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Abstract

We consider adaptive maximum-likelihood-type estimators and adaptive Bayes-type
ones for discretely observed ergodic diffusion processes with observation noise whose
variance is constant. The quasi-likelihood functions for the diffusion and drift param-
eters are introduced and the polynomial-type large deviation inequalities for those
quasi-likelihoods are shown to see the asymptotic properties of the adaptive Bayes-type
estimators and the convergence of moments for both adaptive maximum-likelihood-
type estimators and adaptive Bayes-type ones.

Keywords Bayes-type estimation - Convergence of moments - Diffusion processes -
Observation noise - Quasi-likelihood analysis - Stochastic differential equations

1 Introduction

We consider a d-dimensional ergodic diffusion process defined by the following
stochastic differential equation such that

dX; =b Xy, B)dt +a (X;, @) dws, Xo = xp,

where {w; },>¢ is anr-dimensional Wiener process, xo is arandom variable independent
of {w;};>0, @ € ©1 and B € ©; are unknown parameters, ®; C R™! and @2 C
R™2 are bounded, open, and convex sets in R” admitting Sobolev’s inequalities for
embedding whr(©) — C (@i) fori =1, 2,60* = (a*, B*) is the true value of the
parameter, and a : RYx©®; - RIQR" and b : RY x ©®y — R are known functions.
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178 S. H. Nakakita et al.

A matter of interest is to estimate the parameter 6 = (o, 8) with partial and indirect
observation of {X;},>(: the observation is discretised and contaminated by exogenous
noise. The sequence of observation {Yihn } i L which our parametric estimation is
based on, is defined as

1/2 .
Yin, = Xin, + AV ein,, i=0,...,n,

where h,, > 0 is the discretisation step such that 7, — 0 and T7,, = nh, — oo,
{sihn }l.:O’_._’n is an i.i.d. sequence of random variables independent of {w,},>( and
xo such that Eg« [Sih,,] = 0 and Varg« (sihn) = I; where I, is the identity matrix in
R”®R" foreverym € N,and A € R?®R is a positive semi-definite matrix which is
the variance of noise term. We also assume that the half vectorisation of A has bounded,
open, and convex parameter space ®,, and let us denote E := O, x @1 x @,. We
also notate the true parameter of A as A,, its half vectorisation as 6 = vechA,, and
= (9;, o, ﬂ*). That is to say, our interest is parametric inference for an ergodic
diffusion with long-term and high-frequency noised observation. One of the concrete
examples is the wind velocity data provided by NWTC Information Portal (2018)
whose observation is contaminated by exogenous noise with statistical significance
according to the test for noise detection (Nakakita and Uchida 2019a) (Fig. 1).

As the existent discussion, Nakakita and Uchida (2019a) propose the following
estimators [\n, &, and ,é,, such that

1 n—1 5
= Z Yiisim, — Yin, )=,
2n i=0

H , (an, A,,) = sup Hj, (a A )

ae®]

HZ,n (Bn; &n> = Ssup HZ,n (,8, &n) s

Be®r

where for every matrix A, AT is the transpose of A and A®? = AAT, Hf , and Hp ,
are the adaptive quasi-likelihood functions of & and 8, respectively, deﬁned in Sect. 3,

and t € (1, 2]is a tuning parameter, and Nakakita and Uchida (2019a) show that these
estimators are asymptotically normal and particularly the drift one is asymptotically
efficient. To obtain the convergence rates of the estimators, it is necessary to see the
asymptotic properties of the quasi-likelihood functions. Both of them are functions of
local means of observation defined as

1 pn_l

sz_ ZYjA,1+ihn7 j=09"'1kn_17
Pr 2o

where k,, is the number of partitions given for observation, p,, is that of observation
in each partition, and A, = p,h, is the time interval which each partition has, and
note that these parameters have the properties k, — oo, p, — oo and A, — 0.
Intuitively speaking, k, and A, correspond to n and h,, in the observation scheme
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180 S. H. Nakakita et al.

without exogenous noise, and divergence of p, works to eliminate the influence of
noise by law of large numbers. Hence, it should be also easy to understand that we
have the asymptotic normality with the convergence rates </k, and \/T,, for & and B;
that is,

[ Ve (@ = o) VT (B — )] =&,

where & is an (m| + mj)-dimensional Gaussian distribution with zero-mean.

The statistical inference for diffusion processes with discretised observation has
been investigated for several decades, see Florens-Zmirou (1989), Yoshida (1992),
Bibby and Sgrensen (1995), and Kessler (1995, 1997). In practice, it is necessary
to argue whether exogenous noise exists in observation, and it has been pointed out
that the observational noise, known as microstructure noise, certainly exists in high-
frequency financial data which is one of the major disciplines where statistics for
diffusion processes is applied. Inference for diffusions under the noisy and discretised
observation in fixed time interval [0, 1] is discussed by Jacod et al. (2009). Favetto
(2014, 2016) examines the same model as our study and shows that simultaneous
maximum-likelihood-type (ML-type) estimation has consistency under the situation
where the variance of noise is unknown and asymptotic normality under the situation
where the variance is known. As mentioned above, Nakakita and Uchida (2019a)
propose adaptive ML-type estimation which has asymptotic normality even if we
do not know the variance of noise, and test for noise detection which succeeds in
showing the real example of the data (NWTC Information Portal 2018) contaminated
by observational noise.

Our study aims to obtain polynomial-type large deviation inequalities for statistical
random fields and to construct the adaptive Bayes-type estimators of both drift and
diffusion parameters. Moreover, it is shown that both the adaptive ML-type estimators
proposed in Nakakita and Uchida (2019a) and the adaptive Bayes-type estimators have
not only asymptotic normality but also a certain type of convergence of moments. Itis
well known that asymptotic normality is one of the hopeful properties that estimators
are expected to have; for instance, Nakakita and Uchida (2019b) utilise this result
to compose likelihood-ratio-type statistics and related ones for parametric test and
prove the convergence in distribution to a y 2-distribution under null hypothesis and
consistency of the test under alternative one. However, it is also known that asymp-
totic normality is not sufficient to develop some discussion requiring convergence of
moments such as information criterion. In concrete terms, it is necessary to show
the convergence of moments such that for every f € C (R™! x R™2) with at most
polynomial growth and adaptive ML-type estimators &, and B,

Eo- [ £ (Vi (@0 — @) VT (B = 7)) | = Eor £ @1

This is a stronger property than mere asymptotic normality since if we take f as a
bounded and continuous function, then indeed asymptotic normality follows.

To see the asymptotic properties of the adaptive Bayes-type estimators and the con-
vergence of moments for adaptive ML-type estimator, we can utilise polynomial-type
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QLA and BEs of an ergodic diffusion plus noise 181

large deviation inequalities (PLDI) and quasi-likelihood analysis (QLA) proposed by
Yoshida (2011) which have been widely used to discuss the asymptotic properties
of the Bayes-type estimators and the convergence of moments of both the ML-type
estimation and the Bayes-type one in statistical inference for continuous-time stochas-
tic processes. This approach is developed from the exponential-type large deviation
and likelihood analysis introduced by Ibragimov and Has’minskii (1972, 1973, 1981)
and Kutoyants (1984, 1994, 2004) for continuously observed stochastic processes.
Yoshida (2011) also discusses the asymptotic properties of the simultaneous Bayes-
type estimators and adaptive Bayes-type ones and convergence of moments for both
the adaptive ML-type estimation and the Bayes-type estimation for ergodic diffusions
with nh,, — oo and nh% — 0. Uchida and Yoshida (2012, 2014) examine the same
problem for adaptive ML-type and adaptive Bayes-type estimation of ergodic dif-
fusions with more relaxed condition: nk, — oo and nh? — 0 for some p > 2.
Ogihara and Yoshida (2011) study the asymptotic properties of the adaptive Bayes-
type estimators and the convergence of moments for both the ML-type estimators
and the Bayes-type estimators of ergodic jump-diffusion processes in the scheme of
nh, — oo and nhﬁ — 0. For the Bayes-type estimation for diffusion-type pro-
cesses in a general setting, see Ogihara (2018, 2019). Clinet and Yoshida (2017) show
PLDI for the quasi-likelihood function for ergodic point processes and the conver-
gence of moments for the corresponding ML-type and Bayes-type estimators. From
the viewpoint of computational statistics, it is crucial to get the Bayes-type estima-
tion for diffusion-type processes from high-frequency data. In particular, Bayesian
statistics work well for the estimation of unknown nonlinear parameters based on the
multimodal quasi-likelihood functions for diffusion-type processes. In order to obtain
the ML-type estimators for diffusion-type processes, the hybrid-type estimators with
initial Bayes-type estimators are studied by Kamatani and Uchida (2015) and Kaino
and Uchida (2018a,b). For the convergence of moments for Z-estimators of ergodic
diffusion processes, see Negri and Nishiyama (2017). As the applications of the con-
vergence of moments for estimators of stochastic differential equations, Uchida (2010)
composes AIC-type information criterion for ergodic diffusion processes, and Eguchi
and Masuda (2018) propose BIC-type one for local asymptotic quadratic statistical
experiments including some schemes for diffusion processes. For the convergence of
moments of regularized estimators for a discretely observed ergodic diffusion process,
see Masuda and Shimizu (2017).

The composition of the paper is as follows: in Sect. 2, we set some notations
and assumptions; Sect. 3 proposes the adaptive Bayes-type estimators of both drift
and diffusion parameters and gives the main results of our study such as QLA for
our ergodic diffusion plus noise model and the convergence of moments of both the
adaptive ML-type estimators and the adaptive Bayes-type estimators for the model;
Sect. 4 studies a concrete example of adaptive Bayes-type estimators for ergodic
diffusion plus noise model and shows the result of computational simulation; Sect. 5
provides the technical proofs for the main results shown in Sect. 3.
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182 S. H. Nakakita et al.

