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Abstract In this paper, we consider testing the homogeneity for proportions in inde-
pendent binomial distributions, especially when data are sparse for large number of
groups. We provide broad aspects of our proposed tests such as theoretical studies,
simulations and real data application. We present the asymptotic null distributions and
asymptotic powers for our proposed tests and compare their performance with existing
tests. Our simulation studies show that none of tests dominate the others; however,
our proposed test and a few tests are expected to control given sizes and obtain sig-
nificant powers. We also present a real example regarding safety concerns associated
with Avandia (rosiglitazone) in Nissen and Wolski (New Engl J Med 356:2457–2471,
2007).

Keywords Asymptotic distribution · Homogeneity of proportions · Sparse data

1 Introduction

An important step in statistical meta-analysis is to carry out appropriate tests of homo-
geneity of the relevant effect sizes before pooling of evidence or information across
studies. While the familiar Cochran (1954) Chi-square goodness-of-fit test is widely
used in this context, it turns out that this test may perform poorly in terms of not
maintaining Type I error rate in many problems. In particular, this is indeed a seri-
ous drawback of Cochran’s test for testing the homogeneity of several proportions
in case of sparse data. A recent meta-analysis (Nissen and Wolski 2007), addressing
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506 J. Park

the cardiovascular safety concerns associated with (rosiglitazone), has received wide
attention (Cai et al. 2010; Tian et al. 2009; Shuster et al. 2007; Shuster 2010; Stijnen
et al. 2010). Two difficulties seem to appear in this study: first, study sizes (N) are
highly unequal, especially in control arm, with over 95% of the studies having sizes
below 400 and two studies having sizes over 2500; second, event rate is extremely
low, especially for death end point, with the maximum death rate in the treatment
arm being 2%, while in control arm, over 80% of the studies have zero events. The
original meta-analysis (Nissen and Wolski 2007) was performed under fixed effects
framework, as the diagnostic test based on Cochran’s Chi-square test failed to reject
homogeneity. However, with two large studies dominating the combined result, people
agree random effects analysis is the superior choice over fixed effects (Shuster et al.
2007). Moreover, the results for the fixed and random effect analyses are discordant.
While different fixed effect and random effect approaches are proposed, the prob-
lem of testing for homogeneity of effect sizes is less familiar and often not properly
addressed. This is precisely the object of this paper, namely a thorough discussion of
tests of homogeneity of proportions in case of sparse data situations. Recently, there
are some studies on testing the equality of means when the number of groups increases
with fixed sample sizes in either ANOVA (analysis of variance) or MANOVA (mul-
tivariate analysis of variance). For example, see Bathke and Harrar (2008), Bathke
and Lankowski (2005) and Boos and Brownie (1995). Those studies have limitation
in asymptotic results since they assume all samples sizes are equal, i.e., balanced
design. On the other hand, we actually emphasize the case that sample sizes are highly
unbalanced and present more fluent asymptotic results for a variety cases including
unbalanced cases and small values of proportions in binomial distributions.

In this paper, we first point out that the classical Chi-square test may fail in con-
trolling a size when the number of groups is high and data are sparse. We modify
the classical Chi-square test with providing asymptotic results. Moreover, we propose
two new tests for homogeneity of proportions when there are many groups with sparse
count data. Throughout this study, we present some theoretical conditions under which
our proposed tests achieve the asymptotic normality, while most of existing tests do
not have rigorous investigation of asymptotic properties.

A formulation of the testing problem for proportions is provided in Sect. 2 along
with a review of the literature and suggestion for new tests. The necessary asymptotic
theory to ease the application of the suggested test is developed. Results of simulation
studies are reported in Sect. 3, and an application to the Nissen and Wolski (2007)
data set is made in Sect. 4. Concluding remark is presented in Sect. 5.

2 Testing the homogeneity of proportions with sparse data

In this section, we present a modification of a classical test which is Cochran’s test
and also propose two types of new tests. Throughout this paper, our theoretical studies
are based on triangular array which is commonly used in asymptotic theories in high
dimension. See Park and Ghosh (2007) and Park (2009) for triangular array in binary
data and Greenshtein and Ritov (2004) for more general cases. More specifically, let
Θ(k) = {(π(1)

1 , π
(2)
2 , . . . , π

(k)
k ) : 0 < π

(k)
i < 1 for 1 ≤ i ≤ k} be the parameter space
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in which π
(k)
i s are allowed to be varying depending on k as k increases. Additionally,

sample sizes (n(1)
1 , . . . , n(k)

k ) also change depending on k. However, for notational

simplicity, we suppress superscript k from π
(k)
i and n(k)

i . The triangular array provides
more flexible situations, for example all increasing sample sizes and all decreasing
πi s. On the other hand, the asymptotic results in Bathke and Lankowski (2005) and
Boos and Brownie (1995) are based on increasing k, but all sample sizes and πi s are
fixed. This set up provides somewhat limited results, while we present the asymptotic
results on the triangular array. Our results will include the asymptotic power functions
of proposed tests, while existing studies do not provide them.

2.1 Modification of Cochran’s test

Suppose that there are k independent populations and the i th population has Xi ∼
Binomial(ni , πi ). Denote the total sample size and the weighted average of πi ’s by
N = ∑k

i=1 ni and π̄ = 1
N

∑k
i=1 niπi , respectively. We are interested in testing the

homogeneity of πi ’s from different groups,

H0 : π1 = π2 = · · · = πk ≡ π(unknown). (1)

To test the above hypothesis in (1), one familiar procedure is Cochran’s Chi-square
test in Cochran (1954), namely TS :

TS =
k∑

i=1

(Xi − ni ˆ̄π)2

ni ˆ̄π(1 − ˆ̄π)
(2)

where π̂ =
∑k

i=1 Xi
∑k

i=1 ni
. T S uses an approximate Chi-square distribution with degrees of

freedom (k − 1) under H0. The H0 is rejected when TS > χ2
1−α,k−1 where χ2

1−α,k−1
is the 1 − α quantile of Chi-square distribution with degrees of freedom (k − 1). In
particular, when k is large, TS−k√

2k
is approximated by a standard normal distribution

under H0. Although Cochran’s test for homogeneity is widely used, the approximation
to the χ2 distribution of TS or normal approximation may be poor when the sample
sizes within the groups are small or when some counts in one of the two categories
are low. This is partly because the test statistic becomes noticeably discontinuous and
partly because its moments beyond the first may be rather different from those of χ2.

We demonstrate that the asymptotic Chi-square approximation to TS or normal
approximation based on TS−k√

2k
may be very poor when k is large or πi s are small com-

pared to ni s.We provide the following theorem and propose amodified approximation
to TS which is expected to provide more accurate approximation. Let us define

T = TS − E(TS)√
Bk

(3)
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where TS = ∑k
i=1

(Xi−ni π̄)2

ni π̄(1−π̄)
, Bk ≡ Var(TS) = ∑k

i=1 Var
(

(Xi−ni π̄)2

ni π̄(1−π̄)

)
≡ ∑k

i=1 Bi
and

Var

(
Xi − ni π̄

ni π̄(1 − π̄)

)

= Bi = 2π2
i (1 − πi )

2

π̄2(1 − π̄)2
+ πi (1 − πi )(1 − 6πi (1 − πi ))

ni π̄2(1 − π̄)2

+ 3πi (1 − πi )(1 − 2πi )(πi − π̄)

π̄2(1 − π̄)2

+ 4niπi (1 − πi )(πi − π̄)2

π̄2(1 − π̄)2
,

E(TS) =
k∑

i=1

(
ni (πi − π̄)2

π̄(1 − π̄)
+ πi (1 − πi )

π̄(1 − π̄)

)

.

Note that TS is not a statistic since it still includes the unknown parameter π̄ =∑k
i=1

niπi
N . It will be shown later that π̄ can be replaced by ˆ̄π = 1

N

∑k
i=1 ni π̂i under H0

since ˆ̄π has the ratio consistency (
ˆ̄π
π̄

→ 1 in probability) under some mild conditions.
Define

B0k =
k∑

i=1

B0i =
k∑

i=1

(

2 − 6

ni
+ 1

ni π̄(1 − π̄)

)

and

T0 = TS − k√
B0k

(4)

which is the T defined in (3) under H0 since E(TS) = k and Bk = B0k under H0. The
following theorem shows the asymptotic properties of T0 in (4).

Theorem 1 For θi = πi (1 − πi ) and θ̄ = π̄(1 − π̄), if

∑k
i=1

(
θ4i + θi

ni

)

(π̄(1−π̄))4B2
k

→ 0 and
∑k

i=1 n
2
i θi (πi−π̄ )4(θi+ 1

ni
)

(π̄(1−π̄))4B2
k

→ 0 as k → ∞, then we have

P(T0 > z1−α) − Φ̄

(
z1−α

σk
− μk

)

→ 0

where μk = E(TS)−k√
Bk

, σ 2
k = Bk

B0k
and Φ̄(z) = 1 − Φ(z) = P(Z ≥ z) for a standard

normal distribution Z.

Proof See “Appendix”. 	

We propose to use a test which rejects the H0 if

Tχ ≡ TS − k
√

B̂0k

> z1−α (5)

123



homogeneity test of binomial proportions 509

where z1−α is the 1 − α quantile of a standard normal distribution, B̂0k =
∑k

i=1

(
2 − 6

ni
+ 1

ni ˆ̄π(1− ˆ̄π)

)
and ˆ̄π =

∑k
i=1 ni π̂i
N .

