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Abstract
In this article, we consider the problem of estimating quantiles related to the outcome
of experiments with a technical system given the distribution of the input together
with an (imperfect) simulation model of the technical system and (few) data points
from the technical system. The distribution of the outcome of the technical system is
estimated in a regression model, where the distribution of the residuals is estimated on
the basis of a conditional density estimate. It is shown how Monte Carlo can be used
to estimate quantiles of the outcome of the technical system on the basis of the above
estimates, and the rate of convergence of the quantile estimate is analyzed. Under
suitable assumptions, it is shown that this rate of convergence is faster than the rate
of convergence of standard estimates which ignore either the (imperfect) simulation
model or the data from the technical system; hence, it is crucial to combine both kinds
of information. The results are illustrated by applying the estimates to simulated and
real data.
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1 Introduction

The design of complex technical systems by engineers always has to take into account
some kind of uncertainty. This uncertainty might occur because of lack of knowledge
about future use or about properties of the materials used to build the technical system
(e.g., the exact value of the damping coefficient of a spring–mass damper). In order
to take this uncertainty into account, we model in the sequel the outcome Y of the
technical system by a random variable. For simplicity, we restrict ourselves to the case
that Y is a real-valued random variable. Thus, we are interested in properties of the
distribution of Y ; for example, we are interested in quantiles

qY ,α = min {y ∈ R : P{Y ≤ y} ≥ α} (1)

for α ∈ (0, 1) (which describe for α close to one values which we expect to be upper
bounds on the values occurring in an application), or in the density gY : R → R of Y
with respect to the Lebesgue–Borel measure, which we assume later to exist.

In the sequel, we model the lack of knowledge about the future use of the system or
about properties of materials used in it by introducing an additionalRd -valued random
variable X , which contains values for uncertain parameters describing the system or
its future use, and from which we assume either to know the distribution or are able
to generate an arbitrary number of independent realizations. Furthermore, we assume
that we have available a model describing the relation between X and Y by a function
m̄ : Rd → R. This function m̄ might be constructed by using a physical model of
our technical system, and in some sense m̄(X) is an approximation of Y . However,
as all models our model is imperfect in the sense that Y = m̄(X) does not hold. This
might be due to the fact that Y cannot be exactly characterized by a function of X
(since X might not describe the randomness of Y completely), or since our relation
between Y and X is not correctly specified by m̄, or because of both. So although we
know m̄ and can generate an arbitrary number of independent copies X1, X2, …of X ,
we cannot use m̄(X1), m̄(X2), …as observations of Y , since there is an error between
these values and a sample of Y .

In order to control this error, we assume that we have available n ∈ N observations
of the Y -values corresponding to the first n values of X . To formulate our prediction
problem precisely, let (X , Y ), (X1, Y1), (X2, Y2), …be independent and identically
distributed and let Ln, Nn ∈ N. We assume that we are given the data

(X1, Y1), . . . , (Xn, Yn), (Xn+1, m̄(Xn+1)), . . . , (Xn+Ln , m̄(Xn+Ln )),

Xn+Ln+1, . . . , Xn+Ln+Nn , (2)

and we want to use these data in order to estimate the quantiles qY ,α or the density
gY of Y (which we later assume to exist). The main difficulty in solving this problem
is that the sample size n of the observations of Y (which corresponds to the number
of experiments we are making with the technical system) is rather small (since these
experiments are time consuming or costly).

Before we describe various existing approaches to solve this problem in the litera-
ture, we will illustrate the problem by an example. Here, we consider a demonstrator
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Fig. 1 A photograph of the demonstrator of a suspension strut and its experimental test setup (left), a CAD
illustration of the suspension strut (middle) and illustration of a simplified model of the suspension strut
(right)

for a suspension strut, which was built at the Technische Universität Darmstadt and
which serves as an academic demonstrator to study uncertainty in load distributions
and the ability to control vibrations, stability and load paths in suspension struts such
as aircraft landing gears. The photograph of this suspension strut and its experimental
test setup is shown in Fig. 1(left); a CAD illustration of this suspension strut can be
found in Fig. 1(middle).

This suspension strut consists of upper and lower structures, where the lower struc-
ture contains a spring–damper component and an elastic foot. The spring–damper
component transmits the axial forces between the upper and lower structures of the
suspension strut. The aim of our analysis is the analysis of the behavior of the max-
imum relative compression of the spring–damper component in case that the free
fall height is chosen randomly. Here, we assume that the free fall heights are inde-
pendent normally distributed with mean 0.05 meter and standard deviation 0.0057
meter.

We analyze the uncertainty in the maximum relative compression in our suspension
strut using a simplified mathematical model of the suspension strut [cf., Fig. 1(right)],
where the upper and the lower structures of the suspension strut are two lump masses
m and m1, the spring–damper component is represented by a stiffness parameter k
and a suitable damping coefficient b, and the foot is represented by another stiffness
parameter ke f . Using a linear stiffness and an axiomatic damping, it is possible to
compute the maximum relative compression by solving a differential equation using
Runge–Kutta algorithm (cf., model a) in Mallapur and Platz (2017). Figure 2 shows
Ln = 500 data points from the computer experiment and also n = 20 experimental
data points. Since they do not look like they come from the same source, our computer
experiment is obviously imperfect. Our aim in the sequel is to us the n = 20 data
points from our experiments with the suspension strut together with the Ln = 500
data points from the computer experiments in order to analyze the uncertainty in
the above-described experiments with the suspension strut. This can be done, e.g.,
by making some statistical inference about quantiles or the density of the maximal
occurring compression in experiments with the suspension strut. Here, we do not only
want to adjust for a constant shift in order to match the simulator and the experimental
data closely, but we also want to take into account that the values of Y are not a
deterministic function of X .
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Fig. 2 Data from Ln = 500 computer experiments (in black) together with data (in red) from n = 20
experiments with the suspension strut in Fig. 1(left panel) (color figure online)

There are various possible approaches to solve the above estimation problem. The
simplest idea is to ignore the model m̄(X) completely and to make inference about
qY ,α and gY using only the observations

Y1, . . . , Yn (3)

of Y . For example, we can estimate the quantile qY ,α by the plug-in estimate

q̂Y ,n,α = min
{

y ∈ R : ĜY ,n(y) ≥ α
}

(4)

corresponding to the estimate

ĜY ,n(y) = 1

n

n∑
i=1

I(−∞,y](Yi )

of the cumulative distribution function (cdf) G(y) = P{Y ≤ y} of Y , which result
in an order statistics as an estimate of the quantile. Or we can estimate the density
gY of Y by the well-known kernel density estimate of Rosenblatt (1956) and Parzen
(1962), where we first choose a density K : R → R (so-called kernel) and a so-called
bandwidth hn > 0 and define our estimate by

ĝY ,n(y) = 1

n · hn
·

n∑
i=1

K

(
y − Yi

hn

)
.

However, since the sample size n of our data (3) is rather small, this will in general
not lead to satisfying results.
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Another simple idea is to ignore the real data (3), and to use the model data

m̄(Xn+1), . . . , m̄(Xn+Ln ) (5)

as a sample of Y with additional measurement errors, and to use this sample to define
quantile and density estimates as above. In this way, we estimate qY ,α by

q̂m̄(X),Ln ,α = min
{

y ∈ R : Ĝm̄(X),Ln (y) ≥ α
}

(6)

where

Ĝm̄(X),Nn (y) = 1

Ln

Ln∑
i=1

I(−∞,y](m̄(Xn+i )),

and we can estimate the density g of Y by

ĝm̄(X),Ln (y) = 1

Ln · hLn

·
Ln∑

i=1

K

(
y − m̄(Xn+i )

hLn

)
.

Since the function m̄ of our model m̄(X) of Y might be costly to evaluate (e.g., in case
that its values are defined as solutions of a complicated partially differential equation)
and consequently Ln might not be really large, it makes sense to use in a first step the
data

(Xn+1, m̄(Xn+1)), . . . , (Xn+Ln , m̄(Xn+Ln ))

to compute a surrogate model

m̂Ln (·) = m̂Ln (·, (Xn+1, m̄(Xn+1)), . . . , (Xn+Ln , m̄(Xn+Ln )) : Rd → R

of m̄, and to compute in the second step the quantile and density estimates q̂m̂Ln (X),Nn ,α

and ĝm̄Ln (X),Nn using the data

m̂Ln (Xn+Ln+1), . . . , m̂Ln (Xn+Ln+Nn ).

Surrogate models have been introduced and investigated with the aid of the simulated
and real data in connection with the quadratic response surfaces in Bucher and Bour-
gund (1990), Kim and Na (1997) and Das and Zheng (2000), in context of support
vector machines in Hurtado (2004), Deheeger and Lemaire (2010) and Bourinet et al.
(2011) in connection with neural networks in Papadrakakis and Lagaros (2002), and
in context of kriging in Kaymaz (2005) and Bichon et al. (2008).