2 Notation and assumption

We set the following notations.

For every matrix A, AT is the transpose of A, and A®2 .= AAT,

— For every set of matrices A and B whose dimensions coincide, A [B] := tr (ABT).
Moreover, foranym € N, A €e R @ R" and u, v € R™, A[u, v] := v Au.

— Let us denote the £th element of any vector v as v(® and (£1, £2)th one of any
matrix A as A¢1-62),

— For any vector v and any matrix A, |v| := ,/tr (vTv) and ||A]| ;= ,/tr (ATA).

— Forevery p > 0, |||, is the L? (Pg+)-norm.

— A a) = a(x,)®, a(x) = a(x,a), Ax) ;= A(x,a*) and b (x) :=
b (x, p*).

— For given t € (1, 2], p, := hy, I/T, Ay = puhy, and k, := n/p,, and we define

the sequence of local means such that

-1
B 1 Pn .
Zj = — Z ZjAnJrihn, J =0,...,kn—1,
Dn =
i=0
where {Zih } indicates an arbitrary sequence defined on the mesh
nJi=0

.....

w 1K Yizo Ly and fein, J;
Remark 1 Since the observation is masked by the exogenous noise, it should be trans-
formed to obtain the undermined process {X;};~o. As illustrated by Nakakita and
Uchida (2019a), the sequence {Yj }j=0 4 can extract the state of the latent pro-
cess {X;};>0 in the sense of the statement of Lemma 2.

i=0,...,

.............

-G = oo wsis =0, Gi; = Gjatin, 9 = Gjg A}, =
(8(}, A< jpp+i— ).A"' .A"O,'H" '—g" \/.A';landH"‘—H
— We define the real-valued funcnon as for l1, 12, I3, l4 =1, ,d:

V((h, ), (3,14))

(I1,k) (I2,k) (13,k) (I4,k) 4
=3 ()" (022 () () (k[ ]-3)

3
+3 (Agle)Agz,m + A£11J4)A£12J3))’
and with the function o asfori =1,...,dand j =1i,...,d,

.. J ifi =1,
o, j):= Zi_l(d—é-i-l)-i-'—' e
=1 j—i+1 ifi > 1,
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QLA and BEs of an ergodic diffusion plus noise 183

we define the matrix Wy as foriy,io = 1,...,d(d +1)/2,
Wl(il’iZ) =V (071 (i1),07" (iz)) .
- Let
{BK(x) ‘K =1,...,mi, B, = (BY"); 5 ]

{r@ =1 m =P (D)

be sequences of R? ® R%-valued functions and R?-valued ones, respectively,
such that the components of themselves and their derivative with respect to x
are polynomial growth functions for all ¥ and A. Then, we define the following
matrix-valued functionals, for B, := 5 (B, + BY),

(K1,k2)

(Ws (Be ke =1.....m1))

_ v (o {(BqAB,A) (O}) ift € (1,2),

© | v (o {(Be,AB, A+ 4B ABy Ay + 12B AuB, AL) (O)) if T =2,
W3 ({fo:h=1,...,ma})) M)

T

= (fud (£2)7) 0).,
where v = vg+ is the invariant measure of X, discussed in assumption [A1]—(iv),
and for all function f on RY, v (f (1)) := [pa f (x) v (dx).

With respect to X;, we assume the following conditions.

[A1l] (i) infy 4 det A (x, ) > 0.
(i1) For some constant C, for all x1, xp € R,

sup lla (x1, o) —a (x2, )| + sup |b(x1,B) — b (x2, B)| < C |x1 — x2|
ae® BeO;

(iii) Forall p > 0, sup,~o Eg~ [|X;|7] < 0.

(iv) There exists an unique invariant measure v = vg on (Rd, B (Rd)) and for
all p > 1 and f € L? (v) with polynomial growth,

T
%/ f(Xz)dt—>P/ £ (@)
0 R4

(v) For any polynomial growth function g : RY — R satisfying /, rd & (X) v (dx)
= 0, there exist G(x), 0,4 G (x) with at most polynomial growth for i =
1, ..., d such that for all x € R,

Lo+G (x) = —g (x),
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184 S. H. Nakakita et al.

where Ly~ is the infinitesimal generator of X.

Remark 2 Pardoux and Veretennikov (2001) show a sufficient condition for [A1]-(v).
Uchida and Yoshida (2012) also introduce the sufficient condition for [A1]—(iii)—(v)
assuming [A1]—(i)—(ii), sup, , A (x, @) < oo and 3o > 0, My > 0 and y > 0 such
that forall 8 € ® and x € R satisfying |x| > M,

1
TTbe(x,ﬂ)i-—aMxV-
X

[A2] There exists C > Osuchthata : R x ©®; —> RI®@R" and b : R? x ©®, — R
have continuous derivatives satisfying

sup a){aoia(x,a)‘ <C+xP¢,0<i<4,0<j<2,
aeB
sup [2{0}b (v, B)| = C (1415, 0=i=4 0= =2
Be®,

With the invariant measure v, we define

det AT (x, o, Ay)

det AT (x, a*, Ay)

YT (o 9%) = —% / {tr (Ar (x,a, Ay~ L AT (x 0", Ay) — Id) + log

}v(dx),

1 _
Yo (8; %) ::—E/A(x,a*) l[(b(x,ﬂ)—b(x,ﬂ*))®2:|v(dx),
where A" (x, o, A) := A (x, @) + 3A1{y) (7). For these functions, let us assume the
following identifiability conditions hold.

[A3] For all T € (1, 2], there exists a constant x («*) > 0 such that YT (a; 6*) <
—x (0" |a —a** forall @ € O;.
[A4] For all T € (1, 2], there exists a constant x’ (8*) > 0 such that Y, (8; 6*) <
—x" (0*)|B — B*|* forall B € Os.
The next assumption is with respect to the moments of noise.

[A5] Forany k > 0, &5, has kth moment and the components of ¢;,, are independent
of the other components for all i, {w;},>¢ and xo. In addition, for all odd

k
integer k,i = 0,...,n,n e Nyand ¢ = 1,...,d, Eg« [(sfﬁi) :| = 0, and
Eg« [85’3] =1.

The following assumption determines the balance of convergence or divergence
of several parameters. Note that t is a tuning parameter and hence we can control it
arbitrarily in its space (1, 2].

[A6] pu = hy'/" 7 € (1,21, hy — 0, T, = nh, — 00, ky = n/p, — o0,
k,,A% — 0 for A, := pyuh,. Furthermore, there exists €9 > 0 such that
nh, > ky? for sufficiently large n.
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QLA and BEs of an ergodic diffusion plus noise 185

Remark 3 The tuning parameter t controls the number of local means and that of
samples used for one local mean. If we set T to be close to 2, we can make +/k,, larger
which is the convergence rate of the adaptive maximum-likelihood-type estimator &;,
and the adaptive Bayes-type one &, defined later on. Note that the estimation with
larger values of T does not necessarily outperform that with smaller value of 7 if the
noise variance is large (e.g. see the simulation study in Nakakita and Uchida 2019a).

Remark 4 Let us denote €; = ¢p/2 and f € C!! (Rd X E) where f and the compo-
nents of their derivatives are polynomial growth with respect to x uniformly in ¢ € E.
Then, the discussion in Uchida (2010) verifies under [A1] and [A6], for all M > O,

M

kn—2
1 n
sup Eg~ | sup | k! . Z f(XjAn,ﬂ) —/Rdf(x,ﬂ)v(dx) < 0.
n =1

neN VeB

3 Quasi-likelihood analysis

First of all, we introduce and analyse some quasi-likelihood functions and estimators
which are defined in Nakakita and Uchida (2019a). The quasi-likelihood functions for
the diffusion parameter « and the drift one 8 using this sequence are as follows:

kp—2 —1
1 2 _ . .
Lo (e )= = > (<§AnA; (Yi-1. A)) [(Yj+1 - Yj)®2]
j=1

+logdet AL (Yj—1, o, A)),
2

k,
., (B; ) i= —% > ((AnA (Fjo1,a)) " [(Yj+1 — Y — Anb (Y1, 5))®2]> :
J

2—-1

where AT (x, @, A) := A (x, @) + 3A,; " A. We set the adaptive ML-type estimators
Ay, @y, and B, such that

1 n—1 5

A ®

Ay = n (Yasvn, — Yin,)" .
i=0

H , (& f\n) = sup Hf, (a; f\n) :

3n;o?n) = sup Hy, (B: &)
Be®,

Assume that g, £ = 1, 2are continuousand 0 < infg,cq, ¢ (6¢) < Supg,ce, e (B) <
oo and denote the adaptive Bayes-type estimators
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186 S. H. Nakakita et al.

0y = {/@. exp (Hin (a; [A\n>> 71 (o) da}_l /@1 aexp( f’n ((x; f\n>) 7 () da,

-1
Bn = {/(; eXp (HZ,n (B; &n)) 2 (B) dﬁ} /O B exp (HZ,n (B; dn)) w2 (B)dB.

