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Abstract
In this paper, we investigate the quantile varying coefficient model for longitudinal
data, where the unknown nonparametric functions are approximated by polynomial
splines and the estimators are obtained by minimizing the quadratic inference func-
tion. The theoretical properties of the resulting estimators are established, and they
achieve the optimal convergence rate for the nonparametric functions. Since the
objective function is non-smooth, an estimation procedure is proposed that uses
induced smoothing and we prove that the smoothed estimator is asymptotically
equivalent to the original estimator. Moreover, we propose a variable selection pro-
cedure based on the regularization method, which can simultaneously estimate and
select important nonparametric components and has the asymptotic oracle property.
Extensive simulations and a real data analysis show the usefulness of the proposed
method.
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1 Introduction

Besides parametric models, various semi-/nonparametric models have been used to
describe longitudinal data. The varying coefficient model (VCM), firstly proposed by
Hastie and Tibshirani (1993), has been a popular modeling approach for longitudi-
nal data due to its flexibility and interpretability, where the coefficients are smooth
nonparametric functions of the measurement time. The varying coefficient model for
longitudinal data can be written as

yi j = XT
i jα(ti j ) + εi j , i = 1, . . . , n, j = 1, . . . , mi , (1)

where X i j = (xi j1, . . . , xi jp)
T is a p-dimensional covariate associated with the j-th

measurement for the i-th subject at time ti j , α(t) = (α1(t), . . . , αp(t))T comprises p
unknown nonparametric functions and εi j is the random error.

There exist many studies on model (1) in the framework of mean regression; see,
for example, Fan and Zhang (1999, 2000), Chiang et al. (2001), Huang et al. (2002),
Qu and Li (2006), Şentürk and Müller (2008). Quantile regression (Koenker 2005)
is a valuable alternative to least squares-based method. Kim (2007) and Cai and Xu
(2008) proposed the quantile VCM for cross-sectional data using polynomial splines
and local polynomial smoothing, respectively. Andriyana et al. (2014) investigated the
quantile VCM for longitudinal data through the penalized splines approach. Compared
withmean regression for VCM, quantile regression can provide amore comprehensive
summary of the response distribution and describe the dynamic functional relationship
between covariates and response at different percentiles of the distribution. In addition,
quantile regression is more robust than least squares regression.

For longitudinal data analysis, it is important to take into account the correlation
properly within each subject, and ignoring such correlations could yield less efficient
estimators. Some strategies have been developed to incorporate the correlation to fit
the longitudinal data in mean regression. Lin et al. (2007) studied the VCM based
on generalized estimating equation (GEE, Liang and Zeger 1986). Wang et al. (2005)
and Huang et al. (2007) considered the efficient estimation for partial linear semi-
parametric models, and Lian et al. (2014) investigated partial linear additive model in
high dimensions. Although GEE-based estimators are consistent, they lose efficiency
if the working correlation is misspecified. To alleviate the impact of correlation mis-
specification and improve estimation efficiency, Qu and Li (2006) applied quadratic
inference functions (QIF, Qu et al. 2000) to VCM using penalized splines. The QIF
approach takes into account the within-cluster correlation and is more efficient than
the GEE approach when the working correlation is misspecified. Some studies have
also been carried out for other nonparametric/semiparametric models using QIF; see,
for example, Xue et al. (2010), Li et al. (2014), Ma et al. (2014).

Quantile regression has been widely used in longitudinal data. However, most of
these works proposed estimators that ignore the correlation within subject for simplic-
ity, which resulted in low efficiency for estimation and inferences. Compared to mean
regression, it is more challenging to account for correlation for quantile regression
due to some computational issues as pointed out by Leng and Zhang (2014). In view
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Longitudinal quantile varying coefficient models 215

of the flexibility of VCM and good performance of QIF, in this paper, we study the
estimation and inference problem for quantile VCM. By using the polynomial splines
to approximate the nonparametric functions and taking into account the correlation,
we propose a new estimation procedure for longitudinal data and establish theoretical
properties of the resulting estimators. To further improve estimation, we develop a
method to select the important variables using the adaptive group SCAD penalty. The
theoretical challenge largely lies in the non-continuity of the objective function as well
as the diverging dimensionality resulting from spline approximation, which is dealt
with using empirical processes theory (Van der Vaart 2000). Simulation results and
real data analysis show that our proposed method outperforms the existing methods.

The rest of the paper is organized as follows. In Sect. 2, we present the estimation
approach to quantile VCM based on QIF, where the nonparametric functions are
approximated by polynomial splines. The large sample properties of the proposed
estimators are established, and we also develop an estimation procedure using induced
smoothing. In Sect. 3, to select the important nonparametric components, we develop a
variable selection procedure based on the adaptive group SCAD penalty, and its oracle
properties are also investigated. Simulation studies in Sect. 4 and real data analysis in
Sect. 5 are used to illustrate the performance of the proposed approach. Finally, some
concluding remarks are given in Sect. 6. Technical proofs are contained in Appendix
in Supplementary Material.

2 Methodology

2.1 Estimation based on QIF

We assume in (1) that the conditional τ -th quantile of error εi j given X i j and ti j is
zero, i.e.,

Qτ (yi j |X i j ) = XT
i jατ (ti j ), i = 1, . . . , n, j = 1, . . . , mi ,

and that the observations are independent across different subjects. For notation sim-
plicity, we omit the subscript τ in ατ (t) in the following.

