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Abstract Quantile regression is a powerful complement to the usual mean regression
and becomes increasingly popular due to its desirable properties. In longitudinal stud-
ies, it is necessary to consider the intra-subject correlation among repeated measures
over time to improve the estimation efficiency. In this paper, we focus on longitudi-
nal single-index models. Firstly, we apply the modified Cholesky decomposition to
parameterize the intra-subject covariance matrix and develop a regression approach
to estimate the parameters of the covariance matrix. Secondly, we propose efficient
quantile estimating equations for the index coefficients and the link function based
on the estimated covariance matrix. Since the proposed estimating equations include
a discrete indicator function, we propose smoothed estimating equations for fast and
accurate computation of the index coefficients, as well as their asymptotic covari-
ances. Thirdly, we establish the asymptotic properties of the proposed estimators.
Finally, simulation studies and a real data analysis have illustrated the efficiency of
the proposed approach.

Keywords B-spline - Longitudinal data - Modified Cholesky decomposition -
Quantile regression - Single-index models

1 Introduction

Single-index models are becoming increasingly popular due to its flexibility and
interpretability. They also can effectively overcome the problem of “curse of dimen-
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sionality” through projecting multivariate covariates onto one-dimensional index
variate x” . Longitudinal data frequently occur in the biomedical, epidemiologi-
cal, social, and economical fields. For longitudinal data, subjects are often measured
repeatedly over a given time period. Thus, observations from the same subject are
correlated and those from different subjects are often independent. The technique
of generalized estimating equation (GEE) proposed by Liang and Zeger (1986) is
widely used for longitudinal data. The GEE method produces consistent estimators
for the mean parameters through specifying a working structure. However, the main
drawback of GEE is that it may lead to a great loss of efficiency when the working
covariance structure is misspecified. Thus, it is an interesting topic to model the covari-
ance structure. Recently, the modified Cholesky decomposition has been demonstrated
to be effective for modeling the covariance structure. It not only permits more general
forms of the correlation structures, but also leads automatically to positive definite
covariance matrix. Ye and Pan (2006) utilized the modified Cholesky decomposition
to decompose the inverse of covariance matrix and proposed a joint mean—covariance
model for longitudinal data. Leng et al. (2010) constructed a semiparametric mean—
covariance model through relaxing the parametric assumption, which is more flexible.
Zhang and Leng (2012) used a new Cholesky factor to deal with the within-subject
structure by decomposing the covariance matrix rather than its inverse. Other related
references include Mao et al. (2011), Zheng et al. (2014), Liu and Zhang (2013), Yao
and Li (2013), and Liu and Li (2015).

In recent years, some statistical inference methods have been proposed for lon-
gitudinal single-index models. Xu and Zhu (2012) proposed a kernel GEE method.
Lai et al. (2012) presented the bias-corrected GEE estimation and variable selection
procedure for the index coefficients. Zhao et al. (2017) constructed a robust estima-
tion procedure based on quantile regression and a specific correlation structure (e.g.,
compound symmetry (CS) or the first-order autoregressive (AR(1)). All these articles
used some specific correlation structures when taking into account the within-subject
correlation. Thus, these methods may result in a loss of efficiency when the true cor-
relation structure is not correctly specified. Recently, Lin et al. (2016) developed a
new efficient estimation procedure for single-index models by combining the mod-
ified Cholesky decomposition and the local linear smoothing method. Motivated by
Leng et al. (2010), Guo et al. (2016) proposed a two-step estimation procedure for
single-index models based on the modified Cholesky decomposition and the GEE
method. The above two papers are built on mean regression, which is very sensitive
to outliers and heavy tail errors. In contrast with mean regression, quantile regres-
sion not only has the ability of describing the entire conditional distribution of the
response variable, but also can accommodate non-normal errors. Thus, it has emerged
as a powerful complement to the mean regression. Although the modified Cholesky
decomposition has been well studied for the mean regression models, it is lack of
analyzing longitudinal single-index quantile models. In this paper, we use the modi-
fied Cholesky decomposition to parameterize the within-subject covariance structure
and construct more efficient estimation procedure for the index coefficients and the
link function. Compared with existing research results, the new method has several
advantages. Firstly, the proposed method does not need to specify the working cor-
relation structure to improve the estimate efficiency. So our approach not only can
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take the within-subject correlation into consideration, but also permits more general
forms of the covariance structures, which indicates that it is more flexible than most
of the existing methods. Secondly, since the proposed estimating equations include
the discrete quantile score function, we construct new smoothed estimating equations
for fast and accurate computation of the parameter estimates. Thirdly, the estimators
of the index coefficients and the link function are demonstrated to be asymptotically
efficient.

The rest of this article is organized as follows: In Sect. 2, within the framework
of independent working structure, we propose the quantile score estimating func-
tions for the index coefficients based on “remove—one—component” method, and the
corresponding theoretical properties are also given in this section. In Sect. 3, we
apply the modified Cholesky decomposition to decompose the within-subject covari-
ance matrix as moving average coefficients and innovation variances, which can be
estimated through constructing two estimating equations. In Sect. 4, more efficient
quantile estimating functions are derived based on the estimated covariance matrix.
In Sect. 5, extensive simulation studies are carried out to evaluate the finite sample
performance of the proposed method. In Sect. 6, we illustrate the proposed method
through a real data analysis. Finally, all the conditions and the proofs of the main
results are provided in “Appendix.”

2 Estimation procedure under the independent structure

A marginal quantile single-index model with longitudinal data has the following struc-
ture

Yij=gOr(X,-TjﬂoT)+8,‘j,r,i=1,...,n,j=1,...,ml-,

where Y;; = Y (;;) € Ris the jth measurement of the ith subject, X;; = X (1;;) €
RP?, gor(+) is an unknown differentiable univariate link function, &;; ; is the random
error term with an unspecified density function f;;(-) and P (si < O) = 71 for any
i, jand T € (0, 1), and By, is an unknown parameter vector which belongs to the
parameter space

O = {,3 = (,31, . ..,ﬁp)T : |8l = 1, and the rth component is positive },

where ||-|| is the Euclidean norm. Without loss of generality, we assume that the true
vector B has a positive component §, (otherwise, consider —g). For simplicity, we
omit 7 from &;; -, By, and go (+) in the rest of this article, but we should remember

. T T

that they are t-specific. Let ¥; = (Yi1, ..., Yim;) » Xi = (Xit, ..., Xim;)
T . .

& = (8,-1, cees Sim,-) . In this paper, we assume the number of measurements m; is

uniformly bounded for each i, which means that n and N (N = Z?:l m;) have the
same order.