Our purpose is to show the polynomial-type large deviation inequalities for the
quasi-likelihood functions defined above in the framework introduced by Yoshida
(2011), and the convergences of moments for the adaptive ML-type estimators and the
Bayes-type estimators as the application of them. Note that the asymptotic properties
of the Bayes-type estimators are shown by using the polynomial-type large deviation
inequality. Let us denote the following statistical random fields for #; € R™! and
u, € R™

Zi, (ul; A, a*) 1= exp (an (a* + k;l/zul; [\n> — Hf,n (a*; f\n>) ,
N * * —-1/2 ~ * A
Z5% (u2: 6y, B*) = exp (Hz,n (ﬁ + T us; ozn) —Ha (B ;Otn)> :

ZZB;yes (MZ; Ons ,3*) ‘= eXp (HZ,n (,8* + Tn_1/2u2; &n> —Hy,n (,8*; n )

(=]

and some sets

1,n

T (Ot*) = {ul S Rm‘;a*+kn_1/2u1 € @1} s

Uz, (BY) = {uz eR™; B+ T, uy € ®2},

and for r > 0,

We use the notation as Nakakita and Uchida (2019a) for the information matrices

T7 (9°) i=diag { Wy, TG7, 709 (9),

J* (%) := diag [Id(d+l)/2’ NVARAS ~7(3’3)} @),

where for iy, ir € {1,...,m},

D7 (%) = i ({% (A7) (B A) (A) 0 k=1, m) }) ,

* 1 T\~ T\~ *
j(z’z)’r(ﬂ ) = |:§U (tl‘ I(A ) ! (aa(,-])A) (A ) ! (3a(iz)A)} G, 0 )):| s

i1,i2
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and for ji, jo € {1, ..., ma},

I89*) = 73V 0%) = [v ((A)_l [aﬁm)b, 3,g<jz>b] G, 9*))]

We also denote ég,n = vechf\,, and 6} := vechA,.

Theorem 1 Under [Al]-[AG6], we have the following results.

J1sJ2

1. The polynomial-type large deviation inequalities hold: for all L > 0, there exists

a constant C (L) such that for all r > 0,

Py« |: sup nyn (ul; Ay, a*) >e "

ureVy, (r.a*)

Pye |: sup Zg/[}; (ug; Ay, ,3*) >e "

ur €V n(r,*)

Bayes ~ -
Pg*[ wp  ZB (i ) 2 € | <

u2 €V n(r,p*)

2. The convergences of moment hold:

C (L)

Eg- [ (V0 (8o = 02) Vn (@ — @) VT (B = £*)) ] = ELS G061, 21,
Ege [ £ (V1 (Ben = 02) Vi (@n = @*) VT (B = 8*)) | = ELf Go. 61621,

where

o 1. 8~ Natanzem s (0. (7 (%)™ (27 (0°) (77 ()7

and f is an arbitrary continuous functions of at most polynomial growth.

Remark 5 1tis worth noting that the adaptive Bayes-type estimators are newly proposed
for the ergodic diffusion plus noise models in this study and their properties, which
are not only asymptotic normality but also mere convergences of moments, are shown.
As an application of the Bayes-type estimation, Kaino et al. (2018) study the hybrid
estimators with initial Bayes-type estimators for our ergodic diffusion plus noise model
and give an example and simulation results of the hybrid estimators.

4 Example and simulation results

We consider the two-dimensional diffusion process.

dX; = b(Xy, p)dt +a(X;, 0)dwy, t>0, Xo= (1, 1)*
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188 S. H. Nakakita et al.

where
—B1Xi1— B3Xi2+ Bs
b(X;, B) = ’ ’ ,
X, ) (—ﬂzxz,l — BaXi2+ Beo
(a1 a2
a(X;, o) = (052 oc3> .
Moreover, the true parameter values are (of, a’zk, ;) = (1,0,2) and

BT, B3, B3, By. Bs. Bg) = (1,0.1,0.1, 1, 1, 1). The parameter space of o is @ =
{(a1, a2, a3) € [0.1,50] x [25, 25] x [0.1, 50]|ajo3 — &3 > 1073}, and the param-
eter space of 8 is @ = [—25, 25]°.

The noisy data {Y;, },_, , are defined as foralli =0,...,n,

Yin, == Xin, + A e,

where n = 10, h,, = 6.309573 x 107>, T = nh,, = 63.09573, A = 10731, I is the
2 x 2-identity matrix, {e,-hn }i—O , 18 the L.i.d. sequence of two-dimensional normal

,,,,,

For the true model, 1000 independent sample paths are generated by the Euler—
Maruyama scheme, and the mean, the standard deviation (SD), the theoretical standard
deviation and the mean squared error for the estimators in Theorem 1 are computed
and shown in Tables 1, 2, 3, 4, and 5. The personal computer with Intel 17-6950X
(3.00GHz) was used for the simulations.

Table 1 shows the simulation results of the estimator 1A\,, = (ZA\n’i, )i, j=1,2 of
A = (Aij)i,j=12-

Tables 2 and 3 show the simulation results of the adaptive ML-type estimator
@A, ,3 A.n) with the initial value being the true value, where

QA = arg sup Hin (a; An) ,

aG@l

Ban =arg sup Hao, (B Gan),
Be®,

the quasi-likelihood functions Hf,n and Hp , are that
kn -2 —1 _ _ 5 _
HY , (@A) =— Z (< Vi, e A)) [(Yj_H -7;)® ] +logdet A, (Yj_1. o, A)),

k71—2
Hz,n Bia)=—= Z ( J 1 0()) ! I:(Yj+] - }_’j — Anb(ij;l, /3))@2]) s

is defined as

the local mean {Yj }j:O corkn—1

pn_l

Z Y/A,,—Hh
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QLA and BEs of an ergodic diffusion plus noise 189
Table 1 Estimator of A
A11(0.001) A12(0) A27(0.001)
Mean 0.001 0.000 0.001
SD (1.795 x 107°) (1318 x 1079) (1.837 x 1079)
Theoretical SD (1.732 x 1079) (1.225 x 1079) (1.732 x 1079)
Mean squared error 9.951 x 10710 1.750 x 10712 1.595 x 1078
Table 2 Adaptive ML-type estimator of « with the initial value being the true value
ap(1) a2(0) @3(2)

Mean 0.997 0.000 1.994
SD (0.008) (0.008) (0.016)
Theoretical SD (0.008) (0.008) (0.017)
Mean squared error 7.667 x 1073 6.473 x 1072 3.044 x 1074
Table 3 Adaptive ML-type estimator of 8 with the initial value being the true value

Br(D) B0 B0 A Bs(1) Bo (D)
Mean 1.079 0.097 0.105 1.074 1.075 1.049
SD (0.197) (0.387) (0.094) (0.198) (0.251) (0.492)
Theoretical SD (0.205) (0.409) (0.087) (0.174) (0.250) (0.500)
Mean squared error 0.045 0.150 0.088 0.045 0.069 0.244

Here, r = 2.0, k, = 8000, Pn = 125, A, = 0.007886967, T,

T, = koA, = 63.09573,

AT (x, 0, A) = A (x,)+3A; 7" A,and A(x, o) = aa’ (x, @). The adaptive ML-type
estimator (&4 n, ,3 A.n) are obtained by means of optim() based on the “L-BFGS-B”

method in the R Language.

From Tables 1, 2, and 3, we see that all the estimators have good behaviour.
Tables 4 and 5 show the simulation results of Bayes-type estimators with uniform

priors defined as

o [\n)) do

f@)] @ €xXp (Hf n (

Jo, exp (]HI’ (a'
B _ f(")z Bexp (HZ,n (B;

Ao

@) dp

" o, oxp (Hou (B :

@)dp

The Bayes-type estimators of « and 8 are calculated with MpCN method proposed
by Kamatani (2018) for 10* Markov chains and 10° burn-in iterations.
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190 S. H. Nakakita et al.

Table 4 Bayes-type estimator of «

(1) a2(0) @3(2)
Mean 0.997 0.000 1.995
SD (0.009) (0.009) (0.018)
Theoretical SD (0.008) (0.008) (0.017)
Mean squared error 9.627 x 1073 7.993 x 1077 3.537 x 1074

Table 5 Bayes-type estimator of

Br(h) B>(0.1) B3(0.1) Ba(D) Bs(1) Bs(1)
Mean 1.079 0.094 0.105 1.073 1.076 1.045
SD (0.198) (0.392) (0.094) (0.198) (0.253) (0.499)
Theoretical SD (0.205) (0.409) (0.087) (0.174) (0.250) (0.500)
Mean squared error 0.045 0.154 0.088 0.044 0.070 0.250

From Tables 4 and 5, we can see that the Bayes-type estimators have good
behaviour. Furthermore, the performance of the Bayes-type estimators is almost the
same as that of the estimators in Tables 2 and 3.

Figures 2, 4, and 6 show the plots of the empirical distribution functions, the Q-

Q plots and the histograms of the adaptive ML-type estimators B.Ell)n (i = 2,3,6).

Figures 3, 5, and 7 show those of the the Bayes-type estimators ~,(,’)(i = 2,3,6).
For Figs. 2, 3, 4, 5, 6, and 7, the left side is the empirical distribution function (solid
line) and the theoretical cumulative distribution function (dotted line). Moreover, the
middle is the Q—Q plot and the right side is the histogram and the theoretical probability
density function (dotted line). From Figs. 2, 3, 4, 5, 6 and 7, we can see that both the
adaptive ML-type estimators and the Bayes-type estimators have good behaviour.

5 Proofs
5.1 Evaluation for local means
In the first place, we give some evaluations related to local means. Some of the instru-

ments are inherited from the previous studies by Nakakita and Uchida (2017, 2019a).
We define the following random variables:

1 =l (DA, / 1 Pn=l (1) Ap+ihy,
Citln i=—= Z / . dws, é‘j+2,n = / dws.
LL— JAp+ih, Pn i=0 G+hA,

The next lemma is Lemma 11 in Nakakita and Uchida (2019a).
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Lemma1l &1, and ¢, i1, are ag" f i |-measurable, independent of Q;‘ and Gaussian.
These variables have the next decompositions:

| Pl JAn+k+1)h,
Cirta =3 4 1) [ duy,
L— JAn+khy
—1
T JAn+ (k+1)hn
i = — 2:0m—k—l{/ w;.
Pn =0 JAn+khy

The evaluation of the following conditional expectations holds:

Eor [/l | = Ear [¢]41,119) ] = 0.
.
Egy- |:§j+l,n (§j+],n) |g7 =muAuly,

T Z
Egy- |:§j/'+1,n (§]{+l,n) |g7 = m,/,,AnIr,

T z
Egy- |:§j+1»n (§}+1,n) |g7 = xnAnly,

wherems = (§+ 557 + g2 )i = (3 = s + ) and oo = 5 (1= 37)

The next lemma can be obtained with same discussion as Proposition 12 in Nakakita
and Uchida (2019a).