Using Theorem 1, we obtain the following results which states that our proposed
modification of Cochran’s test in (5) is the asymptotically size α test, while TS−k√

2k
may

fail in controlling a size α under some conditions.

Corollary 1 Under H0 and the conditions in Theorem 1, Tχ in (5) is asymptotically
size α test. A normal approximation to TS−k√

2k
is not asymptotically size α test unless

B0k
2k → 1.

Proof We first show that ˆ̄π/π̄ → 1 in probability. Under H0, πi ≡ π , we have∑k
i=1 ni π̂i ∼ Binomial(N , π). Using

∑k
i=1 niπi = Nπ → ∞ under H0, we have

E

( ˆ̄π
π̄

− 1

)2

= 1 − π

Nπ
≤ 1

Nπ
→ 0

leading to ˆ̄π/π̄ → 1 in probability. From this, we have B̂0k
B0k

→ 1 in probability

under H0. Furthermore, under H0, since we have B0k
Bk

= 1 and E(TS) = k, we

obtain Tχ − T = (

√
B0k

B̂0k
− 1)T = op(1)Op(1) = op(1) which means Tχ and T are

asymptotically equivalent under the H0. Since PH0(T > z1−α) − Φ̄(z1−α) → 0, we
have PH0(Tχ > z1−α)− α → 0 which means Tχ is the asymptotically size α test. On

the other hand, it is obvious that TS−k√
2k

does not have an asymptotic standard normality

unless B0k/(2k) → 1 since TS−k√
2k

=
√

B̂0k
2k Tχ under the H0. 	


Under H0, since B0k = 2k+ ( 1
π̄(1−π̄)

−6)
∑k

i=1
1
ni
, we expect B0k

2k to converge to 1

when ( 1
π(1−π)

− 6)
∑k

i=1
1
ni

= o(k) where πi = π̄ ≡ π under H0. This may happen
when π is bounded away from 0 and 1 and ni s are large. If all ni s are bounded by
some constant, say C , and | 1

π(1−π)
− 6| ≥ δ > 0 (this can happen when π < ε1 or

π > 1 − ε2 for some ε1 > 0 and ε2 > 0), then Bk
2k does not converge to 1. Even for

ni s are large, if π → 0 fast enough, then B0k
2k does not converge to 1. For example, if

π = 1/k and ni = k as k → ∞, then B0k
2k → 3/2 which leads to TS−k√

2k
→ N (0, 3

2 ) in

distribution. This implies that P(
TS−k√

2k
> z1−α) → 1 − Φ(

√
2
3 z1−α) > α, so the test

obtains a larger asymptotic size than a given nominal level. To summarize, if either π

is small or ni s are small, we may not expect an accurate approximation to TS−k√
2k

based
on normal approximation, so the sparse binary data with small ni s and a large number
of groups (k) need to be handled more carefully.
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2.2 New tests

In addition to the modified Cochran’s test Tχ , we also propose new tests designed
for sparse data when k is large. Similar to the asymptotic normality of Tχ , it will be
justified that our proposed tests have the asymptotic normality when k → ∞ although
ni s are not required to increase. Toward this end, we proceed as follows. Let ||π −
π̄ ||2n = ∑k

i=1 ni (πi −π̄)2 which is weighted l2 distance fromπ = (π1, π2, . . . , πk) to
π̄ = (π̄, π̄ , . . . , π̄)where n = (n1, . . . , nk). The proposed test is based on measuring
the ||π −π̄ ||2n. Since this is unknown, one needs to estimate the ||π −π̄ ||2n. One typical
estimator is a plug-in estimator such as ||π̂ − ˆ̄π ||n; however, this estimator may have
a significant bias. To illustrate this, note that

E ||π̂ − ˆ̄π ||2n =
k∑

i=1

πi (1 − πi ) +
k∑

i=1

niπi (1 − πi )

N
− 2

N

k∑

i=1

niπi (1 − πi )

+
k∑

i=1

ni (πi − π̄)2

=
k∑

i=1

ciπi (1 − πi ) + ||π − π̄ ||2n

where ci = (1 − ni
N ). This shows that ||π̂ − ˆ̄π ||2n is an overestimate of ||π − π̄ ||2n

by
∑k

i=1 ciπi (1 − πi ) which needs to be corrected. Using E
[

ni
ni−1 π̂i (1 − π̂i )

]
=

πi (1 − πi ) for π̂i = xi
ni
, we define di = ni ci

ni−1 and

T =
n∑

i=1

ni (π̂i − ˆ̄π)2 −
k∑

i=1

di π̂i (1 − π̂i ) ≡ ||π̂ − ˆ̄π ||2n −
k∑

i=1

di π̂i (1 − π̂i ) (6)

which is an unbiased estimator of ||π − π̄ ||2n. This implies E(T ) = ||π − π̄ ||2n ≥ 0
and “=” holds only when H0 is true. Therefore, it is natural to consider large values
of T as an evidence supporting H1, and we thus propose a one-sided (upper) rejection
region based on T for testing H0. Our proposed test statistics are based on T of which
the asymptotic distribution is normal distribution under some conditions.

We derive the asymptotic normality of a standardized version of T under some
regularity conditions. Let us decompose T into two components, say T1 and T2:

T =
k∑

i=1

ni (π̂i − πi + πi − π̄ + π̄ − ˆ̄π)2 −
k∑

i=1

di π̂i (1 − π̂i )

=
∑k

i=1

{
ni (π̂i − πi )

2 − di π̂i (1 − π̂i ) + 2ni (π̂i − πi )(πi − π̄) + ni (πi − π̄)2
}

︸ ︷︷ ︸
T1

(7)
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− N ( ˆ̄π − π̄)2
︸ ︷︷ ︸

T 2

(8)

where T1 ≡ ∑k
i=1 T1i for T1i = ni (π̂i −πi )

2−di π̂i (1− π̂i )+2ni (π̂i −πi )(πi − π̄ )+
ni (πi − π̄)2. To prove the asymptotic normality of the proposed test, we need some
preliminary results stated below in Lemmas 1, 2 and 3 and show the ratio consistency
of proposed estimators of Var(T1) in Lemma 5.

Lemma 1 Let θi = πi (1−πi ). When Xi ∼ Binomial(ni , πi ) and π̂i = Xi
ni
, we have

E[(π̂i − πi )
3] = (1 − 2πi )θi

n2i
, E[(π̂i − πi )

4] = 3θ2i
n2i

+ (1 − 6θi )θi
n3i

E[π̂i (1 − π̂i )] = ni − 1

ni
θi ,

π l
i = E

⎡

⎣
nli

∏l−1
j=0 (ni − j)

l−1∏

j=0

(

π̂i − j

ni

)
⎤

⎦, for ni ≥ l and l = 1, 2, 3, 4.

Proof The first three results are easily derived by some computations. For the last
result, note that when Xi ∼ Binomial(ni , πi ), E[Xi (Xi − 1) · · · (Xi − l + 1)] =
ni (ni − 1) · · · (ni − l + 1)π l

i . Let X = ∑k
i=1

∑ni
j=1 Xi j ∼ Binomial(N , π), then we

have the above unbiased estimators under H0 using π̂ = X
N = 1

N

∑k
i=1 ni π̂i . 	


Wenowderive the asymptotic null distribution of T1√
Var(T1)

andpropose an unbiased

estimator ofVar(T1)whichhas the ratio consistencyproperty.Wefirst computeVar(T1)
and then propose an estimator ̂Var(T1).

Lemma 2 The variance of T1, Var(T1), is

Var(T1) =
k∑

i=1

A1iθ
2
i +

k∑

i=1

A2iθi

+ 4
k∑

i=1

ni (πi − π̄)2θi + 4

N

k∑

i=1

ni (πi − π̄)(1 − 2πi )θi (9)

where A1i =
(

2 − 6
ni

− d2i
ni

+ 8d2i
n2i

− 6d2i
n3i

+ 12di
ni−1
n2i

)

and A2i = ni
N2 for di =

ni
ni−1

(
1 − ni

N

)
.
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Proof See “Appendix”. 	

Under the H0 (πi = π for all 1 ≤ i ≤ k), the third and fourth terms including

πi − π̄ in (9) are 0, and therefore, we obtain the Var(T1) under H0 as follows;

VarH0(T1) ≡ V1 =
k∑

i=1

{
A1iθ

2
i + A2iθi

}
(10)

= V1∗ = (π(1 − π))2
k∑

i=1

A1i + π(1 − π)

k∑

i=1

A2i . (11)

V1 in (10) and V1∗ in (11) are equivalent under the H0; however, the estimators
may be different depending on whether θi s are estimated individually from xi or the
common value π is estimated in V1∗ by the pooled estimator π̂ . We shall consider
these two approaches for estimating V1 and V1∗.

