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Abstract Quantile regression is a powerful complement to the usual mean regression
and becomes increasingly popular due to its desirable properties. In longitudinal stud-
ies, it is necessary to consider the intra-subject correlation among repeated measures
over time to improve the estimation efficiency. In this paper, we focus on longitudi-
nal single-index models. Firstly, we apply the modified Cholesky decomposition to
parameterize the intra-subject covariance matrix and develop a regression approach
to estimate the parameters of the covariance matrix. Secondly, we propose efficient
quantile estimating equations for the index coefficients and the link function based
on the estimated covariance matrix. Since the proposed estimating equations include
a discrete indicator function, we propose smoothed estimating equations for fast and
accurate computation of the index coefficients, as well as their asymptotic covari-
ances. Thirdly, we establish the asymptotic properties of the proposed estimators.
Finally, simulation studies and a real data analysis have illustrated the efficiency of
the proposed approach.

Keywords B-spline · Longitudinal data · Modified Cholesky decomposition ·
Quantile regression · Single-index models

1 Introduction

Single-index models are becoming increasingly popular due to its flexibility and
interpretability. They also can effectively overcome the problem of “curse of dimen-
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1164 J. Lv, C. Guo

sionality” through projecting multivariate covariates onto one-dimensional index
variate xT β. Longitudinal data frequently occur in the biomedical, epidemiologi-
cal, social, and economical fields. For longitudinal data, subjects are often measured
repeatedly over a given time period. Thus, observations from the same subject are
correlated and those from different subjects are often independent. The technique
of generalized estimating equation (GEE) proposed by Liang and Zeger (1986) is
widely used for longitudinal data. The GEE method produces consistent estimators
for the mean parameters through specifying a working structure. However, the main
drawback of GEE is that it may lead to a great loss of efficiency when the working
covariance structure ismisspecified. Thus, it is an interesting topic tomodel the covari-
ance structure. Recently, themodifiedCholesky decomposition has been demonstrated
to be effective for modeling the covariance structure. It not only permits more general
forms of the correlation structures, but also leads automatically to positive definite
covariance matrix. Ye and Pan (2006) utilized the modified Cholesky decomposition
to decompose the inverse of covariance matrix and proposed a joint mean–covariance
model for longitudinal data. Leng et al. (2010) constructed a semiparametric mean–
covariance model through relaxing the parametric assumption, which is more flexible.
Zhang and Leng (2012) used a new Cholesky factor to deal with the within-subject
structure by decomposing the covariance matrix rather than its inverse. Other related
references include Mao et al. (2011), Zheng et al. (2014), Liu and Zhang (2013), Yao
and Li (2013), and Liu and Li (2015).

In recent years, some statistical inference methods have been proposed for lon-
gitudinal single-index models. Xu and Zhu (2012) proposed a kernel GEE method.
Lai et al. (2012) presented the bias-corrected GEE estimation and variable selection
procedure for the index coefficients. Zhao et al. (2017) constructed a robust estima-
tion procedure based on quantile regression and a specific correlation structure (e.g.,
compound symmetry (CS) or the first-order autoregressive (AR(1)). All these articles
used some specific correlation structures when taking into account the within-subject
correlation. Thus, these methods may result in a loss of efficiency when the true cor-
relation structure is not correctly specified. Recently, Lin et al. (2016) developed a
new efficient estimation procedure for single-index models by combining the mod-
ified Cholesky decomposition and the local linear smoothing method. Motivated by
Leng et al. (2010), Guo et al. (2016) proposed a two-step estimation procedure for
single-index models based on the modified Cholesky decomposition and the GEE
method. The above two papers are built on mean regression, which is very sensitive
to outliers and heavy tail errors. In contrast with mean regression, quantile regres-
sion not only has the ability of describing the entire conditional distribution of the
response variable, but also can accommodate non-normal errors. Thus, it has emerged
as a powerful complement to the mean regression. Although the modified Cholesky
decomposition has been well studied for the mean regression models, it is lack of
analyzing longitudinal single-index quantile models. In this paper, we use the modi-
fied Cholesky decomposition to parameterize the within-subject covariance structure
and construct more efficient estimation procedure for the index coefficients and the
link function. Compared with existing research results, the new method has several
advantages. Firstly, the proposed method does not need to specify the working cor-
relation structure to improve the estimate efficiency. So our approach not only can
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Quantile estimations via modified Cholesky decomposition 1165

take the within-subject correlation into consideration, but also permits more general
forms of the covariance structures, which indicates that it is more flexible than most
of the existing methods. Secondly, since the proposed estimating equations include
the discrete quantile score function, we construct new smoothed estimating equations
for fast and accurate computation of the parameter estimates. Thirdly, the estimators
of the index coefficients and the link function are demonstrated to be asymptotically
efficient.

The rest of this article is organized as follows: In Sect. 2, within the framework
of independent working structure, we propose the quantile score estimating func-
tions for the index coefficients based on “remove–one–component” method, and the
corresponding theoretical properties are also given in this section. In Sect. 3, we
apply the modified Cholesky decomposition to decompose the within-subject covari-
ance matrix as moving average coefficients and innovation variances, which can be
estimated through constructing two estimating equations. In Sect. 4, more efficient
quantile estimating functions are derived based on the estimated covariance matrix.
In Sect. 5, extensive simulation studies are carried out to evaluate the finite sample
performance of the proposed method. In Sect. 6, we illustrate the proposed method
through a real data analysis. Finally, all the conditions and the proofs of the main
results are provided in “Appendix.”

2 Estimation procedure under the independent structure

Amarginal quantile single-indexmodel with longitudinal data has the following struc-
ture

Yi j = g0τ
(
XT

i jβ0τ

)
+ εi j,τ , i = 1, . . . , n, j = 1, . . . , mi ,

where Yi j = Y
(
ti j

) ∈ R is the j th measurement of the i th subject, X i j = X
(
ti j

) ∈
R

p, g0τ (·) is an unknown differentiable univariate link function, εi j,τ is the random
error term with an unspecified density function fi j (·) and P

(
εi j,τ < 0

) = τ for any
i , j and τ ∈ (0, 1), and β0τ is an unknown parameter vector which belongs to the
parameter space

Θ =
{
β = (

β1, . . . , βp
)T : ‖β‖ = 1, and the r th component is positive

}
,

where ‖·‖ is the Euclidean norm. Without loss of generality, we assume that the true
vector β has a positive component βr (otherwise, consider −β). For simplicity, we
omit τ from εi j,τ ,β0τ and g0τ (·) in the rest of this article, but we should remember

that they are τ -specific. Let Y i = (
Yi1, . . . , Yimi

)T , X i = (
X i1, . . . , X imi

)T , and

εi = (
εi1, . . . , εimi

)T . In this paper, we assume the number of measurements mi is
uniformly bounded for each i , which means that n and N (N = ∑n

i=1 mi ) have the
same order.

123



1166 J. Lv, C. Guo

2.1 Estimations of g0(·) and its first derivative g′
0(·)

B-spline is commonly used to approximate the nonparametric function for its efficient
in function approximation and numerical computation, which can refer to Ma and He
(2016), Guo et al. (2016), and Zhao et al. (2017). In this paper, we adopt B-spline basis
functions to approximate the unknown link function g0(·).We assume XT

i jβ is confined
in a compact set [a, b]. Consider a knot sequence with Nn interior knots, denoted by
ξ1 = · · · = a = ξq < ξq+1 < · · · < ξq+Nn < b = ξq+Nn+1 = · · · = ξ2q+Nn .

We set the B-spline basis functions as Bq(u) = (
B1,q(u), . . . , BJn ,q(u)

)T with the
order q (q ≥ 2) and Jn = Nn + q. We approximate the link function g0(u) by
g0 (u) ≈ Bq(u)T θ , where θ = (

θ1, . . . , θJn

)T is the spline coefficient vector. For a

given β, we can obtain the estimator θ̂ (β) of θ by minimizing the following objective
function

Ln (β; θ) =
n∑

i=1

mi∑
j=1

ρτ

(
Yi j − Bq

(
XT

i jβ
)T

θ

)
, (1)

where ρτ (u) = u {τ − I (u < 0)} is the quantile loss function. Then, the link function
g0(·) is estimated by the spline functions ĝ (u;β) = Bq(u)T θ̂ (β). Following Ma and
Song (2015), the estimator of g′

0(·) is defined by

ĝ′(u;β) =
Jn∑

s=1

B ′
s,q(u)θ̂s (β) =

Jn∑
s=2

Bs,q−1(u)ω̂s (β) ,

where ω̂s (β) = (q − 1)
{
θ̂s (β) − θ̂s−1 (β)

}/(
ξs+q−1 − ξs

)
for 2 ≤ s ≤ Jn . Thus,

wehave ĝ′(u;β) = Bq−1(u)T D1θ̂(β),where Bq−1(u) = (
Bs,q−1(u) : 2 ≤ s ≤ Jn

)T

is the (q − 1)th-order B-spline basis and

D1 = (q − 1) =

⎡
⎢⎢⎢⎢⎢⎣

−1
ξq+1−ξ2

1
ξq+1−ξ2

0 · · · 0

0 −1
ξq+2−ξ3

1
ξq+2−ξ3

· · · 0

...
...

. . .
. . .

...

0 0 · · · −1
ξNn+2q−1−ξNn+q

1
ξNn+2q−1−ξNn+q

⎤
⎥⎥⎥⎥⎥⎦

(Jn−1)×Jn

.