Under the assumption that we have m̄(X) = Y , the above estimates have been the-
oretically analyzed in Devroye et al. (2013), Bott et al. (2015), Felber et al. (2015a, b),
Enss et al. (2016) and Kohler and Krzyżak (2018).
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However, in practice there usually will be an error in the approximation of Y by
m̄(X), and it is unclear how this error influences the error of the quantile and density
estimates.

Kohler et al. (2016) and Kohler and Krzyżak (2016) used the data

(X1, Y1), . . . , (Xn, Yn)

obtained by experiments with the technical system in order to control this error. In
particular, confidence intervals for quantiles and confidence bands for densities are
derived there. Wong et al. (2017) used the above data of the technical system in order
to calibrate a computer model and estimated the error of the resulting model by using
bootstrap. Kohler andKrzyżak (2017) used these data in order to improve the surrogate
model and analyzed the density estimate based on the improved surrogate model.

Kohler et al. (2016) and Kohler and Krzyżak (2016, 2017) try to approximate Y by
some function of X and make statistical inference on the basis of this approximation.
Wong et al. (2017) do this similarly, but take into account additional measurement
errors of the y-values. The basic new idea in this article is to estimate instead a regres-
sion model

Y = m̄(X) + ε̄, (7)

where

ε̄ = Y − m̄(X)

is the residual error of our model m̄(X), which is not related to measurement errors
but instead is due to the fact that an approximation of Y by a function of X cannot be
perfect. In this model, we estimate simultaneously m̄ and the conditional distribution
Pε̄|X=x of ε̄ given X = x . As soon as we have available estimates m̂Ln and Pε̄|X=x

for both, we generate data

m̂Ln (Xn+Ln+1) + ε̂(Xn+Ln+1), . . . , m̂Ln (Xn+Ln+Nn ) + ε̂(Xn+Ln+Nn )

(where ε̂(x) has the distribution P̂ε̄|X=x conditioned on X = x) and use these data to
define corresponding quantile estimates.

We assume in the sequel that the conditional distribution of ε̄ given X has a density
with respect to the Lebesgue–Borel measure. In order to estimate this conditional
density, we use the well-known conditional kernel density estimate introduced already
in Rosenblatt (1969). Concerning existing results on conditional density estimates, we
refer to Fan et al. (1996), Fan and Yim (2004), Gooijer and Zerom (2003), Efromovich
(2007), Bott and Kohler (2016, 2017) and the literature cited therein.

Our main result, which is formulated in Sect. 3, shows that our newly proposed
quantile estimates achieve under suitable regularity condition rates of convergence,
which are faster than the rates of convergence of the estimates (4), (6) and the modifi-
cations of (6) using m̂Ln instead of m̄. Furthermore, we show with simulated data that
in the situations which we consider in our simulations this effect also occurs for finite
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sample sizes, and illustrate the usefulness of our newly proposed method by applying
it to a spring–damper system introduced earlier.

Throughout this paper, we use the following notation: N, N0 and R are the sets of
positive integers, nonnegative integers and real numbers, respectively. Let p = k + β

for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A function m : Rd → R is called
(p, C)-smooth, if for every α = (α1, . . . , αd) ∈ N

d
0 with

∑d
j=1 α j = k the partial

derivative ∂k m
∂x

α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣
∂km

∂xα1
1 . . . ∂xαd

d

(x) − ∂km

∂xα1
1 . . . ∂xαd

d

(z)

∣∣∣∣ ≤ C · ‖x − z‖β

for all x, z ∈ R
d . If X is a random variable, then PX is the corresponding distribution,

i.e., the measure associated with the random variable. If (X , Y ) is a Rd × R-valued
random variable and x ∈ R

d , then PY |X=x denotes the conditional distribution of Y
given X = x . Let D ⊆ R

d and let f : Rd → R be a real-valued function defined on
R

d . We write x = argminz∈D f (z) if minz∈D f (z) exists and if x satisfies

x ∈ D and f (x) = min
z∈D

f (z).

For x ∈ R
d and r > 0, we denote the (closed) ball with center x and radius r by Sr (x).

If A is a set, then IA is the indicator function corresponding to A, i.e., the function
which takes on the value 1 on A and is zero elsewhere. For A ⊆ R, we denote the
infimum of A by inf A, where we use the convention inf ∅ = ∞. If x ∈ R, then we
denote the smallest integer greater than or equal to x by 
x�.

The outline of this paper is as follows: In Sect. 2, the construction of the newly
proposed quantile estimate is explained. The main results are presented in Sect. 3 and
proven in Sect. 5. The finite sample size performance of our estimates is illustrated in
Sect. 4 by applying it to simulated and real data.

2 Definition of the estimate

In the sequel, we assume that we are given data (2), where n, Ln, Nn ∈ N, theRd ×R

valued randomvariables (X , Y ), (X1, Y1), (X2, Y2),…are independent and identically
distributed, and where m̄ : Rd → R is measurable. Our aim is to estimate the quantile
qY ,α defined in (1) for some α ∈ (0, 1).

To do this, we start by constructing an estimate of m̄. For this, we use the data

(Xn+1, m̄(Xn+1)), . . . , (Xn+Ln , m̄(Xn+Ln ))

and define the penalized least squares estimates of m̄ by

m̃Ln (·) = arg min
f ∈W k (Rd )

(
1

Ln

Ln∑
i=1

(m̄(Xn+i ) − f (Xn+i ))
2 + λLn · J 2

k ( f )

)

123



130 M. Kohler, A. Krzyżak

and

m̂Ln (x) = TβLn
(m̃Ln (x)) (x ∈ R

d)

for some βLn > 0, where k ∈ N with 2k > d,

J 2
k ( f ) =

∑
α1,...,αd∈N, α1+···+αd=k

k!
α1! · · · · · αd !

∫

Rd

∣∣∣∣
∂k f

∂xα1
1 . . . ∂xαd

d

(x)

∣∣∣∣
2

dx

is a penalty termpenalizing the roughness of the estimate,W k(Rd) denotes the Sobolev
space

{
f : ∂k f

∂xα1
1 . . . ∂xαd

d

∈ L2(R
d) for all α1, . . . , αd ∈ N with α1 + · · · + αd = k

}
,

and where λLn > 0, TL(x) = max{−L,min{L, x}}, L > 0 is the truncation operator
and L2(R

d) denotes square integrable functions onRd . The condition 2k > d implies
that the functions in W k(Rd) are continuous and hence the value of a function at a
point is well defined.

Then, we compute the residuals of this estimate on the data (X1, Y1), . . . , (Xn, Yn),
i.e., we set

ε̂i = Yi − m̂Ln (Xi ) (i = 1, . . . , n). (8)

Weuse these residuals in order to estimate the conditional distribution of ε̄ = Y −m̄(X)

given X = x . Here, we assume that this distribution has a density and estimate this
density by applying a conditional density estimator to the data

(X1, Y1 − m̂Ln (X1)), . . . , (Xn, Yn − m̂Ln (Xn)).

To do this, we set G = I[−1,1] and let K : R → R be a density, let hn, Hn > 0 and set

ĝε̂|X (y, x) =
∑n

i=1 G
( ‖x−Xi ‖

Hn

)
· K
(

y−(Yi −m̂Ln (Xi ))

hn

)

hn ·∑n
j=1 G

( ‖x−X j ‖
Hn

) . (9)

Once we have constructed the estimates m̂n and ĝε̂|X , we construct a sample of size
Nn of the distribution of

m̂Ln (X) + ε̂(X),

where the random variable ε̂(X) has the conditional density ĝε̂|X (·, X) given X , and
estimate the quantile by the empirical quantile corresponding to this sample. To do
this, we use an inversion method: We define for u ∈ (0, 1) and x ∈ R

d

F−1
n (u, x) = inf

{
y ∈ R :

∫ y

−∞
ĝε̂|X (z, x) dz ≥ u

}
,
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choose independent and identically distributed random variables U1, U2, …, with
uniform distribution on (0, 1), such that they are independent of all other previously
introduced random variables, and set

ε̂n+Ln+i = F−1
n (Ui , Xn+Ln+i ) (i = 1, . . . , Nn).

This implies in case

∫

R

ĝε̂|X (z, Xn+Ln+i ) dz = 1

that ε̂n+Ln+i conditioned on Xn+Ln+i has the density ĝε̂|X (·, Xn+Ln+i )).
With these random variables, we estimate the cdf of Y by setting

Ŷn+Ln+i = m̂Ln (Xn+Ln+i ) + ε̂n+Ln+i (i = 1, . . . , Nn),

and

ĜŶ ,Nn
(y) = 1

Nn

Nn∑
i=1

I{Ŷn+Ln+i ≤y},

and use the corresponding plug-in estimate

q̂Ŷ ,Nn ,α
= min

{
y ∈ R : ĜŶ ,Nn

(y) ≥ α
}

as an estimate of qY ,α .

