq𝛼∗ (𝜙𝜋(Yi, Zi;𝛼

∗))]

× q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼
∗))𝛿itM,i(𝜃

∗
M
)

}

+ n−1
n∑

i=1

{

q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼
∗))𝛿it

�

M,i
(𝜃∗

M
)

+ [1 − 𝛿iq𝛼∗ (𝜙𝜋(Yi, Zi;𝛼
∗))]q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼

∗))𝛿it
�

M,i
(𝜃∗

M
)

}

( ̂𝜃M
IP
− 𝜃∗

M
)

+ n−1
n∑

i=1

{

𝛿itM,i(𝜃
∗
M
)𝜕q𝛼∗ (𝜙𝜋(Yi, Zi;𝛼

∗))∕𝜕𝛼

}

(𝛼n − 𝛼∗) + op(n
−1∕2)

∶= Hn1(M, 𝜃∗
M
, 𝛼∗) + Hn2(M, 𝜃∗

M
, 𝛼∗)( ̂𝜃M

IP
− 𝜃∗

M
) + Hn3(M, 𝜃∗

M
, 𝛼∗)(𝛼n − 𝛼∗)

+ op(n
−1∕2),

t�(�) =
� − ��(y, z;�)

��(y, z;�){1 − ��(y, z;�)}
⋅ �

�

�{�}
(y, z;�).

(21)
√
n(𝛼n − 𝛼∗) = I−1

𝛼∗
1
√
n

n�

i=1

t𝜋,i(𝛼
∗) + op(1),

(22)Hn2(M, �∗
M
, �∗) = −I�∗

M
+ op(1), Hn3(M, �∗

M
, �∗) = −AM,�∗ + op(1),

I�∗
M
= −E

[
�q�∗ (��(Y , Z;�

∗))t
�

M{�T
M
}
(�∗

M
) + {1 − �q�∗ (��(Y , Z;�

∗))}

× q�∗ (��(Y , Z;�
∗))�t

�

M{�T
M
}
(�∗

M
)
]
,

AM,�∗ = −E

{

�
�q�∗ (��(Y , Z;�

∗))

��∗
tM(�

∗
M
)

}

.

√
n(�̂�IP

M
− 𝜃∗

M
) =

1
√
n

n�

i=1

RM,i + op(1),
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By the central limit theorem and the above prove process, we prove that �̂�IP
M

 is 
asymptotically normal with zero mean, as n → ∞ . This completes the proof of The-
orem 1.   ◻

Proof of Theorem 2 Obviously, in order to prove Theorem 2, it suffices to prove the 
following equation:

Recalling the definition of M̂IP in (7), M̂IP is the minimizer of ICIP(M) with respect 
to M. So, it is obvious that we have ICIP(M̂IP) ≤ ICIP(Mopt) . Thus, to prove (23), we 
only need to prove that

To prove (24), it’s enough to prove the following equation:

for each candidate model M. By the definition of ICIP(M) defined in (6), we know 
that in order to prove (25), it’s equivalent to prove the following equation, when 
n → ∞,

If M = Mopt , (26) is clearly true. Thus, we consider the case where the model M is 
not Mopt only. By Theorem 1, applying Taylor-expansion to D̂IP(M, �̂�IP

M
, 𝛼n) , we have

where the definition of �̂�IP
Mopt

 is similar to �̂�IP
M

 . By (C.2), (C.4) and (C.5)(ii) as well as 
the root n consistency of �̂�IP

M
 and 𝛼n , we have

Thus, we have

RM,i = I−1
�∗
M

{

�iq�∗ (��(Yi, Zi;�
∗))tM,i(�

∗
M
) + [1 − �iq�∗ (��(Yi, Zi;�

∗))]

× q�∗ (��(Yi, Zi;�
∗))�itM,i(�

∗
M
) − AM,�I

−1
�∗
t�,i(�

∗)

}

.

(23)P{ICIP(M̂IP) = ICIP(Mopt)} → 1 (n → ∞).

(24)P{ICIP(M̂IP) ≥ ICIP(Mopt)} → 1 (n → ∞).

(25)P{ICIP(M) ≥ ICIP(Mopt)} → 1 (n → ∞),

(26)P(D̂IP(Mopt, �̂�
IP
Mopt

, 𝛼n) − D̂IP(M, �̂�IP
M
, 𝛼n) + 𝜆n(dM − dMopt

) ≥ 0) → 1.

D̂IP(M, �̂�IP
M
, 𝛼n) = D̂IP(M, 𝜃∗

M
, 𝛼∗) + D̂

�

IP{𝜃T
M
}
(M, 𝜃∗

M
, 𝛼∗)(�̂�IP

M
− 𝜃∗

M
)

+ D̂
�

IP{𝛼T}
(M, 𝜃∗

M
, 𝛼∗)(𝛼n − 𝛼∗) + op(n

−1∕2),

D̂
�

IP{𝜃T
M
}
(M, 𝜃∗

M
, 𝛼∗)(�̂�IP

M
− 𝜃∗

M
) = Op(n

−1∕2),

D̂
�

IP{𝛼T}
(M, 𝜃∗

M
, 𝛼∗)(𝛼n − 𝛼∗) = Op(n

−1∕2).

(27)D̂IP(M, �̂�IP
M
, 𝛼n) = D̂IP(M, 𝜃∗

M
, 𝛼∗) + Op(n

−1∕2).
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Similarly, we have

where the definition of �∗
Mopt

 is similar to �∗
M

 . Note that, �(y, z) is a function of 
��(y, z;�

∗) , together with (13) and (18) and the law of large numbers, we have

Obviously, (29) is also true for M = Mopt , we then have

Recalling the definition of D(M, �M) given below (1), it follows that 
D(Mopt, �

∗
Mopt

) − D(M, �∗
M
) is non-negative in probability. Recalling that �n is a posi-

tive tuning parameter tending to zero as n → ∞ . By Fang and Shao (2016), we con-
sider the following three cases to prove (26):

Case 1. M is an incorrect model and dMopt
< dM . In this case, we then have 

D̂IP(M, �̂�IP
Mopt

, 𝛼n) − D̂IP(M, �̂�IP
M
, 𝛼n) > 0 in probability, and hence (26) is clearly true.

Case 2. M is an incorrect model but dMopt
≥ dM . Similar to Case 1, we have 

D̂IP(M, �̂�IP
Mopt

, 𝛼n) − D̂IP(M, �̂�IP
M
, 𝛼n) > 0 in probability, (26) then holds by noting 

�n → 0.
Case 3. M is a correct model but dMopt

< dM . In this case, we then have 
D̂IP(M, �̂�IP

M
, 𝛼

n
) − D̂IP(M, �̂�IP

Mopt
, 𝛼

n
) = O

p
(n−

1

2 ) , and hence (26) is true as long as 
√
n�n → ∞.
This completes the proof of (26) and hence the proof of Theorem 2.   ◻
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