2.2 The profile-type estimating equations for β

The parameter space Θ means that β is on the boundary of a unit ball. Therefore,

g0
(
XT

i jβ
)
is non-differential at the point β. However, we must use the derivative

of g0
(
XT

i jβ
)
with respect to β when constructing the profile-type estimating equa-

tions. To solve the above problem, we employ “remove–one–component” method
(Cui et al. 2011) to transform the boundary of a unit ball in R

p to the interior in
R

p−1. Specifically, let β(r) = (
β1, . . . , βr−1, βr+1, . . . , βp

)T be a p − 1 dimen-
sional vector by removing the r th component βr in β. Then, β can be rewritten as
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Quantile estimations via modified Cholesky decomposition 1167

β = β(β(r)) =
(

β1, . . . , βr−1,
(
1 − ∥∥β(r)

∥∥2)1/2, βr+1, . . . , βp

)T

and β(r) belongs

to the parameter space

Θ(r) =
{
β(r) = (

β1, . . . , βr−1, βr+1, . . . , βp
)T :

∥∥∥β(r)
∥∥∥ < 1

}
.

So β is infinitely differentiable with respect to β(r) and the Jacobian matrix is

Jβ(r) = ∂β

∂β(r)
= (

ς1, . . . , ςp
)T

,

where ςr = −
(
1 − ∥∥β(r)

∥∥2)−1/2
β(r) and ςs (1 ≤ s ≤ p, s �= r) is a (p − 1)×1 unit

vector with sth component 1.
Motivated by the idea of GEE (Liang and Zeger 1986), together with the estima-

tors of g0(·) and g′
0(·), we construct the profile-type estimating equations for p − 1

dimensional vector β(r)

R
(
β(r)

)
=

n∑
i=1

JT
β(r) X̂

T
i Ĝ

′ (X iβ;β) Λiψτ

(
Y i − ĝ (X iβ;β)

) = 0, (2)

where Ĝ′ (X iβ;β) = diag
{

ĝ′ (XT
i1β;β

)
, . . . , ĝ′

(
XT

imi
β;β

)}
,ψτ (u) = I (u < 0)−

τ is the quantile score function,ψτ (ui ) = (
ψτ (ui1) , . . . , ψτ

(
uimi

))T , ĝ (Xiβ;β) =(
ĝ
(
XT

i1β;β
)
, . . . , ĝ

(
XT

imi
β;β

))T
, X̂ i =

(
X̂ i1, . . . , X̂ imi

)T
, X̂ i j = X i j −

Ê
(
X i j

∣∣∣XT
i jβ

)
and Ê

(
X i j

∣∣∣XT
i jβ

)
is the spline estimator of E

(
X i j

∣∣∣XT
i jβ0

)
. In

estimating Eq. (2), the term Λi = diag
{

fi1 (0) , . . . , fimi (0)
}
describes the disper-

sions in εi j . In some cases when fi j is difficult to estimate,Λi can be simply treated as
an identity matrix with a slight loss of efficiency (Jung 1996). We define the solution

of (2) as β̂(r) and then use the fact βr =
√
1 − ∥∥β(r)

∥∥2 to obtain β̂. The asymptotic

property of β̂ is given in Lemma 3 of “Appendix.”

2.3 Computational algorithm

Solving estimating Eq. (2) faces some interesting challenges due to the discontinuous
indicator function. To overcome the calculation difficulty, we approximate ψτ (·) by
a smooth function ψhτ (·) based on the idea of Wang and Zhu (2011). Define G (x) =∫

u<x K (u)du and Gh (x) = G
(
x
/

h
)
, where K (·) is a kernel function and h is

a positive bandwidth parameter. Then, we approximate ψτ

(
Yi j − ĝ

(
XT

i jβ;β
))

by

ψhτ

(
Yi j − ĝ

(
XT

i jβ;β
))

= 1 − Gh

(
Yi j − ĝ

(
XT

i jβ;β
))

− τ . Therefore, based on

the approximation, estimating Eq. (2) can be replaced by the following smoothed
estimating equations
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R̃
(
β(r)

)
=

n∑
i=1

JT
β(r) X̂

T
i Ĝ

′ (X iβ;β) Λiψhτ

(
Y i − ĝ (X iβ;β)

) = 0. (3)

We define the solution of (3) as β̃(r). Since (3) is nonlinear equation about β(r), the
Fisher–Scoring iterative algorithm can be used to solve it. Specifically, the iterative
algorithm is described as follows:

Step 0 Start with an initial value β(0), which is obtained by Ma and He (2016).
Step 1 Set k = 0. Use the current estimate β(k) and minimize Ln(β(k); θ) with

respect to θ to obtain the estimator θ̂
(k)
. Then, we can obtain ĝ(k)

(
u;β(k)

) =
Bq(u)T θ̂

(k)
and ĝ′(k)

(
u;β(k)

) = Bq−1(u)T D1θ̂
(k)
.

Step 2 Utilize the estimators ĝ(k) and ĝ′(k) obtained by Step 1;
(
β(r)

)(k)
can be

updated by

(
β(r)

)(k+1) =
(
β(r)

)(k) − D̃
(
β(r)

)−1
R̃

(
β(r)

)
|
β(r)=(β(r))

(k) ,

where

D̃
(
β(r)

)
Δ= ∂ R̃

(
β(r)

)

∂β(r)
=

n∑
i=1

JT
β(r) X̂

T
i Ĝ

′
(X iβ;β) Λi Λ̃i (β) Ĝ

′
(X iβ;β) X̂ i Jβ(r)

and

Λ̃i (β)

= diag

{
h−1K

[(
Yi1 − ĝ

(
XT

i1β;β
))/

h
]
, . . . , h−1K

[(
Yimi − ĝ

(
XT

imi
β;β

))/
h
]}

.

Step 3 Set k = k + 1 and repeat Steps 1 and 2 until convergence.
Step 4 With the final estimators β̃(r) and θ̂ obtained from Step 3, we can get the

final estimator of g0 (u) by ĝ
(

u; β̃
)

= Bq(u)T θ̂(β̃), where β̃ is obtained by the fact

βr =
√
1 − ∥∥β(r)

∥∥2.

Remark 1 If the sum of
∣∣∣(β(r)

)(k+1) − (
β(r)

)(k)
∣∣∣ is smaller than a cutoff value (such

as 10−6), we stop the iteration. Our simulation studies indicate that the Fisher–Scoring
algorithm can find the numerical solution of (3) quickly.

2.4 Asymptotic properties

Let g0 (u) and β0 be the true values of g (u) and β, respectively. In the following
theorems, we need to restrict β ∈ Θn , where Θn = {

β ∈ Θ : ‖β − β0‖ ≤ Cn−1/2
}

for some positive constant C . Since we anticipate that the estimators of β0 are root-n
consistent, we should look for the solutions of (3) which involve β distant from β0 by
order n−1/2. Define
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Quantile estimations via modified Cholesky decomposition 1169

Φ = lim
n→∞

1

n

n∑
i=1

JT
β

(r)
0
X̃

T
i G

′ (X iβ0)ΛiΛi G′ (X iβ0)X̃ i Jβ
(r)
0

,

and

Ψ = lim
n→∞

1

n

n∑
i=1

JT
β

(r)
0
X̃

T
i G

′ (X iβ0)ΛiΣτ iΛi G′ (X iβ0)X̃ i Jβ
(r)
0

,

where Στ i = Cov (ψτ (εi )) , G′ (X iβ0) = diag
{

g′
0

(
XT

i1β0
)
, . . . , g′

0

(
XT

imi
β0

)}
,

X̃ i =
(
X̃ i1, . . . , X̃ imi

)T
and X̃ i j = X i j − E

(
X i j

∣∣∣XT
i jβ0

)
.

Theorem 1 Under conditions (C1)–(C7) in “Appendix,” and the number of knots sat-
isfies n1/(2d+2) � Nn � n1/4, where d is given in the condition (C2) of “Appendix,”
we have

√
n
(
β̃ − β0

)
d→ N

(
0, J

β
(r)
0

ΦΦ−1Ψ Φ−1 JT
β

(r)
0

)

as n → ∞, where
d→ denotes convergence in distribution.

Theorem 2 Let θ0 be the best approximation coefficient of g0 (u) in the B-spline space.
When β is a known constant β0 or estimated to the order Op

(
n−1/2

)
, under conditions

(C1)–(C7) in “Appendix,” and the number of knots satisfies n1/(2d+2) � Nn � n1/4,
then (i)

∣∣ĝ(u;β) − g0(u)
∣∣ = Op

(√
Nn/n + N−d

n

)
uniformly in u ∈ [a, b]; and (ii)

under n1/(2d+1) � Nn � n1/4,

σ−1
n (u)

(
ĝ (u;β) − ǧ (u;β)

) d→ N (0, 1) ,

where σ 2
n (u) = BT

q (u) V−1 (β0)
∑n

i=1 B
T
q (X iβ0)ΛiΣτ iΛi Bq (X iβ0)V−1 (β0)

Bq (u), ǧ (u;β) = BT
q (u) θ0 (β), Bq (X iβ0) =

(
Bq

(
XT

i1β0
)
, . . . , Bq

(
XT

imi
β0

))T

and V (β0) = ∑n
i=1 B

T
q (X iβ0)ΛiΛi Bq (X iβ0).