In our estimation procedure, we approximate the smooth functions {αl(·)}p
l=1 by

polynomial splines (De Boor 2001; He and Shi 1996). We assume without loss of
generality that the covariates ti j are scaled to take value in the interval [0, 1]. For each
1 ≤ l ≤ p, let

ξ−l,(d−1) = · · · = 0 = ξl,0 < ξl,1 < · · · < ξl,Kl < 1 = ξl,Kl+1 = · · · = ξl,Kl+d

be a partition of [0, 1] into subintervals [ξl,k, ξl,k+1), k = 0, . . . , Kl with Kl interior
knots. A polynomial spline of order d is a function which is a polynomial of degree
d −1 in each subinterval and globally d −2 times continuously differentiable on [0, 1].
Denote the d-th order B-spline basis as Bl(t) = (Bl1(t), . . . , Bl Jl (t))

T , Jl = Kl +
d, and its normalized basis as

√
Jl Bl(t) = (

√
Jl Bl1(t), . . . ,

√
Jl Bl Jl (t))

T . With an
abuse of notation, the normalized basis is still denoted by Bl(t). Then, each unknown
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function αl(·) can be approximated by a linear combination of the normalized basis
such that

αl(t) ≈ sl(t) =
Jl∑

k=1

Blk(t)γlk, l = 1, . . . , p.

Define γ l = (γl1, . . . , γl Kl )
T , γ = (γ T

1 , . . . , γ T
p )T , UT

i j = XT
i j B̄(ti j ),

B̄(t) =

⎛

⎜⎜⎜⎝

BT
1 (t) 0 · · · 0

0 BT
2 (t) · · · 0

...
...

. . .
...

0 0 · · · BT
p (t)

⎞

⎟⎟⎟⎠ ,

U i = (U i1, . . . ,U imi )
T and εi = (εi1, . . . , εimi )

T . If we ignore the correlationwithin
subjects, we can obtain the estimator by minimizing the following objective function
(Kim 2007):

G(γ ) =
n∑

i=1

mi∑

j=1

ρτ

(
yi j − UT

i jγ
)

, (2)

where ρτ (u) = u(τ − I (u < 0)) is the check function. The estimating equation
derived from (2) is

n∑

i=1

UT
i ψτ ( yi − U iγ ) = 0,

where yi = (yi1, . . . , yimi )
T ,ψτ (u) = τ − I (u < 0) andψτ ( yi −U iγ ) = (ψτ (yi1−

UT
i1γ ), . . . , ψτ (yimi − UT

imi
γ ))T .

As in Jung (1996) and Leng and Zhang (2014), a more efficient estimating equation
takes the form

n∑

i=1

UT
i �i A

−1
i ψτ ( yi − U iγ ) = 0, (3)

where�i = diag( fi1(0), . . . , fimi (0))with fi j (·) being the conditional pdf of εi j , and
Ai is the working correlation matrix that may depend on some nuisance parameters
which, however, may be difficult to estimate. To circumvent this problem, we apply
the QIF approach by approximating A−1

i with a linear combination of basis matrices
as

A−1
i =

υ∑

k=1

ak Mki ,

where Mki ’s are known symmetric matrices and a1, . . . , aυ are unknown constants.
As stated in Qu et al. (2000), this is a sufficiently rich family that could accommodate,
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or at least approximate, many correlation structures commonly used. For example, if
the working correlation has compound symmetric structure with parameter 
 , then
A−1

i can be represented as a1M1i + a2M2i , where a1 = −{(mi − 2)
 + 1}/k1,
a2 = 
/k1, k1 = (mi −1)
 2− (mi −1)
 −1, M1i is the identity matrix, M2i has 0
on the diagonal and 1 off the diagonal. Similar linear representation of A−1

i also holds
for the AR(1) correlation structure with appropriate basis matrices. The advantage of
the QIF approach is that it does not need to estimate the linear coefficients ai ’s.

In QIF, we use estimating equations defined as

S(γ ) = 1

n

n∑

i=1

Si (γ ), (4)

where

Si (γ ) =
⎛

⎜⎝
UT

i �i M1iψτ ( yi − U iγ )
...

UT
i �i Mυiψτ ( yi − U iγ )

⎞

⎟⎠ . (5)

Note that there are more estimation equations than the number of unknown param-
eters in (4). γ can be estimated as

γ̂ = argminγ Qn(γ ), (6)

where

Qn(γ ) = nST (γ )�−1
n (γ )S(γ ),

�n(γ ) = 1

n

n∑

i=1

Si (γ )ST
i (γ ).

As a result, we define the estimator of the unknown functions as

α̂l(t) = BT
l (t)γ̂ l , l = 1, . . . , p.

Remark 1 Note that the estimating Eq. (4) involves the unknown error density fi j (0).
In this paper, we adopt the method of Hendricks and Koenker (1992) and estimate
fi j (0) by the difference quotient,

f̂i j (0) = 2hn

{
XT

i j

[
α̌(ti j , τ + hn) − α̌(ti j , τ − hn)

]}−1
,

where the estimators α̌(t, τ ) can be obtained from (6) by omitting the term �i at quan-
tile level τ and hn is a bandwidth parameter tending to zero asn → ∞. In our numerical
studies, we choose hn = 1.57n−1/3

(
1.5φ2{�−1(τ )}/(2{�−1(τ )}2 + 1)

)2/3
follow-

ing Hall and Sheather (1988), where φ(·) and �(·) are the pdf and cdf of the standard
normal distribution. For the sake of simplicity in the proof, we assume that fi j (0)’s
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are known in the following in order to derive the asymptotic properties of the estima-
tors. This is similar to the approach adopted in the literature, for example in Leng and
Zhang (2014). Unfortunately, it seems very hard to establish the asymptotic property
when the density is estimated. On the other hand, we believe a very accurate estimator
of the density is not very critical in our context, unlike for classical density estimation
problems. For example, even if we replace the density by 1, the estimating equation is
still consistent. It required further study to see whether the gap in theory can be closed
with more technical advancements.