First, we demonstrate the estimator for V1 in (10). V1i ≡ A1iθ
2
i +A2iθi is a fourth

degree polynomial in πi , in other words, V1i = a1iπi +a2iπ2
i +a3iπ3

3 +a14π4
i where

ai j ’s depend only on N and ni . As an estimator of V1 = ∑k
i=1(a1iπi + a2iπ2

i +
a3iπ3

i + a4iπ4
i ), we consider unbiased estimators of πi , π2

i , π
3
i and π4

i . Let ηli = π l
i ,

l = 1, 2, 3, 4, then unbiased estimators of ηli , say η̂li , are obtained directly from
Lemma 1, leading to the first estimator of V1, as

V̂1 =
k∑

i=1

4∑

l=1

ali η̂li (12)

where η̂li = nli∏l−1
j=1(ni− j)

∏l−1
j=0

(
π̂i − j

ni

)
for l = 1, 2, 3, 4 from Lemma 1 and

a1i = A2i , a2i = A1i − A2i , a3i = − 2A1i , a4i = A1i .

The second estimator is based on estimating V1∗ in (11). Since all πi = π under
H0, we can write V1∗ = ∑k

i=1
∑4

l=1 aliπ
l
i = ∑k

i=1
∑4

l=1 aliπ
l and use an unbiased

estimator of π l using
∑k

i=1 xi ∼ Binomial(N , π) from Lemma 1. This leads to the
estimator of V1∗ under H0 which is

V̂1∗ =
k∑

i=1

4∑

l=1

ali η̂l . (13)

where η̂l = Nl
∏l

j=0(N− j)

∏l−1
j=0

(
π̂ − j

N

)
and π̂ = 1

N

∑k
i=1 ni π̂i , as used earlier.

Remark 1 Note that V̂1 is an unbiased estimator of V1 regardless of H0 and H1. On
the other hand, V̂1∗ is an unbiased estimator of V1∗ only under the H0 since we use
the binomial distribution of the pooled data

∑k
i=1 xi and use Lemma 1.
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homogeneity test of binomial proportions 513

For sequences of an(> 0) and bn(> 0), let us define an � bn if 0 < lim inf an
bn

≤
lim sup an

bn
< ∞. The following lemmas will be used in the asymptotic normality of

the proposed test.

Lemma 3 Suppose ni ≥ 2 for 1 ≤ i ≤ k. Then,

1. we have V1 � ∑k
i=1 θ2i + 1

N2

∑k
i=1 niθi . In particular, if 0 < c ≤ πi ≤ 1− c < 1

for all i and some constant c, we have V1 � k.
2. we have

k∑

i=1

A1iθ
2
i ≤ Var(T1) ≤ K

(
V1 + ||π − π̄ ||2nθ

)
(14)

for some constant K > 0 where ||π − π̄ ||2nθ = ∑k
i=1 ni (πi − π̄ )2θi . If |πi − π̄ | ≥

1+ε
N for some ε > 0 and 1 ≤ i ≤ k, we have

Var(T1) � V1 + ||π − π̄ ||2nθ . (15)

Proof See “Appendix”. 	

Weprovide another lemmawhich plays a crucial role in the proof of themain result.

As mentioned, we have two types of variances such as V1 in (10) and V1∗ in (11) and
their estimators V̂1 and V̂1∗. For T1 in (8), we consider two types of standard deviations
based on Var(T1) and Var(T1)∗.

The following lemma provides upper bounds of n4E(π̂ − π)8 and E(π̂(1 − π̂))4

which are needed in our proof for our mail results.

Lemma 4 If X ∼ Binomial(n, π), π̂ = X
n and η̂l is the unbiased estimator of π l

defined in Lemma 1, then we have, for θ ≡ π(1 − π),

n4E(π̂ − π)8 ≤ C min

{

θ4,
θ

n

}

E(π̂(1 − π̂))4 ≤ C ′ min

{

θ4,
θ

n3

}

E π̂ l = π l + O

(
π

nl−1 + π l−1

n

)

for l ≥ 2 (16)

E(π̂ l − π l)2 = O

(
π2l−1

n
+ π

n2l−1

)

for l ≥ 2

E(η̂l − π l)2 = O

(
π2l−1

n
+ π

n2l−1

)

for l ≥ 2 (17)

where C and C ′ are universal constants which do not depend on π and n.

Proof See “Appendix”. 	
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Remark 2 It should be noted that the bounds in Lemma 4 depend on the behavior
of θ = π(1 − π) and the sample size n in binomial distribution. In the classical
asymptotic theory for a fixed value of π , if π is bounded away from 0 and 1 and n is
large, then θ4 dominates θ

n (or θ
n3
). However, n is not large and π is close to 0 or 1,

then θ
n (or θ

n3
) is a tighter bound of n4E(π̂ − π)8 (or E(π̂(1 − π̂))4) than θ4.

The following lemma shows that V̂1 and V̂1∗ have the ratio consistency under some
conditions.

Lemma 5 For θ̃ = π̄(1−π̄), π̄ = 1
N

∑k
i=1 niπi andπi ≤ δ < 1 for some 0 < δ < 1,

we have the followings;

1. if

∑k
i=1

(
θ3i
ni

+ θi
n3i

)

(∑k
i=1

(
θ2i + 1

N2
θi
ni

))2 → 0 as k → 0, V̂1
V1

→ 1 in probability.

2. if
(θ̃)3

∑k
i=1

1
ni

+θ̃
∑k

i=1
1
n3i(

k(θ̃)2+ θ̃

N2
∑k

i=1
1
ni

)2 → 0, V̂1∗
V1∗ → 1 in probability.

Proof See “Appendix”. 	

Remark 3 Lemma 5 includes the condition πi ≤ δ < 1 which avoids dense case that
the majority of observations are 1. Since our study focuses on sparse case, it is realistic
to exclude πi s which are very close to 1. When data are dense, the homogeneity test
of πi can be done through testing π∗

i ≡ 1 − π and x∗
i j = 1 − xi j .

Remark 4 As an estimator of π l
i or π l for l = 1, 2, 3, 4, we used unbiased estimators

of them. Instead of unbiased estimators, we may consider simply MLE, (π̂i )
l or (π̂)l

for l = 1, 2, 3, 4. For the first type estimator V̂1, when sample sizes ni are not large,
unbiased estimators and MLE are different. Especially, if all ni s are small and k is
large, then such small differences are accumulated so the behavior of estimators for
variance is expected to be significantly different. This will be demonstrated in our
simulation studies. On the other hand, for V̂1∗, unbiased estimators and MLEs for
(π)l under H0 behave almost same way even for small ni since the total sample size
N = ∑k

i=1 ni is large due to large k. The estimator of V1 based on π̂i , namely V̂mle
1

has the larger variance

E
(
V̂mle
1 − V1

)2 �
k∑

i=1

(
θ3i

ni
+ θi

n3i

)

+
∑

i �= j

θiθ j

ni n j

while E(V̂1 − V1)
2 � ∑k

i=1

(
θ3i
ni

+ θi
n3i

)

. Similarly, we can also define V̂mle
1∗ based

on the π̂ =
∑k

i=1 xi
N . Even with the given condition

∑k
i=1

(
θ3i
ni

+ θi
n3i

)

/(
∑k

i=1 θ2i +
1
N2

∑k
i=1

θi
ni

)2 = o(1), V̂mle
1 may not be a ratio-consistent estimator due to the addi-

tional variation from biased estimation of π l
i for l = 2, 3, 4. We present simulation

studies comparing tests with V̂1 and V̂mle
1 later.
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In Lemma 5, we present ratio consistency of V̂1 and V̂1∗ under some conditions.
Both conditions avoid too small πi s compared to ni s among k groups. It is obvious
that the conditions are satisfied if all πi s are uniformly bounded away from 0 and 1. In
general, however, the conditions allow small πi s which may converge to zero at some
rate satisfying presented conditions on θi s in lemmas and theorems.

Under H0, we have two different estimators, V̂1 and V̂1∗ and their corresponding
test statistics, namely Tnew1 and Tnew2, respectively:

Tnew1 = T
√

V̂1

, Tnew2 = T
√

V̂1∗
.

The following theorem shows that the proposed tests, Tnew1 and Tnew2, are asymp-
totically size α tests.

Theorem 2 Under H0 : πi ≡ π for all 1 ≤ i ≤ k, if the condition in Lemma 5 holds

and
∑k

i=1
1
ni

kθ3
→ 0 for θ = π(1 − π) under H0, then Tnew1 → N (0, 1) in distribution

and Tnew2 → N (0, 1) in distribution as k → ∞.

Proof See “Appendix”. 	


Remark 5 The condition in Lemma 5 under the H0 is
θ3

∑k
i=1

1
ni

+θ
∑k

i=1
1
n3i(

kθ2+ θ

N2
∑k

i=1
1
ni

)2 = o(1).

This condition includes a variety of situations such as small values of π as well as
small sample sizes. Furthermore, inhomogeneous sample sizes are also included. For
example, when the sample sizes are bounded, we have

∑k
i=1

1
ni

� k and
∑k

i=1
1
n3i

� k

leading to
θ3

∑k
i=1

1
ni

+θ
∑k

i=1
1
n3i(

kθ2+ θ

N2
∑k

i=1
1
ni

)2 ≤ 1
kθ3

which converges to 0 when kθ3 → ∞. This

happenswhenπ = kε−1/3 for 0 < ε < 1/3which is allowed to converge to 0. Another
case is that sample sizes are highly unbalanced. For example, we have ni � iα for
α > 1 which implies

∑∞
i=1

1
ni

< ∞ and
∑∞

k=1
1
n3i

< ∞. Therefore, the condition

is
θ3

∑k
i=1

1
ni

+θ
∑k

i=1
1
n3i(

kθ2+θ
∑k

i=1
1
ni

)2 � θ3+θ
(kθ2+θ)2

≤ θ3+θ
k2θ4

= 1
k2θ

+ 1
k2θ3

→ 0 if π � kε for − 2
3 <

ε < 0. In this case, the sample size ni diverges as i → ∞, so sample sizes are highly
unbalanced. For the asymptotic normality, additional condition

∑k
i=1

1
ni

/(kθ3) → 0

in Theorem 2 is satisfied for − 1
3 < ε < 0.