Lemma 2 Assume the component of the function fec! (Rd X &; ) and 0y f are
polynomial growth functions uniformly ind € 2. Forall p > 1, there exists C (p) > 0
such that for alln € N,

sup | £ (7. 9) — f (Xja,.9)|| < C(p) AL~

Vel

sup
j=0,...ky—1

p

Lemma 3 Assume the component of the function f € C! (Rd X B; R) and 0y f are
polynomial growth functions uniformly in® € B. Forall p > 1, there exists C (p) > 0
such that for alln € N

kn—2 kn—2
| Qe - 13
sup | .= Y f (V) 0) = = 30 £ (Xja, ) <C(pa”.
Vel n j:l n j:l

P
Proof By Lemma 2,
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198 S. H. Nakakita et al.

|2 kn—2
sup |-~ F(Y;,9) —Zf(XjAn’ﬁ)
Vel [Kn T =1
p
k2 .
< | =Y sup|f (7. 0) = f (Xja,. )]
kn 9eg
Jj=1 p
| ka2
<= sup [ £ (Y, 9) = f (Xja,. 9)|
o Ve 14
J
<C(p) .

O

Lemma 4 Assume the components of the functions f,g € C? (Rd; R), oy f, 0x8,
8)% f Bfg are polynomial growth functions. Then, we have

< CA, (14 |X54,))C

‘E [f (Y)) 8 (Xj+va,) = f (Xja,) & (Xja,) IH;?]
Proof For Taylor’s expansion, we have

F(Y)) e (XG+1a,)
= [ (Xja,) & (XG+na,) + e f (Xja,) [V; = Xja,] & (X(+1a,)

1 - -
[ 0=902 (a4 (7= X50) 49 [ = X50) ] ¢ (Xgn,).

and Ito—Taylor expansion and Proposition 3.2 in Favetto (2014) verify

=CA, (1 + ’XjAn ’)C :

(o [ 1 (X)) 8 (Xasna,) = £ (Xja,) 8 (Xia,) 1H]]

1
Ej- [/0 (=) 02F (Xja, +5 (7 = X;8,) 8) [ (7 = X;8,) 7 & (Xaa,) |H?]

C
_ = 2

< Eg- [c (1 + sup X, |+ \ej]) |H’}} Eo- [\Yj - Xja, |H'}]
1€lj An, G+ AL '

).

<CA, (1+ ’XjAn

It holds that
0 f (Xjn) [Yi = Xjan) ¢ (Xjna,) = 0 f (Xja,) [V — Xja,) & (Xja,)
_ 1
+ 0 f (Xja,) [Y) — XjAn]/O g (Xja, +5 (XG+1a, — Xja,))

ds [X(j+na, — Xja,]
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and Proposition 3.2 in Favetto (2014) leads to

‘Ee* [3xf(XjAn) [Yj = Xjn,] 8 (Xja,) I’H’}] < CAy (1+]X,a,])C
[Eo [0 f (Xja,) [Yi — Xja,]

1
x /0 98 (Xja, +5 (XG+na, — Xja,)) ds [X(irna, — Xja,] IH?]

c - 2 a2 2 12
= C(1+[Xja,|)" Eor [|Yj — Xjan |H,-] Eq- [|X<./+1)An — Xja, |Hj]
< Can (14 [X50,])°
Hence, we obtain the result. O

Lemma5 (i) The next expansion holds:

Vier=¥j = Anb (Xja,) +a (Xja,) (;H—l,n + 4“}+2.n) +ejn+ (A" (Ej1 - )

wheree; ,isa H7+2—measurable random variable such that H €jn || » <C(p) A,
forj=1,...,k,—2,neNandp > 1.
(ii) For any p > 1 and 'H';-measurable R¢ ® R’-valued random variable B such

that sup; , E [ B

m
] < 00 for allm € N, we have the next LP-boundedness:

ky—2 p1l/p

T
Eo+ Z B? |:ej,n <§j+l,n + Cj/‘+2,n) :| <C(p) knAﬁ-
=1

(iii) For any p > 1 and H;? -measurable R?-valued random variable (C'; such that

supj’nEH(C;’»

m
] < o0 for all m € N, we have the next L?-boundedness:

ky—2 p1/p
3/2
Eo | | D" C[esn] < C (P k.
j=1

Proof Firstly, we prove (i). Without loss of generality, assume p is an even number. It
holds

?j+1 _?j =)_(j+1 —)_(j—i-(A*)l/z (§j+] —5‘j),
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200 S. H. Nakakita et al.

and
Xjn — X,
| el
= — Y (X(enanting — Xjatin,)
pil l:0
1 pn—1
= o D (XG40 anting = XG+DAwtG—Din + XGHD A G-y =+ = X jAytihy )
n 1:0
—1 . . . .
1 Pn ]An+(l7n+l)hn ]An+(1+1)h/x
=—> / dXs+~-~+/ dX;
Pn 2 \VjAn+(pati=Dhy JAn+ihy
1 p,,—lpy,—l JA++HA+1Dhy,
- / dx,
Pn 1—0 1=0 YJAn+G+Dhy
Pu—1 i Ap+Gi+1)h pn—l (j+D A+ +Dh
1 J B n j n n
=—Z(z+1)/ dXo+— > (pa—i—1) dx,
Pn JjAn+ihy Pn 25 G+DAp+ih,
—1 . . .
1 P JAn+(t+l)hn Pn— GADAp+G+ 1y
=—Z(z+1)/ +—Z(p,,—z—1) dx,
Pn i Antihy G+DAy+ihy
=
b (Xja,) = —= D0 (Gt Dbt (o =i = D) b (X;a,)
i=0

= Anb (Xja,) +a(X)a,) ({,—H,n + C}+z,n> +ejms

where ¢j , = Y7, ( @ +s;l)n),

o 1 pn—1 JAR+Gi+Dhy,
Fin = E Z (i+1 asin (a (XjAn+ihn) —a (XjAn)) dwy,
i=0 norn
1 Pn_l jAn+(i+1)hn
M=o 2D [ (@ () —a (Xjaen) dus,
n i=0 J n+l n
(3) 1 pn—1 JA+A+ DRy,
=g X DY e b)) s
ntihly
1 prl (G+DA+(E+Dhy
ﬁli = Z (pn—i—1) (+1)Ap+ih (@ (XG+na,+in) —a(X;a,)) dws,
i=0 J nTlhp
1 Pz (+DA+E+1)hy,
5221 - Dn - Z (Pn =i =1 G+ Ap+ih (a (X5) = a(X(rna,tin,)) dws,
J nTlhp
1 pn—l G+DA+G+1)hy,
?r)z " Y pa—i—1 (+DAu+ih (b (Xs) = b (Xja,)) ds.
i=0 e
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using Lemma 1. By BDG inequality, Holder’s inequality, and triangular inequality for
LP/2_norm, we have

) Pal B+ Dy mr
rial, = o || Z (i +1) f . (@ (Xja,+in,) —a(Xja,)) dws
. I/
JAn+(t+l)hn 5 r2 !
< C(p)Ep- Z GQ+1)7° / la (Xja,+in,) —a (Xja,)|" ds
n Ay+ihy
- 1/
pn—1 JAR+G+1Dhy, > 2 :
< C(p)Egpr / la (Xja,+in,) —a(Xja,)]"ds
= ingin,
pr P\ 2

Pn=l AL+ DRy, )
=C(p) | Esr Z/ la (Xja,4in,) —a(X;a,)|" ds
i—0 YJAntih,

p] e\

P JAnAG+1)hy )

=C( Z Eo- la (Xjantin) —a(X;a,)]"ds
jAI1+ihﬂ

Ry JAnt G+ Dy 2\ 12
<cp | D "B / la (Xja,+in,) —a(X;ja,)]" ds

iz0 JAntihy

pul 1/2
=C(p) Z hy sup Eo- [||a (X5) — a (X;a,) |p]2/p

i=0 SE[jAn, (J+DAL]

a1 )
<ci | X m (€ bR [+ x55,)”]) "

i=0

1/2
=cp(cwmal) =cwa,

and we also have H sj.lr)l H < C (p) A, which can be obtained in the analogous manner.
lp
2

For r o We obtain
1
@ p Pl FNE rvr
—Ep | |— (i+1)/ a(Xy) —a(Xja,+in,)) dw,
G > [ a0 —a (Kisn)) du,
11/p
pn—1 JA+(G+1Dhy, 2 7/
=CEr || Z(z+1)/ la(Xo) —a(Xja,+in,) | ds
Px i=0 JAn+ihy
2/ 172
a1 JBn G+ Dhy , |7 &
<cp| Y Ee la(Xo) = a(Xja,tin,)| " ds
i=0 JAn+ihy
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pu—1 A i 2/p\ /2
=, JAut Dy )
sco | X m e | [ la (X) = a (X;a,1m)

i=0 JAn+ihy

1/2

pn—1 12 JAu+G+1hy, ) 2p
scp| Y m T / Eo [|a (Xs) —a (Xja,+in,)||"] ds
J

o j Antihn
172

pn—1 2/p
<sco| > sup Eg- [[la (X) —a (X;a,+in,) | ] ds
iz SE[jAp+ihn, jAu+(i+1)h,]

1/2
=cp (phl) " =cmal

because of BDG inequality, Holder’s inequality, Fubini’s theorem, and the fact that
hy = An/pn < A and the same evaluation can be proved for s( ) 1t also holds

p:|1/p

C i Pl J An Gkt Dy e
< () Z (k + 1) Eg« |:(/ b (Xs) _b(XjAn)|ds> i|

Pn (=0 Ay +khy,

Pn— JAn+(k+1)h, e
_Cw Z U+ 1)y P Ege U |b(Xs)_b(XjAn)|pd‘{|
J

/jAn+(k+l)hll
J

(b(Xs) —b(Xja,))ds

p j Ap+khy

p P!