, and
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2.1 Estimations of go(-) and its first derivative g(')(-)

B-spline is commonly used to approximate the nonparametric function for its efficient
in function approximation and numerical computation, which can refer to Ma and He
(2016), Guo et al. (2016), and Zhao et al. (2017). In this paper, we adopt B-spline basis
functions to approximate the unknown link function g (-). We assume X lT] B is confined
in a compact set [a, b]. Consider a knot sequence with N,, interior knots, denoted by
fl=-=a=%§ <§u < <&N, <D =8N+1 = = EgpN,
We set the B-spline basis functions as B, (u) = (Bl,q (u), ..., BJn,q(u))T with the
order g (¢ > 2) and J, = N, + g. We approximate the link function go(u) by
go () ~ By(u)"0, where 6 = (61, ..., Gjn)T is the spline coefficient vector. For a
given 8, we can obtain the estimator ] (B) of 8 by minimizing the following objective

function
n

m; T
Lig:0)=3" p (Y,-,- ~ B,(x1;8) o), (1
i=1 j=1
where p; (1) = u {t — I (u < 0)} is the quantile loss function. Then, the link function
go(+) is estimated by the spline functions g (u; B) = By, w7 p). Following Ma and
Song (2015), the estimator of g(’)(~) is defined by

Jn Jn
g By =Y Bl b (B) = Byg1)ds (B),
s=1 s=2

where d (8) = (¢ = D {6 (B) = 01 B)] [ (644-1 — &) for 2 = s < Jj,. Thus,

wehave g’ (u; B) = Bq_l(u)TDlé(ﬁ),where B, 1(u) = (Bx,q_l(u) 12<s< J,,)T
is the (¢ — 1)th-order B-spline basis and

G- La-h ? .
Di=(-1)= mm 0

: : . 71~
0 0
ENn+24-1=ENn+q  ENn+2g—1=8Nn+q 1 (J,—1)x J,

2.2 The profile-type estimating equations for 8

The parameter space @ means that B is on the boundary of a unit ball. Therefore,
g0 (X ZT] ﬂ) is non-differential at the point 8. However, we must use the derivative

of go (X lTjﬂ) with respect to 8 when constructing the profile-type estimating equa-

tions. To solve the above problem, we employ “remove—one—component” method
(Cui et al. 2011) to transform the boundary of a unit ball in R? to the interior in

R~ Specifically, let B = (B1, ..., Br—1, Brt1, ...,ﬂp)T be a p — 1 dimen-
sional vector by removing the rth component S, in §. Then, 8 can be rewritten as
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1/2 T
B=pBpB")= <ﬁ1, coes Brets (1 — B ||2> , Brst, ..,,3,,) and B belongs

to the parameter space
<1 }

So B is infinitely differentiable with respect to 87” and the Jacobian matrix is

@(r) = {ﬁ(r) = (ﬁlv -"sﬂr—lv :3r+1a '--»IBP)T : Hﬂ(r)

p

T
W=(§19'°"gp) ’

J B =
2\ 172 . .
where ¢, = —(1 — ||/3(’)|| ) B andc, (1 <s <p,s#r)isa(p—1)x 1 unit
vector with sth component 1.
Motivated by the idea of GEE (Liang and Zeger 1986), together with the estima-

tors of go(-) and g((-), we construct the profile-type estimating equations for p — 1
dimensional vector B

R(B) = » Tho X! G (Xi: ) Aivre (Vi = § (X ) =0, ()

where G’ (X:8; B) = diag {g/ (X B:B)..... % (Xl.Tm'_,B; ﬁ)},wr ) =1 (u < 0)—
7 is the quantile score function, ¢ (w;) = (V7 (ui1), ..., ¥z (uim,.))T,g (XiB: B) =

T Ny T, . . T .

(g (X7p:B)..... 8 (X,-m,ﬂ; ﬁ)) » Xi = (Xna --~,Xim,-) » Xij = Xij —
E (X,-j )XiTj,B) and E (X,-j XiTj,B> is the spline estimator of E (Xij XiTjﬂ()). In
estimating Eq. (2), the term A; = diag {f“ ©), ..., fim (0)} describes the disper-
sions in ;. In some cases when f;; is difficult to estimate, A; can be simply treated as
an identity matrix with a slight loss of efficiency (Jung 1996). We define the solution

of (2) as B and then use the fact B, = /1 — |8 ||2 to obtain B. The asymptotic
property of ,3 is given in Lemma 3 of “Appendix.”

2.3 Computational algorithm

Solving estimating Eq. (2) faces some interesting challenges due to the discontinuous
indicator function. To overcome the calculation difficulty, we approximate ¥; (-) by
a smooth function ¥, (-) based on the idea of Wang and Zhu (2011). Define G (x) =
fu<x K (u)du and G, (x) = G (x/h), where K (-) is a kernel function and £ is

a positive bandwidth parameter. Then, we approximate v, (Y,-~ -8 (X iTjﬂ; ﬂ)) by
Ynr (Yi, -2 (XiTjﬂ; ﬂ)) =1-Gy (Yij -8 (XiTj,B; ,3)) — 1. Therefore, based on

the approximation, estimating Eq. (2) can be replaced by the following smoothed
estimating equations
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1168 J. Ly, C. Guo

R(p") = ZJ Lo Xi G/ (XiB: B) At (Yi = g (X ) =0, ()

We define the solution of (3) as 8. Since (3) is nonlinear equation about 8, the
Fisher—Scoring iterative algorithm can be used to solve it. Specifically, the iterative
algorithm is described as follows:
Step 0 Start with an initial value B, which is obtained by Ma and He (2016).
Step 1 Set k = 0. Use the current estimate f%) and minimize L,(8%; ) with

~(k R

respect to @ to obtain the estimator s Then, we can obtain g% (u; ,B(k)) =
. ) A (k

B, (1)78" and §'® (u; p0) = B, ()" D16"

Step 2 Utilize the estimators g% and g’® obtained by Step 1; (ﬁ(’))(k) can be
updated by

(1) = ()" = 5(57) "2 () e

where
D (Ig(r)) A 8R (r)

ﬁ(,) Z T X[ G (Xip: B) AiAi (B) G (Xip: B) Ko o

and

— diag ™K (v = & (x6: ) /1] oh K [ (Vi — 2 (xT,,5:8)) /o]

Step 3 Set k = k + 1 and repeat Steps 1 and 2 until convergence.
Step 4 With the final estimators 87 and @ obtained from Step 3, we can get the

final estimator of go (1) by g (u; B) = By, (u)Té(E), where B is obtained by the fact
2
b= \1- 18T

Remark 1 TIf the sum of ‘(ﬁ (’))(kH) - (B (’))(k)‘ is smaller than a cutoff value (such

as 1079), we stop the iteration. Our simulation studies indicate that the Fisher—Scoring
algorithm can find the numerical solution of (3) quickly.

2.4 Asymptotic properties

Let go (1) and By be the true values of g (1) and B, respectively. In the following
theorems, we need to restrict f € @,, where @, = {8 € O : | — poll < Cn~'/?}
for some positive constant C. Since we anticipate that the estimators of Sy are root-n
consistent, we should look for the solutions of (3) which involve 8 distant from Sy by
order n~1/2. Define
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- r =T -
¢ = lim ~ Zl Ty Xi G (Xipo) A 4G (Xio) Xy,
1=

and

1 - T -
¥ = lim ~ > J!X; G (Xip0)Ai £ AiG’ (Xipo)Xid g,
n—oon P By 0

where X; = Cou (Vrr (e0) . G (Xipo) = diag |5 (X],80) ... g (X7, 0) .

~ ~ ~ T ~
X,‘ = <X,‘1, -~-,Xim,-) and X,‘j = X,’j —FE (Xij XSﬂo)

Theorem 1 Under conditions (C1)—(C7) in “Appendix,” and the number of knots sat-
isfies n'/ G442 « N, <« n'/4, where d is given in the condition (C2) of “Appendix,”
we have

~ d _ _
ﬁ(ﬁ _ ,30) AN (0, J o @@ ly g IJ;é,)>

d e o
as n — 00, where — denotes convergence in distribution.