3 Modeling the within-subject covariance matrix via the modified
Cholesky decomposition

To incorporate the correlation within subjects, following the idea of GEE (Liang and
Zeger 1986), we can use the estimating equations that take the form

n∑
i=1

(
BT

q (X iβ)

JT
β(r) X̂

T
i G

′ (X iβ)

)
ΛiΣ

−1
τ i ψτ

(
Y i − Bq (X iβ) θ

) = 0. (4)
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1170 J. Lv, C. Guo

Unfortunately, estimating Eq. (4) includes an unknown covariance matrixΣτ i . So our
primary task is to estimate it. To guarantee the positive definiteness of Στ i , we firstly
apply the modified Cholesky decomposition to decompose Στ i as

Στ i = Lτ i Dτ i LT
τ i ,

where Lτ i is a lower triangular matrix with 1’s on its diagonal and Dτ i is an mi ×
mi diagonal matrix. Let eτ i = Lτ i

−1ψτ (εi ) = (
eτ,i1, . . . , eτ,imi

)T , so we have

Cov (eτ i ) = L−1
τ i Στ i

(
L−1

τ i

)T = Dτ i
Δ= diag

(
d2
τ,i1, . . . , d2

τ,imi

)
, where d2

τ,i j is

called as innovation variance. Furthermore, we assume that the below diagonal entries
of Lτ i are lτ,i jk(k < j = 2, . . . , mi ), and then eτ i = Lτ i

−1ψτ (εi ) can be rewritten
as

ψτ

(
εi j

) =
j−1∑
k=1

lτ,i jkeτ,ik + eτ,i j ,

where lτ,i jk are the so-called moving average coefficients. In this paper, we define
the notation

∑0
k=1 means zero when j = 1. The main advantage of the modified

Cholesky decomposition is that lτ,i jk and d2
τ,i j are unconstrained. In order to estimate

the moving average coefficients lτ,i jk and the innovation variances d2
τ,i j , we construct

two generalized linear models as follows:

lτ,i jk = wT
i jkγτ , log

(
d2
τ,i j

)
= zT

i jλτ , (5)

where γτ = (
γτ1, . . . , γτp1

)T and λτ = (
λτ1, . . . , λτp2

)T . Based on the idea of Zhang
and Leng (2012), the covariates zi j are those used in regression analysis, and wi jk is
usually adopted as a polynomial of time difference ti j − tik . By adopting the idea of
the GEE approach, we construct two estimating equations for γτ and λτ by

U1 (γτ ) =
n∑

i=1

(
∂eT

τ i

∂γτ

)
D−1

τ i eτ i = 0, (6)

U2 (λτ ) =
n∑

i=1

zT
i Dτ iW

−1
τ i

(
e2τ i − d2τ i

)
= 0, (7)

where ∂eT
τ i

/
∂γτ is a p1 × mi matrix with the first column zero and the j th j ≥ 2

column ∂eτ,i j
/
∂γτ = −∑ j−1

k=1

[
wi jkeτ,ik + lτ,i jk∂eτ,ik

/
∂γτ

]
, zi = (

zi1, . . . , zimi

)T

and d2τ i =
(

d2
τ,i1, . . . , d2

τ,imi

)T
. Here, W τ i is the covariance matrix of e2τ i , namely

W τ i = Cov
(
e2τ i

)
. The true W τ i is unknown and can be approximated by a sandwich

“working” covariance structure W τ i = A1/2
τ i Rτ i (ρ) A1/2

τ i (Liu and Zhang 2013),

where Aτ i = 2diag
(

d4
τ,i1, . . . , d4

τ,imi

)
and Rτ i (ρ) mimics the correlation between
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Quantile estimations via modified Cholesky decomposition 1171

e2τ,i j and e2τ,ik ( j �= k) with a new parameter ρ. The common structures of Rτ i (ρ)

contain the compound symmetry and the first-order autoregressive. We assume that
γ̂τ and λ̂τ are the solutions of estimating Eqs. (6) and (7). Liu and Zhang (2013) have
pointed out that γ̂τ and λ̂τ are not sensitive to the parameter ρ. So, we take ρ = 0 in
our simulation studies and real data analysis.

Let γτ0 and λτ0 be the true values of γτ and λτ , respectively. Meanwhile, we

define the covariance matrix of the function
(
U1(γτ0)

T ,U2(λτ0)
T )T

/√
n by V τn =

(
v

jl
τn

)
j,l=1,2

, where v
jl
τn = n−1Cov

(
U j ,U l

)
for j, l = 1, 2. Furthermore, we assume

that the covariance matrix V τn is positive definite at the true value (γ T
τ0,λ

T
τ0)

T and

V τn =
(

v11τn v12τn
v21τn v22τn

)
p→ V τ =

(
v11τ v12τ
v21τ v22τ

)
,

where
p→ denotes convergence in probability. Then, the proposed estimators(

γ̂ T
τ , λ̂

T
τ

)T
are

√
n-consistent and have the following asymptotic distribution

√
n

(
γ̂τ − γτ0

λ̂τ − λτ0

)
d→ N

{
0,

(
v11τ 0
0 v22τ

)−1

V τ

(
v11τ 0
0 v22τ

)−1
}

.

The proof is omitted since it is similar to the proof of Theorem 1 of Lv et al. (2017).
Now, we show that the estimated covariance matrix Σ̂τ i is consistent. For a matrix A,
‖A‖ = [

tr
(
AAT )]1/2

denotes its Frobenius norm.

Theorem 3 Let Στ i and Σ̂τ i be the true and estimated covariance matrix within
the i th cluster, respectively. Suppose that the regularity conditions in “Appendix”

hold. If the covariance matrix has the model structure (5) , we have
∥∥∥Σ̂τ i − Στ i

∥∥∥ =
Op

(
n−1/2

)
.

4 Efficient estimating equations for the index coefficients β and the link
function g(·)

Based on the discussions in Sect. 3, the covariance matrix Στ i can be estimated by

Σ̂τ i = L̂τ i D̂τ i L̂
T
τ i , where D̂τ i = diag

(
d̂2
τ,i1, . . . , d̂2

τ,imi

)
with d̂2

τ,i j = exp
(
zT

i j λ̂τ

)

and the ( j, k) element of L̂τ i is l̂τ,i jk = wT
i jk γ̂τ for k < j = 2, . . . , mi . Firstly, for a

given β, we construct efficient smoothed estimating equations of θ by

n∑
i=1

BT
q (X iβ)Λi Σ̂

−1
τ i ψhτ

(
Y i − Bq (X iβ) θ

) = 0. (8)
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Then, the efficient smoothed estimating equations of β(r) are constructed similarly by

n∑
i=1

JT
β(r) X̂

T
i Ḡ

′ (X iβ;β) Λi Σ̂
−1
τ i ψhτ

(
Yi − Bq (X iβ)θ̄ (β)

) = 0, (9)

where θ̄(β) is the solution of (8), Ḡ′ (X iβ;β) = diag
{

ḡ′ (XT
i1β;β

)
, . . . , ḡ′

(
XT

imi
β;β

)}
and ḡ′(u;β) = ∑Jn

s=1 B ′
s,q(u)θ̄s (β). Let β̄(r) be the resulting estima-

tor of (9). Therefore, the efficient estimator of g0 (u) can be achieved by ḡ
(
u; β̄

) =
Bq(u)T θ̄

(
β̄
)
.

Remark 2 There are two main differences between the proposed estimating Eqs. (8)
and (9) with Zhao et al. (2017)’s estimating Eq. (6). On the one hand, we apply
a different method to smooth the discontinuous estimating equations. On the other
hand, Zhao et al. (2017) applied a working correlation matrix C i which need to be
specified to improve the estimation efficiency. Therefore, Zhao et al. (2017)’s approach
cannot permit more general forms of the correlation structures and results in a loss of
efficiency when the C i is far from the true correlation structure.

Theorem 4 Under conditions (C1)–(C7) in “Appendix,” and the number of knots
satisfies n1/(2d+2) � Nn � n1/4, we have

√
n
(
β̄ − β0

) d→ N

(
0, J

β
(r)
0

Γ −1 JT
β

(r)
0

)
,

as n → ∞, where

Γ = lim
n→∞

1

n

n∑
i=1

JT
β

(r)
0
X̃

T
i G

′ (X iβ0)ΛiΣ
−1
τ i Λi G′ (X iβ0)X̃ i Jβ

(r)
0

and the other symbols are the same as that in Theorem 1.

Let Υ i = Φ−1 JT
β

(r)
0

X̃
T
i G

′ (X iβ0)ΛiΣ
1/2
τ i − Γ −1 JT

β
(r)
0

X̃
T
i G

′ (X iβ0)ΛiΣ
−1/2
τ i .

Then,

Υ iΥ
T
i = Φ−1 JT

β
(r)
0
X̃

T
i G

′ (X iβ0)ΛiΣτ iΛi G′ (X iβ0) X̃ i Jβ
(r)
0

Φ−1

− Φ−1 JT
β

(r)
0
X̃

T
i G

′ (X iβ0)ΛiΛi G′ (X iβ0) X̃ i Jβ
(r)
0

Γ −1

− Γ −1 JT
β

(r)
0
X̃

T
i G

′ (X iβ0)ΛiΛi G′ (X iβ0) X̃ i Jβ
(r)
0

Φ−1

+ Γ −1 JT
β

(r)
0
X̃

T
i G

′ (X iβ0)ΛiΣ
−1
τ i Λi G′ (X iβ0) X̃ i Jβ

(r)
0

Γ −1.
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Since Υ iΥ
T
i is nonnegative definite, we have

0 ≤ lim
n→∞

1
n

n∑
i=1

Υ iΥ
T
i = Φ−1Ψ Φ−1 − Φ−1ΦΓ −1 − Γ −1ΦΦ−1 + Γ −1Γ Γ −1

= Φ−1Ψ Φ−1 − Γ −1.

Thus, Γ −1 ≤ Φ−1Ψ Φ−1. This implies that β̄ has smaller asymptotic covariance
matrix than that of β̃. So the proposed estimator β̄ is asymptotically more efficient
than β̃.