Remark 1 Since there is no measurement error in the observation from the simulator
m̄, we could also use an interpolation estimate (instead of the penalized least squares
estimate m̂Ln ) in order to estimate m̄. For example, in this context we could apply the
spline estimate from Bauer et al. (2017).

3 Main result

Before we formulate our main result, we summarize some important notations.

Y Outcome of the experience
X Parameters of the experiment
m̄ Function m̄ : Rd → R describing the computer model
ε̄ Residual of the computer model
gε̄|X Conditional density of ε̄.

Our main result is the following theorem, which gives a nonasymptotic bound on the
error of our quantile estimate.
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Theorem 1 Let (X , Y ), (X1, Y1), (X2, Y2), …be independent and identically dis-
tributed R

d × R-valued random variables, and let m̄ : Rd → R be a measurable
function. Let gε̄|X : R × R

d → R be a measurable function with the property that
gε̄|X (·, X) is a density of the conditional distribution of ε̄ = Y −m̄(X) given X. Assume
that the following regularity conditions hold for some C1, C2 > 0, r , s ∈ (0, 1]:
(A1) |gε̄|X (y, x1) − gε̄|X (y, x2)| ≤ C1 · ‖x1 − x2‖r for all x1, x2 ∈ R

d , y ∈ R,
(A2) |gε̄|X (u, x) − gε̄|X (v, x)| ≤ C2 · |u − v|s for all u, v ∈ R, x ∈ R

d .

Let n, Ln, Nn ∈ N and assume N 2
n ≥ 8 · log n. For α ∈ (0, 1) define the estimate

q̂Ŷ ,Nn ,α
of the quantile qY ,α [given by (1)] as in Sect. 2, where hn, Hn > 0, G is the

naive kernel and where K : R
d → R is a bounded and symmetric density, which

decreases monotonically on R+ and satisfies

∫
K 2(z) dz < ∞ and

∫
K (z) · |z|sdz < ∞.

Let γn > 0, assume 2 ·√d ·γn ≥ Hn, and for x ∈ R
d let −∞ < an(x) ≤ bn(x) < ∞.

Set

εn = 4 · E
∫

Rd
|m̂Ln (x) − m̄(x)|2PX (dx),

δn = 8 · K (0) · (4 · √
d)dγ d

n

hn · Hd
n

· E
∫

Rd
|m̂Ln (x) − m̄(x)|PX (dx)

+ 8 · c1 ·
⎛
⎝
√∫

[−γn ,γn ]d |bn(x) − an(x)|PX (dx) · γ d
n

n · Hd
n · hn

+ 4 · γ d
n

n · Hd
n

+ 4 ·
∫

[−γn ,γn ]d
|bn(x) − an(x)|PX (dx) · (C1 · Hr

n + C2 · hs
n

))

+ 8 · PX (Rd\[−γn, γn]d) + 8 ·
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]c
gε̄|X (y, x) dy PX (dx)

where

c1 = max

{
1,

√
2 · (4 · √

d)d ·
∫

K 2(z) dz, (4 · √
d)d ,

∫
K (z) · |z|sdz

}
,

and set

ηn = 4 · P
{

X ∈ R
d\[−γn, γn]d

}
+ 4 · (4 · √

d)d · γ d
n

n · Hd
n

.
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Let en > 0 and assume that the cdf of Y satisfies

GY (qY ,α + en − ((log n) · εn)
1/3) − GY (qY ,α) > ((log n) · εn)1/3

+
√
log Nn

Nn
+ (log n) · δn + (log n) · ηn (10)

and

GY (qY ,α) − GY (qY ,α − en + ((log n) · εn)
1/3) > ((log n) · εn)1/3

+
√
log Nn

Nn
+ (log n) · δn + (log n) · ηn . (11)

Then,

P
{∣∣∣q̂Ŷ ,Nn ,α

− qY ,α

∣∣∣ > en

}
≤ 1

log n
.

Remark 2 Assume that Y has a density gY : R → R with respect to the Lebesgue
measure which satisfies for some c2, c3 > 0

gY (y) > c2 for all y ∈ [qY ,α − c3, qY ,α + c3]. (12)

Assume that positive εn, δn, ηn defined in Theorem 1 satisfy

(
1 + 1

c2

)
·
(

((log n) · εn)1/3 + (log n) · δn + (log n) · ηn +
√
log Nn

Nn

)
≤ c3,

(13)
and set

en =
(
1 + 1

c2

)
·
(

((log n) · εn)1/3 + (log n) · δn + (log n) · ηn +
√
log Nn

Nn

)
.

Then, (10) and (11) hold, and consequently, we can conclude from Theorem 1

P
{∣∣∣q̂Ŷ ,Nn ,α

− qY ,α

∣∣∣

>

(
1 + 1

c2

)
·
(

((log n) · εn)
1/3 + (log n) · δn + (log n) · ηn +

√
log Nn

Nn

)}

≤ 1

log n
.

Indeed, the assumptions above imply

0 ≤ en − ((log n) · εn)
1/3 ≤ c3.
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Consequently, because of the assumption on the density of Y we have

GY (qY ,α + en − ((log n) · εn)1/3) − GY (qY ,α) ≥ c2(en − ((log n) · εn)1/3)).

By the definition of en , we have

c2(en − ((log n) · εn)1/3) − ((log n) · εn)1/3 −
√
log Nn

Nn

− (log n) · δn − (log n) · ηn > 0,

which implies (10). In the same way, one can show (11).

Remark 3 The rate of convergence in Remark 1 depends on εn , δn and ηn . Here, εn is
by its definition related to the L2 error of m̂Ln . It follows from the proof of Theorem 1
(cf., Lemma 1) that δn is related to the L1 error of the conditional density estimate
ĝε̂|X and ηn is related to the probability that this estimate is not a density.

Remark 4 Set γn = log(n). Assume that the conditional distribution ε̄ given X = x
has compact support contained in [an(x), bn(x)], which implies that we have

∫

[−γn ,γn ]d

∫

[an(x),bn(x)]c
gε̄|X (y, x) dy PX (dx) = 0.

Under suitable smoothness assumptions on m̄ : Rd → R, suitable assumptions on the
tails of ‖X‖ and in case that λLn and βLn are suitably chosen it is well known that the
expected L2 error of the smoothing spline estimate satisfies

E
∫

Rd
|m̂Ln (x) − m̄(x)|2PX (dx) ≤ c4 ·

(
log Ln

Ln

)2k/(2k+d)

(cf., e.g., Theorem 2 in Kohler and Krzyżak (2017)). Thus, for Ln large compared to
n and under suitable assumptions on the tails of ‖X‖ it follows from Remark 2 that
the error of our quantile estimate in Theorem 1 is up to some constant given by

(log n) ·
⎛
⎝
√∫

[− log(n),log(n)]d |bn(x) − an(x)|PX (dx) · (log n)d

n · Hd
n · hn

+ (log n)d

n · Hd
n

+
∫

[− log(n),log(n)]d
|bn(x) − an(x)|PX (dx) · (C1 · Hr

n + C2 · hs
n

))
. (14)

Minimizing the expression above with respect to hn and Hn as in the proof of
Corollary 2 in Bott and Kohler (2017) shows that in case of a suitable choice of the
bandwidths hn, Hn > 0 the error of our quantile estimate in Theorem 1 is up to some
logarithmic factor given by the minimum of
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C
d

r+d
1 ·

(∫

[− log(n),log(n)]d
|bn(x) − an(x)|PX (dx)

) d
r+d · n− r

r+d

+ C
ds

(r+d)(2s+1)
1 · C

1
2s+1
2

(∫

[− log(n),log(n)]d
|bn(x) − an(x)|PX (dx)

) (r+d)(s+1)+ds
(r+d)(2s+1)

· n− rs
(r+d)(2s+1)

and

C
(2s+1)d

r(2s+1)+ds
1 · C

− d
r(2s+1)+ds

2

·
(∫

[− log(n),log(n)]d
|bn(x) − an(x)|PX (dx)

) ds
r(2s+1)+ds · n− r(2s+1)

r(2s+1)+ds

+ C
ds

r(2s+1)+ds
1 · C

r
r(2s+1)+ds
2

·
(∫

[− log(n),log(n)]d
|bn(x) − an(x)|PX (dx)

) r(s+1)+ds
r(2s+1)+ds · n− rs

r(2s+1)+ds .

Assume that the distribution of (X , Y ) and m̄ change with increasing sample size and
that |bn(x) − an(x)| is the diameter of the support of the conditional distribution of ε̄

given X = x . Then, the error of our quantile estimate can converge to zero arbitrarily
fast in case that

∫
[− log(n),log(n)]d |bn(x) − an(x)|PX (dx) goes to zero fast enough. In

particular, the rate of convergence of our quantile estimate might be much better than
the well-known rate of convergence 1/

√
n of the simple quantile estimate (4), and

in case of imperfect models, it will also be better than the rate of convergence of the
surrogate quantile estimate.