Theorem 2 Let0° be the best approximation coefficient of go (1) in the B-spline space.
When B is a known constant Bg or estimated to the order O, (nfl/ 2), under conditions
(C1)~(C7) in “Appendix,” and the number of knots satisfies n'/ %4+ « N, « nl/4,
then (i) |§(u; B) —gow)| = O, (W+ N,fd) uniformly in u € [a, b]; and (ii)
under n'/@4+) « N, « n'/4

o7 ) (8 w3 ) — & (i B)) > N (0. 1),

where oy ) = B () V™" (Bo) iy By (Xifo) AiZ+iAi By (Xifo) V™" (Bo)

T
By (), § (w; ) = B @)0° (B), By (Xif0) = (By (X1180) ... By (X1, 80) )
and V (Bo) = Y1, BY (Xifo) Ai Ai By (Xifo).

3 Modeling the within-subject covariance matrix via the modified
Cholesky decomposition

To incorporate the correlation within subjects, following the idea of GEE (Liang and
Zeger 1986), we can use the estimating equations that take the form

JT, X 6" (x:p)

" (BqT (Xip)
1G]

)A,-z,i‘ v (Y — By (X:8)6) = 0. 4

i=
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1170 J. Ly, C. Guo

Unfortunately, estimating Eq. (4) includes an unknown covariance matrix X ;;. So our
primary task is to estimate it. To guarantee the positive definiteness of X';;, we firstly
apply the modified Cholesky decomposition to decompose X';; as

Eri = L‘L'l'D'[iLZi»

where L; is a lower triangular matrix with 1’s on its diagonal and D.; is an m; x

m; diagonal matrix. Let e;; = L-”'_ll/fr (&;) = (er,,'l, ...,er’,-ml.)T, so we have

—1 -1\! 4 2 2 2
Cov(er;) = L; Xy <LU. ) = D;; = diag (dr,il’ ""dt,im,~>’ where dr,ij is
called as innovation variance. Furthermore, we assume that the below diagonal entries
of Ly are Iy jjk(k < j =2,...,m;), and then e;; = L”-_llpr (¢;) can be rewritten
as

j—1

Ve (6if) = er,ijket,ik +ecij,

k=1

where [ ;i are the so-called moving average coefficients. In this paper, we define

the notation 22=1 means zero when j = 1. The main advantage of the modified
Cholesky decomposition is that /; ;jx and d? jj are unconstrained. In order to estimate
the moving average coefficients /; ;j; and the innovation variances df ij
two generalized linear models as follows:

we construct

leijk = whve log (d2,) = 2fAe, )

where y; = (]/-[1, el y,pl)T andA; = ()»Tl, e ATPZ)T. Based on the idea of Zhang
and Leng (2012), the covariates z;; are those used in regression analysis, and w; ji is
usually adopted as a polynomial of time difference #;; — #;x. By adopting the idea of
the GEE approach, we construct two estimating equations for y; and A; by

U _ - aerTi -1
1(yr) = E e D e; =0, (6)
T

i=1

n
Uz ) = Y2l D Wi (e - a2) =0, 7
i=1

where SeTTi / dyr 1s a p1 X m; matrix with the first column zero and the jth j > 2
column der ;j /0y = — Y {_ [wijker,it + leijkderix /0ve |- zi = (zits .- Zim;)
and d2, = (d2

T,il> " T,im;

T
., d? ) . Here, W; is the covariance matrix of e%i, namely
Wi = Cov (e%i). The true W; is unknown and can be approximated by a sandwich
“working” covariance structure W;; = AZZR”- (p) Al{z (Liu and Zhang 2013),

where Ay; = 2diag (d4

il d* ) and R;; (p) mimics the correlation between

T,im;
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Quantile estimations via modified Cholesky decomposition 1171

e%yi . and e%ik (j # k) with a new parameter p. The common structures of R;; (p)

contain the compound symmetry and the first-order autoregressive. We assume that
y, and ):, are the solutions of estimating Eqs. (6) and (7). Liu and Zhang (2013) have
pointed out that p; and A are not sensitive to the parameter p. So, we take p = 0 in
our simulation studies and real data analysis.

Let y;0 and A, be the true values of y; and A, respectively. Meanwhile, we

define the covariance matrix of the function (U1 (yro)T, Uz(lfo)T)T/\/ﬁ by Vi, =

(v{i) _ , where vﬁ, =n"Cov (U;,U;)for j, 1 =1, 2. Furthermore, we assume
j

that the covariance matrix V;, is positive definite at the true value (yTTO, erO)T and

Yo (Y o (e
v21 v22 ‘U%l v%Z ’

™ ™

P . . .
where — denotes convergence in probability. Then, the proposed estimators
7 2T\ . . e
(yTT, AL ) are /n-consistent and have the following asymptotic distribution

N -1 —1
Y — Y0 \ d v%l 0 v%l 0
ﬁix—uJ*NF( 0 02) Vo) f

The proof is omitted since it is similar to the proof of Theorem 1 of Lv et al. (2017).
Now, we show that the estimated covariance matrix X ;; is consistent. For a matrix A,

Al = [tr (AAT)]I/2 denotes its Frobenius norm.

Theorem 3 Let X .; and b3 i be the true and estimated covariance matrix within
the ith cluster, respectively. Suppose that the regularity conditions in “Appendix”

A

Eri - Eri

hold. If the covariance matrix has the model structure (5), we have

0, (n~1?).

4 Efficient estimating equations for the index coefficients 8 and the link
function g(-)

Based on the discussions in Sect. 3, the covariance matrix X;; can be estimated by
~ A~ A AT ~ . A A oA A
Y. = LDy L;, where Dy; =diag (df’“, e df’imi) with drz’l.j = exp (z;.lf)
and the (j, k) element of I:n- is lAf’,-jk = wgk)?r fork < j =2,...,m;.Firstly, for a
given B, we construct efficient smoothed estimating equations of 6 by

S BT (XiB) A5 Ve (Yi — B, (XiB)6) =0, ®)
i=1
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1172 J. Ly, C. Guo

Then, the efficient smoothed estimating equations of 8 are constructed similarly by
. T - 1 -
Y T X: G (XiB; B) AiZ o Ve (Yi — By (XiB)B (B)) =0, ©)
i=1

where 6(B) is the solution of (8), G’ (X;B:B) = diag[gr’ (XI,B:B)..... 8

(XiTmi,B; ,3)} and g'(u; B) = Zjnzl Bs"q(u)és (B). Let B be the resulting estima-
tor of (9). Therefore, the efficient estimator of go (#) can be achieved by g (u; ,5) =
B,uw)"6 (B).

Remark 2 There are two main differences between the proposed estimating Eqgs. (8)
and (9) with Zhao et al. (2017)’s estimating Eq. (6). On the one hand, we apply
a different method to smooth the discontinuous estimating equations. On the other
hand, Zhao et al. (2017) applied a working correlation matrix C; which need to be
specified to improve the estimation efficiency. Therefore, Zhao et al. (2017)’s approach
cannot permit more general forms of the correlation structures and results in a loss of
efficiency when the C; is far from the true correlation structure.

Theorem 4 Under conditions (C1)—(C7) in “Appendix,” and the number of knots
satisfies n'/*4+2 « N, « n'/* we have

Ji(B-po) SN (0.7, 77,
Bo By

asn — oo, where

) 1 n T . 5
r= lim ~ Zl o Xi G Xip) A E [ A G (XiBo)Xid g
1=

and the other symbols are the same as that in Theorem 1.