Motivated by (9), a sandwich formula for estimating the covariance of β̄ is

Cov
(
β̄
) ≈ J β̄(r) Γ̄

−1
n Ω̄nΓ̄

−1
n JT

β̄(r) , (10)

where

Γ̄ n =
n∑

i=1

JT
β(r) X̂

T
i Ḡ

′
(X iβ; β) Λi Σ̂

−1
τ i Λ̄i (β) Ḡ′ (X iβ; β) X̂ i Jβ(r)

∣∣∣β(r)=β̄(r) ,

Ω̄n =
n∑

i=1

JT
β(r) X̂

T
i Ḡ

′ (X iβ; β)Λi Σ̂
−1
τ i S̄τ i (β)S̄

T
τ i (β) Σ̂

−1
τ i Λi Ḡ

′ (
X̂ iβ; β

)
X̂ i Jβ(r)

∣∣∣β(r)=β̄(r) ,

S̄τ i (β) =
{
ψhτ

(
Yi1 − ḡ

(
XT

i1β; β
))

, . . . , ψhτ

(
Yimi − ḡ

(
XT

imi
β; β

))}T

,

and

Λ̄i (β)

= diag

{
h−1K

((
Yi1 − ḡ

(
XT

i1β; β
))/

h
)

, . . . , h−1K
((

Yimi − ḡ
(
XT

imi
β; β

))/
h
)}

.

Theorem 5 When β is a known constant β0 or estimated to the order Op
(
n−1/2

)
,

under conditions (C1)–(C7) in “Appendix,” and the number of knots satisfies

n1/(2d+2) � Nn � n1/4, then (i) |ḡ(u;β) − g0(u)| = Op

(√
Nn

/
n + N−d

n

)
uni-

formly in u ∈ [a, b]; and (ii) under n1/(2d+1) � Nn � n1/4,

σ ∗−1
n (u)

(
ḡ (u;β) − ǧ (u;β)

) d→ N (0, 1) ,

where σ ∗2
n (u) = BT

q (u) V ∗−1 (β0) Bq (u) , V ∗ (β0) = ∑n
i=1 B

T
q (X iβ0)ΛiΣ

−1
τ i

Λi Bq (X iβ0) .

Remark 3 We can adopt a similar iterative algorithm given in Sect. 2.3 to find the
solutions of estimatingEqs. (8) and (9). Here, we omit it for saving space. Furthermore,
we also can prove that ḡ(u;β) is asymptotically more efficient than ĝ(u;β) by using
the above similar method.
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5 Simulation studies

In this section, we conduct simulation studies to compare our approach with some
existing methods. The major aim is to show that the proposed method not only can
deal with complex correlation structures, but also produces more efficient estimates
for the index coefficients and the link function. Specifically, we compare the proposed
estimators β̄ and ḡ (denoted as β̂pr and ĝpr ) with the other three types of estimators: (i)
the estimator proposed byMa andHe (2016)without using “remove–one–component”
method (denoted as β̂ma and ĝma); (ii) the estimators β̃ and ĝ (denoted as β̂in and ĝin)
without considering the within-subject correlation, which are given in Sect. 2.3; (iii)
the estimators proposed by Zhao et al. (2017) with the AR(1) working correlation
structure (denoted as β̂ar and ĝar ) and the compound symmetry structure (denoted
as β̂cs and ĝcs), which involve a tuning parameter h1. We set h1 = n−1/2 in our
simulations and real data analysis according to their suggestions. Similar to Wang
and Zhu (2011), we smooth the quantile score function by the following second-order
(ν = 2) Bartlett kernel

K (u) = 3

4
√
5

(
1 − u2

/
5
)

I
(
|u| ≤ √

5
)

.

In order to achieve good numerical performances, we need to select several parame-
ters appropriately. Firstly, we fix the spline order to be q = 4, namely we use cubic
B-splines to approximate the nonparametric link function in our numerical exam-
ples. Meanwhile, we use equally spaced knots with the number of interior knots
Nn = [n1/(2q+1)] which satisfies theoretical requirement. The similar strategy had
been adopted by Ma and Song (2015). Secondly, Wang and Zhu (2011) had proved
that the smoothed approach is robust to the bandwidth h. Thus, we fix h = n−0.3

which satisfies the theoretical requirement nh2ν → 0 with ν = 2.

Example 1 Similar to Ma and He (2016), we generate the data from the following
longitudinal single-index regression model

Yi j = g0
(
XT

i jβ0

)
+ δεi j , i = 1, . . . , n, j = 1, . . . , mi ,

where δ = 0.5, g0(u) = sin
(
0.2π(u−A)

B−A

)
with A = √

3/2 − 1.645/
√
12, B =√

3/2 + 1.645/
√
12, β0 = (β01, β02, β03)

T = (3, 2, 0.4)T /
√
32 + 22 + 0.42, and

the covariate X i j = (
Xi j1, Xi j2, Xi j3

)T follows a multivariate normal distribution
N (0,Σ) with (Σ)k,l = 0.5|k−l| for 1 ≤ k, l ≤ 3. Here, we define εi j = ξi j − cτ ,
and cτ is the τ th quantile of the random error ξi j , which implies the correspond-
ing τ th quantile of εi j is zero. Meanwhile, we consider two error distributions of

ξ i = (
ξi1, . . . , ξimi

)T for assessing the robustness and effectiveness of the proposed
method.

Case 1Correlated normal error, ξ i is generated from amultivariate normal distribution
N (0,Ξ i ), where Ξ i will be listed later.

123



Quantile estimations via modified Cholesky decomposition 1175

Case 2 ξ i is generated from a multivariate t-distribution with the degree 3 and the
covariance matrix Ξ i .

Byusing a similar strategyofLiu andZhang (2013), the covariancematrixΞ i is con-

structed by Ξ i = Li Di LT
i , where Di = diag

(
exp(hT

i1α), . . . , exp(hT
imi

α)
)
and Li

is a unit lower triangularmatrixwith ( j, k) elementωT
i jkφ (k < j = 2, . . . , mi ), where

φ = (−0.3, 0.2, 0, 0.5)T , α = (−0.3, 0.5, 0.4, 0)T , hi j = (
1, hi j1, hi j2, hi j3

)T ,

ωi jk = (
1, (ti j − tik), (ti j − tik)2, (ti j − tik)3

)T
, hi jl follows a standard normal

distribution for l = 1, 2, 3, and ti j is generated from the standard uniform distri-
bution. In addition, we adopt a similar strategy of Liu and Zhang (2013) to generate
unbalanced longitudinal data. Specifically, each subject is measured mi times with
mi − 1 ∼ Binomial(11, 0.8), which results in different numbers of repeated mea-
surements for each subject. For the covariates zi j and wi jk of the covariance model
(5), we set zi j = hi j and wi jk = ωi jk .

Example 2 The model setup is similar to that of Example 1. Firstly, we take δ = 1
and β0 = (β01, β02, β03)

T = (3, 2, 1)T /
√
14. Secondly, we define the covariance

matrix Ξ i by Ξ i = Δ−1
i Bi

(
ΔT

i

)−1
, where Bi is an mi × mi diagonal matrix with the

j th element sin
(
πςi j

)
/3 + 0.5 and ςi j ∼ U (0, 2), and Δi is a unit lower triangular

matrix with ( j, k) element −δ
(i)
j,k (k < j = 2, . . . , mi ), δ

(i)
j,k = 0.2 + 0.5

(
ti j − tik

)
and ti j ∼ U (0, 1). For the covariates zi j and wi jk of the regression model (5), we

set zi j =
(
1, ti j , t2i j , t3i j

)T
, and wi jk is the same as that in Example 1. Meanwhile,

we set mi = 12, but each element has 20% probability of being missing at random,
which leads to unbalanced longitudinal data. Other settings are the same as that in
Example 1.

Example 3 For a clear comparison, we adopt a similar strategy of Zhao et al. (2017)
to construct the covariance matrix Ξ i . We define Ξ i = B1/2

i H i B
1/2
i , where Bi is

given in Example 2 and H i follows either the compound symmetry structure (cs) or
the AR(1) structure (ar1) with the correlation coefficient ρ = 0.85. In addition, we
take δ = 1 and β0 = (β01, β02, β03)

T = (3, 2, 0)T /
√
13. The scheme of generating

unbalanced longitudinal data, and zi j and wi jk are the same as that in Example 2.
Other settings are the same as that in Example 1.

Tables 1, 2, 3, 4, and 5 give the biases and the standard deviations (SD) of β̂ma , β̂cs ,
β̂ar , β̂in , and β̂pr at τ = 0.5, 0.75 for n = 100 and 400. We can derive the following
several observations from these tables. Firstly, it is easy to find that all methods yield
unbiased estimators for the index coefficients β, since the corresponding biases are
small. Furthermore, β̂pr has smaller bias in most cases. Secondly, the estimator β̂in

performs better than β̂ma , which indicates “remove–one–component” method leads
to more efficient estimators. Thirdly, the proposed smoothed estimator β̂pr performs
best (with smallest SD) among all methods. It is not surprised that the SDs of β̂cs

and β̂ar are bigger than that of β̂pr for Examples 1 and 2, because β̂cs and β̂ar use
misspecified correlation structures for Examples 1 and 2, which results in a loss of
efficiency. Fourthly, as far as we know, the correlation structure ofψτ (εi ) also has the
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exchangeable structure if the correlation structure of εi is exchangeable. Thus, β̂cs use
a correct working correlation structure under the compound symmetry (cs) structure
in Table 5. However, β̂pr also has slighter advantage than β̂cs . The main reasons are as
follows. On the one hand, we adopt another smoothed approach that is different from
that of Zhao et al. (2017) to construct the smoothed estimating equations. On the other
hand, the moment approach does not work well and yields inaccuracy estimator of the
correlation coefficient for unbalanced longitudinal data with large mi . This leads to a
bad estimator of C i (given in Sect. 2.3 of Zhao et al. 2017). Finally, the correlation
structure of ψτ (εi ) does not possess the AR(1) correlation structure when εi has
the AR(1) correlation structure. Therefore, β̂cs and β̂ar use the misspecification of
correlation structure under the AR(1) correlation structure in Example 3. Therefore,
β̂cs and β̂ar perform worse than β̂pr . In addition, for the nonparametric link function
g0(·), we apply themean squared error (MSE) to evaluate the accuracy of the estimator,
which is defined as

MSE (g) = 1

500

500∑
k=1

⎡
⎣ 1

N

n∑
i=1

mi∑
j=1

(
g(k)

(
ui j

) − g0
(
ui j

))2
⎤
⎦,

where g(k)
(
ui j

)
is the kth estimated value of g0(ui j ). From Table 6, the proposed ĝpr

achieves the smallest MSE among all methods in general, which indicates that ĝpr

outperforms the existing approaches. Overall, the proposed estimators β̂pr and ĝpr

can achieve better efficiency than the existing methods.
In order to evaluate the accuracy of the sandwich formula (10), we give the ratio

of sample standard deviation (SD) and the estimated standard error (SE). For brevity,
we only list the results of Example 2. In Table 7, “SD” represents the sample standard
deviation of 500 estimators of the parameters. It can be taken as the true standard
deviation of the resulting estimators. “SE” represents the sample average of 500 esti-
mated standard errors by utilizing the sandwich formula (10). Table 7 indicates that the
sandwich formula (10) works well for different situations, especially for large simple
size (n = 400), since the value of SD/SE is very close to one. Compared with the
method of Zhao et al. (2017), our method provides more accurate variance estimation.
In addition, we use P0.95 to stand for the coverage probabilities of 95% confidence
intervals over 500 repetitions. From Table 7, the proposed estimator β̂pr consistently
achieves higher coverage probabilities and it is closer to its nominal level.