3

O] =— 3 &+ DE,
Pn =0

n k=0 .An"l‘khn
pnl j Apt(k+Dh 1/p
C _ JBn n
< DN Gy f Eg- [[b(Xs) = b (X;a,)["]ds
P = J Btk

IA

i )
PN ke 1yhy sup B
P = s€ljdm(GHDA]

1/p
b (Xs) —b(X,/An)}”]>

1/2 pn_l
ED AT S g1y < ¢ (py aY?
Pn

k=0

3)

by Holder’s inequality and Fubini’s theorem, and same evaluation holds for s i

I

In the next place, we show (ii) holds. Note that it is sufficient to see only the moments

<C(p) A;Z/ . Hence, we obtain the evaluation for ||e jn ||p
p

T
for r]( i; itln and s(.l) (g}’ 1. n) because Holder’s inequality and orthogonality are
()] (l)

applicable for the others. We have the following expression for r; i and s;

pn—1 JAn+@+1)hn

rih = Z G+ 1) (a(Xja,+in,) —a(XjAn))/ dwy,
J

jAp+ihy
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pn—1 GH+DA+G+Dhy,

sih = Z (o —i = 1) (a (X(j+1)a,4in,) —a (XjAn))/ dw.

(j+DA,+ihy,

Let us define for all £ = py,...,kn —=2)pn + pn — 1, £1 (&) = |£/p,], and
L) =£—1£1 (D),

OO, 1y A+ 1), ®2
Dn n .]An+lhn) (X]An)) (/A in dws> s

j=1 i=0 JAnt+ihy

6 )

=) Z o (Xjanting) —a(Xja,)) lhal/],

j=1i=0

k=2 1 T
and then we have } " ]B%’]’[ ) w (Civin) ] = D 2 ptpy_t-

observe that D —DJ; is a martingale with respect to {H 00 .0(0) } . Then, Burkholder’s

We can easily

inequality is applicable and it follows that

— D"

. p
E@* I:‘D(kn_z)pn""pn_l (kn_z)pn"‘pﬂ_l‘ :I

—2 pn—
+1
= C(p)Eg- Z Z <l ) HB" la (Xjaprin) —a (X;a,)|”
. . 4 p/2
JAn+@+Dhy
X / dwy r2h?
JAntihy
p/2 kn—2 pn— 2
=C(p)— Z Z E- HHB, | o (i) —a (X,
o 4 p/2
JAn+G+1Dhy
X / dwy| +r2h2
jAn+ihn
/2 kn=2pa—1 )
=C =2 Y Eor o (Xja,0m,) —a (Xa,)[*"
j=1 i=0
' ' 4 p1/2
JAn+@+1)hy
/ dwg| —r’h2
JAntihy
-2 pn—1 4p 1/4
= C(P) - Z Z Eg- [”a Xja,ting) —a(Xja,)| ]
j=1 i=0
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204 S. H. Nakakita et al.

. 2p /4

212
reh;,

JAn+(i+1Dhy

x Egx dwg

JAu+ihy

< C(p)nPPARPRE = C (p)KPPAPRE? < © (p) kPAADP.

Hence, we have )‘D?k71_2)ljn+prl_l — D?kn_2)pn+Pn_1 ) < C(p) k,i/zAn- Further-

more, let us define

. £1(6) £2(6) i+ 1
D" = Z Z WBI; (a (Xja,+in,) — Eo [a (Xja+iny) |H7]) (hnlr],
j=1 i=0
£1(6) fz(f)
=0

j=1i

]B'} (Ee* [a (Xja+iny) IH'}] —a(X JAn)) (Al ],

I’l

and clearly, we have D" = Dl’" +D2’". In addition, we see | D! is
L Jpntpon=l ;g k2

a martingale with respect to {H” ] o and then, Burkholder’s inequality leads
Jj= n—
to

1,n r
Ef’*HDwn—z)pnwn—l }

<C(p) By { S o i (’“)

<C(pn?PplPalPhl < c (kP AN < C(p kLAY

B[’
J

Ha (Xjan+in,) — Eor [“ (Xjaritn) |H7’] H2 &

p/2i|

Regarding D}, we have

Eo DZ,n P
0 (kn—=2)pn+pn—1

iy ’
= Ep- B (Eor [a (Xja,4in,) 17| = @ (X;a,) ) Uhal;]
L|Jj=1 i=0
r p
< Ege szn 2 [a ,An+i,,n)|H;%]_a(xjAn) "y
_J_ i=0

< C(p)n"hi Al = C (p) Ky A

since HEQ* [a (Xjan+in,) IH?] —a(X;ja,) ‘ <CA, (1+|Xja, |)C.The same eval-

uation holds for S;I,)l, and hence, we obtain the result.
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(1)

Finally, we check that (iii) holds. It is only necessary to verify it for rﬁl) and s; i

and we show with respect to r( ) Since [Zk:l Crk.n [rk n]} for <k, —2isa

martingale with respect to [H f }, we can utilise Burkholder’s inequality and then

kn—2 P

Eg- ZCM[(I)] <C(p)kp/21ZE [

j=l1

1/2 )
} < C(p)kl*AL

(M

and we can have the same evaluation for s i O

Remark 6 When the evaluation ||e i ||p < C (p) A, is sufficient, then we can abbre-
viate A,b (X ja,) in the right-hand side.

Lemma 6 (a) Forall p > 1, there exists C (p) > Osuchthatforall j =0, ..., k,—1
andn € N,

- —-1/2

l&], < c .

(b) Forall p > 1, there exists C (p) > 0 such that for alln € N

[hu-a.

1
C hy+—1.
pS (p)( +ﬁ)

Proof (a) Because of Holder’s inequality, it is enough to evaluate it in the case where
p is an even integer. We easily obtain

[n P )
=(0) 0) £©
Ep« 8/| ZEQ*[ ‘ ] Z Z |:’ /A +ithy /A,,th,,/zh :|
n 1=0 z 2:0
<Ccpp""?

for [AS].

(b) As (a), it is enough to evaluate in the case where p is an even integer. Then, we
have

L2 pl/p
A 2
[dn-a] = { 52 (¥an, = Yaoim,) = A }
i=1

pl/p
2 }

1 n
e [HZH 21: (Xin, = X—m,) (ein, — £6-1,)" (A2
P

p}l/p

1
< Egp+ |:H o Z: (Xihn - X(ifl)hn)®

p} 1/p

1 n ®2
k| g o =]
i=1
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206 S. H. Nakakita et al.

1 < 27U/
=5, ;Ee* [!Xih,, — Xi-n,| ]

n

co. |
+ o Eg Z(Xih,,_x(i—l)hn)s;l;zn

p}l//’
pi|1/p

Lili=1

+ £, Xn:(x- — X(ty,) €}
n 0 ihy (i—Dhn) EGi—1hy,

Llli=1

p}l/p
pi|1/p
ﬁ}l/p

The first term of the right-hand side has the evaluation

n

1 1
®2
+ C (p) Ep+ o Eipy Eld

L i=1

1« & 1
+ C (p) Ep % g(i—l)h,, - 51(1
i=1

C
+ ﬂEe*

1

n
X T
Z“?'W(i—l)hn
i=1

1/p
2”] < C(p)hn.

l n
— ZEB* [|Xih,, — X(i-Dhy
2n P

We can evaluate the second term of the right-hand side

| |

n

> (Xin, = Xi-upn,) €,

i=1

2 2
T T
=Ep | > ) H (Xiin, = Xir-1ia) €0y, H H (Xip/zh,, - X(ip/zfl)hn) Eippahn H
i ip,
T 2 T 2
<30 2B || Kina = Xaom) el |+ | (K = Xyamyn) o,
i ip/2
2
<> cpnl? < c(p) )
i1 ip/2

and hence

co. [l< i [
T
o Eg+ E (Xin, — Xii—1)h,) €, <C(p) —nn-

i=1

The evaluation for the third term can be obtained in the same manner. For the fourth
term, we have
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5,2 1
‘2;1 €iny ~ 214
i=1

[’:|1/P

= C (p)Epr H'% n (52— 1a)
i=1

C (p) Eg- {

pj|1/p

1/p
C (P) ®2
E@* Z Z ‘ llhn o Id H lp/2hn o Id H
ipp
< ¢ (p)’
Jn
and the same evaluation holds for the fifth term. Finally, we obtain
p1l/p
¢ (p)
Zemne(, Dhy
1/p
_c (p) T 2
Eo- Z Z 8!1’%% 1>hn‘ N Eiphn® (i, n—1)hy
ip/2
< C)
Jn

Hence, the evaluation for L”-norm stated above holds. O

Lemma7 For every function f such that f € C! (Rd X &; R) and all the elements

of f and the derivatives are polynomial growth with respect to x uniformly in ¥,

k” pl/p
Eo- | kS sup |— Z(f( jo1s 0 An) = £ (i1, 9. M)
Vel n
3/2 1
<C(p) <n1/2h +—>.
" Pn
Proof We have
6 p1l/p
€1 1} Y A v
Eoe | ki sup |= D7 (f (Fjm1s 2 An) = £ (Fjo1, 9. AL))
vet [kn i
1/p

ky,—2
1k i ) _ »
< [ LY. |:sup 7 (Y,-_l, 9, A,,) — F (Vi1 0 A) }
Ve
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1
kn /p