12

Ti

Let ¥; = 45*1120))"(?0’ (XiBo) A; = 12
0

Then,

-1 ~T _
r J;(()r)Xi G/(Xi,BO)AiE”'

- T < _
YY] =077 X G (Xifo) Ai E1iAiG' (Xifo) XiJ yo @™
0
_ T < _
— @71 T X; G/ (Xifo) AiAiG' (Xifo) Xid yor T
0
- T < _
~ 77, X G (XiBo) AiAiG' (Xipo) XiJ yo @7
0

_ =T _ s _
+T 1];(,)Xi G' (Xifo) Ai 27 A:G' (X;Po) XiJ oI L
0
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Quantile estimations via modified Cholesky decomposition 1173

Since ¥'; Y lT is nonnegative definite, we have

0< lim 1 ZT Y'=0¢-'wo ! —o-'er-!'-r-'ee-'+r-'rr-!

n—oo

=@~ 1~1up g —-r

Thus, ' < &~'w®~!. This implies that 8 has smaller asymptotic covariance
matrix than that of 8. So the proposed estimator § is asymptotically more efficient
than /3.

Motivated by (9), a sandwich formula for estimating the covariance of § is

Cov(B)~ JznT, '@,r; Jﬂ(,), (10)
where
r, —ZJW[ "(XiB: B A S A (BY G (XiBi B) Xid yo | s
2, =ZJ o X[ G Xif: ) A S St (BIST (B) £ 4G (%63 B) Xi T oo |z
i=1

T

Sei () = {whz (Y& (X185 B)) o Ve (Yom — 2 (X1, 5: 8))

[ —

and

A; (B)

=diag{h*11< ((va—z(xhp:8)) /n). oo h™ K ((Yim — & (X, B ﬁ))/h)}

Theorem S When B8 is a known constant By or estimated to the order O, (n_l/ 2),
under conditions (CI1)—(C7) in “Appendix,” and the number of knots satisfies

/@4t « N, <« n'/? then (i) |g(u; B) — go(u)| = 0,,( Nn/n +Nn_d) uni-
formly in u € [a, b]; and (ii) under pl/@d+1) N, <K nl/4

o ) (3 (s B) — (i B)) > N (0.1),

where 0% (u) = Bg W) V=1 (Bo) By (w), V* (Bo) = Y1y Bg (XiBo) Aizf_,-l
AiBy (X;Bo) .

Remark 3 We can adopt a similar iterative algorithm given in Sect. 2.3 to find the
solutions of estimating Eqs. (8) and (9). Here, we omit it for saving space. Furthermore,
we also can prove that g(u; B) is asymptotically more efficient than g(u; 8) by using
the above similar method.
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1174 J. Ly, C. Guo

5 Simulation studies

In this section, we conduct simulation studies to compare our approach with some
existing methods. The major aim is to show that the proposed method not only can
deal with complex correlation structures, but also produces more efficient estimates
for the index coefficients and the link function. Specifically, we compare the proposed
estimators A and g (denoted as ,3 pr and g ) with the other three types of estimators: (i)
the estimator proposed by Ma and He (2016) without using “remove—one—component”
method (denoted as 3ma and g,,4); (i) the estimators § and ¢ (denoted as /§l~ nand gi,)
without considering the within-subject correlation, which are given in Sect. 2.3; (iii)
the estimators proposed by Zhao et al. (2017) with the AR(1) working correlation
structure (denoted as ﬁar and g,,) and the compound symmetry structure (denoted
as ﬁcs and g.s), which involve a tuning parameter h;. We set h] = n~12 in our
simulations and real data analysis according to their suggestions. Similar to Wang
and Zhu (2011), we smooth the quantile score function by the following second-order
(v = 2) Bartlett kernel

K (1) = ( —u/S) <|u|< )

In order to achieve good numerical performances, we need to select several parame-
ters appropriately. Firstly, we fix the spline order to be ¢ = 4, namely we use cubic
B-splines to approximate the nonparametric link function in our numerical exam-
ples. Meanwhile, we use equally spaced knots with the number of interior knots
N, = [n'/@4+D] which satisfies theoretical requirement. The similar strategy had
been adopted by Ma and Song (2015). Secondly, Wang and Zhu (2011) had proved
that the smoothed approach is robust to the bandwidth 4. Thus, we fix & = n=%3
which satisfies the theoretical requirement nh?" — 0 with v = 2.

Example 1 Similar to Ma and He (2016), we generate the data from the following
longitudinal single-index regression model

Yij=g0(X5,30)+58ij,i=1,...,n,j=1,...,mi,

where § = 0.5, go(u) = sin (M) with A = /3/2 — 1.645//12, B =

V3/2 4 1.645//12, By = (Bor. Poz- Bo3)" = (3.2,0.4)7 //37 +22 4 0.42, and
the covariate X;; = (Xij1, Xij2, Xi j3)T follows a multivariate normal distribution
N0, X) with (X)x; = 0.5%!I for 1 < k,1 < 3. Here, we define ¢;; = &; — cr,
and c; is the tth quantile of the random error &;;, which implies the correspond-
ing tth quantile of &;; is zero. Meanwhile, we consider two error distributions of

& = (5,-1, e Eim[)T for assessing the robustness and effectiveness of the proposed
method.

Case 1 Correlated normal error, &; is generated from a multivariate normal distribution
N(0, E;), where E; will be listed later.
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Case 2 §; is generated from a multivariate ¢-distribution with the degree 3 and the
covariance matrix ;.
By using a similar strategy of Liu and Zhang (2013), the covariance matrix =; is con-

structed by E; = LiDiLl.T, where D; = diag <exp(hl-T1a), R exp(hiTmioc)) and L;
is a unit lower triangular matrix with (j, k) element wiTjkqb (k< j=2,...,mj),where
¢ = (=0.3,02,0,057, a« = (=0.3,05,0.4,0)7, h;j = (1, hiji, hija, hij3),

wijt = (1, tj — tiw), (tij — ti)?, (tij — tik)3)T, hij; follows a standard normal
distribution for I = 1,2, 3, and ¢; is generated from the standard uniform distri-
bution. In addition, we adopt a similar strategy of Liu and Zhang (2013) to generate
unbalanced longitudinal data. Specifically, each subject is measured m; times with
m; — 1 ~ Binomial(11,0.8), which results in different numbers of repeated mea-
surements for each subject. For the covariates z;; and w;j; of the covariance model
(5), we set Zij = hij and W;jk = Wijk-

Example 2 The model setup is similar to that of Example 1. Firstly, we take § = 1
and Bo = (Bo1, Po2, ﬂ()3)T = (3,2, l)T /\/ﬁ. Secondly, we define the covariance
matrix =; by E; = Ai_lB,' (AiT)7 , where B; is an m; x m; diagonal matrix with the
Jjth element sin (n Gi j) /3 +0.5and g;; ~ U(0, 2), and A; is a unit lower triangular
matrix with (j, k) element —aj{i k<j=2...,m), (sj{,{ = 0.2+ 0.5 (t;j — fix)
and #;; ~ U(0, 1). For the covariates z;; and w;j; of the regression model (5), we
set z;; = <1, tij, ti2j’ tl-3j>T,
we set m; = 12, but each element has 20% probability of being missing at random,
which leads to unbalanced longitudinal data. Other settings are the same as that in
Example 1.

and w;jy is the same as that in Example 1. Meanwhile,

Example 3 For a clear comparison, we adopt a similar strategy of Zhao et al. (2017)
to construct the covariance matrix =;. We define &; = Bl/ 2H B, 12 , where B; is
given in Example 2 and H; follows either the compound symmetry structure (cs) or
the AR(1) structure (arl) with the correlation coefficient p = 0.85. In addition, we
take 8 = 1 and By = (Bo1, Boz, Bn3)T = (3,2,0)T /+/13. The scheme of generating
unbalanced longitudinal data, and z;; and w;j are the same as that in Example 2
Other settings are the same as that in Example 1.