2.2 Theoretical properties

In this subsection, we study the rate of convergence for α̂l(t). The following assump-
tions are needed to derive the asymptotic properties of α̂l(t).

(C1) The cluster sizes mi are uniformly bounded for all i = 1, . . . , n.
(C2) The conditional density fi j of εi j is uniformly bounded and bounded away

from zero and has a bounded first derivative in the neighborhood of zero.
(C3) αl(·) ∈ Hr , l = 1, . . . , p, for some r > 1/2, where Hr is the collection of all

functions on [0, 1] whose s-th order derivative satisfies the Hölder condition of
order ϑ with r = s + ϑ . The spline order d ≥ r + 1.

(C4) The covariates X i j are bounded in probability for all i and j .
(C5) The conditional distribution of t given X = x has a density ft |X which satisfies

that 0 < c1 ≤ ft |X (t |x) ≤ c2 < ∞ uniformly in x and t for some positive
constants c1 and c2.

(C6) The knots sequences ξl,Kl for l = 1, . . . , p, are quasi-uniform. That is,
there exists c3 > 0, such that maxl

(
maxk hl,k/mink hl,k

) ≤ c3, where
hl,k = ξl,k+1 − ξl,k (0 ≤ k ≤ Kl ) are the distances between neighboring
knots. Furthermore, the number of interior knots Kl 	 n1/(2r+1).

(C7) The eigenvalues for each Mki are bounded away from 0 and ∞.

These conditions are common in the literature; see, for example,Kim (2007),Huang
et al. (2002), Wang et al. (2009) and Xue et al. (2010). Conditions (C1) and (C2) are
standard assumptions used in longitudinal studies and quantile regression, respec-
tively. Condition (C3) is a smoothness assumption on the nonparametric functions.
The boundedness assumption in (C4) is mainly for convenience of proof. Condition
(C5) is commonly used in VCM. Condition (C6) is a mild assumption on the choice
of knots. Finally, Condition (C7) is satisfied for commonly used basis matrices.

Theorem 1 Under Conditions (C1)–(C7), there exists a local minimizer of (6) such
that

‖α̂l − αl‖22 = Op

(
n−2r/(2r+1)

)
, l = 1, . . . , p,

where ‖.‖2 is the L2 norm for functions on [0, 1].
Remark 2 The rate of convergence given here is the same as that in Kim (2007) for
independent data (mi ≡ 1) and in Wang et al. (2009) for longitudinal data which,
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however, ignore the correlations. In practice, the main advantage of the QIF approach
is that it incorporates within-cluster correlation by optimally combining estimating
equations without estimating the correlation parameters.

Remark 3 Due to that Qn(γ ) is not continuous, we are not aware of a satisfactory
algorithm to compute its minimizer. We propose a smoothing method to obtain a
feasible objective function in the next subsection. However, the theoretical results
here provide a benchmark so one can compare the rates of the feasible estimator with
the current infeasible one. Similarly, in Sect. 3, infeasible estimator is also studied
theoretically when penalization is used for variable selection.

2.3 Induced smoothing

It is difficult to solve the estimating Eq. (6) directly, which is caused by the fact that
S(γ ) is not continuous. To overcome this difficulty, we apply the smoothing method
which has been used in linear quantile regression by Fu and Wang (2012) and Leng
and Zhang (2014).

Let
S̃(γ ) = E

[
S(γ + (nh)−1/2�1/2δ)

]
, (7)

where h = n−1/(2r+1), the expectation is taken with respect to δ ∼ N (0, Iq) with
q = ∑p

l=1 Jl , and � is a q × q positive definite matrix. We note that such choices are
certainly not the only possibilities. We just followed the literature on induced smooth-
ing and used the multivariate Gaussian distribution for smoothing. The smoothing in
some sense is merely used to make sure that the objective function is differentiable.
As long as the disturbance is small enough, we should expect Q̃n to be close to Qn
and thus should have reasonable performances.

By some simple calculations, S̃i (γ ) can be written as

S̃i (γ ) = ESi (γ+(nh)−1/2�1/2δ) =

⎛

⎜⎜⎜⎝

UT
i �i M1i

[
�

(√
nh yi −U i γ

r i

)
− 1(1 − τ)

]

...

UT
i �i Mυi

[
�

(√
nh yi −U i γ

r i

)
− 1(1 − τ)

]

⎞

⎟⎟⎟⎠ , (8)

where r i = (ri1, . . . , rimi )
T with ri j =

√
UT

i j�U i j , j = 1, . . . , mi , 1 being the

mi -dimensional column vector with all elements 1, and �
(√

nh yi −U i γ
r i

)
denotes an

mi -dimensional vector with j-th element being �

(√
nh

yi j −UT
i j γ

ri j

)
.

The smoothing estimator γ̃ can be obtained as

γ̃ = argminγ Q̃n(γ ), (9)
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where

Q̃n(γ ) = n S̃
T
(γ )�̃

−1
n (γ )S̃

T
(γ )

with �̃n(γ ) = 1
n

∑n
i=1 S̃i (γ )S̃

T
i (γ ). Then, we can set

α̃l(t) = BT
l (t)γ̃ l , l = 1, . . . , p.

Theorem 2 establishes the theoretical property of the estimator after smoothing,
which enjoys the same convergence rate.

Theorem 2 Let � be any symmetric and positive definite matrix with bounded eigen-
values. Under Conditions (C1)–(C7), there exists a local minimizer of (9) such that

‖α̃l − αl‖22 = Op

(
n−2r/(2r+1)

)
, l = 1, . . . , p.