Remark 5 The results in Remark 4 require that the parameters of the estimates (e.g.,
hn and Hn) are suitably chosen. A data-dependent way of choosing these parameters
in an application will be proposed in the next section, and by using simulated data,
it will be shown that in this case our newly proposed estimates outperform the other
estimates for finite sample size in the situations which we consider there.

4 Application to simulated and real data

In this section, we illustrate the finite sample size performance of our estimates by
applying them to simulated and real data. We start with an application to simulated
data, where we compare the simple order statistics estimate (est. 1) defined by (4) and
a surrogate quantile estimate (est. 2) defined by (6) (where we replace m̄ by m̂Ln and
evaluate this function on Nn x-values) with our newly proposed estimate based on
estimation of the conditional density (est. 3) as defined in Sect. 2.

In the implementation of est. 2 and est. 3, we use thin plate splines (with smoothing
parameter chosen by generalized cross-validation) as implemented by the routineTps()
of R in order to estimate a surrogate model for our computer experiment. Here, the
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implementation of the surrogate quantile estimate est. 2 computes a sample of size
Nn = 100,000 of m̂Ln (X) and estimates the quantile by the corresponding order
statistics.

In the implementation of our newly proposed est. 3, we use the naive kernel G(x) =
I[−1,1](x) and the Epanechnikov kernel K (y) = (3/4) · (1− y2)+ for the conditional
density estimate

ĝε̂|X (y, x) =
∑n

i=1 G
( ‖x−Xi ‖

H

)
· K
(

y−(Yi −m̂Ln (Xi ))

h

)

h ·∑n
j=1 G

( ‖x−X j ‖
H

) .

Here, the bandwidths h and H are chosen in a data-dependent way from the sets

Ph =
{
2 · 2−l · IQR(Y1 − m̂Ln (X1), . . . , Yn − m̂Ln (Xn)) : l ∈ {0, 1, . . . , 4}

}

and

PH =
{
2 · 2−l · IQR(X1, . . . , Xn) : l ∈ {0, 1, . . . , 4}

}
,

where IQR denotes an interquartile range, i.e., the distance between 25th and 75th per-
centiles. To do this, we use the famous combinatorial method for bandwidth selection
of the kernel density estimate introduced in Devroye and Lugosi (2001), which aims
at choosing a bandwidth which minimizes the L1 error. Here, we apply a variant of
this method for conditional density estimation introduced and described in Bott and
Kohler (2016). To do this, we choose the bandwidths by minimizing

max
h1,h2∈Ph ,
H1,H2∈PH

∣∣∣∣∣∣
1

nt

n∑
i=nl+1

∫

Ai (h1,H1,h2,H2)

ĝ(nl ,(h,H)

ε̂|X (y, Xi ) dy

− 1

nt
·

n∑
i=nl+1

IAi (h1,H1,h2,H2)(Yi )

∣∣∣∣∣∣

with respect to h ∈ Ph and H ∈ PH , where nl = 
n/2�, nt = n − nl ,

ĝ(nl ,(h,H))

ε̂|X (y, x) =
∑nl

i=1 G
( ‖x−Xi ‖

H

)
· K
(

y−(Yi −m̂Ln (Xi ))

h

)

h ·∑nl
j=1 G

( ‖x−X j ‖
H

)

and

Ai (h1, H1, h2, H2) =
{

y ∈ R : ĝ(nl ,(h1,H1))

ε̂|X (y, Xi ) > ĝ(nl ,(h2,H2))

ε̂|X (y, Xi )
}

.
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In the implementation of this method, we approximate the integral

∫

Ai (h1,H1,h2,H2)

ĝ(nl ,(h,H)

ε̂|X (y, Xi ) dy

by a Rieman sum based on an equidistant grid of

[
min{Y1 − m̂Ln (X1), . . . , Yn − m̂Ln (Xn)} − max

h∈Ph

h,

max{Y1 − m̂Ln (X1), . . . , Yn − m̂Ln (Xn)} + max
h∈Ph

h

]

consisting of 200 grid points (which enables an “efficient” implementation of the above
minimization problem by first computing of ĝ(nl ,(h,H)

ε̂|X (y, Xi ) for all grid points y, all
h ∈ Ph , all H ∈ PH and all i = nl + 1, . . . , n). After the computation of ĝε|X , we
use the inversion method to generate random variables with the conditional density
ĝε|X (·, Xi ). Here, we do not have to consider values outside of the above interval,
since our density estimate is zero outside of this interval. In order to implement the
inversion method, we discretize the corresponding conditional cumulative distribution
function

Ĝ ε̂|X (y, Xi ) =
∫ y

−∞
ĝε̂|X (z, Xi ) dz

=
∑nl

i=1 G
( ‖x−Xi ‖

H

)
· ∫ y

−∞ K
(

z−(Yi −m̂Ln (Xi ))

h

)
dz

h ·∑nl
j=1 G

( ‖x−X j ‖
H

)

by considering only its values on an equidistant grid of

[
min{Y1 − m̂Ln (X1), . . . , Yn − m̂Ln (Xn)} − h,

max{Y1 − m̂Ln (X1), . . . , Yn − m̂Ln (Xn)} + h
]

consisting of 1000 points, and by approximating the above integral by a Rieman sum
corresponding to this grid. This enables again an “efficient” computation of the values
of the conditional empirical cumulative distribution function by computing in advance

K

(
z − (Yi − m̂Ln (Xi ))

h

)

for all grid points z and all i = 1, . . . , n. Using so computed values of the random
variables, we compute a sample of size Nn = 100,000 of Y and estimate the quantile
by the corresponding order statistics.

We compare the above three estimates in the regression model

Y = m(X) + ε,
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where X is a standard normally distributed random variable,

m(x) = exp(x) (x ∈ R)

and the conditional distribution of ε given X is normally distributed with mean zero
and standard deviation

σ(X) = σ · (0.25 + X · (1 − X)) .

Here, σ > 0 is a parameter of our distribution for which we allow the values 0.5, 1
and 2. Furthermore, we assume that our simulation model is based on the function

m̄(x) = m(x) − δ = exp(x) − δ (x ∈ R),

where δ ∈ R is the constant model error of our model for which we consider the values
0 (i.e., no error) and 1 (i.e., negative error). Here, we consider a negative value for the
model error, since the surrogate quantile estimate tends to underestimate the quantile
in the above example, so that a positive error might accidentally improve the surrogate
quantile estimate.

Weapply our estimates to samples of sizen ∈ {20, 50, 100}of (X , Y ) and Ln = 500
of (X , m̄(X)), and use them to estimate quantiles of order α = 0.95 and α = 0.99.

In order to judge the errors of our quantile estimate, we use a simple order statistics
with sample size 1,000,000 applied to a sample of Y as a reference value for the
(unknown) quantile qY ,α and compute the relative errors

|q̂Y ,α − qY ,α|
qY ,α

.

Of course, our estimates q̂Y ,α and hence also the above relative errors depend on
the random samples selected above, and hence are random. Therefore, we repeat the
computation of the above error 100 times with newly generated independent samples
and report the median and the interquartile ranges of the 100 errors in each of the
considered cases for α, σ , δ and n, which results in errors for 2 ·3 ·2 ·3 = 36 different
situations. The values we obtained in case α = 0.95 and in case α = 0.99 are reported
in Tables 1 and 2, respectively.

Looking at the results in Tables 1 and 2, we see that our newly proposed estimate
outperforms the order statistics estimate in all 36 settings of the simulations. Further-
more, it outperforms the surrogate quantile estimates whenever the model error is not
zero, and also in case of themodel error being zerowhenever σ is large. There are a few
cases with small σ value and zero model error where the surrogate quantile estimate
is better than our newly proposed estimate, but in this case the difference between the
errors is not large in contrast to the improvement of the error of the surrogate quantile
estimate by our newly proposed estimate in most of the other cases.