Tables 1, 2, 3,4, and 5 give the biases and the standard deviations (SD) of ,3ma, ﬁcs,
,3[,,, Bi,,, and ,é,,r at r = 0.5,0.75 for n = 100 and 400. We can derive the following
several observations from these tables. Firstly, it is easy to find that all methods yield
unbiased estimators for the index coefficients S, since the corresponding biases are
small. Furthermore, ,é pr has smaller bias in most cases. Secondly, the estimator ,3,-,1
performs better than /§ma, which indicates “remove—one—component” method leads
to more efficient estimators. Thirdly, the proposed smoothed estimator /§ pr performs
best (wrth smallest SD) among all methods. It is not surprised that the SDs of ,BLS
and ﬁar are bigger than that of ,Bpr for Examples 1 and 2, because ,BLS and ﬁar use
misspecified correlation structures for Examples 1 and 2, which results in a loss of
efficiency. Fourthly, as far as we know, the correlation structure of v, (¢;) also has the
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exchangeable structure if the correlation structure of €; is exchangeable. Thus, /§L .5 use
a correct working correlation structure under the compound symmetry (cs) structure
in Table 5. However, ,8 pr also has slighter advantage than ﬂm The main reasons are as
follows. On the one hand, we adopt another smoothed approach that is different from
that of Zhao et al. (2017) to construct the smoothed estimating equations. On the other
hand, the moment approach does not work well and yields inaccuracy estimator of the
correlation coefficient for unbalanced longitudinal data with large m;. This leads to a
bad estimator of C; (given in Sect. 2.3 of Zhao et al. 2017). Finally, the correlation
structure of ¥, (¢;) does not possess the AR(l) correlation structure when &; has
the AR(1) correlation structure. Therefore, ﬂcs and ,Ba, use the misspecification of
correlation structure under the AR(1) correlation structure in Example 3. Therefore,
ﬁm and ,éar perform worse than ,3 pr- In addition, for the nonparametric link function
8o(-), we apply the mean squared error (MSE) to evaluate the accuracy of the estimator,
which is defined as

500

1
MSE (g) = SOOZ ZZ( ® (5 —go(u,,)) ,

11]1

where g® (u i j) is the kth estimated value of go(u;;). From Table 6, the proposed g,
achieves the smallest MSE among all methods in general, which indicates that g,
outperforms the existing approaches. Overall, the proposed estimators ,3 prand g,
can achieve better efficiency than the existing methods.

In order to evaluate the accuracy of the sandwich formula (10), we give the ratio
of sample standard deviation (SD) and the estimated standard error (SE). For brevity,
we only list the results of Example 2. In Table 7, “SD” represents the sample standard
deviation of 500 estimators of the parameters. It can be taken as the true standard
deviation of the resulting estimators. “SE” represents the sample average of 500 esti-
mated standard errors by utilizing the sandwich formula (10). Table 7 indicates that the
sandwich formula (10) works well for different situations, especially for large simple
size (n = 400), since the value of SD/SE is very close to one. Compared with the
method of Zhao et al. (2017), our method provides more accurate variance estimation.
In addition, we use Py g5 to stand for the coverage probabilities of 95% confidence
intervals over 500 repetitions. From Table 7, the proposed estimator B pr consistently
achieves higher coverage probabilities and it is closer to its nominal level.

Finally, it is an interesting question to test whether the proposed estimates A and
g(-) are sensitive to the dimensions of the covariates z;; and w; ;. For brevity, we
only present the results of 8 and g(-) for Case 1 in Example 2. We set w;j; =

T

—1 1
{l,tij — tik, .-, (tij —fik)m ] and z;; = <l,tij,..-,t52 ) , where (p1, p2)
are given in Fig. 1. From Fig. 1, we can see that § and g(-) are not very sensitive to
the dimensions (pi, p2).
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Fig. 1 Estimators of 8 = (B, B2, /33)T and g(-) at t = 0.5 (black) and = 0.75 (blue) for Case 1 in
Example 2 (color figure online)

6 Real data analysis

In this section, we illustrate the proposed estimation method through an empirical
example which has been studied by Zhang et al. (1998). These data include 34 women
whose urine samples were collected in one menstrual cycle and whose urinary proges-
terone was assayed on alternate days. These women were measured 11-28 times, and
it involves a total of 492 observations. Our goal is to explore the relationship between
progesterone level and the following covariates: patient’s age and body mass index.
Therefore, we define the log-transformed progesterone level as the response (Y), age,
and body mass index are taken as the covariates. We use the longitudinal single-index
quantile regression model to analyze this data set

Yij = g (Bi1Xij1 + B2 Xij2) + €ij,

where (Y;;, X;j1, Xij2) is the jth observed value at the time ¢;; for the ith woman,
X;j1 and X5 are the standardized variables of age and body mass index, respectively.
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Fig. 2 Scatter plots of the =_ N
response and the estimated link

functions (solid curve) with 95%
confidence intervals (dashed
curve) for 7 = 0.5 (black) and

T = 0.75 (red) (color figure
online)

g(u)
25

2.0

1.5

Meanwhile, repeated measurement time f;; is rescaled into interval [0, 1]. For the
covariance model (5), we take the corresponding covariates as

T T
— pi—1 p2—1
w,'jk—[l,tij—tik,...,(t,'j—t,'k) } , Zij = (l,tij,...,tijz )

We con51der different (p1, p2) for thlS data set. SIX estimators are considered: ﬁcs, ,Ba,,
and ,B,n are given in Sect. 5, and ﬂzz ﬁzg, and ,644 represent the proposed estimators
with (p1 = 3, po = 2), (p1 = 2, p2 = 3), and (p; = 4, p» = 4), respectively. The
leave—one—out cross-validation procedure is used to evaluate the forecasting accuracy
of the estimators. Specifically, we investigate the forecasting accuracy of different
methods by using the prediction mean squared error (PMSE), which is defined as

1 n
PMSE = -~ dovi-g (XiBn)|*.

i=1

where Y,’ = (Y,'l, ey Y,’mi)T, X,’ = (X,‘l, ey X,’mi)T, X,’j = (X,'j], X,’jQ)T, and
B(—iy is the estimator which is obtained based on the data of the other 33 subjects
except the ith subject. In Table 8, we report the PMSE, the estimated regression
coefficients, and the corresponding standard errors which are obtained by the sandwich
formula (10). Compared with the method of Zhao et al. (2017), our proposed method
possesses smaller standard errors in general. Meanwhile, we see that our method has
smaller PMSE, which indicates that the forecasting accuracy of our method is better.
In addition, scatter plots of the response and the estimated link functions with 95%
confidence intervals for T = 0.5 and 0.75 are displayed in Fig. 2. It is clear that there
is a nonlinear trend. Thus, using a nonlinear term in the regression is perhaps more
appropriate than using a linear term.
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Appendix

In the proofs, C denotes a positive constant that might assume different values at differ-
ent places. For any matrix A = (Aij)fil,jzl’ denote || Ao, = maxj<j<g lezl |A,-j |
To establish the asymptotic properties of the proposed estimators, the following reg-
ularity conditions are needed in this paper.