From Theorem 2, we reject the H0 if

Tnew1(or Tnew2) > z1−α

where z1−α is (1 − α) quantile of a standard normal distribution. As explained in
Sect. 2.2, note that the rejection region is one-sided since we have E(T ) ≥ 0, implying
that large values of tests support the alternative hypothesis.
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Although they have the same asymptotic null distribution, their power functions
are different due to the different behaviors of V̂1 and V̂1∗ under H1. In general, it is not
necessary to have the asymptotic normality under the H1; however, to compare the
powers analytically, one may expect asymptotic power functions to be more specific.

The following lemma states the asymptotic normality of T/
√
Var(T1) where

Var(T1) is in (9) inLemma2. In the following asymptotic results, it isworthmentioning
that we put some conditions on θi s so that they do not approach to 0 too fast.

Theorem 3 If (i) |πi − π̄ | ≥ 1+ε
N for 1 ≤ i ≤ k, (ii)

∑k
i=1(θ

4
i + θi

ni
)

(∑k
i=1 θ4i + 1

N2
∑k

i=1
θi
N

)2 → 0 and

(iii) maxi (πi−π̄)2(ni θi+1)
V1+||π−π̄ ||2θn

→ 0 where ||π − π̄ ||2θn = ∑k
i=1 ni (πi − π̄)2θi , then

T − ∑k
i=1 ni (πi − π̄)2√
Var(T1)

→ N (0, 1) in distribution

where Var(T1) is defined in (9).

Proof See “Appendix”. 	

Using Theorem 3, we obtain the asymptotic power of the proposed tests. We state

this in the following corollary.

Corollary 2 Under the assumptions in Lemma 5 and Theorem 3, the powers of Tnew1
and Tnew2 are

P(Tnew1 > z1−α) − Φ̄

( √
V1√

Var(T1)
z1−α −

∑k
i=1 ni (πi − π̄)2√

Var(T1)

)

→ 0

and

P(Tnew2 > z1−α) − Φ̄

( √
V1∗√

Var(T1)
z1−α −

∑k
i=1 ni (πi − π̄)2√

Var(T1)

)

→ 0

where Φ̄(x) = 1−Φ(x) = P(Z > x) for a standard normal random variable Z and
Var(T1) defined in (9).

2.3 Comparison of powers

In the previous section, we present the asymptotic power of tests, Tnew1 and Tnew2.
Currently, it does not look straightforward to tell one test is uniformly better than
the others. However, one may consider some specific scenario and compare different
tests under those scenario which may help to understand the properties of tests in a
better way. Asymptotic powers depend on the configurations of (π ′

i s), (n
′
i s) and k. It

is not possible to consider all configurations; however, what we want to show through
simulations is that neither of Tnew1 and Tnew2 dominates the other.
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Let β(T ) be the asymptotic power of a test statistic limk→∞ P(T > z1−α) where
T is one of Tχ , Tnew1 and Tnew2.

Theorem 4 1. If sample sizes n1 = · · · = nk ≡ n andmax1≤i≤k πi < 1
2 − 1√

3
, then

lim
k→∞(β(Tnew2) − β(Tnew1)) ≥ 0.

If ni = n for all 1 ≤ i ≤ k and nπ̄(1 − π̄) → ∞, then

lim
k→∞(β(Tnew2) − β(Tχ )) ≥ 0.

2. Suppose πi = π = k−γ for 1 ≤ i ≤ k − 1 and πk = k−γ + δ for 0 < γ < 1 as
well as ni = n for 1 ≤ i ≤ k − 1, and nk = [nkα] for 0 < α < 1 where [x] is the
greatest integer which does not exceed x. Then, if n → ∞,
(a) for {(α, γ ) : 0 < α < 1, 0 < γ < 1, 0 < α + γ < 1, 0 < γ ≤ 1

2 }, then
limk(β(Tnew1) − β(Tnew2)) = 0.

(b) for {(α, γ ) : 0 < α < 1, 0 < γ < 1, α+γ > 1, α > 1
2 }, then limk(β(Tnew1)−

β(Tnew2)) > 0.
3. Suppose π1 = k−γ + δ and n1 = n → ∞ and πi = k−γ and ni = [nkα] for

2 ≤ i ≤ n. For 0 < γ < 1 and 0 < α < 1, if 0 < γ < 1/2 and k1−α−γ = o(n),
then

lim
k→∞(β(Tnew2) − β(Tnew1)) > 0. (18)

Proof See “Appendix”. 	

From Theorem 4, we conjecture that Tnew2 has better powers than others when

sample sizes are homogeneous or similar to each other. For inhomogeneous sample
sizes, Tnew1 and Tnew2 have different performances from the cases of 2 and 3 in
Theorem 4. We show numerical studies reflecting these cases later.

Althoughwe compare the powers of the proposed tests under some local alternative,
it is interesting to see different scenarios and compare powers. Instead of an analytical
approach, we present numerical studies as follows: Since the asymptotic powers of
Tnew1 and Tnew2 depend on the behavior ofV1 andV1∗, we compare those two variances
under a variety of situations. If V1∗ > V1, then Tnew1 is more powerful than Tnew2;
otherwise, we have an opposite result. Although we compared the powers of tests in
this paper in Theorem 4, there are numerous additional situations which are not cov-
ered analytically. We provide some additional situations from numerical studies here.
We take k = 100, and we generate sample sizes ni ∼ {20, 21, . . . , 200} uniformly.
The left panel is for πi ∼ U (0.01, 0.2) and the left panel is for π ∼ U (0.01, 0.5)
where U (a, b) is the uniform distribution in (a, b). We consider 1, 000 different con-
figurations of (ni , πi )1≤i≤100 for each panel. We see that Var(T1) and Var(T1)∗ have
different behaviors when πi s are generated different ways. If πi s are widely spread
out, then Var(T1)∗ is larger, otherwise Var(T1) seems to be larger from our simulations
(Fig. 1).

123



518 J. Park

1.2 1.4 1.6 1.8 2.0 2.2 2.4

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

V ar(T1)

V 
ar

(T
1)

*

5.5 6.0 6.5 7.0 7.5 8.0 8.5

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

V ar(T1)

V 
ar

(T
1)

*

Fig. 1 Comparison of Var(T1) and Var(T1)∗

We present simulation studies comparing the performance of Tnew1, Tnew2 and
existing tests. They have different performances depending on different situations.

3 Simulations

In this section, we present simulation studies to compare our proposed tests with
existing procedures.

We first adopt the following simulation setup and evaluate our proposed tests. Let
us define

n8 = 20(2, 22, 23, 24, 25, 26, 27, 28)

n40 = 20(n∗
1, n

∗
2, . . . , n

∗
8) = 20(2, . . . , 2, 22, . . . , 22, . . . , 28, . . . , 28)

where n∗
m = (2m, 2m, . . . , 2m) is a 8 dimensional vector. We consider the following

simulations (Tables 1, 2, 3, 4, 5, 6).

Setup 1 πi = 0.001 for 1 ≤ i ≤ k − 1 and πk = 0.001 + δ for k = 8 and n8
Setup 2 πi = 0.001 + δ for k = 1 and πi = 0.001 for 2 ≤ i ≤ k for k = 8 and n8
Setup 3 π1 = 0.001 + δ and πi = 0.001 for 2 ≤ i ≤ 8, k = 8, ni = 2560 for

1 ≤ i ≤ 8
Setup 4 πi = 0.001 for 1 ≤ i ≤ k − 1 and πk = 0.001 + δ for k = 40 and n40
Setup 5 πi = 0.001 + δ for k = 1 and πi = 0.001 for 2 ≤ i ≤ k for k = 40 and n40
Setup 6 πi = 0.001 + δ for i = 1 and πi = 0.001 for 2 ≤ i ≤ k. ni = 2560 for

1 ≤ i ≤ 40

As test statistics, we use Tnew1, M1, Tnew2, M2, TS, modTS and PW. Here, as
discussed in Remark 4, M1 uses V̂mle

1 as an estimator of V1 in Tnew1 and M2 uses V̂mle
1∗

for V1∗ in Tnew2. TS represents the test in (2) and modTS represents the test in (10).
Chi represents Chi-square test based on TS > χ2

k−1,1−α where χ2
k−1,1−α is the (1−α)

quantile of Chi-square distribution with degrees of freedom k − 1. PW is the test in
Potthoff andWhittinghill (1966), and BL represents the test in Bathke and Lankowski
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Table 1 Powers under Setup 1

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW

0.000 0.009 0.005 0.029 0.022 0.114 0.048 0.103 0.006

0.001 0.070 0.052 0.023 0.022 0.066 0.029 0.060 0.000

0.002 0.249 0.184 0.092 0.091 0.053 0.025 0.048 0.001

0.003 0.490 0.375 0.253 0.251 0.057 0.022 0.046 0.022

0.004 0.688 0.562 0.455 0.449 0.112 0.032 0.082 0.085

0.005 0.838 0.717 0.648 0.642 0.217 0.073 0.169 0.217

0.006 0.925 0.831 0.803 0.797 0.391 0.170 0.315 0.397

0.007 0.966 0.895 0.897 0.893 0.561 0.312 0.490 0.588

0.008 0.987 0.936 0.953 0.950 0.717 0.487 0.649 0.723

0.009 0.995 0.964 0.979 0.977 0.835 0.651 0.786 0.841

The cases of δ = 0 represent Type I errors of tests. M1 uses V̂mle
1 as an estimator of V1 in Tnew1 and

M2 uses V̂mle
1∗ for V1∗ in Tnew2. TS represents the test in (2), and modTS represents the test in (10).