Finally, it is an interesting question to test whether the proposed estimates β̄ and
ḡ(·) are sensitive to the dimensions of the covariates zi j and wi jk . For brevity, we
only present the results of β̄ and ḡ(·) for Case 1 in Example 2. We set wi jk ={
1, ti j − tik, . . . ,

(
ti j − tik

)p1−1
}T

and zi j =
(
1, ti j , . . . , t p2−1

i j

)T
, where (p1, p2)

are given in Fig. 1. From Fig. 1, we can see that β̄ and ḡ(·) are not very sensitive to
the dimensions (p1, p2).
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ĝ a
r
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Fig. 1 Estimators of β = (β1, β2, β3)
T and g(·) at τ = 0.5 (black) and τ = 0.75 (blue) for Case 1 in

Example 2 (color figure online)

6 Real data analysis

In this section, we illustrate the proposed estimation method through an empirical
example which has been studied by Zhang et al. (1998). These data include 34 women
whose urine samples were collected in one menstrual cycle and whose urinary proges-
terone was assayed on alternate days. These women were measured 11–28 times, and
it involves a total of 492 observations. Our goal is to explore the relationship between
progesterone level and the following covariates: patient’s age and body mass index.
Therefore, we define the log-transformed progesterone level as the response (Y ), age,
and body mass index are taken as the covariates. We use the longitudinal single-index
quantile regression model to analyze this data set

Yi j = g
(
β1Xi j1 + β2Xi j2

) + εi j ,

where (Yi j , Xi j1, Xi j2) is the j th observed value at the time ti j for the i th woman,
Xi j1 and Xi j2 are the standardized variables of age and body mass index, respectively.
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Fig. 2 Scatter plots of the
response and the estimated link
functions (solid curve) with 95%
confidence intervals (dashed
curve) for τ = 0.5 (black) and
τ = 0.75 (red) (color figure
online)
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Meanwhile, repeated measurement time ti j is rescaled into interval [0, 1]. For the
covariance model (5), we take the corresponding covariates as

wi jk =
{
1, ti j − tik, . . . ,

(
ti j − tik

)p1−1
}T

, zi j =
(
1, ti j , . . . , t p2−1

i j

)T
.

We consider different (p1, p2) for this data set. Six estimators are considered: β̂cs , β̂ar ,
and β̂in are given in Sect. 5, and β̂32, β̂23, and β̂44 represent the proposed estimators
with (p1 = 3, p2 = 2), (p1 = 2, p2 = 3), and (p1 = 4, p2 = 4), respectively. The
leave–one–out cross-validation procedure is used to evaluate the forecasting accuracy
of the estimators. Specifically, we investigate the forecasting accuracy of different
methods by using the prediction mean squared error (PMSE), which is defined as

PMSE = 1

n

n∑
i=1

∥∥Y i − g
(
X iβ(−i)

)∥∥2,

where Y i = (Yi1, . . . , Yimi )
T , X i = (X i1, . . . , X imi )

T , X i j = (Xi j1, Xi j2)
T , and

β(−i) is the estimator which is obtained based on the data of the other 33 subjects
except the i th subject. In Table 8, we report the PMSE, the estimated regression
coefficients, and the corresponding standard errorswhich are obtained by the sandwich
formula (10). Compared with the method of Zhao et al. (2017), our proposed method
possesses smaller standard errors in general. Meanwhile, we see that our method has
smaller PMSE, which indicates that the forecasting accuracy of our method is better.
In addition, scatter plots of the response and the estimated link functions with 95%
confidence intervals for τ = 0.5 and 0.75 are displayed in Fig. 2. It is clear that there
is a nonlinear trend. Thus, using a nonlinear term in the regression is perhaps more
appropriate than using a linear term.
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Appendix

In the proofs,C denotes a positive constant thatmight assume different values at differ-
ent places. For any matrix A = (

Ai j
)s,t

i=1, j=1, denote ‖A‖∞ = max1≤i≤s
∑t

j=1

∣∣Ai j
∣∣.

To establish the asymptotic properties of the proposed estimators, the following reg-
ularity conditions are needed in this paper.

(C1) Let U =
{

u : u = XT
i jβ, X i j ∈ A, i = 1, . . . , n, j = 1, . . . , mi

}
and A be the

support of X i j which is assumed to be compact. Suppose that the density function
fXT

i j β
(u) of XT

i jβ is bounded away from zero and infinity on U and satisfies the

Lipschitz condition of order 1 on U for β in a neighborhood of β0.
(C2) The function g0 (·) has the dth bounded and continuous derivatives for some
d ≥ 2 and g1s(·) satisfies the Lipschitz condition of order 1, where g1s (u) is the sth

component of g1 (u) = E
(
X i j

∣∣∣XT
i jβ0 = u

)
, s = 1, . . . , p.

(C3) Let the distance between neighboring knots be Hi = ξi − ξi−1 and H =
max1≤i≤Nn+1 {Hi }. Then, there exists a constant C0 such that H

min1≤i≤Nn+1{Hi } <

C0,max1≤i≤Nn {Hi+1 − Hi } = o(N−1
n ).

(C4) The distribution function Fi j (t) = p
(

Yi j − g0
(
XT

i jβ0

)
≤ t

)
is absolutely con-

tinuous, with continuous densities fi j (·) uniformly bounded, and its first derivative
f ′
i j (·) uniformly bounded away from 0 and ∞ at the point 0, i = 1, . . . , n, j =

1, . . . , mi .
(C5) The eigenvalues of Στ i are uniformly bounded and bounded away from zero.
(C6) K (·) is bounded and compactly supported on [−1, 1]. For some constantCK �= 0,
K (·) is a νth-order kernel, i.e.,

∫
u j K (u) du = 1 if j = 0; 0 if 1 ≤ j ≤ ν − 1; CK

if j = ν, where ν ≥ 2.
(C7) The positive bandwidth parameter h satisfies nh2ν → 0.

Lemma 1 Under conditions (C1)–(C7), and Nn → ∞ and nN−1
n → ∞, as n → ∞,

we have (i)
∣∣ĝ(u;β0) − g0(u)

∣∣ = Op

(√
Nn

/
n + N−d

n

)
uniformly for any u ∈ [a, b];

and (ii) under Nn → ∞ and nN−3
n → ∞, as n → ∞,

∣∣ĝ′(u;β0) − g′
0(u)

∣∣ =
Op

(√
N 3

n

/
n + N−d+1

n

)
uniformly for any u ∈ [a, b].

Proof Suppose g0(u) = Bq(u)T θ0 is the best approximating spline function for
g0(u). According to the result on page 149 of de Boor (2001) for g0(u) satisfying
condition (C2), we have

sup
u∈[a,b]

∣∣∣g0(u) − g0(u)

∣∣∣ = O(N−d
n ). (11)
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Let αn = Nnn−1/2+ N−d+1/2
n and set ‖un‖ = C , where C is a large enough constant.

Our aim is to show that for any given δ > 0, there is a large constant C such that, for
large n, we have

P

{
inf‖un‖=C

Ln

(
β0; θ0 + αnun

)
> Ln

(
β0; θ0

)}
≥ 1 − δ. (12)

This implies that there is local minimum θ̂ in the ball
{
θ0 + αnun : ‖un‖ ≤ C

}

with probability tending to one, such that
∥∥∥θ̂ − θ0

∥∥∥ = Op (αn). Define Δi j =
Bq

(
XT

i jβ0

)T
θ0 − g0

(
XT

i jβ0

)
. Applying the identity

ρτ (r − v) − ρτ (r) = −v (τ − I (r < 0)) +
∫ v

0
[I (r ≤ t) − I (r ≤ 0)]dt,

we have

Ln
(
β0; θ0 + αnun

) − Ln
(
β0; θ0

)

=
n∑

i=1

mi∑
j=1

ρτ

(
εi j − αn Bq

(
XT

i jβ0

)T
un − Δi j

)
−

n∑
i=1

mi∑
j=1

ρτ

(
εi j − Δi j

)

= −
n∑

i=1

mi∑
j=1

αn Bq

(
XT

i jβ0

)T
un

(
τ − I

(
εi j − Δi j < 0

))

+
n∑

i=1

mi∑
j=1

∫ αn Bq

(
XT

i j β0

)T
un

0

[
I
(
εi j − Δi j ≤ t

) − I
(
εi j − Δi j ≤ 0

)]
dt

Δ= I + I I.