With the above smoothing method, we can use the standard Newton–Raphson
method to obtain the estimator. However, the closed-form derivative of Q̃n(γ ) with
respect to γ is very messy to say the least and thus we use the two-stage method as
mentioned in Greene (2011). First, the initial estimator is obtained by the R pack-
age quantreg with the weights �i , i = 1, . . . , n and correlations ignored. Then, the
initial estimator is used to calculate �n which is then fixed and standard Newton–
Raphson method is used to obtain the refined estimator. According to our experience,
the proposed method based on Newton–Raphson algorithm is very fast and typi-
cally converges within 20 iterations in our numerical results. Although multiple-stage
approach could also be used in which refined estimator is used to further update
�n , we find this does not improve over the two-stage approach and thus do not use
multiple-stage approach in our study.

Remark 4 In practice, the matrix � can be updated as an estimate of the covariance
matrix of the estimators, which can be simply calculated as

�̂ =
(
{S̃′

(γ̃ )}T �̃
−1
n (γ̃ )S̃

′
(γ̃ )

)−1
,

where S̃
′
(γ̃ ) is the derivative of S̃(γ̃ ). This is the induced smoothing method proposed

by Brown and Wang (2005), and Leng and Zhang (2014) adopted the same formula
for longitudinal quantile linear regression. However, due to technical difficulties, we
are not able to establish the validity of this rigorously due to the unsmooth nature of
the objective function, and it is hard to deal with the spline approximation bias. Thus,
the proposed asymptotic variance formula ignores the bias in function estimation and
uses directly the formula pretending it is a linear model after spline expansion.

Remark 5 Although we are not able to provide rigorous asymptotic normality results
for the nonparametric functions,we can informally argue that theQIF estimator ismore
efficient than the estimator assuming working independence as follows. Since the QIF
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estimator is a GMM (generalized method of moments) estimator, it is well known that
the asymptotic variance of the QIF estimator is at least as small as that obtained by any
linear combinations of the estimating equations. When one of the basis matrices in (5)
is the identity matrix corresponding to the estimating equations ignoring correlations,
we have that QIF is more efficient than assuming working independence. In fact, in
practice one always set one of the basis matrices to be the identity matrix.

To implement the above estimating procedure, one needs to select the order and
the number of knots in spline approximation. In all simulation studies and real data
analysis, for simplicity, the nonparametric functions are approximated by cubic splines
and the same number of interior knots, i.e., K := K1 = · · · = K p. The number of
interior knots is chosen from the interval

[
n1/(2d+1), 5n1/(2d+1)

]
by minimizing the

following BIC criterion

BIC(K ) = Q̃n(γ̃ ) + p(K + d)log(n).

This range for K satisfies the order assumptions in Theorem1 on the number of interior
knots K , which has also been used in Ma et al. (2014).

3 Variable selection

In practice, there are often many covariates in model (1). With high-dimensional
covariates, sparse modeling is often considered superior, owing to enhanced model
predictability and interpretability. In this section, we address the variable selection
problem for quantile varying coefficient model based on the QIF method.

There exist some works focusing on the variable selection methods for conditional
mean or conditional quantile ofVCM.For example,Wang andXia (2009) proposed the
variable selection approach for VCM using kernel smoothing adaptive group LASSO
(Tibshirani 1996; Yuan and Lin 2006; Zou 2006), and Zhao et al. (2013) extended
the method to the quantile VCM. Noh et al. (2012) applied the polynomial spline
approximation and group SCAD with local linear approximation (LLA, Zou and Li
2008) to investigate variable selection for quantile VCM. Verhasselt (2014) discussed
the variable selection for the generalized VCM using P-splines. For longitudinal data,
Wang et al. (2008) studied the variable selection approach via group SCAD penalty
(Fan and Li 2001). However, it ignored the correlation within subjects, which may
lead to some efficiency loss in estimation and variable selection. Here, we consider
variable selection of quantile VCM that incorporates the correlations within subjects.

To conduct variable selection, we propose the penalized estimator by minimizing
the following penalized QIF, defined as

γ̂
P = argminγ

{
Qn(γ ) + n

p∑

l=1

pλl

(‖γ l‖H l

)
}

, (10)

where pλl (·) is a given penalty function depending on the tuning parameter λl , l =
1, . . . , p, and ‖γ l‖2H l

= γ T
l H lγ l with H l = ∫

Bl(t)BT
l (t)dt . Notice that ‖γ l‖H l =
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‖sl‖2, the L2 norm of the spline function sl(·). Shrinking ‖sl‖2 to 0 entails sl ≡ 0. In
addition, the tuning parameters λl for the penalty functions in (10) are not necessarily
the same for different l, which can provide further flexibility.

There are several possible choices for the penalty function pλl (·), such as LASSO
(Tibshirani 1996), MCP (Zhang 2010) and SCAD penalty (Fan and Li 2001). Here,
we choose the SCAD penalty, which is defined as

pλ(θ) =
⎧
⎨

⎩

λ|θ |, |θ | ≤ λ,

−(θ2 − 2aλ|θ | + λ2)/[2(a − 1)], λ < |θ | ≤ aλ,

(a + 1)λ2/2, |θ | > aλ,

for given a > 2 and λ > 0. The SCAD penalty is continuously differentiable on
(−∞, 0) ∪ (0,∞) but singular at 0, and its derivative vanishes outside [−aλ, aλ],
which can produce sparse estimates for small coefficients and unbiased estimates for
large coefficients. Therefore, we obtain the penalized estimator of αl(t) as

α̂P
l (t) = BT

l (t)γ̂ P
l , l = 1, . . . , p.