Chi represents Chi-square test. PW is the test in Potthoff and Whittinghill (1966)

Table 2 Powers under Setup 2

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW

0.00 0.009 0.006 0.029 0.023 0.110 0.048 0.097 0.005

0.01 0.009 0.005 0.043 0.038 0.130 0.065 0.117 0.009

0.02 0.014 0.004 0.091 0.087 0.149 0.085 0.138 0.010

0.03 0.027 0.007 0.140 0.137 0.168 0.107 0.155 0.011

0.04 0.054 0.011 0.213 0.209 0.182 0.121 0.171 0.018

0.05 0.083 0.020 0.284 0.282 0.191 0.136 0.181 0.027

0.06 0.122 0.033 0.359 0.357 0.216 0.157 0.206 0.034

0.07 0.168 0.053 0.432 0.430 0.236 0.178 0.226 0.045

0.08 0.214 0.073 0.495 0.494 0.249 0.195 0.238 0.069

0.09 0.274 0.103 0.566 0.565 0.260 0.202 0.248 0.092

The cases of δ = 0 represent Type I errors of tests

(2005). Note that BL is available only when sample sizes are all equal. For calculation
of size and power of each test, we simulate 10,000 samples and compute empirical
size and power based on 10,000 p values.

From the above scenario, we consider inhomogeneous sample sizes (Setups 1, 2,
4 and 5) and homogeneous sample sizes (Setups 3 and 6). Furthermore, when sample
sizes are inhomogeneous, two cases are considered: one is the case that different πi

occurs for a study with large sample (Setups 1 and 4) and the other for a study with
small sample (Setups 2 and 5). Setups 1–6 consider the cases that only one study
has a different probability (0.001 + δ) and all the others have the same probability
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Table 3 Powers under Setup 3

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW BL

0.0000 0.036 0.023 0.054 0.060 0.040 0.034 0.030 0.018 0.065

0.0005 0.057 0.041 0.080 0.085 0.057 0.050 0.045 0.032 0.099

0.0010 0.123 0.099 0.152 0.158 0.119 0.106 0.095 0.078 0.186

0.0015 0.244 0.207 0.283 0.291 0.229 0.209 0.193 0.175 0.315

0.0020 0.388 0.345 0.430 0.436 0.379 0.358 0.341 0.309 0.459

0.0025 0.545 0.498 0.580 0.585 0.537 0.513 0.492 0.461 0.614

0.0030 0.669 0.631 0.696 0.700 0.671 0.649 0.632 0.598 0.738

0.0035 0.789 0.760 0.813 0.815 0.790 0.775 0.756 0.726 0.839

0.0040 0.863 0.842 0.880 0.882 0.863 0.853 0.840 0.816 0.900

0.0045 0.922 0.909 0.932 0.933 0.919 0.913 0.903 0.893 0.945

The cases of δ = 0 represent Type I errors of tests. BL represents the test in Bathke and Lankowski (2005)

Table 4 Powers under Setup 4

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW

0.000 0.022 0.003 0.042 0.042 0.196 0.060 0.186 0.016

0.001 0.080 0.018 0.067 0.069 0.160 0.048 0.151 0.088

0.002 0.285 0.090 0.202 0.204 0.199 0.057 0.189 0.311

0.003 0.562 0.242 0.445 0.448 0.296 0.099 0.282 0.603

0.004 0.787 0.441 0.690 0.694 0.462 0.185 0.442 0.829

0.005 0.919 0.623 0.864 0.866 0.659 0.355 0.640 0.939

0.006 0.971 0.765 0.946 0.947 0.804 0.542 0.791 0.983

0.007 0.991 0.857 0.982 0.982 0.913 0.723 0.906 0.995

0.008 0.998 0.928 0.995 0.995 0.964 0.855 0.960 0.999

0.009 1.000 0.963 0.999 0.999 0.989 0.934 0.987 0.999

The cases of δ = 0 represent Type I errors of tests

(0.001). On the other hand, we may consider the following cases which represent all
probabilities are different from each other (Tables 7, 8).

Setup 7 πi = 0.001(1+ εi ), k = 40, ni = 2560 for 1 ≤ i ≤ 40 where εi s are equally
spaced grid in [−δ, δ].

Setup 8 πi = 0.01(1+ εi ), k = 40, n∗
40 where εi s are equally spaced grid in [− δ, δ].

From our simulations, we first see that Tnew1 obtains more powers than M1, while
Tnew2 and M2 obtain almost similar powers. The performance of Tnew1 and Tnew2
is different depending on different situations. When sample sizes are homogeneous
(Setups 3, 6 and 7), Tnew2 obtains slightly more power than Tnews as shown in 1 in
Theorem 4. On the other hand, when sample sizes are inhomogeneous, Tnew1 seems
to have more advantage for the cases that different probability occurs for large sample
sizes, while Tnew2 seems to obtain better powers for the opposite case. Overall, the
performances of Tnew1 and Tnew2 are different depending on situations. Cochran’s test
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Table 5 Powers under Setup 5

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW

0.000 0.021 0.004 0.047 0.045 0.186 0.059 0.179 0.021

0.002 0.028 0.005 0.102 0.101 0.216 0.081 0.207 0.017

0.004 0.059 0.015 0.221 0.221 0.252 0.103 0.243 0.021

0.006 0.130 0.040 0.371 0.370 0.280 0.118 0.270 0.028

0.008 0.232 0.097 0.507 0.506 0.313 0.144 0.305 0.045

0.010 0.335 0.158 0.626 0.626 0.339 0.156 0.331 0.061

0.012 0.454 0.252 0.730 0.729 0.364 0.175 0.356 0.091

0.014 0.553 0.339 0.800 0.800 0.383 0.189 0.373 0.126

The cases of δ = 0 represent Type I errors of tests

Table 6 Powers under Setup 6

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW BL

0.000 0.049 0.029 0.058 0.059 0.048 0.038 0.041 0.032 0.061

0.001 0.093 0.065 0.107 0.108 0.093 0.079 0.083 0.067 0.114

0.002 0.273 0.222 0.297 0.299 0.271 0.240 0.249 0.236 0.300

0.003 0.535 0.479 0.560 0.562 0.535 0.504 0.512 0.511 0.568

0.004 0.776 0.736 0.793 0.795 0.777 0.756 0.761 0.739 0.803

0.005 0.902 0.884 0.910 0.911 0.911 0.901 0.903 0.891 0.921

0.006 0.966 0.957 0.969 0.969 0.966 0.961 0.963 0.966 0.974

The cases of δ = 0 represent Type I errors of tests

Table 7 Powers under Setup 7

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW BL

0 0.044 0.027 0.053 0.053 0.046 0.036 0.039 0.031 0.066

0.25 0.080 0.052 0.096 0.094 0.084 0.069 0.072 0.061 0.102

0.50 0.240 0.182 0.271 0.268 0.229 0.195 0.205 0.200 0.280

0.75 0.596 0.513 0.633 0.630 0.601 0.553 0.569 0.541 0.645

1.00 0.927 0.889 0.941 0.940 0.930 0.911 0.917 0.904 0.945

The cases of δ = 0 represent Type I errors of tests

seems to fail in controlling a given size; however, the modified TS achieves reasonable
empirical sizes.When sample sizes are homogeneous, themodifiedTS has comparable
powers; however, for inhomogeneous sample sizes, the modified TS has significantly
small powers compare to Tnew1 and Tnew2 for Setup 8 (Tables 8).

As suggested by a reviewer, we consider the following two more numerical studies
when k is extremely large (Tables 9, 10).

Setup 9 πi = 0.01(1 + εi ), k = 2000, ni = 100 for 1 ≤ i ≤ 2, 000 where εi s are
equally spaced grid in [−δ, δ].
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Table 8 Powers under Setup 8

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW

0.00 0.047 0.025 0.059 0.059 0.073 0.051 0.073 0.030

0.25 0.123 0.079 0.089 0.089 0.026 0.017 0.026 0.039

0.50 0.487 0.409 0.353 0.353 0.061 0.044 0.061 0.088

0.75 0.893 0.858 0.793 0.792 0.265 0.222 0.265 0.179

1.00 0.996 0.994 0.985 0.985 0.721 0.673 0.721 0.355

The cases of δ = 0 represent Type I errors of tests

Table 9 Powers under Setup 9

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW BL

0.0 0.0507 0.0118 0.0563 0.0563 0.0544 0.0234 0.0544 0.0499 0.0548

0.2 0.1119 0.0334 0.1197 0.1197 0.1171 0.0659 0.1171 0.1110 0.1178

0.4 0.5031 0.2796 0.5205 0.5204 0.5142 0.3868 0.5142 0.5014 0.5157

0.6 0.9709 0.9012 0.9730 0.9730 0.9727 0.9425 0.9727 0.9706 0.9728

0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

The cases of δ = 0 represent Type I errors of tests

Setup 10 πi = 0.01(1 + εi ), k = 2, 000, n = (n1,250, n2,250, . . . , n8,250) where
nm,250 = (2m, 2m, . . . , 2m) is a 250 dimensional vectorwith all components
2m and εi s are equally spaced grid in [− δ, δ].