ZEG*[ +|?j—1|)c‘ An — A, p]

n

R 2p7 /2P
= C(p)kZ]EQ* |:HAn — Ay ]

k! 3n 1
<C Ktk +L)<C (1/2h/+—).
= (P)(n n \/E <C(p|n n \/ﬁ

5.2 LAN for the quasi-likelihoods and proof for the main theorem

To prove the main theorem, we set some additional preliminary lemmas. Before the
discussion, let us define the statistical random fields:

1 A ~

Y.i,n (O(; ﬁ*) = ki (an (O(; A") - Hin (a*; A”))

\ ;
kn—2

L (e

j=1

a7 (Vjor o, A">71) [0 =7)%]
X<2An>_l+10g det An < -1 A >)

3 det A} <)_/j_1,a*,1\n)

YL (8; 9%) = (Ha,n (B: &n) — Han (B*: @n))

kA
-2

kn
1 _ L _ i
=knAn (ZA(le’a") l[b(yf*]’ﬂ)_ (] 1 .3) j+l Y]
j=1

kn—2
Ay S

—SE Y ATrdn) b (7o AP —b(fjl,ﬂ*)@]) :

j=1

1
VRO (B; 9%) = —— (Ha,p (B: étn) — Hap (B )

knAn(X_: @) (Vo1 B) — b (Vo1 BY) Vg — V)]

Yj_1.dn) 1[ (?j—lsﬂ)@—b(fj—l’ﬂ*)@])-
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We give the locally asymptotic quadratic at 9* € E for u; € R™! and uy € R™2,
2 (w3 fnva®) = exp (AL, (07) urd = 57 (0%) 8] 4, 09)).
5% (u2: Gn, B*) = exp (A%?,% (9*) [uz] — lrgﬁ (0*) [ug@?] + M (u; 19*)) ,
B (. 7)o exp (A2 (0% = 9 (00 4]+ 2 a0 )
where

kn—2

* 1 > e A\t = _ @21 (28,\ 7!
AT, (9) ] = T ; <3aAf1 (ijlﬁot ,An> [ul, (Yip1 - 7)° ] (Tn)

det A} (J 1, ar A,,) [ul])
det Ay (Vi1 Ay)

kn—2

1 _
AV (97) [uz] = A 2 Z Vi)
[8/91’(11/3) Yisr =Y = Aub (Vi1 )],
kp—2

ayes 1 1
AT (97) [ua] == a2 Z Yio1, )"

(050 (Y- wﬁ)uz,Ym Y — A (Y1, Y)]

+ 0y log

and

i

7°) [u7]
S (0 i) [ 70 (22)

n o

det AT (f’j_l , [\n)

+92 log [u‘?z] ;
det A% (¥j1.0%, An)

FML (ﬂ 9 )[ ]
k=2
Tk IA ) A(?f—l’&") [0 (Yj—1. ) [ual. Anb (Yj—1. B) [u2]]
n n j:l
kn—2
—knlAn ZA(Yj—lﬁn) 036 (Fjm1 B) [uS2 ] Fir = ¥ = Aub (71, 8) ]

Bayes (/3 19*) [”2 ]
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210 S. H. Nakakita et al.

kp—2
= Z A(Vj_1.@n) " [0pD (Fjo1. B) ual. Anb (V1. ) [u2]]

knAn Z: Yj_1.Gn) [3/3 (Y- 15)[ ] Yj-&-l_?j_Anb(}_]j—lvﬁ)],

and

rf () [u?]
1 B N det AT (x, a, Ay)
=3 /Rd (aﬁAT (o A7 [, A7 (0, ML) | 4+ 02 log e [u®2]>

det AT (x, a*, A,)

a=a*

x v (dx), T (9%) [ ?2}

1
=3 / (4 Ceva™ [apb (x. %) 2] b (x. %) 2] ) ().
R4

and

7 (97) / (=) {17 07) [uf?] = T (o + sk s 07) [u?] as.
I‘zn u; 1}* . / (1—y5) {F [ ] 1"3/1}]; (ﬂ*'i‘ST,:l/zuz;l?*) I:M?Z:Hds,

rfiyes ; /(l—s) Bayes( )[ ] Bayes(,B + 5T, /uz;ﬁ*) [u?z]}ds.

We evaluate the moments of these random variables and fields in the following
lemmas.

Lemma 8 (a) Forevery p > 1,

sup Eg+ [ Ain (19*)|p] < 0.

neN
(b) Let €1 = €o/2. Then, for every p > 0,

14
sup Eg- [<S“P ko [V, (e 9%) = Y (e M) ] -

neN ae®)

Proof We start with the proof for (a). By Lemma 5, we obtain a decomposition

7(3)
1,n

AT, (0%) lur] = M7, + R]D + RI? + R

for
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kn—2
1 1 —7 *
My = =5 Z (taAy (Xja, @t A0~ [un, A7 ] + 0 logdet A7 (X, 0%, AL) L)
2 1 ha? 1 -7 T *
Rl = Z (uAy (Xja,oam A0 [un, A7, | + o logdet AT (X, @, Au) lin])
] k2 T
-~ (aaA; (V)1 e, A [Ml, Aj,n} + 0, logdet AT (7,1, a*, A,) [ul]) ,
247 S
kn—2
RT® = ! AT (¥ A ur AT | + 9g logdet AT (1, o, A
Ln = 2k]/2 Z n( -1, ) u, A, =+ 0y logde n( j—La, *)[ul]
1 2 1 iy
- Z <a Ay (T ot An) [ul,A;,n]—i—aa log det AT (Y/_l,a*,A,,)[ul]),
t3) =S A\ 3 5o \®2 _
Ry, = _ZkW Z 0 A, (Y3j+i—1,ot ,An> up, A, (V3jqiv1 — Y3jpi) — Alivin |
no =1
where

®2
AT = | ———al(x; o) (&1 +¢ )+J§<A)”2@‘1—é»
in A, . +m;l JIAYE Jj+Ln Jj+2.n g VO J+ J

with the following property

¥}

—T

Ay =A(Xja, o)+ 300

Eor [A7,17}] = A (Xja,.0%) + Av= AL (Xja, @A)

DPnlAn
2—1

1 2-1
because of Lemma 1, A,, = p,ll", A" = ppand (Anpn)_l = A; ' Furthermore,
we have the L”-boundedness such that

— 3

o H A

_ _ ®2
in T A, [‘1 (Xja, @) ({m,n + C}+2_n) + (A G — 5j)j|

P]l/p

<[t [l e )]
+* _\/;\/; EO* a(Xja,a )(§/+1n+fj+2n)(‘9/+1 —&)" (A )I/ZH ] v
n n

C(p) 2/3
<C(p)<2 2/3+1/(3pn))+ AL? <1 2/3+l/(3pn))

<C@“_C@><_ ! ) Cp, _Cw

AN 1+2p; NG

< C(p) A?
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because of ||j41.n + ¢j42.n ||p < C(p)AY? and Iz; ||p =C(p)py*forall j =
0,....k, — 1 and n € N, and the Taylor expansion for f (x) = /1 + x around

x = 0. The LP-boundedness of Ri(nl) is led by Lemma 4 and Burkholder’s inequality

T (2)

for martingale, and that of R~ can be easily obtained by Lemma 6. With respect to

RT® we decompose as RT( " =32 R’ where

1,n > i,l,n

3 1 A\l
th,(lj'l - Z aa <Y3‘]+171’ ’ Al’l)

12
2k 1<3j+i <k, —2

280\ - _
uy, ( 3") (Y3.i+i+l - Y3J'+’) Aé]-}—t n

We only evaluate RS (13 )n and for the case p is an even number. The next inequality

holds because of the L”-boundedness shown above:

3
Eea I:‘R(;,(l ,>n

Lk, {
2A, /\i|

3 v * A -1 - - ®2
= WA Eq- |: D A (YSj—l,Ol 7An> |:u1, (V341 —Y35)" " — 3 A%,
n n 1<3j<k,

p]l/p
1 -1 28,\7" - _ —
v Z da Ay <Y3J (e A) |:u](3l> (Y3j+1—Y3j)®2_A§_/,ni|

2kn'” 1 <3<k, —2

pi| 1/p
1>:| 1/p
P:| 1/p

3 - o\
Eo*|: PR (TR [Mlﬂ(e3j,n+Anb(X3jAn))®2}

< -
=n
Hen " A 1<3) ke —2

L3
2412 A,

-1
Egy-

Y 4 (f3j71,0/, An)

1=3j<k,—-2

T
[ul,e_g_,-,,, (@ (X378, @) (@10 + 1)) }

p]l/p

3

-1
+ ——Fg- Z Oy A (Ys e, 1\)
1/2 J—
20* A, | |1=3)=k,—2

pi|1/p

T
{uh Aub (X31,) (@ (X3ja,. ") (S37410 + 12 )) ]
> auar (Pyorat i)

1<3j<ky—2

3
+—5—Fq
2% Ay

-1

1/
[Ml, (e3jn + Aub (X35a,)) ((AD* (E3j31 — 53,‘))T”p} !
+ o(1).