The observed covariates vector is written as D =
{
XT
11, . . . , X

T
1m1

, . . . , XT
n1, . . . ,

XT
nmn

}T
. Moreover, we have

E (I I | D)

= E

⎛
⎝

n∑
i=1

mi∑
j=1

∫ αn Bq

(
XT

i j β0

)T
un

0

[
I
(
εi j − Δi j ≤ t

) − I
(
εi j − Δi j ≤ 0

)]
dt | D

⎞
⎠

=
n∑

i=1

mi∑
j=1

∫ αn Bq

(
XT

i j β0

)T
un

0

[
Fi j

(
Δi j + t

) − Fi j
(
Δi j

)]
dt

=
n∑

i=1

mi∑
j=1

∫ αn Bq

(
XT

i j β0

)T
un

0
fi j

(
Δi j

)
t (1 + o (1))dt

= 1

2

n∑
i=1

mi∑
j=1

fi j
(
Δi j

) (
αn Bq

(
XT

i jβ0

)T
un

)2

(1 + o (1))
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= 1

2
α2

nu
T
n

⎛
⎝

n∑
i=1

mi∑
j=1

fi j (0) Bq

(
XT

i jβ0

)
Bq

(
XT

i jβ0

)T

⎞
⎠ un

+ op

(
nα2

n‖un‖2
/

Nn

)
,

and

V ar (I I | D)

= V ar

(
n∑

i=1

mi∑
j=1

∫ αn Bq

(
XT

i j β0

)T
un

0

[
I
(
εi j − Δi j ≤ t

) − I
(
εi j − Δi j ≤ 0

)]
dt | D

)

≤
n∑

i=1
E

⎡
⎣
(

mi∑
j=1

∫ αn Bq

(
XT

i j β0

)T
un

0

[
I
(
εi j − Δi j ≤ t

) − I
(
εi j − Δi j ≤ 0

)]
dt

)2

| D
⎤
⎦

≤
n∑

i=1
mi

mi∑
j=1

E

⎡
⎣
(∫ αn Bq

(
XT

i j β0

)T
un

0

[
I
(
εi j − Δi j ≤ t

) − I
(
εi j − Δi j ≤ 0

)]
dt

)2

|D
⎤
⎦

≤
n∑

i=1
mi

mi∑
j=1

∫
∣∣∣αn BT

q

(
XT

i j β0

)
un

∣∣∣
0

∫
∣∣∣αn BT

q

(
XT

i j β0

)
un

∣∣∣
0

[
Fi j

(
Δi j +

∣∣∣αn BT
q

(
XT

i jβ0

)
un

∣∣∣
)

− Fi j
(
Δi j

)]
dt1dt2

≤ op

(
nα2

n‖un‖2
/

Nn

)
.

In addition,

I = E (I ) + Op

(√
V ar (I )

)
.

Moreover, the condition that εi j has the τ th quantile zero implies E
(
ψτ

(
εi j

)) = 0.
By (11) and condition (C4), we have E (I ) = o (1) and

V ar (I | D) ≤
n∑

i=1
E

⎡
⎣
(

αn

mi∑
j=1

(
τ − I

(
εi j − Δi j ≤ 0

))
Bq

(
XT

i jβ0

)T
un

)2

|D
⎤
⎦

≤ CuT
n α2

n

n∑
i=1

mi

mi∑
j=1

Bq

(
XT

i jβ0

)
Bq

(
XT

i jβ0

)T
un

= Op

(
nα2

n‖un‖2
/

Nn

)

implies that I = Op

(√
nα2

n

/
Nn

)
‖un‖. Based on all the above, Ln

(
β0; θ0 + αnun

)−
Ln

(
β0; θ0

)
is dominatedby 1

2α
2
nu

T
n

(∑n
i=1

∑mi
j=1 fi j (0) Bq

(
XT

i jβ0

)
Bq

(
XT

i jβ0

)T
)

un by choosing a sufficiently large ‖un‖ = C . Therefore, (12) holds and there exists
a local minimizer θ̂ such that

∥∥∥θ̂ − θ0
∥∥∥ = Op (αn) = Op

(
N−d+1/2

n + Nnn−1/2
)

. (13)
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Since
∥∥Bq (u) Bq(u)T

∥∥ = O (1/Nn), together with (13), we have

∣∣ĝ (u;β0) − g0 (u)
∣∣2

=
∣∣∣Bq(u)T θ̂ − Bq(u)T θ0

∣∣∣
2

≤ ∥∥Bq (u) Bq(u)T
∥∥ ∥∥∥θ̂ − θ0

∥∥∥
2 = Op

(
N−2d

n + Nnn−1
)
.

(14)

By the triangle inequality,
∣∣ĝ (u;β0) − g0 (u)

∣∣ ≤ ∣∣ĝ (u;β0) − g0 (u)
∣∣ + ∣∣g0 (u)

− g0 (u)
∣∣. Therefore, by (11) and (14), we have

∣∣ĝ (u;β0) − g0 (u)
∣∣ = Op(

N−d
n +

√
Nn

/
n
)
uniformly for every u ∈ [a, b].

Since ĝ′(u;β0) = Bq−1(u)T D1θ̂(β0),where Bq−1(u) = {Bs,q(u) : 2 ≤ s ≤ Jn}T

is the (q − 1)th-order B-spline basis and D1 is defined in Sect. 2.1. It is easy to prove
that ‖D1‖∞ = O(Nn). Then, employing similar techniques to that used in the proof
of ĝ(u;β0), we obtain that

∣∣ĝ′(u;β0) − g′
0(u)

∣∣ = Op

(√
N 3

n

/
n + N−d+1

n

)

uniformly for any u ∈ [a, b]. This completes the proof. ��
Lemma 2 Under conditions (C1)–(C7), and the number of knots satisfies n1/(2d+1) �
Nn � n1/4, then for any Jn × 1-vector cn whose components are not all 0, we have

σ̄−1
n (u) cT

n

(
θ̂ (β0) − θ0 (β0)

)
d→ N (0, 1) ,

where σ̄ 2
n (u) = cT

n V
−1 (β0)

∑n
i=1 B

T
q (X iβ0)ΛiΣτ iΛi Bq (X iβ0)V−1 (β0) cn and

the definition of V (β0) is given in subsection 2.4.

Proof When β = β0, the minimizer θ̂ of (1) satisfies the score equations

n∑
i=1

mi∑
j=1

Bq

(
XT

i jβ0

)
fi j (0)

[
I

(
Yi j − Bq

(
XT

i jβ0

)T
θ < 0

)
− τ

]
= 0. (15)

Then, the left-hand side of Eq. (15) becomes

n∑
i=1

mi∑
j=1

Bq

(
XT

i jβ0

)
fi j (0)

[
I
(
εi j < 0

) − I
(
εi j < 0

) + I
(
εi j < ζi j

) − τ
]

=
n∑

i=1

mi∑
j=1

Bq

(
XT

i jβ0

)
fi j (0)

[
I
(
εi j < 0

) − τ
]

+
n∑

i=1

mi∑
j=1

Bq

(
XT

i jβ0

)
fi j (0)

[
Fi j (0) − Fi j

(
ζi j

)]
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−
n∑

i=1

mi∑
j=1

Bq

(
XT

i jβ0

)
fi j (0)

[
Fi j (0) − Fi j

(
ζi j

)

− {
I
(
εi j < ζi j

) − I
(
εi j < 0

)} ]

Δ= I + I I + I I I, (16)

where ζi j = Bq

(
XT

i jβ0

)T
θ − g0

(
XT

i jβ0

)
. By (11), taking Taylor’s explanation for

Fi j
(
ζi j

)
at 0 gives

I I = −
n∑

i=1

mi∑
j=1

Bq

(
XT

i jβ0

)
f 2i j (0) ζi j (1 + o (1))

= −
n∑

i=1

mi∑
j=1

Bq

(
XT

i jβ0

)
f 2i j (0)

×
[
Bq

(
XT

i jβ0

)T (
θ − θ0

)
+ Bq

(
XT

i jβ0

)T
θ0 − g0

(
XT

i jβ0

)]
(1 + o (1))

= −
n∑

i=1

mi∑
j=1

Bq

(
XT

i jβ0

)
Bq

(
XT

i jβ0

)T
f 2i j (0)

(
θ − θ0

)
(1 + o (1)). (17)

By direct calculation of the mean and variance, we can show that I I I = op
(√

n/Nn
)
.

This combined with (15)–(17) leads to

(
θ − θ0

) (
1 + op (1)

) = V−1 (β0)

n∑
i=1

BT
q (X iβ0)Λiψτ (εi ).

It is easy to derive that I = ∑n
i=1 B

T
q (X iβ0)Λiψτ (εi ) is a sumof independent vector,

E (I ) = 0 and Cov (I ) = ∑n
i=1 B

T
q (X iβ0)ΛiΣτ iΛi Bq (X iβ0). By the multivariate

central limit theorem and the Slutsky’s theorem, we can complete the proof. ��

Lemma 3 Under conditions (C1)–(C7) and the number of knots satisfies n1/(2d+2) �
Nn � n1/4, we have

√
n
(
β̂ − β0

)
d→ N

(
0, J

β
(r)
0

Φ−1Ψ Φ−1 JT
β

(r)
0

)
.