Setup 9 is the case of a extremely large number of groups with small sample sizes.
As mentioned in introduction, we focus on sparse count data in the sense that πi s are
small, so we take πi = 0.01 and homogeneous sample sizes ni = 100 so that we
have E(Xi ) = niπi which represents very sparse data in each group. For the number
of groups, we use k = 2000 which is much larger than ni = 100. Table 9 shows
sizes and powers of all tests, and we see that all tests have similar performances when
sample sizes are homogeneous. On the other hand, for the case that sample sizes are
highly unbalanced which is the case of Setup 10, Table 10 shows that our proposed
tests control the nominal level of size and obtain increasing patter of powers, while
tests based on Chi-square statistics fail in controlling the nominal level of size and
obtaining powers. In particular, those Chi-square-based tests have decreasing patterns
of powers even though the effect sizes (δ in this case) increase. PW controls the size
and has increasing pattern of powers; however, the powers of PW are much smaller
than those of our proposed tests. All codes will be available upon request.

4 Real examples

In this section, we provide real examples for testing the homogeneity of binomial
proportions from a large number of independent groups.
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Table 10 Powers under Setup 10

δ Tnew1 M1 Tnew2 M2 TS modTS Chi PW

0.0 0.034 0.000 0.055 0.055 0.182 0.046 0.182 0.043

0.2 0.055 0.000 0.050 0.050 0.002 0.000 0.002 0.055

0.4 0.164 0.003 0.101 0.101 0.000 0.000 0.000 0.081

0.6 0.458 0.042 0.278 0.278 0.000 0.000 0.000 0.122

0.8 0.840 0.360 0.650 0.650 0.000 0.000 0.000 0.200

1.0 0.985 0.875 0.933 0.933 0.000 0.000 0.000 0.309

The cases of δ = 0 represent Type I errors of tests

Table 11 p values for homogeneity tests

Tnew1 M1 Tnew2 M2 TS modTS Chi PW

MI/Rosig 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DCV/Rosig 0.063 0.133 0.003 0.004 0.000 0.004 0.002 0.059

MI/Cont 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DCV/Cont 0.107 0.242 0.079 0.084 0.609 0.406 0.584 0.229

Rosig rosiglitazone group, Cont control group,MI myocardial infarction, DCV death from cardiovascular

We apply our proposed tests and existing tests to the rosiglitazone data in Nissen
andWolski (2007). The data set includes the 42 studies and consists of study size (N ),
number of myocardial infarctions (MI) and number of deaths (D) for rosiglitazone
(treatment) and the corresponding results under control arm for each study.

We consider testing (1) for the proportions of myocardial infarctions and death rate
(D) from cardiovascular causes. There are four situations, (i) MI/rosiglitazone, (ii)
death from cardiovascular (DCV)/rosiglitazone, (iii) MI/control and (iv) death from
cardiovascular(DCV)/control. Table 4 shows the p values for different situations and
different test statistics. In case of MI/rosiglitazone and MI/control, all tests have 0 p
value. On the other hand, for the other two cases, some tests have different results. For
DCV/Rosiglitazone, Tnew2, TS and modTS have small p values, while Tnew1 and PW
have slightly larger p values. For DCV/Control, Tnew1 and Tnew2 have much small p
values (0.107 and 0.079) compared to TS , modTS, Chi and PW (0.609, 0.406, 0.584
and 0.229, respectively) (Table 11).

5 Concluding remarks

In this paper, we considered testing homogeneity of binomial proportions from a large
number of independent studies. In particular, we focused on the sparse data and het-
erogeneous sample sizes which may affect the identification of null distributions. We
proposed new tests and showed their asymptotic results under some regular conditions.
We provided simulations and real data examples, which show that our proposed tests
are convincing in case of sparse and a large number of studies. This is a convincing
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result since our proposed test is most reliable in controlling a given size from our
simulations, so small p values from our proposed test are strong evidence against the
null hypotheses.

Appendix

A Proof of Theorem 1

We use the Lyapunov’s condition for the asymptotic normality of TS−E(TS)√
Bk

. Let TSi =
(Xi−ni π̄)2

ni π̄(1−π̄)
, then we define Di = TSi − E(TSi ) = (Xi−ni π̄)2

ni π̄(1−π̄)
− ni (πi−π̄)2

ni π̄(1−π̄)
− πi (1−πi )

ni π̄(1−π̄)
=

1
ni π̄(1−π̄)

((Xi − niπi )
2 + 2ni (Xi − niπi )(πi − π̄) − niπi (1− πi )). We show that the

Lyapunov’s condition is satisfied,
∑k

i=1 E(D4
i )

B2
k

→ 0. We see that

∑k
i=1 E(D4

i )

B2
k

≤ 1

B2
k

k∑

i=1

n4i E(π̂i − πi )
8 + 24n4i (πi − π̄)4n4i E(π̂i − πi )

4 + n4i πi (1 − πi )
4

n4i (π̄(1 − π̄))4

= 1

(π̄(1 − π̄))4B2
k

k∑

i=1

[(

θ4i + θi

ni

)

+ n2i (πi − π̄)4(3θ2i + (1 − 6θi )θi
ni

) + θ4i

]

≤
∑k

i=1

(
2θ4i + θi

ni

)

(π̄(1 − π̄))4B2
k

+ 3
∑k

i=1 n
2
i θi (πi − π̄)4(θi + 1

ni
)

(π̄(1 − π̄))4B2
k

→ 0

from thegiven conditions.Therefore,wehave the asymptotic normality of TS−E(TS)√
Bk

→
N (0, 1) in distribution. Furthermore, we also have the asymptotic normality of

T0 = TS − k√
B0k

=
√

Bk

B0k

TS − k√
Bk

+ k − E(TS)√
B0k

= σk
TS − k√

Bk
+ μk

which leads to P(T0 ≥ z1−α) = P(σk
TS−k√
Bk

+ μk ≥ z1−α) = P(
TS−k√
Bk

≥ z1−α

σk
− μk).

Using TS−k√
Bk

→ N (0, 1) in distribution, we have P(T0 ≥ z1−α)− Φ̄(
z1−α

σk
−μk) → 0.

	


B Proof of Lemma 2

Since T1i and T1 j for i �= j are independent, we have V1 ≡ Var(T1) = ∑k
i=1 Var(T1i )

where

Var(T1i ) = n2i Var[(π̂i − πi )
2] + d2i Var[π̂i (1 − π̂i )] + 4n2i (πi − π̄)2Var[(π̂i − πi )]

− 2nidiCov((π̂i − πi )
2, π̂i (1 − π̂i ))

+ 2Cov(ni (π̂i − πi )
2, 2ni (π̂i − πi )(πi − π̄))

− 2Cov(2ni (π̂i − πi )(πi − π̄), di π̂i (1 − π̂i )).
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Using the following results

Var[(π̂i − πi )
2] = E[(π̂i − πi )

4] − (E[(π̂i − πi )
2])2

= 2θ2i
n2i

+ (1 − 6θi )θi
n3i

Var[π̂i (1 − π̂i )] = (1 − θi )θi

ni
− 2θi (1 − 4θi )

n2i
+ (1 − 6θi )θi

n3i

Cov((π̂i − πi )
2, π̂i (1 − π̂i )) = ni − 1

n3i
θi (1 − 6θi )

Cov((π̂i − πi )
2, π̂i − πi ) = E(π̂i − πi )

3 = (1 − 2πi )θi

n2i

Cov((π̂i − πi ), π̂i (1 − π̂i )) = (1 − 2πi )θi

ni

(

1 − 1

ni

)

,

we derive

Var(T1) =
k∑

i=1

{

θ2i

(

2 − 6

ni
− d2i

ni
+ 8d2i

n2i
− 6d2i

n3i
+ 12di

ni − 1

n2i

)

+θi

(
1

ni
+ d2i

ni
− 2d2i

n2i
+ d2i

n3i
− 2di

ni − 1

n2i

)}

+ 4
k∑

i=1

ni (πi − π̄)2θi + 4

N

k∑

i=1

ni (πi − π̄)(1 − 2πi )θi

=
k∑

i=1

A1iθ
2
i +

k∑

i=1

A2iθi + 4
k∑

i=1

ni (πi − π̄)2θi

+ 4

N

k∑

i=1

ni (πi − π̄)(1 − 2πi )θi

where A1i =
(

2 − 6
ni

− d2i
ni

+ 8d2i
n2i

− 6d2i
n3i

+ 12di
ni−1
n2i

)

and A2i =
(

1
ni

+ d2i
ni

− 2d2i
n2i

+ d2i
n3i

− 2di
ni−1
n2i

)
= ni

N2 from di = ni
ni−1

(
1 − ni

N

)
. 	