(Cl)Let % = [u:u =X XjecAi=1..nj= 1,...,mi} and A be the
support of X;; which is assumed to be compact. Suppose that the density function
inT/ ﬂ(u) of X IT] B is bounded away from zero and infinity on %/ and satisfies the
Lipschitz condition of order 1 on % for 8 in a neighborhood of By.

(C2) The function gg (-) has the dth bounded and continuous derivatives for some
d > 2 and gi,(-) satisfies the Lipschitz condition of order 1, where g1, () is the sth
component of g; (u) = E (X,-j Xl.Tj,Bo = u), s=1,...,p.

(C3) Let the distance between neighboring knots be H; = § — &_; and H =
maxi<;<n,+1 {H;}. Then, there exists a constant Cy such that
Co, max;<j<n, {Hit1 — Hi} = o(N, ).

(C4) The distribution function Fj;(t) = p (Y,- i — &0 (X iTjﬂ()) < t) is absolutely con-

minj <; <N, +1{H;}

tinuous, with continuous densities f;; () uniformly bounded, and its first derivative
fl.’/. (-) uniformly bounded away from O and oo at the point 0,i = 1,...,n,j =
1, Lo,y

(CS) The eigenvalues of X';; are uniformly bounded and bounded away from zero.
(C6) K (-) isbounded and compactly supportedon[—1, 1]. For some constant Cg # 0,
K (-) is a vth-order kernel, i.e., fqu w)du=1if j =0;0ifl <j <v-—-1;Cg
if j = v, where v > 2.

(C7) The positive bandwidth parameter h satisfies nh>" — 0.

Lemma 1 Under conditions (C1)—(C7), and N,, — oo and nNn_l — 00, asn — 09,
we have (i) ‘g(u; Bo) — go(u)} =0, (,/Nn/n + Nn_d> uniformly forany u € [a, b];
g’ (u; o) — go(u)

and (ii) under N, — o0 and nNn’3 — 00, as n — 09,

Op ( N3 /n+ N,fd+1> uniformly for any u € [a, b).

Proof Suppose g (u) = B, (u)T8° is the best approximating spline function for
go(u). According to the result on page 149 of de Boor (2001) for go(u) satisfying
condition (C2), we have

sup |go(u) — g%(w)| = O(N,; ). (11)

uela,b]
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Leta, = No,n~'/24+N, A2 and set llu,|l = C, where C is a large enough constant.

Our aim is to show that for any given § > 0, there is a large constant C such that, for
large n, we have

P {” Hllf L, (,30’ 0 +Olnun) > L, (:30; 00)} >1-4. (12)
u,ll=
This implies that there is local minimum 6 in the ball {00 + anuy, : luy < C }

with probability tending to one, such that ”9 —9° H = Op (ap). Define A;; =

T
Bdkgm)00—&4?5W)AwwmyMkmmw

pr(r—v)—pr(r)=—v(f—1(r<0))+/U[1(rSt)—I(VSO)]dt,
0

we have

Ly (:80; 0"+ Olnun) Ly (IBO’ 00
m; n o mj
_ 3 S <ei,» q(XTﬂo u, — A,) >3 e (61— Ay)
1 =1

i=1j=1
T
)un(r—l(su Aij < 0))

|
I
M=
‘M§.
—~
<
=
S

+Z [I (Sij—Aij St)—l(s,-j—A,-j SO)]dl
i=1j=1
21411
The observed covariates vector is written as & = {X 1T17 Y. ¢ le1 XZI’ -

T
X ,{m” } . Moreover, we have

EI|2)

nom 2By (XTI B Tu,l
=E ZZ/(; "< ]0) [I(Sij_Aijft)_I(Sij—AijEO)]dH.@
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_ %agu,{ Xn:iﬁj ©0) B, (XiTjﬂ()) B, (XiTjﬁo>T ,

i=1 j=1

+0p (nallua? /N

and
Var (11| 9)
nom; a,,Bq( iTj/SO)Tu”
=Var (XX fy (7 (eij — Aij = 1) = 1 (eij — 4ij < 0)]dt | 2
i=1j=1
n mi aan(X»T-ﬁo)Tun ’
SZE <Z fO Y [[(eij—Aij5[)—1(85j-Aij§0)]dl> | 9
i=1 j=1
2
i 2By (X7 o) un
< imi 3 E |:<f(;x ’1< t/ﬁo) " [[ (Sij —Aij < Z) —](Sij — Aij < 0)]dl> |9:|
i=1  j=1
! n r r n n r r n
B i: %_: fa BY (X7 po)u f()a BY (X7 po)u
[ (Az] + |an T(X,-Tjﬁo)un ) — Fij (Aij)] dtidn
,,(naznunn /).

In addition,

I=EW)+0,(VVar ().

Moreover, the condition that ¢;; has the rth quantile zero implies E (t/ff (8,- j)) =0.
By (11) and condition (C4), we have E (I) = o (1) and

) 2
Var (I | @) < Z E (Oln Xl: (‘L’ -1 (8,']' — Aij < O)) Bq(XiTjﬁ())Tu") |.@

i=1 j=1

IA

Cul o Z s B, (ijﬂo) Bq(XiTjﬂ())Tun

— / 1

0, (noz,%nunn2 /N)

impliesthat/ = O, (1 /noz,%/Nn> ||y, ||. Based on all the above, L, (,80; 0% + otnun)—

) T
Ly, (Bo; 8°) is dominated by o2 (ZL S fir (0) By (XT] ,90) Bq(XiTj ﬂo> )
u, by choosing a sufficiently large ||u,|| = C. Therefore, (12) holds and there exists
a local minimizer 6 such that

Hé - 00H =0, (@) =0, (N,;"“/2 n Nnnfl/z) . (13)
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Since || B, (u) Bq(u)T ” = O (1/N,), together with (13), we have

18 (w: Bo) — &% )|’ X
_ ‘Bq(u)Té - Bq(u)THO‘ (14)

< 18w By | o =0"[ = 0 (72 + 1™,

By the triangle inequality, | (u; Bo) —go ()| =< [& (u; Bo) — &° )| + [g° )
— 8o (u) |. Therefore, by (11) and (14), we have |g (u; Bo) —go ()| = O,

(N,;d + Nn/n) uniformly for every u € [a, b].

Since §'(u; Bo) = B,—1)” D16(Bo), where B, 1 (u) = {Bs 4(u) : 2 < s < J)7
is the (¢ — 1)th-order B-spline basis and D is defined in Sect. 2.1. It is easy to prove
that || D1l = O (). Then, employing similar techniques to that used in the proof
of g(u; By), we obtain that

18" (u; Bo) — gow)| = 0, ( N3/n+ Nﬂ“)

uniformly for any u € [a, b]. This completes the proof. O

Lemma 2 Under conditions (C1)—(C7), and the number of knots satisfies n'/ 24+ «
N, < n'/*, then for any J, x 1-vector ¢, whose components are not all 0, we have

5, wyel (6o — 6" (B)) > N (0. 1),

where 5,7 (u) = ¢f V™" (Bo) Xi—; B] (XiBo) AiZ+iAiBy (Xi o)V~ (Bo) ¢y and
the definition of V (Bo) is given in subsection 2.4.