Finally, we illustrate the usefulness of our newly proposed method for uncertainty
quantification by using it in analysis of the uncertainty occurring in experiments with
the suspension strut in Fig. 1(left) described in Introduction. We use the results of
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Table 1 Simulation results in case α = 0.95. Reported are the median (and in brackets the interquartile
range) of the 100 relative errors for each of our three estimates

n σ δ est. 1 est. 2 est. 3

20 0.5 0 0.2876 (0.2315) 0.0181 (0.0071) 0.0242 (0.0285)

20 0.5 1 0.2971 (0.3107) 0.2066 (0.0084) 0.0254 (0.0458)

20 1 0 0.2911 (0.2617) 0.0950 (0.0078) 0.0902 (0.0690)

20 1 1 0.2990 (0.2844) 0.2679 (0.0081) 0.0844 (0.0869)

20 2 0 0.3511 (0.2645) 0.2771 (0.0070) 0.1804 (0.1572)

20 2 1 0.3082 (0.3147) 0.4158 (0.0070) 0.1816 (0.1514)

50 0.5 0 0.1595 (0.1638) 0.0182 (0.0085) 0.0275 (0.0360)

50 0.5 1 0.2058 (0.2209) 0.2069 (0.0089) 0.0224 (0.0360)

50 1 0 0.1579 (0.1584) 0.0941 (0.0079) 0.0882 (0.0815)

50 1 1 0.2095 (0.2378) 0.2684 (0.0074) 0.0768 (0.0830)

50 2 0 0.2361 (0.3509) 0.2757 (0.0061) 0.1316 (0.1902)

50 2 1 0.2808 (0.2220) 0.4155 (0.0068) 0.1428 (0.1550)

100 0.5 0 0.1210 (0.1312) 0.0162 (0.0079) 0.0219 (0.0303)

100 0.5 1 0.1260 (0.1480) 0.2063 (0.0093) 0.0211 (0.0371)

100 1 0 0.1269 (0.1574) 0.0930 (0.0084) 0.0647 (0.0796)

100 1 1 0.1590 (0.1721) 0.2679 (0.0078) 0.0732 (0.0735)

100 2 0 0.1269 (0.1835) 0.2760 (0.0060) 0.0922 (0.0902)

100 2 1 0.1799 (0.1870) 0.4167 (0.0061) 0.1143 (0.1238)

Bold values represent the smallest error in each row

Ln = 500 computer experiments to construct a surrogate estimate m̂Ln as described
above, andwe apply themethod proposed in Sect. 2 to compute the conditional density
of the residuals. To do this, we choose as described above the bandwidths h and H
from the sets

Ph = {0.000766, 0.000383, 0.000191, 0.000096, 0.000048}

and

PH = {0.0174, 0.0087, 0.0043, 0.0022, 0.0011}

by using the combinatorial method of Bott and Kohler (2016). This results in h =
0.000191 and H = 0.0043. As described above, we use the corresponding density
estimate together with the surrogate model to generate an approximate sample of size
100,000 of Y and estimate the α = 0.95 quantile of Y by the corresponding order
statistics, which results in the estimate 0.0855. In contrast, the simple order statistics
estimate of the quantile based only on the n = 20 experimental data points yields the
smaller value 0.0849.
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Table 2 Simulation results in case α = 0.99. Reported are the median (and in brackets the interquartile
range) of the 100 relative errors for each of our three estimates

n σ δ est. 1 est. 2 est. 3

20 0.5 0 0.4711 (0.3179) 0.0149 (0.0127) 0.0210 (0.0224)

20 0.5 1 0.4030 (0.3437) 0.1122 (0.0146) 0.0523 (0.0918)

20 1 0 0.4430 (0.4022) 0.1125 (0.0124) 0.1102 (0.0286)

20 1 1 0.4142 (0.3468) 0.1995 (0.0128) 0.1284 (0.1059)

20 2 0 0.5208 (0.4348) 0.3601 (0.0125) 0.3388 (0.1051)

20 2 1 0.5321 (0.3556) 0.4223 (0.0100) 0.3569 (0.1328)

50 0.5 0 0.3172 (0.3565) 0.0160 (0.0159) 0.0224 (0.0425)

50 0.5 1 0.2518 (0.2873) 0.1122 (0.0150) 0.0291 (0.0643)

50 1 0 0.3137 (0.2480) 0.1140 (0.0177) 0.1197 (0.0787)

50 1 1 0.3490 (0.3389) 0.2009 (0.0138) 0.1211 (0.1055)

50 2 0 0.3059 (0.3802) 0.3578 (0.0107) 0.2475 (0.2130)

50 2 1 0.2993 (0.4137) 0.4215 (0.0094) 0.2556 (0.2473)

100 0.5 0 0.2439 (0.2368) 0.0135 (0.0136) 0.0275 (0.0422)

100 0.5 1 0.2120 (0.3256) 0.1130 (0.0191) 0.0390 (0.0476)

100 1 0 0.2125 (0.3053) 0.1114 (0.0152) 0.1085 (0.0925)

100 1 1 0.2457 (0.2612) 0.1986 (0.0164) 0.0978 (0.0886)

100 2 0 0.2644 (0.2248) 0.3608 (0.0107) 0.1785 (0.1993)

100 2 1 0.2544 (0.3104) 0.4214 (0.0110) 0.1686 (0.2273)

Bold values represent the smallest error in each row

5 Proofs

5.1 Estimation of quantiles on the basis of conditional density estimates

Let (X , Y ), (X1, Y1), (X2, Y2), …be independent and identically distributed Rd ×R-
valued random vectors and let m̄ : Rd → R be a measurable function. Assume that
the conditional distribution of ε̄ = Y − m̄(X) given X has the density gε̄|X (·, X) :
R×R → R with respect to the Lebesgue–Borel measure, where gε̄|X : R×R

d → R

is measurable. Let n, Ln, Nn ∈ N and set

Dn = {(X1, Y1), . . . , (Xn, Yn), (Xn+1, m̄(Xn+1)), . . . , (Xn+Ln , m̄(Xn+Ln ))}.

Let m̂Ln (·) = m̂Ln (·,Dn) : Rd → R and let

ĝε̂|X (·, ·) = ĝε̂|X (·, ·,Dn) : R × R
d → R

be a measurable function satisfying

ĝε̂|X (y, x) ≥ 0 for all y ∈ R, x ∈ R
d .
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Let U , U1, U2, …be independent random variables which are uniformly distributed
on (0, 1) and which are independent of (X , Y ), (X1, Y1), …and set

ε̂ = inf

{
y ∈ R :

∫ y

−∞
ĝε̂|X (z, X) dz ≥ U

}

and

ε̂i = inf

{
y ∈ R :

∫ y

−∞
ĝε̂|X (z, Xi ) dz ≥ Ui

}
(i ∈ N).

Set

Ŷ = m̂Ln (X) + ε̂ and

Ŷi = m̂Ln (Xi ) + ε̂i (i ∈ {n + Ln + 1, n + Ln + 2, . . . , n + Ln + Nn}).

For α ∈ (0, 1) set

qY ,α = min {y ∈ R : GY (y) ≥ α} ,

where

GY (y) = P{Y ≤ y},

and

q̂Ŷ ,Nn ,α
= min

{
y ∈ R : ĜŶ ,Nn

(y) ≥ α
}

,

where

ĜŶ ,Nn
(y) = 1

Nn

Nn∑
i=1

I{Ŷn+Ln+i ≤y}.

Lemma 1 Let α ∈ (0, 1), n ∈ N and Ln, Nn ∈ N and define the estimate q̂Y ,Nn ,α of
qY ,α as above. Assume that ĝε̂|X satisfies

ĝε̂|X (y, x) ≥ 0 (y ∈ R, x ∈ R
d) and

∫

R

ĝε̂|X (y, x) dy ≤ 1 (x ∈ R
d). (15)

Let εn, δn, ηn, en > 0 be such that

GY (qY ,α + en − ((log n) · εn)
1/3) − GY (qY ,α) > ((log n) · εn)1/3

+
√
log Nn

Nn
+ (log n) · δn + (log n) · ηn (16)
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and

GY (qY ,α) − GY (qY ,α − en + ((log n) · εn)
1/3) > ((log n) · εn)1/3

+
√
log Nn

Nn
+ (log n) · δn + (log n) · ηn . (17)

Then

P
{∣∣q̂Y ,Nn ,α − qY ,α

∣∣ > en
}

≤ P

{
1

Nn

Nn∑
i=1

|m̂n(Xn+Ln+i ) − m̄(Xn+Ln+i )|2 > (log n) · εn

}

+P
{∫

Rd

∫

R

|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx) > (log n) · δn

}

+P
{
P
{∫

R

ĝε̂|X (z, X) dz �= 1
∣∣Dn

}
> (log n) · ηn

}
+ 2

N 2
n
.

Proof Set

Ȳ = m̄(X) + ε̂, Ȳi = m̄(Xi ) + ε̂i (i ∈ N),

GȲ (y) = P{Ȳ ≤ y|Dn} and ĜȲ ,Nn
(y) = 1

Nn

Nn∑
i=1

I{Ȳn+Ln+i ≤y}.

By the Dvoretzky–Kiefer–Wolfowitz inequality [cf., Massart (1990)] applied condi-
tionally on Dn we get

P

{
sup
y∈R

∣∣∣GȲ (y) − ĜȲ ,Nn
(y)

∣∣∣ >
√
log Nn

Nn

}
≤ 2 · exp

(
−2 · Nn · log Nn

Nn

)
= 2

N 2
n
.