We next discuss the asymptotic properties of the resulting penalized estimator.
Without loss of generality, we assume that αl(·) = 0, j = d0 + 1, . . . , p and
αl(·), l = 1, . . . , d0 are all nonzero components of α(·). We first show in Theo-
rem 3 that the penalized QIF estimators {α̂P

l (t)}p
l=1 have the same convergence rate as

the unpenalized estimators {α̂l(t)}p
l=1 . Moreover, Theorem 4 establishes the sparsity

property of the penalized estimators, that is, α̂P
l (t) = 0 with probabilities approaching

one for l = d0 + 1, . . . , p.

Theorem 3 Under the conditions of Theorem 1, if the tuning parameters satisfy
maxl λl → 0 in probability as n → ∞, then there exists a local minimizer of (10)
such that

‖α̂P
l − αl‖22 = Op

(
n−2r/(2r+1)

)
, l = 1, . . . , p.

Theorem 4 Under the same conditions of Theorem 3, if the tuning parameters further
satisfymind0+1≤l≤p λlnr/(2r+1) → ∞ in probability as n → ∞, then, with probability
approaching 1, α̂P

l (t) = 0 for l = d0 + 1, . . . , p.

Since the penalty function is not differentiable, to obtain the penalized estimator
γ̂

P , we need to smooth the penalized object function for both terms in (10). For Qn(·),
we can use the induced smoothing method as in Sect. 2.3, and for penalty pλl (·), we
can use the local quadratic approximation (LQA, Fan and Li 2001). Then, we can
use the Newton–Raphson algorithm to obtain the penalized smoothing QIF estimator,
denoted by γ̃ P . As in Theorem 2, we can establish that the penalized estimator γ̃ P

still enjoys the same asymptotic property as γ̂
P . The details are omitted.

Unlike our approach, Noh et al. (2012) used the local linear approximation (LLA)
to deal with the penalty terms, which allows the authors to convert the optimization
problem to a second-order cone programming.We just use the simple LQAapproach in

123



Longitudinal quantile varying coefficient models 223

order tomake the optimization problemdifferentiable.Ourmodel ismore complicated,
and it remained to be seen whether LLA will allow a more efficient algorithm to be
developed.

Note that there are p tuning parameters to be chosen in conducting the variable
selection procedure. To reduce the computational burden, we propose to use the fol-
lowing strategy by setting

λl = λ

‖γ̃ l‖Hl

, l = 1, . . . , p,

where γ̃ l is the initial unpenalized estimator of γ l obtained in Sect. 2.3. Note that the
above strategy has also been used inWang and Xia (2009). Then, we use the following
criterion to obtain the optimal tuning parameter

λ̂opt = argminλ

{
Q̃n(γ̃ P ) + J · log(n) · d fλ

}
,

where d fλ is the number of nonzero coefficient functions for a given tuning parameter
λ.

4 Simulation studies

In this section, we conduct simulation studies to illustrate our proposed methods. Note
that theminimizer of Qn is presentedmerely for theoretical reasons andwe are not able
to compute it due to the discontinuity of the objective function, while the minimizer of
Q̃n can be easily found using the two-stage approach as mentioned in Sect. 2. For each
example, we focus on τ = 0.25 and 0.5, and 500 data sets are generated to evaluate
the simulation results.

Example 1 In this example, the responses yi j are generated from

yi j = α0(ti j ) + xi j1α1(ti j ) + xi j2α2(ti j ) + (1 + κ|ti j |)εi j , i = 1, . . . , n, j = 1, . . . , mi ,

where thenumber of subjects isn = 50, 100 and150, and each subject is supposed tobe
measured at scheduled time point ti j from {0, 0.1, 0.2, . . . , 1}, each ofwhich has a 20%
probability of being skipped. The actual measurement times are generated by adding
a U (−0.05, 0.05) random variable to the scheduled times. The three nonparametric
functions are set to be

α0(t) = 3 sin(2π t), α1(t) = 8t(1 − t) and α2(t) = 2 cos(2π t).

The marginal distributions of the two covariates are standard normal, and their corre-
lation coefficient is 0.5. The random error εi = (εi1, . . . , εimi )

T follows multivariate
normal distribution or multivariate t-distribution (degrees of freedom 3) with location
parameter −qτ and covariance matrix �, where qτ is the τ -th quantile of the standard
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Table 1 Simulation results of AIMSE when the true error structure is compound symmetry

Error Model τ n WI QIF-CS QIF-AR(1)

Normal HM 0.25 100 0.0385 (0.0148) 0.0332 (0.0151) 0.0380 (0.0160)

150 0.0287 (0.0108) 0.0231 (0.0099) 0.0279 (0.0123)

200 0.0224 (0.0071) 0.0182 (0.0073) 0.0208 (0.0070)

0.5 100 0.0334 (0.0123) 0.0240 (0.0105) 0.0276 (0.0106)

150 0.0251 (0.0087) 0.0171 (0.0055) 0.0195 (0.0060)

200 0.0201 (0.0064) 0.0143 (0.0040) 0.0157 (0.0046)

HT 0.25 100 0.0599 (0.0316) 0.0369 (0.0174) 0.0507 (0.0246)

150 0.0406 (0.0171) 0.0326 (0.0142) 0.0406 (0.0204)

200 0.0311 (0.0129) 0.0260 (0.0112) 0.0299 (0.0124)

0.5 100 0.0406 (0.0176) 0.0277 (0.0113) 0.0336 (0.0137)

150 0.0290 (0.0111) 0.0202 (0.0078) 0.0229 (0.0076)