Proof When 8 = fy, the minimizer  of (1) satisfies the score equations

S5l (o) e s

i=1 j=1

Then, the left-hand side of Eq. (15) becomes

S Y By (X[Bo) fis OV [1 (eij < 0) = 1 (i < 0) +1 (e1j < &ij) — 7]
i=1 j=1
=Y By (X[80) fis O [1 (e < 0) = 7]
i=1 j=1
+ Z 2 B, (X,'Tjﬁo) fij ) [Fij (0) — Fij (ij)]

i=1 j=1
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-> > B, (X,Tjﬁo) fij (0) |:Fij 0) — Fij (¢j)

i=1 j=1

— {1 (e < &ij) = 1 (eij < 0)}}

214114111, (16)

T
where ¢;; = By (XiTjﬁo) 0 — g0 (XiTjﬂo). By (11), taking Taylor’s explanation for
Fij (Cij) at 0 gives

- ZZI B, (X5ﬂ0> f,% 0)gi; 14+0(D))

i=1 j=1

11

Il
I
[]
(]
=
—~
il
~.
Ey
SN—"
S

x |:Bq (XiTj,B0>T (0 - 00) + B, (XiTj,BO)T00 s (X,Tjﬁo)] (140 (1))

- Z mZ B, (XT50) B, (X,-T,-ﬁo)Tf,% ©(6-6°)(1+o). (A7)

i=1 j=I

By direct calculation of the mean and variance, we can show that /11 = o), («/ n/ Nn).
This combined with (15)-(17) leads to

(o - 00) (140, (D) =V (B) Y By (XiBo) Aivre (e0).

i=1

Itiseasytoderivethat I = Zle Bg (X Bo) Ai ¥, (&;)isasum of independent vector,
E(I)=0and Cov (I) = Z?:l B; (XiBo) Ai X+ A; B, (X Bo). By the multivariate
central limit theorem and the Slutsky’s theorem, we can complete the proof. O

Lemma 3 Under conditions (C1)—(C7) and the number of knots satisfies n'/ ?4+2) «
N, < n'/* we have

By

Vi (B - o) L (0, I 2 > .
0

Proof Define H] = Jg(,)XiTG/(Xiﬁ;ﬁ), Si = (Sits..., Sim)T with §;; =

S (B) = Vo (Y,-- —g(xg.,s; ,3)) _ 1(Y,~ —g(xlfjﬁ;ﬁ) 50) — 7 being
a discontinuous function, then R (8")) = Y| H A;S; (B). Let R (B")) =
Y'  HIA;P; (B), where P; = (Pi,..., Pim)! with P;j = P;(B) =
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= Cn71/29

p (Y,-j -2 (XiTj,B; ,3) < 0) — 7. For any B satisfying Hﬂ(” — By
we have
(ﬂ(’))A $:6) 3 BT (87) AiSi (B

F(B) Ai {Si (B) — Si (Bo))
{Hi (7)) - H; (ﬂér))}TAiSi (Bo)-

[
-
E E

I
M:

+
'M:’_‘

I
-

At first, the first term can be written as

H[ (B7) Ai {Si (B) — Si (Bo)}

= 3 HT(B0) AP (80) + 3 HT (B7) A: i 8)

= R(8") + g > iy s 0) [1 (v -4 (x8:8) <0)
(31 ) 20) - (52 (x3:8) 20) 1

g

—Si (Bo) — Pi (B))

1

where Hl.T = (h;l ..... h,-ml.) and h;jisa (p—1) x 1 vector. According to Lemma 3 in
Jung (1996) and Lemma 1, we have sup |[T'| = o), (ﬁ) Then, the first term becomes

n
SO HT(B) Ai(Si (B) - 8i (o)) = R (B7)) + 0, (V).
i=1
By the law of large numbers (Pollard 1990), together with Lemma 1, the second term

becomes
> ms (80) - 1 (80)) Assi B
S5 (1) (1) 50

EI (v — & (X580 B0) = 0) = p (¥ij — g0 (X[ s o) < 0)]
).

Therefore, R (")) — R (ﬂér)) _
R (B™), we can obtain

()= #(6) =04 ]

R(B") + o, (V/n). By Taylor’s expansion of

(r)
ﬁ(,.):ﬂér) (IB(V) _ ,Bor ) + OP (\/Ia .
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Because R (/3(”) =0and ,3(’) is in the n~!/? neighborhood of ﬂ(r) we have

G(F =) == (1o () R () 0. an

where (/3<’>) = Y 1Jﬂ<,)XiTé’(Xiﬁ;ﬁ)A;Si B)lgor_pr- i (Bo)
= (Si1 (B0) . Simy (B)" with S (Bo) = 1 (¥y; — & (XT,o: o) < 0) — 7 and

T »/ ~/ ~
D () = ZJﬂmXi G (XiPs ) A AG (XiB: B) Kid ol gy

Thus, we have

S (Bo) = Sij (Bo) = §; (Bo) + S}, (o)
=1 (¥ — & (XF;0: o) = 0) = 1 (¥ij — go (X[;f0) = 0)

+1 (Yij — 80 (X,-Tjﬂo> = 0) -

where Sl.*j Bo) = 1 (Yij — 80 (Xl.Tjﬂo) < O) — 1. Moreover, )g (Xl.Tjﬂo; ,60)

- g0 (Xgﬂo) ‘ = Op( Ny /n +Nn—d> and E [I (Yij — 20 (XiTj:BO) < 0)} —
p (Yij — &0 (XiTjﬂo) < 0) = 1, we have E (Sij (Bo)) = o (1). Therefore, we have
E(S8;(Bo)) = o(1) and

("))

A

X G X3 B A Z i AG (XiB: ) Rid ol ooy (1 -+ 0(D)

Var(%
zﬁg

Based on Lemma 1, together with S; (ﬂ 0) are the independent random variables, the
multivariate central limit theorem implies that

%R (,3(’))—>N(0 v). (19)

By the law of large numbers and Lemma 1, we have
%D (8)) 5 @. (20)
Then, combine (18)—(20) and use the Slutsky’s theorem; it follows that
\/z(,ém _ﬂ(g”)—d)N(o,cp*lnI/qu). Q1)
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According to the result of (21) and the multivariate delta method, we have

\/_</3 ,30)—>N(0 Sy @~ g~ lJﬁ(r)>

]

Proof of Theorem 1 Using conditions (C4), (C6), and (C7), similar to Lemma 3 (k)
of Horowitz (1998), we obtain n~ /2R (ﬁér)) =n"Y2R (,Bér)) + 0, (1). In order to

prove the asymptotic normality of £, we need to prove n~! H D (ﬂ(()r) ) (,3 (r)) }

p
— 0, where

It is easy to get that
£ (B (a)} -0 () = 3 2w (o)
X fij (0) {h—lE [k (v — & (x5 80: 80)) /1)) = £ <0>} L(8),

where h;; is given in the proof of Lemma 3. Because

e i (1 ¢ (1)) - 1)
= [ [P K (e + g0 (XD B0) — & (XTifoi Bo) ) /1) fij (€ de = £ij )
= /23 K 0 fy (& (X560 o) — g0 (XT;0) + e ) di — £ 0)