Proof Define HT
i = JT

β(r) X̂
T
i Ĝ

′
(X iβ;β), Si = (Si1, . . . , Simi )

T with Si j =
Si j (β) = ψτ

(
Yi j − ĝ

(
XT

i jβ;β
))

= I
(

Yi j − ĝ
(
XT

i jβ;β
)

≤ 0
)

− τ being

a discontinuous function, then R
(
β(r)

) = ∑n
i=1 H

T
i Λi Si (β). Let R̄

(
β(r)

) =∑n
i=1 H

T
i Λi P i (β), where Pi = (Pi1, . . . , Pimi )

T with Pi j = Pi j (β) =
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p
(

Yi j − ĝ
(
XT

i jβ;β
)

≤ 0
)

− τ. For any β(r) satisfying
∥∥∥β(r) − β

(r)
0

∥∥∥ ≤ Cn−1/2,

we have

R
(
β(r)

) − R
(
β

(r)
0

)

=
n∑

i=1
HT

i

(
β(r)

)
Λi Si (β) −

n∑
i=1

HT
i

(
β

(r)
0

)
Λi Si (β0)

=
n∑

i=1
HT

i

(
β(r)

)
Λi {Si (β) − Si (β0)}

+
n∑

i=1

{
H i

(
β(r)

) − H i

(
β

(r)
0

)}T
Λi Si (β0).

At first, the first term can be written as

n∑
i=1

HT
i

(
β(r)

)
Λi {Si (β) − Si (β0)}

=
n∑

i=1
HT

i

(
β(r)

)
Λi P i

(
β(r)

) +
n∑

i=1
HT

i

(
β(r)

)
Λi (Si (β) − Si (β0) − P i (β))

= R̄
(
β(r)

) +
n∑

i=1

mi∑
j=1

hi j fi j (0)

[
I
(

Yi j − ĝ
(

X T
i jβ;β

)
≤ 0

)

−I
(

Yi j − ĝ
(
XT

i jβ0;β0

)
≤ 0

)
−p

(
Yi j − ĝ

(
XT

i jβ;β
)

≤ 0
)

+ τ

]

� R̄
(
β(r)

) + Υ,

where HT
i = (

hi1, . . . , himi

)
and hi j is a (p−1)×1 vector. According to Lemma 3 in

Jung (1996) and Lemma 1, we have sup |Υ | = op
(√

n
)
. Then, the first term becomes

n∑
i=1

HT
i

(
β(r)

)
Λi {Si (β) − Si (β0)} = R̄

(
β(r)

)
+ op

(√
n
)
.

By the law of large numbers (Pollard 1990), together with Lemma 1, the second term
becomes

n∑
i=1

{
H i

(
β(r)

) − H i

(
β

(r)
0

)}T
Λi Si (β0)

=
n∑

i=1

mi∑
j=1

(
hi j

(
β(r)

) − hi j

(
β

(r)
0

))
fi j (0)

×
[

I
(

Yi j − ĝ
(
XT

i jβ0;β0

)
≤ 0

)
− p

(
Yi j − g0

(
XT

i jβ0;β0

)
≤ 0

)]

= op
(√

n
)
.

Therefore, R
(
β(r)

) − R
(
β

(r)
0

)
= R̄

(
β(r)

) + op
(√

n
)
. By Taylor’s expansion of

R̄
(
β(r)

)
, we can obtain

R
(
β(r)

)
− R

(
β

(r)
0

)
=

[
∂ R̄

(
β(r)

)/
∂β(r)

] ∣∣∣
β(r)=β

(r)
0

(
β(r) − β

(r)
0

)
+ op

(√
n
)
.

123



1194 J. Lv, C. Guo

Because R
(
β̂(r)

)
= 0 and β̂(r) is in the n−1/2 neighborhood of β

(r)
0 , we have

√
n
(
β̂(r) − β

(r)
0

)
= −

(
1

n
D

(
β

(r)
0

))−1 1√
n

R
(
β

(r)
0

)
+ op (1) , (18)

where R
(
β

(r)
0

)
= ∑n

i=1 JT
β(r) X̂

T
i Ĝ

′ (X iβ;β)Λi Si (β)|
β(r)=β

(r)
0
, Si (β0)

= (
Si1 (β0) , . . . , Simi (β0)

)T with Si j (β0) = I
(

Yi j − ĝ
(
XT

i jβ0;β0

)
≤ 0

)
− τ and

D
(
β

(r)
0

)
=

n∑
i=1

JT
β(r) X̂

T
i Ĝ

′
(X iβ;β)ΛiΛi Ĝ

′
(X iβ;β) X̂ i Jβ(r) |

β(r)=β
(r)
0

.

Thus, we have

Si j (β0) = Si j (β0) − S∗
i j (β0) + S∗

i j (β0)

= I
(

Yi j − ĝ
(
XT

i jβ0;β0

)
≤ 0

)
− I

(
Yi j − g0

(
XT

i jβ0

)
≤ 0

)

+ I
(

Yi j − g0
(
XT

i jβ0

)
≤ 0

)
− τ,

where S∗
i j (β0) = I

(
Yi j − g0

(
XT

i jβ0

)
≤ 0

)
− τ . Moreover,

∣∣∣ĝ
(
XT

i jβ0;β0

)

− g0
(
XT

i jβ0

) ∣∣∣ = Op

(√
Nn

/
n + N−d

n

)
and E

{
I
(

Yi j − g0
(
XT

i jβ0

)
≤ 0

)}
=

p
(

Yi j − g0
(
XT

i jβ0

)
≤ 0

)
= τ , we have E

(
Si j (β0)

) = o (1). Therefore, we have

E(Si (β0)) = o(1) and

V ar
(

1√
n

R
(
β

(r)
0

))

= 1
n

n∑
i=1

JT
β

(r)
0

X̂
T
i Ĝ

′
(X iβ;β)ΛiΣτ iΛi Ĝ

′
(X iβ;β) X̂ i Jβ(r) |

β(r)=β
(r)
0

(1 + o(1)) .

Based on Lemma 1, together with Si
(
β0

)
are the independent random variables, the

multivariate central limit theorem implies that

1√
n

R
(
β

(r)
0

)
d→ N (0,Ψ ) . (19)

By the law of large numbers and Lemma 1, we have

1

n
D

(
β

(r)
0

) p→ Φ. (20)

Then, combine (18)–(20) and use the Slutsky’s theorem; it follows that

√
n
(
β̂(r) − β

(r)
0

)
d→ N

(
0,Φ−1Ψ Φ−1

)
. (21)
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According to the result of (21) and the multivariate delta method, we have

√
n
(
β̂ − β0

)
d→ N

(
0, J

β
(r)
0

Φ−1Ψ Φ−1 JT
β

(r)
0

)
.

��
Proof of Theorem 1 Using conditions (C4), (C6), and (C7), similar to Lemma 3 (k)

of Horowitz (1998), we obtain n−1/2 R̃
(
β

(r)
0

)
= n−1/2R

(
β

(r)
0

)
+ op (1). In order to

prove the asymptotic normality of β̃(r), we need to prove n−1
{

D̃
(
β

(r)
0

)
− D

(
β

(r)
0

)}

p→ 0, where

1
n D̃

(
β

(r)
0

)
Δ= 1

n
∂ R̃

(
β(r)

)
∂β(r)

∣∣∣
β(r)=β

(r)
0

= 1
n

n∑
i=1

JT
β

(r)
0

X̂
T
i Ĝ

′
(X iβ0;β0)Λi Λ̃i (β0) Ĝ

′
(X iβ0;β0) X̂ i Jβ

(r)
0

.

It is easy to get that

E
{

D̃
(
β

(r)
0

)}
− D

(
β

(r)
0

)
=

n∑
i=1

mi∑
j=1

hi j

(
β

(r)
0

)

× fi j (0)

{
h−1E

[
K

((
Yi j − ĝ

(
XT

i jβ0;β0

))/
h
)]

− fi j (0)

}
hT

i j

(
β

(r)
0

)
,

where hi j is given in the proof of Lemma 3. Because

∣∣∣h−1E
[

K
((

Yi j − ĝ
(
XT

i jβ0;β0

))/
h
)]

− fi j (0)
∣∣∣

=
∣∣∣h−1

∫ +∞
−∞ K

((
ε + g0

(
XT

i jβ0

)
− ĝ

(
XT

i jβ0;β0

))/
h
)

fi j (ε) dε − fi j (0)
∣∣∣

=
∣∣∣∫ +∞

−∞ K (t) fi j

(
ĝ
(
XT

i jβ0;β0

)
− g0

(
XT

i jβ0

)
+ ht

)
dt − fi j (0)

∣∣∣
=

∣∣∣∫ +∞
−∞ K (t)

{
fi j

(
ĝ
(
XT

i jβ0;β0

)
− g0

(
XT

i jβ0

))
+ ht f ′

i j (ςt )
}

dt − fi j (0)
∣∣∣

≤
∣∣∣ fi j

(
ĝ
(
XT

i jβ0;β0

)
− g0

(
XT

i jβ0

))
− fi j (0)

∣∣∣ + h
∫ +∞
−∞

∣∣∣K (t) t f ′
i j (ςt )

∣∣∣dt,

where ςt is between ĝ
(
XT

i jβ0;β0

)
− g0

(
XT

i jβ0

)
and ht + ĝ

(
XT

i jβ0;β0

)
−

g0
(
XT

i jβ0

)
. By condition (C4), f ′

i j (·) is uniformly bounded; hence, there exists a

constant M satisfying
∣∣∣ f ′

i j (ςt )

∣∣∣ ≤ M . Combining
∣∣∣ĝ

(
XT

i jβ0;β0

)
− g0

(
XT

i jβ0

)∣∣∣ =
Op

(√
Nn

/
n + N−r

n

)
with conditions (C4), (C6), and (C7), we have

∣∣∣h−1E
[

K
((

Yi j − ĝ
(
XT

i jβ0;β0

))/
h
)]

− fi j (0)
∣∣∣

≤
∣∣∣ fi j

(
ĝ
(
XT

i jβ0;β0

)
− g0

(
XT

i jβ0

))
− fi j (0)

∣∣∣ + hC → 0.
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So we can obtain
∣∣∣n−1

{
E

{
D̃

(
β

(r)
0

)}
− D

(
β

(r)
0

)}∣∣∣ → 0. By the strong law of large

number, we have n−1 D̃
(
β

(r)
0

)
→ E

(
n−1 D̃

(
β

(r)
0

))
. Using the triangle inequality,

we have
∣∣∣n−1

{
D̃

(
β

(r)
0

)
− D

(
β

(r)
0

)}∣∣∣
≤

∣∣∣n−1
{

D̃
(
β

(r)
0

)
− E

(
D̃

(
β

(r)
0

))}∣∣∣ +
∣∣∣n−1

{
E

(
D̃

(
β

(r)
0

))
− D

(
β

(r)
0

)}∣∣∣ → 0.