C Proof of Lemma 3

1. Using di = ni
ni−1 (1 − ni

N ) < 2, we can derive A1i is uniformly bounded since

A1i = 2− 6
ni

− 6d2i
ni

+ 8d2i
n2i

− 6d2i
n3i

+12 ni
ni−1

ni−1
n2i

(1− ni
N ) = 2+ 6

ni
− 12

N + d2i
ni

(−1+
8
ni

− 6
n2i

)(1− ni
N ). Let x = 1

ni
≤ 1

2 , then f (x) = (−1+ 8
ni

− 6
n2i

) = −6(x− 2
3 )

2+ 7
9

which has the value −1 < f (x) ≤ 3
2 . Therefore, we have 2 + 6

ni
− 12

N + 6
ni

≥
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A1i ≥ 2 + 6
ni

− 12
N − 4

ni
. Using ni ≥ 2 and N → ∞ as k → ∞, lower and

upper bounds are uniformly bounded away from 0 and ∞ for all i . Therefore, we
have A1i � 1 and A2i = ni

N2 leading to V1 = ∑k
i=1A1iθ

2
i + ∑k

i=1A2iθi �
∑k

i=1 θ2i + 1
N2

∑k
i=1 niθi .

2. LetGn = 4
∑k

i=1 ni (πi −π̄ )2θi +4 1
N

∑k
i=1 ni (πi −π̄ )(1−2πi )θi = 4

∑k
i=1 θi Gi

where Gi = ni (πi − π̄)2 + ni
N (πi − π̄)(1−2πi ). If we define B = {i : |πi − π̄ | ≥

(1+ε)
N } for some ε > 0, then we decompose

V1 =
∑

i∈B
(A1iθ

2
i + A2iθi )

︸ ︷︷ ︸
F1

+
∑

i∈Bc

(A1iθ
2
i + A2iθi )

︸ ︷︷ ︸
F2

(19)

Gn = 4
∑

i∈B
θi Gi

︸ ︷︷ ︸
Gn1

+4
∑

i∈Bc

θi Gi

︸ ︷︷ ︸
Gn2

≡ 4Gn1 + 4Gn2. (20)

For i ∈ B, we have ni
N |(1 − 2πi )(πi − π̄)θi | ≤ ni

(1+ε)
(πi − π̄)2θi which implies

4ε

1 + ε

∑

i∈B
ni (πi − π̄)2θi ≤ 4Gn1 ≤ 4(2 + ε)

1 + ε

∑

i∈B
ni (πi − π̄)2θi .

This leads to 4Gn1 � ∑
i∈B ni (πi − π̄)2θi and

F1 + 4Gn1 � F1 +
∑

i∈B
ni (πi − π̄)2θi . (21)

For Bc = {i ||πi − π̄ | <
(1+ε)
N }, we first show F2 + 4Gn2 ≥ ∑

i∈Bc A1iθ
2
i . For

i ∈ Bc and x = πi − π̄ , we have Gi = ni (x + 1
2N (1 − 2πi ))

2 − (1−2πi )
2ni

4N2 ≥
− (1−2πi )

2ni
4N2 leading to

F2 + 4Gn2 ≥
∑

i∈Bc

A1iθ
2
i + 1

N 2

∑

i∈Bc

niθi
(
1 − (1 − 2π)2

)

=
∑

i∈Bc

A1iθ
2
i + 4

N 2

∑

i∈Bc

niθ
2
i =

∑

i∈Bc

A1iθ
2
i + 4

∑

i∈Bc

A2iθ
2
i

>
∑

i∈Bc

A1iθ
2
i . (22)

The upper bound of 4Gn2 is

4Gn2 ≤ 4(1 + ε)

N 2

∑

i∈Bc

niθi = 4(1 + ε)
∑

k

A2iθi

123



homogeneity test of binomial proportions 527

resulting in

F2 + 4Gn2 ≤ 4(1 + ε)
∑

i∈Bc

A1iθ
2
i + 4(1 + ε)

∑

i∈Bc

A2iθi + 4
∑

i∈Bc

ni (πi − π̄)2θi

< 4(1 + ε)(F2 +
∑

i∈Bc

ni (πi − π̄)2θi ). (23)

Combining (22) and (23), we have

∑

i∈Bc

A1iθ
2
i < F2 + Gn2 < 4(1 + ε)(F2 +

∑

i∈Bc

ni (πi − π̄)2θi ). (24)

From (21) and (24), we conclude, for K = 4(1 + ε),
k∑

i=1

A1iθ
2
i < Var(T1) ≤ K (ν1 + ||π − π̄ ||2nθ ).

In particular, if Bc is an empty set, then we have Var(T ) = F1 + 4Gn1, therefore
(21) implies (15). 	


D Proof of Lemma 4

Let X = ∑n
i=1 Xi where Xi s are iid Bernoulli(π ). In expansion of (X − nπ), each

term has the form of (Xi1 −π)m1(Xi2 −π)m2 · · · (Xik − pi)mk for 1 ≤ i1, . . . , ik ≤ n
and m1 + · · · + mk = n, so if there exists at least one mk = 1, then expectation of
the term is zero. We only need to consider the terms without (Xi j − π), so we finally
have

E(X − nπ)8 = E

(
n∑

i=1

(Xi − π)

)8

=
(
n

1

)

E(X1 − π)8

+ 2

(
8

6, 2

)(
n

2

)

E(X1 − π)6E(X1 − π)2

+ 2

(
n

2

)(
8

5, 3

)

E(X1 − π)5E(X1 − π)3

+
(
n

2

)(
8

4, 4

)

[E(X1 − π)4]2

+ 3!
2!
(
n

3

)(
8

4, 2, 2

)

E(X1 − π)4[E(X1 − π)2]2

+ 3!
2!
(
n

3

)(
8

3, 3, 2

)

[E(X1 − π)3]2E(X1 − π)2

+
(
n

4

)(
8

2, 2, 2, 2

)

[E(X1 − π)2]4.
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We have E(X1 − π)m = ∑m
i=0

(m
i

)
E(Xi

1)(−π)m−i = (−π)m + ∑m
i=1

(m
i

)
E(Xi

1)

(−π)m−i and using E(Xi
1) = E(Xi ) = π for i ≥ 1, we obtain E(X1 − π)m =

(−π)m + π
∑m

i=1

(m
i

)
(−π)m−i = (−π)m − π(−π)m + π

∑m
i=0

(m
i

)
(−π)m = (1 −

π)(−π)m + π(1 − π)m = π(1 − π)((−1)mπm−1 + (1 − π)m−1) ≤ π(1 − π) for
m ≥ 2. Since all coefficients in the expansion of E(

∑n
i=1(Xi −π)) are fixed constants,

for some universal constant C > 0, we have

E(X − nπ)8 ≤ C max(nπ(1 − π), (nπ(1 − π))2, (nπ(1 − π))3, (nπ(1 − π))4)

= C max{nπ(1 − π), (nπ(1 − π))4}.

since maximum is obtained at either nπ(1−π) or (nπ(1−π))4 depending on nπ(1−
π) ≤ 1 or nπ(1 − π) > 1.

For the second equation, we first consider the moment of E(π̂4) and E((̂1− π̂)4).
The latter one is easily obtained from the first one by changing the distribution from
B(n, π) to B(n, 1 − π). We first obtain

Eπ̂4 = π4 + 6π2θ

n
+ 4π(1 − 2π)θ

n2
+ 3θ2

n2
+ (1 − 6θ)θ

n3

≤ π4 + 6π3

n
+ 7π2

n2
+ π

n3

≤ 7

(

π4 + π3

n
+ π2

n2
+ π

n3

)

= 28max
(
π4,

π

n3

)

where the last equality holds due to the fact that the maximum is obtained at either π4

or π
n3

depending on π ≥ 1
n or π < 1

n . Similarly, the following inequality is obtained

E(1 − π̂)4 ≤ 28max

(

(1 − π)4,
1 − π

n3

)

.

Using Eπ̂4(1 − π̂)4 ≤ min(E π̂4, E(1 − π̂)4), we have

Eπ̂4(1 − π̂)4 ≤ min(Eπ̂4, E(1 − π̂)4)

≤ 28min

{

max
(
π4,

π

n3

)
,max

(

(1 − π)4,
1 − π

n3

)}

= max
(
π4,

π

n3

)
if π ≤ 1

2

max

(

(1 − π)4,
1 − π

n3

)

if π >
1

2
.
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If π ≤ 1
2 , π ≥ 2π(1 − π) = 2θ ; if π > 1

2 , 1 − π ≤ 2θ . So the last equality is

Eπ̂4(1 − π̂)4 ≤ C ′ max

(

θ4,
θ

n3

)

for some universal constant C ′.
We use the following relationship: for some constants bm , m = 1, . . . , l − 1

Xl =
l∏

j=1

(X − j + 1) +
l−1∑

m=1

bm

m∏

j=1

(X − j + 1).

For examplewehave x3 = x(x−1)(x−2)+3x(x−1)+x . Using E
∏l

j=1(X− j+1) =
∏l

j=1(n − j + 1)π l ,

Eπ̂ l = 1

nl
E

l∏

j=1

(X − j + 1) + 1

nl

l−1∑

m=1

bmE

⎛

⎝
m∏

j=1

(X − j + 1)

⎞

⎠

= π l + O

(
π l

n

)

+ O

(
l−1∑

m=1

πm

nl−m

)

= π l + O

(
π l−1

n
+ π

nl−1

)

.