Since

P
{∣∣q̂Y ,Nn ,α − qY ,α

∣∣ > en
}

≤ P

⎧⎨
⎩
∣∣q̂Y ,Nn ,α − qY ,α

∣∣ > en,
1

Nn

Nn∑
i=1

|m̂Ln (Xn+Ln+i ) − m̄(Xn+Ln+i )|2 ≤ (log n) · εn,

∫

Rd

∫

R

|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx) ≤ (log n) · δn,

P
{∫

R

ĝε̂|X (z, X) dz �= 1
∣∣Dn

}
≤ (log n) · ηn, sup

y∈R

∣∣∣GȲ (y) − ĜȲ ,Nn
(y)

∣∣∣ ≤
√
log Nn

Nn

}

+P

⎧
⎨
⎩

1

Nn

Nn∑
i=1

|m̂Ln (Xn+Ln+i ) − m̄(Xn+Ln+i )|2 > (log n) · εn

⎫
⎬
⎭
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+P
{∫

Rd

∫

R

|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx) > (log n) · δn

}

+P
{
P
{∫

R

ĝε̂|X (z, X) dz �= 1
∣∣Dn

}
> (log n) · ηn

}

+P

{
sup
y∈R

∣∣∣GȲ (y) − ĜȲ ,Nn
(y)

∣∣∣ >
√
log Nn

Nn

}
,

it suffices to show that

1

Nn

Nn∑
i=1

|m̂Ln (Xn+Ln+i ) − m̄(Xn+Ln+i )|2 ≤ (log n) · εn, (18)

∫

Rd

∫

R

|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx) ≤ (log n) · δn, (19)

P
{∫

R

ĝε̂|X (z, X) dz �= 1
∣∣Dn

}
≤ (log n) · ηn, (20)

and

sup
y∈R

∣∣∣GȲ (y) − ĜȲ ,Nn
(y)

∣∣∣ ≤
√
log Nn

Nn
(21)

imply ∣∣q̂Y ,Nn ,α − qY ,α

∣∣ ≤ en . (22)

By the definition of q̂Y ,Nn ,α , we know that (22) is implied by

ĜŶ ,Nn
(qY ,α + en) ≥ α (23)

and
ĜŶ ,Nn

(qY ,α − en) < α, (24)

so it suffices to show that (18)–(21) imply (23) and (24), what we do next.
So assume from now on that (18)–(21) hold. Before we start with the proof of (23)

we show

sup
y∈R

|GY (y) − GȲ (y)|

≤
∫

Rd

∫

R

|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx) + (log n) · ηn . (25)

Indeed, we observe first

GY (y) = P{Y ≤ y}
= E

{
P
{
m̄(X) + ε̄ ≤ y

∣∣X}}

= E
{
P
{
ε̄ ≤ y − m̄(X)

∣∣X}}
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= E

{∫ y−m̄(X)

−∞
gε̄|X (z, X) dz

}

=
∫

Rd

∫ y−m̄(x)

−∞
gε̄|X (z, x) dz PX (dx)

=
∫

Rd

∫ y

−∞
gε̄|X (z − m̄(x), x) dz PX (dx).

Furthermore, we have

GȲ (y)

= E
{
P
{
ε̂ ≤ y − m̄(X)

∣∣X ,Dn
} ∣∣Dn

}

= E
{

I{∫
R

ĝε̂|X (u,X) du=1} · P {ε̂ ≤ y − m̄(X)
∣∣X ,Dn

}

+ I{∫
R

ĝε̄|X (u,X) du �=1} · P {ε̂ ≤ y − m̄(X)
∣∣X ,Dn

} ∣∣Dn

}

= E

{
I{∫

R
ĝε̂|X (u,X) du=1} ·

∫ y−m̄(X)

−∞
ĝε̂|X (z, X) dz

+ I{∫
R

ĝε̂|X (u,X) du �=1} · P {ε̂ ≤ y − m̄(X)
∣∣X ,Dn

} ∣∣Dn

}

=
∫

Rd

∫ y

−∞
ĝε̂|X (z − m̄(x), X) dz PX (dx)

+E
{

I{∫
R

ĝε̂|X (u,X) du �=1}

·
(
P
{
ε̂ ≤ y − m̄(X)

∣∣X ,Dn
}−

∫ y−m̄(X)

−∞
ĝε̂|X (z, X) dz

) ∣∣Dn

}
.

Since we have∣∣∣∣∣P
{
ε̂ ≤ y − m̄(X)

∣∣X}−
∫ y−m̄(X)

−∞
ĝε̂|X (z, X) dz

∣∣∣∣∣ ≤ 1 a.s.,

which follows from assumption (15)) and which implies
∣∣∣∣∣E
{

I{∫
R

ĝε̂|X (u,X) du �=1} ·
(
P
{
ε̂ ≤ y − m̄(X)

∣∣X ,Dn
}−

∫ y−m̄(X)

−∞
ĝε̂|X (z, X) dz

) ∣∣Dn

}∣∣∣∣∣

≤ P
{∫

R

ĝε̂|X (z, X) dz �= 1
∣∣Dn

}
≤ (log n) · ηn,

and

sup
y∈R

∣∣∣∣
∫

Rd

∫ y

−∞
gε̄|X (z − m̄(x), x) dz PX (dx) −

∫

Rd

∫ y

−∞
ĝε̂|X (z − m̄(x), x) dz PX (dx)

∣∣∣∣

≤ sup
y∈R

∫

Rd

∫ y

−∞
|gε̄|X (z − m̄(x), x) − ĝε̂|X (z − m̄(x), x)| dz PX (dx)
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=
∫

Rd

∫

R

|gε̄|X (z − m̄(x), x) − ĝε̂|X (z − m̄(x), x)| dz PX (dx)

=
∫

Rd

∫

R

|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx)

this implies (25).
Next we prove (23). Using (18), (21), (25) and (19), we get

ĜŶ ,Nn
(qY ,α + en)

≥ 1

Nn

Nn∑
i=1

I{
Ŷn+Ln+i ≤qY ,α+en ,|Ŷn+Ln+i −Ȳn+Ln+i |≤((log n)·εn)1/3

}

≥ 1

Nn

Nn∑
i=1

I{
Ȳn+Ln+i ≤qY ,α+en−((log n)·εn)1/3,|Ŷn+Ln+i −Ȳn+Ln+i |≤((log n)·εn)1/3

}

≥ 1

Nn

Nn∑
i=1

I{Ȳn+Ln+i ≤qY ,α+en−((log n)·εn)1/3
}

− 1

Nn

Nn∑
i=1

I{|Ŷn+Ln+i −Ȳn+Ln+i |>((log n)·εn)1/3
}

≥ 1

Nn

Nn∑
i=1

I{Ȳn+Ln+i ≤qY ,α+c·en−((log n)·εn)1/3
} − 1

Nn

Nn∑
i=1

|Ŷn+Ln+i − Ȳn+Ln+i |2
((log n) · εn)2/3

= 1

Nn

Nn∑
i=1

I{Ȳn+Ln+i ≤qY ,α+c·en−((log n)·εn)1/3
}

− 1

((log n) · εn)2/3
· 1

Nn

Nn∑
i=1

|m̂Ln (Xn+Ln+i ) − m̄(Xn+Ln+i )|2

≥ ĜȲ ,Nn
(qY ,α + en − ((log n) · εn)

1/3) − ((log n) · εn)
1/3

≥ GȲ (qY ,α + en − ((log n) · εn)1/3) − ((log n) · εn)1/3

− sup
y∈R

∣∣∣GȲ (y) − ĜȲ ,Nn
(y)

∣∣∣

≥ GȲ (qY ,α + en − ((log n) · εn)1/3) − ((log n) · εn)1/3 −
√
log Nn

Nn

≥ GY (qY ,α + en − ((log n) · εn)1/3) − ((log n) · εn)1/3

−
√
log Nn

Nn
− sup

y∈R
|GY (y) − GȲ (y)|

≥ GY (qY ,α + en − ((log n) · εn)1/3) − ((log n) · εn)1/3
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−
√
log Nn

Nn
− (log n) · δn − (log n) · ηn

> GY (qY ,α) = α,

where the last inequality follows from (16).
In the same way, we argue that

ĜŶ ,Nn
(qY ,α − en)

≤ GY (qY ,α − en + ((log n) · εn)
1/3) + ((log n) · εn)

1/3 +
√
log Nn

Nn
+ (log n) · δn

+ (log n) · ηn

< α,

which finishes the proof. ��

5.2 A bound on the L1 error of a conditional density estimate

Lemma 2 Let (X , Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically dis-
tributedRd ×R-valued random vectors. Assume that the conditional distributionPY |X
of Y given X has the density gY |X (·, X) : R → R with respect to the Lebesgue–Borel
measure, where

gY |X : R × R
d → R

is a measurable function which satisfies

|gY |X (y, x1) − gY |X (y, x2)| ≤ C1 · ‖x1 − x2‖r for all x1, x2 ∈ R
d , y ∈ R, (26)

and
|gY |X (u, x) − gY |X (v, x)| ≤ C2 · |u − v|s for all u, v ∈ R, x ∈ R

d (27)

for some r , s ∈ (0, 1] and some C1, C2 > 0. Let γn > 0. For x ∈ R
d let −∞ <

an(x) ≤ bn(x) < ∞ be such that

∫

[−γn ,γn ]d
|bn(x) − an(x)|PX (dx) < ∞. (28)

Set G = I[−1,1] and let K : R → R be a density satisfying

∫

R

K 2(z) dz < ∞ and
∫

R

K (z) · |z|sdz < ∞.