We easily obtain the evaluation for the first term in the right-hand side
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pl/p
3
L
42 A, [ }

< C(p) lulky*A, — 0,

_ Loyl
Z B Ay, <Y3j71,05*7 An) [MI, (e3j.n + Anb (X3jAn))®2]
1<3j<k,—2

and that for the second term

3 _ N
——E || Y teAr (Fayoret As)

1/2 n J ’ ’ n
24n’* A 1<3)<k,—2

pi|1/p

T
[ul, €3j.n (a (X3jA,1, Ot*) <§3j+1,n + C3/j+z,n)> ]

3

= -1
= ——  Ep Z AL (V3j-1, 0%, AL)
1/2 n J=b ’
2k A 13 <k, —2
T11P71/P
[ul, €3jn (a (X3jAn, Ol*) (Q]._an + C3,j+2,n)> ] i| +o0(1)

< C(p) lulky>A, = 0,

b_ecause of Lemmas 5 and 6. For the third term, we can replace f\n with A, and
Y31 with X3, because of Lemma 6 and the result from combining Lemma
1 and Proposition 12 in Nakakita and Uchida (2019a), we denote n3; , (u1) =

(a (X3jAn))T (BaA; (X3jAn, o, A*) [u1]) b (X3jAn) which is a Hg’j-measurable
random variable. Because of Lemma 1 and BDG inequality, we have

pl/p
3
— _Ey-
2% [ }

p/2 VP
V) o 2
72 Eg« A Yo Imjn @] 13)8,.654na,1 () ds
n

1=3j<kn—2

Z n3j.n (1) [§3j+1,n + 4“3/j+z,n]

1<3j<k, -2

IA

C (p) knAp » kn Ay p/2—1
WEQ" /0 Do mzin @] 138,674 18, () ds </0 dS>

n 1<3j<k,—-2

1/p

IA

C (p) (kyAy)>= 1P knAn
- T / > Ee|
n 0

1/p
|30 @D |”] 113 8. G+ 1A () ds
1<3j<kn—2

C knAp)Y/?
< 7“’)]({1’;2 D<Al o,
n

It is obvious that the fourth term can be evaluated as bounded because {Sih,,} is

7(3)
1.n < Q.

independent of X and i.i.d. Therefore, we obtain H RT(3)
P

0,1,n

< oo and HR
P
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Withrespectto My ,, we utilise Burkholder’s inequality for martingale: let us define
MT ()

il il and then

fori =0, 1,2 as same as R

Eor [|M5,1.4]"]

1 — —_—T
e > ’%A; (Xja,. 0" Ay) l[ul,A;n}
" 1<3j<ke—2

< C(p)Eg {

2
+0, log et AT, (X, @, A,) [u1]|2‘p/ }

- Ck(np) Z Eor [

1=3j<k,—2

- — p
AT (Xja,, @t Ay) ‘[ul,Aj_n]Jraa logdet AT (X a,, a*, A,) [ul]‘ ]
< o

because of the integrability.
In the next place, we give the proof for (b). Let us denote

kn—2

_ N —1 _ N —1
Z((A;(Yj_l,a,zxn) —A,§<Yj_1,a*,An) )

j=1
(A7 (Xja, o, AL)]
det AL (¥j-1. 0. A, )

yr® (a:9%) = _2]1<
n

1,n

+ log

det AT <?j—1, ax, An>
Define R[( by R[S = ¥7, (@: 9%) — YD (@: 9%) — [ for

kp—2

() 1 - A\ - e 2\l
Mf,n :—% ; ((A; (Yj—lva, An> —A; (Yj_l,a ,An) )
(47, — A7 (X8, AL)]).

Firstly, we show L”-boundedness of kj;' er,(;j ) uniformly for n and « for every p. We
have the representation such that

kp—2
1 n _ N —1 _ N -1
)
R = 5 Y ((A; (Yj,l,a, An) — A (Yj,l,a*,An) )

j=1
@27 (2 !
[(Y,+1 - Y]) ] <§An>
det A}, (_/_1,05, f\n)
+ log
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kn—2

1 . a1 _ Lo
= <<A; (Yj,l,a, A”) — AT (Yj,l,a ,An> )
n

j=1
(AL (Xja, @, AL)]
det A; (Yj—lv o, jA\n)

+

+ log — ~
det Ay (¥jo1,a, Ay )
kn—2 B _ B 1
T JX; ((A; (Pi-rooAn) = ax(Vimria, An) )

[Z}:— Ay (Xja, o, A*)])

2 -1 — - \®2 —_—
X |:<§An> (Yjig1 = Y;) - A% |

Because of Lemma 5, the following evaluation holds:

-1
2 _ - @2 —
(gﬁn) (Vjr1 —¥))"" = A7,
p

<

2 “Ir _ , ) o\ ®2
(gAn> [(Y./H =P = (0 (X0 @) (St + ) + (A2 Gt = 7)) ]

p
+ C(p) An
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(2 )71
=|=-A,
3

- (a (XjAn , Ol*) (§j+l,n + ;;+2.n> + (A*)l/z (éj"‘l - éj)) ejT,n »

+C(p) An

T
2 _ _
92 —ejn (a(Xjn@®) (Snn+Efian) + A2 Gjar =)

2 - 2 _ _
< (gAn> (Ile]-,n 12 +2]a (Xj8,00%) (¢j51n+ Ean) + A0V Gjir = Sj)Hzp lejon ||2p>
+ C(p) An
<cp (An + AI/Q)

Hence, we have the evaluation sup,. g, Sup,eN H R <C(p)A,+C(p) Al/z

C A,l/ , and hence,

sup sup
a€®) neN

ke R H <C(pkIA*=cC(p) (ko) 0.

In the next place, we see the same uniform L”-boundedness of k' M T(T) for every p.

As the approximation, we set M T(‘L) Z i—oM; '™ Where fori = O 1 2, M. T

i,l,n lln'

—m Zl§3j+i§kn—2 M3j+i,n»
where

M3j+in = (A,Z (Y3j4iz1. 1\*)_1 — A} (Y3401, 0%, A*)_l)

[A§/+z o~ An (X@jha, o A*)] .

€ r(T) p|P1V/P €& —1/2
It is easy to show E|sup,ce, kn |M|," — M, < C(pkyn <

C(p) hl/ — 0 for Lemma 6. For 51mphclty, we only evaluate ky,' M g (l)n We have
for all p,

Eg [|1350]"]
= Ey- [ (A7 (Fyjor e A) ™ = AL (e, ) ) [Ag, AT (Xsja,. ", A,)]‘p]
— p
SEQ.[HA;(Y3J~,1,a,A*)1 AT (F3;_1. 0%, A) H HA3]n—A;(X3jAn,a*,A*) ]

< C(p) Ep- [HA; o AL (X3ja,. 0" AL)

<C(p.

2p]l/z
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Hence, by Burkholder’s inequality, for all p,

r/2
o (P 1
Eo- [k 5D ] < c ki TEa | |5 X ud,
n1<3j<k,—2
ol /2
<CPk'k"?— Y Ep Uu%,-,n ]
" 1<3j<k,—2

P
<CEk ™M= Y Eo[luaal’]

M 1<3j<k,—2

< C(p)k=1/2r

and then sup,, 4. |k’ er(:)

‘ < o0o. With the same procedure, we obtain the uni-
p

form L”-boundedness of k! aaRf(J) and k5! Baer(n'T). Sobolev’s inequality leads to
k;‘RIT’(I) k;‘er)(,f)‘”p < 00, and

e 30 [ RE]| < 50 and sy [

then sup, cn ky! er(j) ‘ H < o0. Note that for
ot

SUPyeo,

1 kn—2

Vil (0?) =5 2 (A5 (a0 o M)~ = A% (Xja, 0 A7) [A5 (X, 07 AL)]
n j:]

det A}, (XjA", o, A*) )

1
+ o8 det A; (XjAn’ Ol*, A,)

we can evaluate SUp,,eN
H SUPyeo, [kn' (Yff) (o; 9) (a; O*) — Yfg) (o3 9) (a; 19*))‘”1’ < 00 because of
Lemmas 3 and 7. Hence, the discussion of Remark 4 leads to the proof. O

Lemma9 (a) For any Mz > 0,

M3
sup Eg- (kn] sup 8§H§n(a;A)D < 0.
neN vel ’

(b) Let €1 = €o/2. Then for My > 0,

sup Eg+ [(kfll |an (*;9*) —T7 (z?*)|)M4] < 00.
neN

Proof With respect to (a), we have
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sup |8§Hf’n (a; A)|

Vel

kn—2 -1
= sup %33 ((iAnAfl ()_’j_l,oz, A)) I:()_’j_H — )_/J) ]—i—logdet AT (-j 1, O, A))
veB j=1
kn—2 _ | 3 5
< sup Z 32 (AZ (Yj_l,ot, A))7 [K (Yj-H — Yj)® :|
VeB =1 n
| fn=2
+ sup ]2; |93 logdet A} (Y;—1, ., A)|
kn—2 ) ., kn—2 )
=C Z P ) AT T - e Y (7))
j=1
and hence

M3
sup Eg« |:<kn—1 HNGE A)D :|
neN VeB

M3
_ 11 = 2
< C sup Ep+ klz +|Y/ 1 n1|Yj+l_Y,i
neN
i kn—2 c M
+ CsupEg | | k" Y (1+]74))
neN i
j=1
kn—2
< Csupk;! ZEQ*[l + X8, < 0.
neN
j=1
For (b), the discussion same as Lemma 8 leads to the result. m]
Proposition 1 Forany p > 0,
N p -
sup Eg~ [ Vkn (an — ot*) ] < 00, sup Eg« H\/k,, (oz,, — ] < o0.
neN neN

Proof Theorem 3 in Yoshida (2011), Lemmas 8 and 9 lead to the following polynomial
large deviation inequality Py« [SuPuleV,’ (%) A " (ul; An, oz*) > e"] < % for
all 7 > 0 and n € N. The L”-boundedness of v/k, (&, — o*) is then obtained with

the discussion parallel to Yoshida (2011).
With respect to the Bayes-type estimator, we need to verify the next boundedness:

there exists 61 > 0 and C > 0 such that sup,, .y Eg¢+ [(ful:‘u] <, Zf’n (ul; [\,,, a*)
duy )_1] < 0. Because of the Lemma 2 in Yoshida (2011), it is sufficient to show that