200 0.0235 (0.0082) 0.0167 (0.0055) 0.0184 (0.0058)

t HM 0.25 100 0.0820 (0.0362) 0.0480 (0.0283) 0.0684 (0.0341)

150 0.0578 (0.0267) 0.0383 (0.0143) 0.0540 (0.0263)

200 0.0441 (0.0177) 0.0290 (0.0109) 0.0389 (0.0161)

0.5 100 0.0682 (0.0283) 0.0439 (0.0200) 0.0557 (0.0241)

150 0.0501 (0.0216) 0.0305 (0.0116) 0.0372 (0.0147)

200 0.0385 (0.0149) 0.0239 (0.0078) 0.0284 (0.0101)

HT 0.25 100 0.1317 (0.0730) 0.0638 (0.0288) 0.1024 (0.0536)

150 0.0852 (0.0395) 0.0547 (0.0237) 0.0834 (0.0453)

200 0.0645 (0.0297) 0.0431 (0.0187) 0.0607 (0.0289)

0.5 100 0.0861 (0.0423) 0.0531 (0.0237) 0.0687 (0.0312)

150 0.0597 (0.0263) 0.0363 (0.0147) 0.0442 (0.0174)

200 0.0464 (0.0192) 0.0301 (0.0116) 0.0348 (0.0142)

The values in parentheses are the standard errors of the AIMSE over the 500 replications

normal distribution or t-distribution with degrees of freedom 3, which implies the
corresponding τ -th quantile of εi j is zero. The covariance matrix � follows either
the compound symmetry (CS) or AR(1) structure with parameter ρ = 0.8. In addi-
tion, the quantity κ equals 0 or 1 corresponding to homoscedastic model (HM) and
heteroscedastic model (HT), respectively.

To assess the estimation efficiency for nonparametric functions, we calculate the
integrated mean square error (IMSE) defined as

IMSE(αl) = 1

ngrid

ngrid∑

k=1

{
αl(tk) − α̂l(tk)

}2

averaged over 500 data sets and report the average of the integrated mean square error
(AIMSE)

AIMSE = 1

p

p∑

l=1

IMSE(αl),
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Table 2 Simulation results of AIMSE when the true error structure is AR(1)

Error Model τ n WI CS AR(1)

Normal HM 0.25 100 0.0147 (0.0054) 0.0145 (0.0057) 0.0142 (0.0055)

150 0.0104 (0.0035) 0.0097 (0.0034) 0.0091 (0.0031)

200 0.0083 (0.0026) 0.0076 (0.0024) 0.0070 (0.0022)

0.5 100 0.0126 (0.0044) 0.0118 (0.0040) 0.0102 (0.0036)

150 0.0090 (0.0029) 0.0080 (0.0024) 0.0070 (0.0022)

200 0.0074 (0.0023) 0.0064 (0.0019) 0.0058 (0.0017)

HT 0.25 100 0.0315 (0.0133) 0.0275 (0.0128) 0.0258 (0.0119)

150 0.0213 (0.0087) 0.0175 (0.0069) 0.0155 (0.0061)

200 0.0165 (0.0065) 0.0133 (0.0052) 0.0115 (0.0046)

0.5 100 0.0790 (0.0332) 0.0732 (0.0312) 0.0638 (0.0281)

150 0.0549 (0.0214) 0.0476 (0.0175) 0.0411 (0.0161)

200 0.0431 (0.0171) 0.0370 (0.0138) 0.0324 (0.0127)

t HM 0.25 100 0.0678 (0.0320) 0.0608 (0.0285) 0.0567 (0.0276)

150 0.0447 (0.0167) 0.0418 (0.0163) 0.0400 (0.0163)

200 0.0353 (0.0125) 0.0321 (0.0116) 0.0307 (0.0112)

0.5 100 0.0456 (0.0164) 0.0423 (0.0155) 0.0372 (0.0147)

150 0.0316 (0.0111) 0.0286 (0.0100) 0.0250 (0.0083)

200 0.0253 (0.0084) 0.0224 (0.0070) 0.0202 (0.0066)

HT 0.25 100 0.1478 (0.0742) 0.1297 (0.0641) 0.1230 (0.0636)

150 0.0959 (0.0423) 0.0774 (0.0330) 0.0699 (0.0335)

200 0.0746 (0.0318) 0.0599 (0.0261) 0.0530 (0.0239)

0.5 100 0.0989 (0.0418) 0.0931 (0.0429) 0.0805 (0.0373)

150 0.0649 (0.0270) 0.0592 (0.0254) 0.0508 (0.0214)

200 0.0507 (0.0209) 0.0453 (0.0181) 0.0395 (0.0163)

where {tk : k = 1, . . . , ngrid} with ngrid = 200 are the grid time points at which the
functions {αl(·)} are evaluated. The simulation results are shown in Tables 1 and 2,
where we also report the corresponding results by assuming working independence
(WI) for comparison.

Table 1 summarizes the estimation results when the error correlation has compound
symmetry structure. The AIMSEs for each method become smaller as the sample size
increases. Moreover, it shows that the estimators with a correct CS working correla-
tion have the smallest AIMSE, and even with misspecified AR(1) working correlation
the efficiency gains are also obvious compared with WI ignoring the correlation
within subjects. If the model is heteroscedastic and/or the error follows multivari-
ate t-distribution, the efficiency gain is more obvious. Similar phenomena are also
observed for the case of the true error correlation being AR(1) as shown in Table 2.
Further simulation studies (not shown) indicate that the performances when incorpo-
rating �i are only a little better than replacing �i with an identity matrix. In addition,
we have also tried the simulations when the error has lower correlation ρ = 0.3 or
ρ = 0.5; the performances of our proposed approach are better than or at least as well
as WI. We omit them to save space.
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Example 2 In this example, the data are generated from the following model:

yi j =
p∑

l=1

xi jlαl(ti j ) + (1 + κ|xi j3|)εi j , i = 1, . . . , 250, j = 1, . . . , mi .