123



Estimating quantiles in imperfect simulation models 147

Let hn, Hn > 0 be such that 2 · √
d · γn ≥ Hn, and set

ĝY |X (y, x) =
∑n

i=1 G
( ‖x−Xi ‖

Hn

)
· K
(

y−Yi
hn

)

hn ·∑n
j=1 G

( ‖x−X j ‖
Hn

) , (29)

where 0
0 := 0. Then

E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
∣∣ĝY |X (y, x) − gY |X (y, x)

∣∣ dy PX (dx)

≤ c1 ·
⎛
⎝
√∫

[−γn ,γn ]d |bn(x) − an(x)|PX (dx) · γ d
n

n · Hd
n · hn

+ γ d
n

n · Hd
n

+
∫

[−γn ,γn ]d
|bn(x) − an(x)|PX (dx) · (C1 · Hr

n + C2 · hs
n

))
,

where the constant

c1 = max

{
1,

√
2 · (4 · √d)d ·

∫
K 2(z) dz, (4 · √

d)d ,

∫
K (z) · |z|sdz

}

does not depend on P(X ,Y ), C1 or C2.

In the proof, we will need the following well-known auxiliary result:

Lemma 3 Let n ∈ N, let Hn, γn > be such that 2 · √
d · γn ≥ Hn, and let X be an

R
d-valued random variable. Then, it holds:

∫

[−γn ,γn ]d

1

n · PX (SHn (x))
PX (dx) ≤ (4 · √

d)d · γ d
n

n · Hd
n

.

Proof The assertion follows from the proof of equation (5.1) in Györfi et al. (2002), a
complete proof is available from the authors on request. ��
Proof of Lemma 2 By triangle inequality, we have

E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
∣∣ĝY |X (y, x) − gY |X (y, x)

∣∣ dy PX (dx)

≤ E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
∣∣ĝY |X (y, x) − E{ĝY |X (y, x)|Xn

1 }
∣∣ dy PX (dx)

+E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
∣∣E{ĝY |X (y, x)|Xn

1 } − gY |X (y, x)
∣∣ dy PX (dx).

(30)
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In the first step of the proof, we show

E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
∣∣ĝY |X (y, x) − E{ĝY |X (y, x)|Xn

1 }
∣∣ dy PX (dx)

≤
√
2 · (4 · √

d)d ·
∫

K 2(z) dz ·
√∫

[−γn ,γn ]d |bn(x) − an(x)|PX (dx) · γ d
n

n · Hd
n · hn

.

(31)

The inequality of Cauchy–Schwarz implies

E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
∣∣ĝY |X (y, x) − E{ĝY |X (y, x)|Xn

1 }
∣∣ dy PX (dx)

= E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
E
{
1 · ∣∣ĝY |X (y, x) − E{ĝY |X (y, x)|Xn

1 }
∣∣
∣∣∣Xn

1

}
dy PX (dx)

≤ E

√∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
E
{
12
∣∣Xn

1

}
dy PX (dx)

·E
√∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
E
{∣∣ĝY |X (y, x) − E{ĝY |X (y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}
dy PX (dx)

≤
√∫

[−γn ,γn ]d
|bn(x) − an(x)|PX (dx)

·
√
E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
E
{∣∣ĝY |X (y, x) − E{ĝY |X (y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}
dy PX (dx),

hence it suffices to show

E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
E
{∣∣ĝY |X (y, x) − E{ĝY |X (y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}
dy PX (dx)

≤ 2 · (4 · √
d)d ·

∫
K 2(z) dz · γ d

n

n · Hd
n · hn

. (32)

To show this, we observe first that the independence of the data implies

E
{∣∣ĝY |X (y, x) − E{ĝY |X (y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}

= E

⎧⎪⎨
⎪⎩

∣∣∣∣∣∣

∑n
i=1 G

( ‖x−Xi ‖
Hn

)
·
(

K
(

y−Yi
hn

)
− E

{
K
(

y−Yi
hn

) ∣∣∣Xi

})

hn ·∑n
j=1 G

( ‖x−X j ‖
Hn

)
∣∣∣∣∣∣

2 ∣∣∣Xn
1

⎫⎪⎬
⎪⎭

=
∑n

i=1 G
( ‖x−Xi ‖

Hn

)2 · E
{∣∣∣K

(
y−Yi

hn

)
− E

{
K
(

y−Yi
hn

) ∣∣∣Xi

}∣∣∣
2 ∣∣∣Xi

}

h2
n ·
(∑n

j=1 G
( ‖x−X j ‖

Hn

))2
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≤
∑n

i=1 G
( ‖x−Xi ‖

Hn

)2 · E
{∣∣∣K

(
y−Yi

hn

)∣∣∣
2 ∣∣∣Xi

}

h2
n ·
(∑n

j=1 G
( ‖x−X j ‖

Hn

))2

=
∑n

i=1 G
( ‖x−Xi ‖

Hn

)
· ∫

R
K 2
(

y−u
hn

)
· gY |X (u, Xi ) du

h2
n ·
(∑n

j=1 G
( ‖x−X j ‖

Hn

))2 .

Hence,

E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
E
{∣∣ĝY |X (y, x) − E{ĝY |X (y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}
dy PX (dx)

≤ E
∫

[−γn ,γn ]d

∑n
i=1 G

( ‖x−Xi ‖
Hn

)
· ∫

R

∫
R

K 2
(

y−u
hn

)
dy · gY |X (u, Xi ) du

h2
n ·
(∑n

j=1 G
( ‖x−X j ‖

Hn

))2 PX (dx)

= E
∫

[−γn ,γn ]d

∑n
i=1 G

( ‖x−Xi ‖
Hn

)
· ∫

R
K 2 (z) dz · hn · ∫

R
gY |X (u, Xi ) du

h2
n ·
(∑n

j=1 G
( ‖x−X j ‖

Hn

))2 PX (dx)

=
∫

K 2 (z) dz

hn
· E
⎧⎨
⎩

I[−γn ,γn ]d (X)

∑n
j=1 G

( ‖X−X j ‖
Hn

) · I{∑n
j=1 G

( ‖X−X j ‖
Hn

)
>0
}

⎫⎬
⎭ .

Application of Lemma 4.1 in Györfi et al. (2002) and Lemma 3 yields

E

⎧⎨
⎩

I[−γn ,γn ]d (X)

∑n
j=1 G

( ‖X−X j ‖
Hn

) · I{∑n
j=1 G

( ‖X−X j ‖
Hn

)
>0
}

⎫⎬
⎭

≤
∫

[−γn ,γn ]d

2

(n + 1) · PX (SHn (x))
PX (dx) ≤ 2 · (4 · √

d)d · γ d
n

n · Hd
n

,

which completes the proof of (32).
In the second step of the proof, we show

E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
∣∣E{ĝY |X (y, x)|Xn

1 } − gY |X (y, x)
∣∣ dy PX (dx).

≤ (4 · √
d)d · γ d

n

n · Hd
n

+
∫

[−γn ,γn ]d
|bn(x) − an(x)|PX (dx) · C1 · Hr

n

+
∫

K (z) · |z|sdz ·
∫

[−γn ,γn ]d
|bn(x) − an(x)|PX (dx) · C2 · hs

n . (33)
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Using the independence of the data and arguing similar as in the proof of inequality
(32), we get

E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
∣∣E{ĝY |X (y, x)|Xn

1 } − gY |X (y, x)
∣∣ dy PX (dx)

= E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]

∣∣∣∣∣∣

∑n
i=1 G

( ‖x−Xi ‖
Hn

)
· ∫

R
K
(

y−u
hn

)
· gY |X (u, Xi ) du

hn ·∑n
j=1 G

( ‖x−X j ‖
Hn

)

− gY |X (y, x)
∣∣ dy PX (dx)

= E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
I{∑n

j=1 G
( ‖x−X j ‖

Hn

)
=0
}gY |X (y, x) dy PX (dx)

+E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]

∣∣∣∣∣∣
n∑

i=1

G
( ‖x−Xi ‖

Hn

)

∑n
j=1 G

( ‖x−X j ‖
Hn

)

·
∫

R

1

hn
· K

(
y − u

hn

)
· (gY |X (u, Xi ) − gY |X (y, x)) du

∣∣∣∣ dy PX (dx)

≤
∫

[−γn ,γn ]d
P

⎧⎨
⎩

n∑
j=1

G

(‖x − X j‖
Hn

)
= 0

⎫⎬
⎭PX (dx)

+E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]

∣∣∣∣∣∣
n∑

i=1

G
( ‖x−Xi ‖

Hn

)

∑n
j=1 G

( ‖x−X j ‖
Hn

)

·
∫

R

1

hn
· K

(
y − u

hn

)
· (gY |X (u, Xi ) − gY |X (y, x)) du

∣∣∣∣ dy PX (dx)

≤
∫

[−γn ,γn ]d

(
1 − PX (SHn (x))

)n PX (dx)

+E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]

n∑
i=1

G
( ‖x−Xi ‖

Hn

)

∑n
j=1 G

( ‖x−X j ‖
Hn

)

·
∫

R

1

hn
· K

(
y − u

hn

)
· |gY |X (u, Xi ) − gY |X (y, x))|du dy PX (dx).