= |/ K0 £ (& (X560 o) — g0 (X580)) + he fyy (6o di = £y 0)
£is (& (X501 o) — g0 (X5 80) ) = i |+ [7 [K @0y 1£; (o ae

IA

where ¢, is between g (XiTjﬂo; /30> — g0 (Xl.Tj,Bo) and ht + ¢ (XiTjﬂo; ,30> —
g0 (X ZT] /3()). By condition (C4), fl’/ (+) is uniformly bounded; hence, there exists a
/; (6| = M. Combining | (X7, po: fo) — g0 (X7;f0)| =
0, (, /N, /n + Nn_r) with conditions (C4), (C6), and (C7), we have

e i (- (e ) /)] 1,0

< |fij (é’ (XiTjﬁoz ﬁo) — 80 (XiTj/%)) fij (0)‘ +hC — 0.

constant M satisfying
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So we can obtain ‘n’] [E {ﬁ (,3(()’))} - ( (r)) ” — 0. By the strong law of large

number, we have n=' D (,B(r)) — E ( ) (,B(r))) Using the triangle inequality,
we have

) Gl o) o) o

Furthermore, by the Taylor series expansion of R (,B (’)) around ﬂ(gr), we have

(ﬂ(r)) (ﬂ(ﬂ) ('3 ) (,B(r) ﬂ(()ﬁ) ’

where B* lies between ) and ﬁér). Let 8% = B, we have

Vi (B0~ 6y == (35 (8 *)>_1 R ()

n

because of R (B(’)) = 0. Since B — By, we can obtain g* — B and

D~'(g") — D! (ﬁér)>.Sincen_ {D (,8(()”) -D (ﬂé’))} L 0andn—12R (,3(()”)
=n"12R (ﬂ(()r)) + 0, (1), we have

- 1 -1
V(B0 ) =~ (—D (ﬂé”)) 2R () +op (1.
n
Next, similar to the proof of Lemma 3, we can complete the proof of Theorem 1. O

Proof of Theorem 2 Since H B — Bo H =0, (n_l/ 2), Theorem 2 (i) follows from this
result and Lemma 1. Based on Lemma 2, we have

6w eh (880 —0° (B0)) > N 0, 1.

By the definition of g (u; B) and g (u; B), choosing ¢, = B (u) yields

o7 () (8 (w3 o) — & (3 o)) > N (0, 1) .

Thus, when B is a known constant §y or estimated to the order O, (n’l/ 2), we can
complete the proof of Theorem 2 (ii). O
Proof of Theorem 3 Let X¢; = (Gijj’)?ijzzl and X,; = (51'/'/")];1,}/:1
Based on the modiﬁed Cholesky decomposition, the diagonal elements of X';; are
5i// d?. + Z : ”kdr i for j =1,...,m;, and the elements under the diagonal

T,ij

fori =1...,n.
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A 2 5 k=1 7 2 5 . .

are 6;j = lt,ijkdgik + s gl iwed? o for j =2, mi k=1, ..,] — 1.
Similarly, the diagonal elements of X;; are o;;; = ”j + le{ lllf Uk ” i for
J = 1,...,m;, and the elements under the diagonal are ojj; = l,,,jkdf w1

_ . ar oTN\T
1,} 1] I ,]k/lf,kk/dt g forj=2....mjk=1,...,j— 1. Since (er,xT) are

J/n-consistent estimators, together with ‘?rzi/ = exp (ziT/):f) and ZATV,-jk = wl.Tjk)?, for
k<j=2,...,m;, we have

dATz»"j _drlj = 0 ( ) 9if,ijk - l‘[,ijk = 0[7 (nil/z) .

Therefore, for j = 1, ..., m;, we have

5ii: e s — _ 2 292 g2 2
UZJ] Gl]] - < T,ij d‘[l/) Z (l'L' ljkd'[lk lf l]kdr tk)

= (%, - d,)+ i[wk(m ) * (B = ) ]
=0ty

and
A ? %) Y 2
Oijk — Oijk = (lr,ijk - lr,ijk) d-, +leijk (dm.k - d,y,.k)
k-1
P ) 2
+ Z l‘[,ijk/lf,ikk/ (d'r,ik’ - d‘r,ik’)
k=1
7 # # 2
+ [(lr,ijk’ - lr,ijk’) Leikrr + Lo iji (lr,ikk’ - lr,ikk’)] d .k,}
T,1

o)

forj=2,...,mj,k=1,...,j— 1. This completes the proof. O

Proof of Theorem 4 Similar to the proof of Lemma 3, we have
2 o) 1A (a®YY L <125 (a0
ﬁ(ﬂ —/30>:—<n D(,BO )) n R(ﬂo)+0p(1), (22)

where §; (8) = (Si1 (B) ... Sim, (B))" with 5 (B) = Ve ( a (XiTjﬁ? ﬁ)>
R( (r)) p 115<r> iTé/ (X85 B) A,»jj;lg,- B) }ﬁ(,):ﬁé,) and

D(p") = ZJWX G (X B AE, A (B) G (XiB: B) Xid g

= ﬂ(’)
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Using conditions (C4), (C6), and (C7), similar to Lemma 3 (k) of Horowitz (1998),
we obtain

n12R (ﬁg”) — V2R (ﬁ(‘{)) +o,(1), 23)

T
where 87 (8) = (S} (B)..... S5, (B)) with 7 (B) = v (i — & (X[8: B))
and R* (ﬁgp) =Y JT X G (X B A S SE(B) ‘ g - Similar to the
-0

B
proof of Theorem 1, we have
b (8) - D (8)} %o, (24)
~T 5 o—1 =
where  D*(B))) = LI U5 K G (XiB: B AEL MG (Xis B)
Xid g1 |gir_gp) - BY (22)-(24), we have

ﬁ(ﬁ(’) _ ﬂ(()r)) _ _(n—lD* (ﬂ(()’)»_ln‘mR* (ﬂé”) o, (1). (25)

Similar to the proof of Lemma 1, we have

|8 (u; fo) — go(u)]

ZOP(\/m+NI1_d)’

g'(u; o) — go(w)| = 0, ( N3/n+ NJd+l>
(26)

uniformly for any u € [a, b]. Because S} (Bo) are the independent random variables,
together with (26), we have E (S} (f0)) = o (1) and

Var (ﬁR* (,3(({))) = %Ié Jg(,))A(iTG_’

~—1 ~A—1 - N
XiB; B A X Zoii X AiG (XiB; B) Xid g

ﬂ(,)zﬂ(()r) (I +o0(1)).

By the use of the following property (see Lemma 2 in Li 2011), let A, be a

sequence of random matrices converging to an invertible matrix A, and then A;l =

A" — A7 A, — A A + 0, (IA, — All%). This together with Theorem 3, we
ol

have ¥, — X! = 0, (n='/?) uniformly for all i. By the law of large numbers,

(26), and the consistency of ¥, we have

Ti

n~'D* (ﬁé”) LS r, Var (n_l/zR* (ﬁé”)) 2r.

By the multivariate central limit theorem and the Slutsky’s theorem, together with
(25), we can complete the proof. O
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Proof of Theorem 5 Similar to the proof of Theorem 2, together with the consistency

-1
Y. - Er_l.l =0, (n_l/z) of Er_il, when B is a known constant By or estimated to
the order O, (n’l/ 2), we can complete the proof of Theorem 5. O
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