Each subject is supposed to be measured at scheduled time points {0, 1, 2, . . . , 20},
and each time point has a 50% probability of being skipped. Similar to Example
1, the actual measurement times are generated by adding a U (− 0.5, 0.5) random
variable to the scheduled times. The three relevant variables, xi jl , l = 1, 2, 3, are
simulated as follows: xi j1 is generated from U (ti j/10, 2 + ti j/10), xi j2, conditional
on xi j1, is N (0, (1 + xi j1)/(2 + xi j1)), and xi j3, independent of xi j1 and xi j2, is
a Bernoulli random variable with success probability 0.8. The rest five redundant
variables, xi jl , l = 4, . . . , p, aremutually independent, and for each l, xi jl is generated
from a multivariate Gaussian distribution with zero mean and a decayed exponential
covariance

cov(xi jl , xuvl) =
{
4 exp(−|ti j − tuv|), if i = u
0, if i �= u

.

The three nonparametric functions are

α1(t) = 15 + 20 sin

(
π t

40

)
, α2(t) = 2 − 3 cos

(
(t − 25)π

15

)
, α3(t) = 6 − 0.6t .

The marginal variance of random error εi = (εi1, . . . , εimi )
T is 4, and the correlation

settings are the same as in Example 1, and the cases κ = 0 and 1 are still denoted by
HM and HT, respectively.

We report the results with p = 8 in Tables 3 and 4, where the simulation results
obtained by ignoring the correlation are also shown. Moreover, we also report the
results with group LASSO penalty in Tables 3 and 4 for comparisons. In Table 3, the
oracle estimator is obtained using only the first three relevant variables. In Table 4,
two quantities “False positive rate” (FPR) and “false negative rate” (FNR) are used to
evaluate the performance of variable selection, where FNR denotes the proportion of
nonzero varying coefficient functions incorrectly estimated as zero coefficients, while
FPR denotes the proportion of zero coefficients incorrectly estimated by nonzero
functions, and we present the mean proportion over 500 replications. In addition,
according to the suggestion of a reviewer, we also report the simulation results for
case of divergent dimension p = [n1/2] in Appendix in Supplementary Material
(Tables 1 and 2).

The results in Tables 3 and 4 indicate that the performances of our proposed variable
selection approach are satisfactory. Both the nonzero components and zero compo-
nents can be correctly identified in terms of FPR and FNR. For variable selection,
the difference between the proposed QIF method and the method assuming working
independence is very small for both homoscedastic model and heteroscedastic model
with group SCAD penalty or group LASSO penalty. Moreover, as we can see from
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Table 4 Variable selection results for Example 2 with p = 8

Penalty Model Error τ FNR FPR

WI QIF-CS QIF-AR WI QIF-CS QIF-AR

Group SCAD HM Normal-CS 0.25 0 0 0 0.002 0.003 0.003

0.5 0 0 0 0.001 0.001 0.005

Normal-AR 0.25 0 0 0 0.003 0.005 0.003

0.5 0 0 0 0.002 0.004 0.002

t-CS 0.25 0 0 0 0.005 0.006 0.008

0.5 0 0 0 0.004 0.004 0.005

t-AR 0.25 0 0 0 0.008 0.007 0.006

0.5 0 0 0 0.003 0.005 0.005

HT Normal-CS 0.25 0 0 0 0.013 0.012 0.013

0.5 0 0 0 0.011 0.010 0.010

Normal-AR 0.25 0 0 0 0.011 0.009 0.007

0.5 0 0 0 0.008 0.007 0.005

t-CS 0.25 0 0 0 0.021 0.023 0.026

0.5 0 0 0 0.018 0.019 0.018

t-AR 0.25 0 0 0 0.024 0.022 0.024

0.5 0 0 0 0.013 0.012 0.011

Group LASSO HM Normal-CS 0.25 0 0 0 0.004 0.003 0.005

0.5 0 0 0 0.004 0.004 0.006

Normal-AR 0.25 0 0 0 0.007 0.006 0.006

0.5 0 0 0 0.004 0.005 0.005

t-CS 0.25 0 0 0 0.007 0.007 0.009

0.5 0 0 0 0.005 0.005 0.006

t-AR 0.25 0 0 0 0.010 0.011 0.010

0.5 0 0 0 0.006 0.008 0.007

HT Normal-CS 0.25 0 0 0 0.015 0.016 0.018

0.5 0 0 0 0.011 0.010 0.011

Normal-AR 0.25 0 0 0 0.018 0.017 0.016

0.5 0 0 0 0.013 0.011 0.012

t-CS 0.25 0 0 0 0.027 0.033 0.035

0.5 0 0 0 0.024 0.022 0.021

t-AR 0.25 0 0 0 0.035 0.032 0.034

0.5 0 0 0 0.023 0.025 0.022

Table 3, AIMSEs calculated based on SCAD penalized estimates are closer to the
AIMSEs from the oracle estimator than the group LASSO penalty. In addition, the
QIF-based estimation performance is a little better than working independence even
if we use the misspecified working correlation matrix. This shows that our penal-
ized QIF estimators can simultaneously estimate and select important variables and
gain estimation accuracy by effectively removing the zero component variables. The
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above findings confirm our theoretical results and demonstrate efficiency gains by our
proposed approach compared to ignoring correlations within subjects.