By Lemma 3, we get

∫

[−γn ,γn ]d

(
1 − PX (SHn (x))

)n PX (dx)

≤ max
z∈R+

z · e−z ·
∫

[−γn ,γn ]d

1

n · PX (SHn (x))
PX (dx)

≤ (4 · √
d)d · γ d

n

n · Hd
n

.
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Furthermore, by triangle inequality and assumptions (26) and (27), which imply

|gY |X (u, Xi )−gY |X (y, x))| ≤ |gY |X (u, Xi )−gY |X (u, x)|+|gY |X (u, x)−gY |X (y, x)|
≤ C1 · ‖Xi − x‖r + C2 · |y − u|s

we get

E
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]

n∑
i=1

G
( ‖x−Xi ‖

Hn

)

∑n
j=1 G

( ‖x−X j ‖
Hn

)

·
∫

R

1

hn
· K

(
y − u

hn

)
· |gY |X (u, Xi ) − gY |X (y, x))|du dy PX (dx)

≤ E
∫

[−γn ,γn ]d

n∑
i=1

G
( ‖x−Xi ‖

Hn

)

∑n
j=1 G

( ‖x−X j ‖
Hn

) · C1 · ‖Xi − x‖r · |bn(x) − an(x)|PX (dx)

+
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]

∫

R

1

hn
· K

(
y − u

hn

)
· C2 · |u − y|s du dy PX (dx)

≤ C1 · Hr
n ·
∫

[−γn ,γn ]d
|bn(x) − an(x)|PX (dx)

+
∫

K (z) · |z|sdz · C2 · hs
n ·
∫

[−γn ,γn ]d
|bn(x) − an(x)|PX (dx).

Summarizing the above results we get the assertion. ��

5.3 Proof of Theorem 1

In the proof of Theorem 1, we will use Lemma 1, Lemma 2 and the following auxiliary
result from Bott et al. (2015).

Lemma 4 Let K : R → R be a symmetric and bounded density which is monotonically
decreasing on R+. Then, it holds

∫ ∣∣∣∣K
(

y − z1
hn

)
− K

(
y − z2

hn

)∣∣∣∣ dy ≤ 2 · K (0) · |z1 − z2|

for arbitrary z1, z2 ∈ R.

Proof See Lemma 1 in Bott et al. (2015). ��
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Proof of Theorem 1 By Lemma 1 and Markov inequality, it suffices to show

E

{
1

Nn

Nn∑
i=1

|m̂Ln (Xn+Ln+i ) − m̄(Xn+Ln+i )|2
}

≤ εn

4
, (34)

E
{∫

Rd

∫

R

|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx)

}
≤ δn

4
(35)

and

P
{∫

R

ĝε̂|X (z, X) dz �= 1

}
≤ ηn

4
. (36)

In the first step of the proof, we observe that (34) is a trivial consequence of the
independence of the data and the definition of εn .

In the second step of the proof, we show (35). In case
∑n

j=1 G
( ‖x−X j ‖

Hn

)
�= 0 we

have that ĝε̂|X (·, x) is a density, and we can conclude by the Lemma of Scheffé and
triangle inequality

∫

R

|ĝε̂|X (y, x) − gε̄|X (y, x)| dy

≤ 2 ·
∫

R

(
gε̄|X (y, x) − ĝε̂|X (y, x)

)
+ dy

≤ 2 ·
∫

[an(x),bn(x)]
(
gε̄|X (y, x)− ĝε̂|X (y, x)

)
+ dy + 2 ·

∫

[an(x),bn(x)]c
gε̄|X (y, x) dy

≤ 2 ·
∫

[an(x),bn(x)]
∣∣gε̄|X (y, x) − ĝε̂|X (y, x)

∣∣ dy + 2 ·
∫

[an(x),bn(x)]c
gε̄|X (y, x) dy.

In case
∑n

j=1 G
( ‖x−X j ‖

Hn

)
= 0, we have

ĝε̂|X (y, x) = 0 for all y ∈ R,

and the above sequence of inequalities does trivially hold.
Using this, we get

E
{∫

Rd

∫

R

|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx)

}

≤ 2 · E
{∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx)

}

+ 2 · PX (Rd\[−γn, γn]d) + 2 ·
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]c
gε̄|X (y, x) dy PX (dx)

≤ 2 · E
{∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
|ĝε̂|X (y, x) − ĝε̄|X (y, x)| dy PX (dx)

}
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+ 2 · E
{∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
|ĝε̄|X (y, x) − gε̄|X (y, x)| dy PX (dx)

}

+ 2 · PX (Rd\[−γn, γn]d) + 2 ·
∫

[−γn ,γn ]d

∫

[an(x),bn(x)]c
gε̄|X (y, x) dy PX (dx),

where

ĝε̄|X (y, x) =
∑n

i=1 G
( ‖x−Xi ‖

Hn

)
· K
(

y−(Yi −m̄(Xi ))
hn

)

hn ·∑n
j=1 G

( ‖x−X j ‖
Hn

) .}

Application of Lemma 4 yields

∫

[an(x),bn(x)]
|ĝε̂|X (y, x) − ĝε̄|X (y, x)| dy

≤
∑n

i=1 G
( ‖x−Xi ‖

Hn

)

hn ·∑n
j=1 G

( ‖x−X j ‖
Hn

) ·
∫

R

∣∣∣∣K
(

y − (Yi − m̂Ln (Xi ))

hn

)

− K

(
y − (Yi − m̄(Xi ))

hn

)∣∣∣∣ dy

≤ 2 · K (0) ·
∑n

i=1 G
( ‖x−Xi ‖

Hn

)
· |m̂Ln (Xi ) − m̄(Xi )|

hn ·∑n
j=1 G

( ‖x−X j ‖
Hn

)

≤ 2 · K (0)

hn
·

n∑
i=1

|m̂Ln (Xi ) − m̄(Xi )|(
1 +∑ j∈{1,...,n}\{i} G

( ‖x−X j ‖
Hn

)) |,

where the last inequality followed from the fact that G is the naive kernel. Using this
together with the independence of the data, Lemma 4.1 in Györfi et al. (2002) and
Lemma 3 we get

E
{∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
|ĝε̂|X (y, x) − ĝε|X (y, x)| dy PX (dx)

}

≤ 2 · K (0)

hn
·
∫

[−γn ,γn ]d

n∑
i=1

E

⎧⎨
⎩

1(
1 +∑ j∈{1,...,n}\{i} G

( ‖x−X j ‖
Hn

))
⎫⎬
⎭

·E
∫

Rd
|m̂Ln (x) − m̄(x)|PX (dx)

≤ 2 · K (0) · (4 · √
d)d · γ d

n

hn · Hd
n

· E
∫

Rd
|m̂Ln (x) − m̄(x)|PX (dx).

123



154 M. Kohler, A. Krzyżak

Application of Lemma 2 yields

E
{∫

[−γn ,γn ]d

∫

[an(x),bn(x)]
|ĝε̂|X (y, x) − gε̄|X (y, x)| dy PX (dx)

}

≤ c1 ·
⎛
⎝
√∫

[−γn ,γn ]d |bn(x) − an(x)|PX (dx) · γ d
n

n · Hd
n · hn

+ γ d
n

n · Hd
n

+
∫

[−γn ,γn ]d
|bn(x) − an(x)|PX (dx) · (C1 · Hα

n + C2 · hr
n

))
.

Summarizing the above results, the proof of (35) is complete.
In the third step of the proof, we show (36). As in the proof of Lemma 2, we get

P
{∫

R

ĝε̂|X (z, X) dz �= 1

}

= P

⎧
⎨
⎩

∑
j∈{1,...,n}

G

(‖X − X j‖
Hn

)
= 0

⎫
⎬
⎭

≤ P
{

X ∈ R
d\[−γn, γn]d

}
+ P

⎧⎨
⎩X ∈ [−γn, γn]d ,

∑
j∈{1,...,n}

G

(‖X − X j‖
Hn

)
= 0

⎫⎬
⎭

≤ P
{

X ∈ R
d\[−γn, γn]d

}
+ 2 · (4 · √

d)d · γ d
n

n · Hd
n

.

Summarizing the above results, the proof is complete. ��
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Kohler, M., Krzyżak, A. (2018). Adaptive estimation of quantiles in a simulation model. IEEE Transactions

on Information Theory, 64, 501–512.
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