Furthermore, by the Taylor series expansion of R̃
(
β(r)

)
around β

(r)
0 , we have

R̃
(
β(r)

)
− R̃

(
β

(r)
0

)
= D̃

(
β∗) (β(r) − β

(r)
0

)
,

where β∗ lies between β(r) and β
(r)
0 . Let β(r) = β̃(r), we have

√
n
(
β̃(r) − β

(r)
0

)
= −

(
1

n
D̃

(
β∗)

)−1

n−1/2 R̃
(
β

(r)
0

)

because of R̃
(
β̃(r)

)
= 0. Since β̃(r) → β

(r)
0 , we can obtain β∗ → β

(r)
0 and

D̃−1 (β∗) → D̃−1
(
β

(r)
0

)
. Sincen−1

{
D̃

(
β

(r)
0

)
− D

(
β

(r)
0

)} p→ 0 andn−1/2 R̃
(
β

(r)
0

)

= n−1/2R
(
β

(r)
0

)
+ op (1), we have

√
n
(
β̃(r) − β

(r)
0

)
= −

(
1

n
D

(
β

(r)
0

))−1

n−1/2R
(
β

(r)
0

)
+ op (1) .

Next, similar to the proof of Lemma 3, we can complete the proof of Theorem 1. ��
Proof of Theorem 2 Since

∥∥∥β̃ − β0

∥∥∥ = Op
(
n−1/2

)
, Theorem 2 (i) follows from this

result and Lemma 1. Based on Lemma 2, we have

σ̄−1
n (u) cT

n

(
θ̂ (β0) − θ0 (β0)

)
d→ N (0, 1) .

By the definition of ĝ (u;β) and ǧ (u;β), choosing cn = Bq (u) yields

σ−1
n (u)

(
ĝ (u;β0) − ǧ (u;β0)

) d→ N (0, 1) .

Thus, when β is a known constant β0 or estimated to the order Op
(
n−1/2

)
, we can

complete the proof of Theorem 2 (ii). ��
Proof of Theorem 3 Let Στ i = (

σi j j ′
)mi

j, j ′=1 and Σ̂τ i = (
σ̂i j j ′

)mi
j, j ′=1 for i = 1 . . . , n.

Based on the modified Cholesky decomposition, the diagonal elements of Σ̂τ i are
σ̂i j j = d̂2

τ,i j
+∑ j−1

k=1 l̂2τ,i jk d̂2
τ,ik for j = 1, . . . , mi , and the elements under the diagonal
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are σ̂i jk = l̂τ,i jk d̂2
τ,ik

+ ∑k−1
k′=1 l̂τ,i jk′ l̂τ,ikk′ d̂2

τ,ik′ for j = 2, . . . , mi , k = 1, . . . , j − 1.

Similarly, the diagonal elements of Στ i are σi j j = d2
τ,i j + ∑ j−1

k=1 l2τ,i jkd2
τ,ik for

j = 1, . . . , mi , and the elements under the diagonal are σi jk = lτ,i jkd2
τ,ik

+
∑k−1

k′=1 lτ,i jk′lτ,ikk′d2
τ,ik′ for j = 2, . . . , mi , k = 1, . . . , j − 1. Since

(
γ̂ T
τ , λ̂

T
τ

)T
are

√
n-consistent estimators, together with d̂2

τ,i j = exp
(
zT

i j λ̂τ

)
and l̂τ,i jk = wT

i jk γ̂τ for

k < j = 2, . . . , mi , we have

d̂2
τ,i j

− d2
τ,i j

= Op

(
n−1/2

)
, l̂τ,i jk − lτ,i jk = Op

(
n−1/2

)
.

Therefore, for j = 1, . . . , mi , we have

σ̂i j j − σi j j =
(

d̂2
τ,i j

− d2
τ,i j

)
+

j−1∑
k=1

(
l̂2τ,i jk d̂2

τ,ik
− l2τ,i jkd2

τ,ik

)

=
(

d̂2
τ,i j

− d2
τ,i j

)
+

j−1∑
k=1

[
l̂2τ,i jk

(
d̂2

τ,ik
− d2

τ,ik

)
+

(
l̂2τ,i jk − l2τ,i jk

)
d2

τ,ik

]

= Op
(
n−1/2

)
,

and

σ̂i jk − σi jk =
(

l̂τ,i jk − lτ,i jk

)
d̂2

τ,ik
+ lτ,i jk

(
d̂2

τ,ik
− d2

τ,ik

)

+
k−1∑
k′=1

{
l̂τ,i jk′ l̂τ,ikk′

(
d̂2

τ,ik′ − d2
τ,ik′

)

+
[(

l̂τ,i jk′ − lτ,i jk′
)

l̂τ,ikk′ + lτ,i jk′
(

l̂τ,ikk′ − lτ,ikk′
)]

d2
τ,ik′

}

= Op

(
n−1/2

)

for j = 2, . . . , mi , k = 1, . . . , j − 1. This completes the proof. ��
Proof of Theorem 4 Similar to the proof of Lemma 3, we have

√
n
(
β̄(r) − β

(r)
0

)
= −

(
n−1 D̄

(
β

(r)
0

))−1
n−1/2 R̄

(
β

(r)
0

)
+ op (1) , (22)

where S̄i (β) = (
S̄i1 (β) , . . . , S̄imi (β)

)T
with S̄i j (β) = ψhτ

(
Yi j − ḡ

(
XT

i jβ;β
))

,

R̄
(
β

(r)
0

)
= ∑n

i=1 JT
β(r) X̂

T
i Ḡ

′ (X iβ;β)Λi Σ̂
−1
τ i S̄i (β)

∣∣∣
β(r)=β

(r)
0

and

D̄
(
β

(r)
0

)
=

n∑
i=1

JT
β(r) X̂

T
i Ḡ

′ (X iβ;β) Λi Σ̂
−1
τ i Λ̄i (β) Ḡ′ (X iβ;β) X̂ i Jβ(r)

∣∣∣
β(r)=β

(r)
0

.
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Using conditions (C4), (C6), and (C7), similar to Lemma 3 (k) of Horowitz (1998),
we obtain

n−1/2 R̄
(
β

(r)
0

)
= n−1/2R∗ (

β
(r)
0

)
+ op (1) , (23)

where S∗
i (β) =

(
S∗

i1 (β) , . . . , S∗
imi

(β)
)T

with S∗
i j (β) = ψτ

(
Yi j − ḡ

(
XT

i jβ;β
))

and R∗
(
β

(r)
0

)
= ∑n

i=1 JT
β(r) X̂

T
i Ḡ

′ (X iβ;β)Λi Σ̂
−1
τ i S∗

i (β)

∣∣∣
β(r)=β

(r)
0

. Similar to the

proof of Theorem 1, we have

n−1
{

D̄
(
β

(r)
0

)
− D∗ (

β
(r)
0

)} p→ 0, (24)

where D∗
(
β

(r)
0

)
= ∑n

i=1 JT
β(r) X̂

T
i Ḡ

′ (X iβ;β)Λi Σ̂
−1
τ i Λi Ḡ′ (X iβ;β)

X̂ i Jβ(r)

∣∣∣
β(r)=β

(r)
0

. By (22)–(24), we have

√
n
(
β̄(r) − β

(r)
0

)
= −

(
n−1D∗ (

β
(r)
0

))−1
n−1/2R∗ (

β
(r)
0

)
+ op (1) . (25)

Similar to the proof of Lemma 1, we have

|ḡ(u;β0) − g0(u)|
= Op

(√
Nn/n + N−d

n

)
,
∣∣ḡ′(u;β0) − g′

0(u)
∣∣ = Op

(√
N 3

n /n + N−d+1
n

)

(26)

uniformly for any u ∈ [a, b]. Because S∗
i (β0) are the independent random variables,

together with (26), we have E
(
S∗

i (β0)
) = o (1) and

V ar
(

1√
n

R∗
(
β

(r)
0

))
= 1

n

n∑
i=1

JT
β(r) X̂

T
i Ḡ

′

(X iβ;β)Λi Σ̂
−1
τ i Στ i Σ̂

−1
τ i Λi Ḡ′ (X iβ;β) X̂ i Jβ(r)

∣∣∣
β(r)=β

(r)
0

(1 + o(1)) .

By the use of the following property (see Lemma 2 in Li 2011), let An be a
sequence of random matrices converging to an invertible matrix A, and then A−1

n =
A−1 − A−1 (An − A) A−1 + Op

(‖An − A‖2). This together with Theorem 3, we

have Σ̂
−1
τ i − Σ−1

τ i = Op
(
n−1/2

)
uniformly for all i . By the law of large numbers,

(26), and the consistency of Σ̂
−1
τ i , we have

n−1D∗ (
β

(r)
0

) p→ Γ , V ar
(

n−1/2R∗ (
β

(r)
0

)) p→ Γ .

By the multivariate central limit theorem and the Slutsky’s theorem, together with
(25), we can complete the proof. ��
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Proof of Theorem 5 Similar to the proof of Theorem 2, together with the consistency

Σ̂
−1
τ i − Σ−1

τ i = Op
(
n−1/2

)
of Σ−1

τ i , when β is a known constant β0 or estimated to
the order Op

(
n−1/2

)
, we can complete the proof of Theorem 5. ��
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