For the case of divergent dimension p = [n1/2], the proportion of FNR in Table
2 in Supplementary Material is still very small while the proportion of FPR for het-
eroscedastic model is noticeably larger. However, the gains of our method are still
obvious in terms of AIMSEs in Table 1.

5 Real data analysis

In this section, we demonstrate an application of our proposed method to a longitu-
dinal AIDS data from the Multi-Center AIDS Cohort Study between 1984 and 1991.
This AIDS Cohort Study was firstly reported in Kaslow et al. (1987), where each
individual was scheduled to undergo measurements at semiannual visits, but because
many individuals missed some of their scheduled visits and the human immunodefi-
ciency virus (HIV) infections occurred randomly during the study, there were unequal
numbers of repeated measurements and different measurement times for each indi-
vidual. As a subset of the cohort, our analysis focused on the 283 homosexual men
who were infected with HIV during the follow-up period. The main interest of these
data is to describe the trend of the level of the CD4 percentage depletion over time
and to evaluate the effects of cigarette smoking, pre-HIV infection CD4 percentage
and age at infection on the CD4 percentage after the infection. These data have been
studied in several papers, including Huang et al. (2002), Qu and Li (2006), Fan et al.
(2007) and Wang et al. (2009). Recently, Wang et al. (2008) have considered vari-
able selection in varying coefficients models for these data based on mean regression
and quantile regression, respectively. However, they did not consider the correlation
between measurements for the same individual, which may lose estimation efficiency.

In the following, our analysis focuses on evaluating the time-dependent effects
of smoking status (xi1, taking values of 1 and 0 whether smoke or not), age (xi2),
preCD4 (xi3, pre-HIV infection CD4 percentage) and the interaction of the covariates
at different quantile levels. We consider the following varying coefficient model:

yi j = α0(ti j , τ ) + α1(ti j , τ )xi1 + α2(ti j , τ )xi2 + α3(ti j , τ )xi3 + α4(ti j , τ )x2i2

+ α5(ti j , τ )x2i3 + α6(ti j , τ )xi1xi2 + α7(ti j , τ )xi1xi3 + α8(ti j , τ )xi2xi3 + εi j (τ ),

where yi j is the i-th individual’s CD4 percentage at time ti j (in years), and xi2 and xi3
are standardized. The baseline function α0(t, τ ) represents the τ -th quantile of CD4
percentage t years after the infection for a nonsmoker with average preCD4 percentage
and average age at HIV infection. Here, we focus on three quantile levels τ = 0.25, 0.5
and 0.75, and we use the compound symmetry working correlation to fit the data, and
the results are compared with working independence. The results of AR(1) working
correlation are very similar.

Table 5 shows the selected components at different quantile levels, andwe found that
our QIF method selects one or two more variables thanWI approach at quantile levels
τ = 0.25 and 0.5. In particular, the smoking effect is selected at τ = 0.25 but not at
τ = 0.5 and 0.75, which indicates that smoking has the effect on the CD4 counts when
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Table 5 Selected components of
two different methods at three
quantile levels for AIDS data

τ QIF-CS WI

0.25 α0, α1, α3, α6 α0, α3

0.5 α0, α3, α6, α7 α0, α3, α6

0.75 α0, α3, α6, α7 α0, α3, α6, α7
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Fig. 1 Estimated coefficient curves at τ = 0.5. a The baseline coefficient function, b coefficient for preCD4,
c coefficient for the interaction of smoking and age and d coefficient for the interaction of smoking and
preCD4. The shaded area indicates the 95% point-wise confidence band

the count is small. The estimated curves at τ = 0.5 together with their 95% point-wise
confidence band of the four important nonparametric components are shown in Fig. 1.
Note that the zero lines are not completely contained in the selected 95% point-wise
confidence bands, which indicate that the variables selected are reasonable. Figure 1a
implies that the baseline coefficient function α0(t, τ ) decreases over time. From Fig.
1b, the preCD4 has positive effect on the post-infection CD4 on the whole with the
rate decreases at first and increases later. It is noteworthy that the interaction between
smoking and age is significant from Fig. 1c, though the individual variables have
no effects on the post-infection CD4. In particular, the elder smokers tend to have
lower CD4 counts. Furthermore, Fig. 1d shows that interaction between smoking and
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preCD4 increases at first and then decreases, which implies that smokers with high
preCD4 tend to have higher CD4 counts after infection and it decreases after a period
of follow-up. One possible explanation is that a smoking patient with lower preCD4
may choose to quit smoking due to medical concerns at first, and they start to smoke
again when their preCD4 counts improved after a period.

6 Concluding remarks

In this paper, we investigate statistical method and theory for estimation and variable
selection of quantile varying coefficient model in longitudinal data analysis. By using
the QIF approach, the correlation within subject is incorporated and the efficiency
of estimation and accuracy of the variable selection are improved compared to quan-
tile regression assuming working independence. We further propose to use induced
smoothing for estimation, and the procedure is easy to implement. Simulation stud-
ies and real data analysis show that the performance of our proposed approach is
encouraging.

Several problems can be investigated in the future. Note that the dimension of the
nonparametric components is fixed in this work. It may be extended to the case with
a diverging number of covariates. One can also extend this work to the partially linear
varying coefficient model, which is more flexible than VCM. In addition, it is also
important to identify varying and constant coefficients among the nonzero coefficients.
For that purpose, it is possible to use the hypotheses testing approach like Wang et al.
(2009) after identifying the nonzero coefficients based on our method. Finally, since
quantile regression curves are estimated individually, one interesting and important
problem is how to avoid the crossing of the estimated quantile curves at adjacent
quantile levels (Bondell et al. 2010).
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