@ Springer



QLA and BEs of an ergodic diffusion plus noise 219

N p
for some p > d, 8 > 0and C > 0, sup, N Eo~ HlogZin (ul; A, a*)’ ] < Cluil?
for all u1 such that [#| < § and actually it is easy to obtain by Lemmas 8§ and 9. 0O

Lemma 10 (a) For every p > 0,

P
] < 00, sup Eg« HABayes 14 )
neN

sup Eg« UAQA,I; (9*) p] < o0.

neN

(b) Let €1 = €o/2. Then, for every p > 0,

sup || sup (kn A [YX (B:9*) — Yo (B: 9%)|| < o0,
neN || Be®y »
sup | sup (kn D) Y50 (B 9%) — Y2 (B: 07)|| < .
neN || BeO; »

Proof We only show the proof for AML and YML since the proof for A, dyes and YB‘IYCS
is quite parallel. For (a), we decompose

AYL (%) [ua] = My + RO,

where

kn—2

Méwr]; = (kn A )1/2 Z Y1, O‘n [aﬂb( j—1 B )uz,a(XjAn) (;H—l,n +§;+2.n>]

kn—2

" o )1/2 Z Viotdn) ™ [apb (Vo1 %) w2, (A2 (B0 = )]
n
kn—2

R%A,]; = (kn A )1/2 Z Y- 1’0[" [3ﬂb( j-1. B )uz’b(XjAn)_b(Yj—l)]

(k A )1/2 Z Y- |,ot,, [3ﬁb( -1 B )u2’€/-”]'

We can use L”-boundedness of +/kj, (&n - a*) and Burkholder’s inequality; then, we

1/p
obtain sup,, . Eg~ HM%L p] < C (p),and for the residuals, Lemmas 3 and 5 lead

pil/p
to Eg« [ R%/[,I; ] < C (p) VknA, — 0. Then, we obtain (a). We prove (b) in
the second place. We decompose Y%’l,]; (B; v*) as Y (,B D) = ML(T) (an, ﬂ) +

RYED) (&, B) + YYD (8 9+), where

@ Springer



220 S. H. Nakakita et al.

1 - _ _
Ml P ) = e 20 AT e) [P (T 8) @ (X)) (G + Esan)]
jf

kp—2
1 _ e .
S AF 1) [b(Fim1 8 a (X a,) (Cirtn + Caan)]
kﬂAl’l ]:1
kp—2 B . )
+ k, A Z A (Yj_l’a)_ [b (Yj—lv ,3) ’ (A*)l/z (§j+1 —gj):l
n n /:1
1 kp—2 |
" knln ; AWj-1.9) [b (Vj1.8) . (807 (Ej1 —Ej)],

Ry (@, p) =

kp—2
Y AF0) (Vo1 B) ejn]

knAy 4
j=1

1

kp—2
Y A(Fjr0)  [b (Vo1 %) )]
=1

 knOn :
| =2 L .
+o 2 A BV, ) b (Xja, @f) = b (Vjop )]
n =1
L2 1 i i
= 2 A [b (V-1 87) b (XA, o) = b (Vjo1s o),
n ]=1
L 2 T 5 - ®2
SO (B o) = =5 2 A(Tran) T [ (Fimr ) = b (-1 87) %]
n ]:1

ML) [P _ .
MO = € () (ka7 wsing Lr-

boundedness of /k, (&n —o ) Burkholder’s inequality, and Sobolev’s one, and
L(T)‘ ] <C(p) A,’f/z because of Lemma 5. Let us define

It is easy to obtain sup, .y Eg+ [supee@

sup,eN Eox [Supeeo

kn—2
2k A (X, 0) (b (X B) = b (Xya, 7)),

ML(Jr) (’3 9 )

and then because of L”-boundedness of /k;, (&n — oe*), and Lemma 3, we obtain

sup
BeBy

p

Then, LP-boundedness of supgeg, (knA n)€! ‘Yz L@ (B, 0*) = Yo (B;9%)| is
obtained by the discussion in Remark 4 and it verifies (b). O
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Lemma 11 (a) For every M3 > 0,

sup Eg« ((knAn) sup
neN BeO;

M3
BﬂHz n (@ns ﬁ)‘) < 00,

sup Eg+ <(knAn) sup

neN BEO,

M3
O3, (an,m\) < 0.

(b) Let €1 = €0/2. Then, for every My > 0,

N
R

P (8% 9%) — T ()

B (511 9%) — 12 (07)

sup EQ" |:((kn An)e1
neN

sup Eg+ [((k A<t |T
neN

Proof With respect to (a), we have for all « € ®1 and 8 € O,

S (@, B)|

1 kn—

kA

k)'l An

> ‘3/3( Yj1,a )[Y+1—Y —Anb (Yj-1,B), Dudpb (Y- l’ﬂ)TD‘

=kli:‘ ( Yi 1« )[Yjﬂ Vi = Anb (Vi1 B) 9pb (Y1, B) ])‘

kp—2
— Z (1+ 7t | + |75 + [P ])€

IA

».

Hence, the evaluation of (a) can be obtained because of the integrability of

{Yj }j=0,...,k,,71'
For (b), it is quite analogous to the (b) in Lemma 10. O

Proof (Proof of Theorem 1) The first polynomial-type large deviation inequality is
shown in Proposition 1, and the second and third ones are also the consequence of
Lemmas 10 and 11 and Theorem 3 in Yoshida (2011). This result, Lemma 6, and
convergence in distribution shown by Nakakita and Uchida (2019a) complete the
proof for convergence of moments with respect to the adaptive ML-type estimator.
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Let us define the following statistical random fields, for all uo € RYW@+D/2 4pd
n € N such that 0 + n~2uq € O,

n—1

1
Ho,n ) := _5 Z
i=1

Zo.n (uo; 9;) 1= exp (H()’n (96* + n_l/zuo) —Ho., (9;)) s

2

)

1
Ezi+1 — 0

where 6, = vechA and Z; | = vech {(Y(i+1)hn - Yihn)m}. Note that §; , maximises
Hy.,,. Now we prove the convergence in distribution such that for all R > 0,

[Zo,n (M(); 9:) s Z}:,n (Ml; [\m O‘*) s ZLo.n (u2; Ap, ,3*)]

[0 (w03 02) 5 (r: Awa®), Za (i o, 6] in € (B (R RIGED/Z4msm) )

where for Ag ~ Ny@+1)2 (O,I(l’l) (13*)), Allt ~ Np, (0, 72T (1?*)), Ay ~
Ny, (0,239 (9)) such that Ag, AT and A; are diagonal,

Zo (ug; ) = exp (Ao [uo] — luol?),
Z5 (s Avs o) i= exp (AT ] = T (9%) [u52]).
Za (uzs @, ) i= exp (A2 [ua] — T2 (9°) [u§?]).
and C (B (R; R™)) is a metric space of continuous functions on the closed ball such

that B (R; R™) = {u € R™; |u| < R}, whose norm is defined as the supreme one. To
prove it, it is sufficient to show the finite-dimensional convergence of

Ll

(108 Z0,1 (03 62) . 10g 23, (w1: An, @) TogZa, (w: &, )]

4 [log Zy (uo; 9;) ,og Z5 (u1; Ay, ™), log Zo (u2; o, ,8*)] ,

and the tightness of {log Zo,, (u0) |c(B(r)): n € N}, {log Z3 , (1) lcsry: n € N},

and {log Zon (u3) lc(ry); n € N}. The finite-dimensional convergence is a simple
consequence of Nakakita and Uchida (2019a), and the tightness can be obtained if we
can show
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sup Eg+ sup |8u0 log Zo.n (uo; 9;)| < 00,
neN o€ B(R:RA@+D/2)

neN u1€B(R;R™1)

sup Eg+ |: sup Dy, 10ng_’,1 (ul; A, a*) < 00,

neN ureB(R;R™2)

sup Eg« |: sup |9, log Zo p (u2; @, B*)| | < o0,

as Ogihara and Yoshida (2011) or Yoshida (2011). We have the first evaluation for the
simple computation and the remaining ones by Lemmas 8, 9, 10, and 11. Hence, we
obtain the convergences in distribution in C (B (R; RY@TD/Ztmitm2)),

Finally, it is necessary to show the following evaluations for the proof utilising
Theorem 10 in Yoshida (2011): there exists §; > 0 and §; > 0O such that

-1
sup Eg« </ Z{n(ul;ﬁn,a*)dm) < 00,
neN uplug|<s;
-1
sup Eg+ (/ Lo (u2; @, B*) du2> < 0.
neN up:luz|<é

Because of the Lemma 2 in Yoshida (2011), it is sufficient to show that for some
p>d,d>0and C >0,

~ p
sup Eg- Hlongn (ul;An,a*)’ ]s Cluil”,
neN '

sup Eg+ [ [log Zs, (u2; 6, B*)|"] < C lual?,

neN

forall uy, up satisfying |u1|+|us| < 8, and actually, it is easily obtained by Lemmas 8,
9, 10, and 11. These results above lead to the following convergences because of
Theorem 10 in Yoshida (2011):

|Zo (w03 62) . [ 1 @0 Z5, (w5 Ausa®) dur, [ 2 (2) Za (023 G, %) dutz
4 [Zo (u0; 62) . [ f1 1) Z (urs As,0*)duy, [ fo (u2) Zy (uz; o*, B*) dus |

inC (B (R; RY@+1/2)) for the functions fi and f> of at most polynomial growth, and
the continuous mapping theorem verifies

[V (Ben = 02) Vo (@0 = @) VT (B = 57)] % [0, 47 2]

Moreover, in a similar way as in the proof of Theorem 8 in Yoshida (2011), one has

that for every p > 0, sup,.n Eo+ H«/ T (Bn — BY)
proof. =

p] < 00, which completes the
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