Using this, we can derive

E(π̂ l − π l)2 = E π̂2l − 2π l Eπ̂ l + π2l = O

(
π2l−1

n
+ π

n2l−1

)

.

E(η̂l − π l)2 = E(η̂l − π̂l + π̂l − πl)
2 ≤ 22E(η̂l − π̂ l)2 + 22E(π̂ l − π l)2.

Since η̂l − π̂ l = π̂ l O( 1n ) + ∑l−1
i=1 π̂ l−i O( 1

ni
), we have E(η̂l − π̂ l)2 ≤

{
E(π̂2l)O( 1

n2
) + ∑l−1

i=1 π̂2l−2i O( 1
n2i

)
}

. Using Eπ̂2l = π2l + O
(

π
n2l−1 + π2l−1

n

)

from (4), we obtain

E(η̂l − π̂ l)2 = O

(
1

n2

)(

π2l + O

(
π

n2l−1 + π2l−1

n

))

+
l−1∑

i=1

(

π2l−2i + O

(
π

n2l−2i−1 + π2l−2i−1

n

))

O

(
1

n2i

)

= O

(
l−1∑

i=1

π2(l−i)

n2i
+ π

n2l−1

)

. (25)
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We can show π2(l−i)

ni
≤ π

n2l−1 + π2l−1

n for 2 ≤ i ≤ l −1 since π2(l−i)

ni
≤ π2l−1

n for π ≥ 1
n

and π2(l−i)

ni
≤ π

n2l−1 for π < 1
n . Using this, we have (25) ≤ O

(
π

n2l−1 + π2l−1

n

)
which

proves E(η̂l − π̂ l)2 = O
(

π
n2l−1 + π2l−1

n

)
. 	


E Proof of Lemma 5

For the ratio consistency of V̂1, it is enough to show E[(V̂1−V1)
2]

(V1)2
→ 0 as k → ∞.

Since V̂1 is an unbiased estimator of V1,

Var(V̂1) = E[(V̂1 − V1)
2]

=
k∑

i=1

4∑

l=1

a2li E[(η̂li − ηli )
2] +

∑

i �=i ′

∑

l �=l ′
ali al ′i ′E[(η̂li − ηli )(η̂l ′i ′ − ηl ′i ′)]

=
k∑

i=1

4∑

l=1

a2li E[(η̂li − ηli )
2]

where the last equality follows since E[(η̂li − ηli )(η̂l ′i ′ − ηl ′i ′)] = E[(η̂li −
ηli )]E[(η̂l ′i ′ − ηl ′i ′)] = 0 because η̂li and η̂l ′i ′ are independent for i �= i ′ and both are
unbiased estimators. Since V1 depends on θi = πi (1− πi ), we have the same result if
we change πi to 1 − πi ; in other words, Var(V̂1) = ∑k

i=1
∑4

l=1 a
2
li (ηli − ηli )

2 =
∑k

i=1
∑4

l=1 a
2
li (η̂

∗
li − η∗

li )
2 where η∗

li = (1 − πi )
l and η̂∗

li is the corresponding

unbiased estimator. For π ≤ 1/2, we use V1 = ∑k
i=1

∑4
l=1 aliπ

l
i and obtain

Var(V̂1) = O(
∑k

i=1(
π3
i
ni

+ πi
n3i

)) from Lemma 4. Since πi ≤ δ < 1, we have

Var(V̂1) = O(
∑k

i=1(
π3
i
ni

+ πi
n3i

)) = O(
∑k

i=1(
θ3i
ni

+ θi
n3i

)). From Lemma 3 and the

given condition, we obtain

Var(V̂1)

V2
1

= O

⎛

⎜
⎜
⎝

∑k
i=1

(
θ3i
ni

+ θi
n3i

)

(∑k
i=1

(
θ2i + 1

N2
θi
ni

))2

⎞

⎟
⎟
⎠ = o(1).

Similarly, we can show, for some constant C ′,

Var(V̂1∗)
(V1∗)2

= O

⎛

⎜
⎝

(θ̃)3
∑k

i=1
1
ni

+ θ̃
∑k

i=1
1
n3i

(
k(θ̃)2 + θ̃

N2

∑k
i=1

1
ni

)2

⎞

⎟
⎠ = o(1).
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F Proof of Theorem 2

Since the condition in Lemma 5 holds, V̂1 and V̂1∗ are the ratio-consistent estimators
of V1 = V1∗ under the H0. From T√

V1
= T1−T2√

V1
, we only need to show (i) T1√

V1
→

N (0, 1) in distribution and (ii) T2√
V1

→ 0 in probability. To prove (i), we show the

Lyapunov’s condition (see Billingsley 1995) for the asymptotic normality is satisfied.

In other words, under H0, we need to show
∑k

i=1 E(T 4
1i )

Var(T1)2
→ 0. Under H0, we have

T1i = ni (π̂i − πi )
2 − di π̂i (1 − π̂i ) with E(T1i ) = 0; therefore, the Lyapunov’s

condition is
∑k

i=1 E(T 4
1i )/Var(T1)

2 → 0. Using Lemma 4, we have
∑k

i=1 E(T 4
1i ) ≤

24(
∑k

i=1 n
4
i E(π̂i −πi )

4+d4i E(π̂i (1− π̂i ))
4) = O(

∑k
i=1(θ

4
i + θi

ni
))+O(

∑k
i=1(θ

4
i +

θi
ni

3
)) = O((kθ4 + θ

∑k
i=1

1
ni

)) since all θi = θ under H0. Combining this with the

result 1 in Lemma 3, we have
∑k

i=1 E(T 4
1i )

Var(T1)2
= O(kθ4+θ

∑k
i=1

1
ni

)

(kθ2+ θ

N2
∑k

i=1
1
ni

)2
≤ kθ4+θ

∑k
i=1

1
ni

kθ4
=

1
k +

∑k
i=1

1
ni

kθ3
→ 0 as k → ∞ from the given condition

∑k
i=1

1
ni

kθ3
→ 0 which shows

T1√
V1

→ N (0, 1) in distribution.

Furthermore, from Lemma 3 under the H0, we have V1 � kθ2 + θ
∑k

i=1
1
ni
; there-

fore, we obtain E
(

T2√
V1

)
= E(N ( ˆ̄π−π̄)2)√

V1
� θ√

kθ2+ θ

N2
∑k

i=1
1
ni

≤ 1√
k

→ 0 which leads

to T2√
V1

→ 0 in probability. Combining the asymptotic normality of T√
V1

with the ratio

consistency of V̂1 and V̂1∗, we have the asymptotic normality of Tnew1 and Tnew2 under
the H0. 	


G Proof of Theorem 3

Since T = T1 − T2 from (8), we only need to show the following:

(I) T1−∑k
i=1 ni (πi−π̄)2√
Var(T1)

→ N (0, 1) in distribution

(II) T2√
Var(T1)

→ 0 in probability.

For (I), we use the Lyapunov’s condition for the asymptotic normality of T1.

We show
∑k

i=1 E(T1i−ni (πi−π̄)2)4

Var(T1)2
→ 0 where Gi = T1i − ni (πi − π̄)2 =

ni (π̂i − πi )
2 − di π̂i (1 − π̂i ) + 2ni (π̂i − πi )(πi − π̄). Using

∑k
i=1 E(G4

i ) ≤
∑k

i=1

(
n4i E((π̂i − πi )

8) + d4i E((π̂i (1 − π̂i ))
4) + 24n4i E(π̂i − πi )

4(πi − π̄)4
)
. From

Lemma 4, we have n4i E((π̂i − πi )
8) ≤ O

(
θ4i + θi

ni

)
, d4i E((π̂i (1 − π̂i ))

4) ≤
24

(
3θ2i
n2i

+ (1−6θi )θi
n3i

)

≤ O(
θ2i
n2i

+ θi
n3i

) where O(·) is uniform in 1 ≤ i ≤ k.

Using the result in Lemma 1, we have 24
∑k

i=1 n
4
i E(π̂i − πi )

4∑k
i=1(πi − π̄)4 ≤

24
∑k

i=1 n
4
i (πi − π̄)4

(
3θ2i
n2i

+ (1−6θi )θi
n3i

)

≤ max1≤i≤k

{
ni (πi − π̄)2

(
θi + 1

ni

)}
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∑k
i=1 ni (πi − π̄)2θi = max1≤i≤k

{
ni (πi − π̄)2

(
θi + 1

ni

)}
||π − π̄ ||2θn. Therefore,

we have

∑k
i=1 E(G4

i )

Var(T1)2
≤

∑k
i=1

(
θ4i + θi

ni

)
+ max1≤i≤k

{
ni (πi − π̄)2

(
θi + 1

ni

)}
||π − π̄ ||2θn

(
ν1 + ||π − π̄ ||2θn

)2

(26)

=
∑k

i=1

(
θ3i + θi

ni

)

(∑k
i=1

(
θ2i + θi

ni

))2 +
max1≤i≤k

{
ni (πi − π̄)2

(
θi + 1

ni

)}

ν + ||π − π̄ ||2θn
→ 0

(27)

from the given conditions.

The negligibility of T2 = N ( ˆ̄π − π̄)2 can be proven by noting that NE( ˆ̄π−π̄)2√
Var(T1)

=
θ̄√

Var(T1)
= 1

N

∑k
i=1 ni θi√
Var(T1)

� maxi θi
∑k

i=1 ni

N
√
V1+||π−π̄ ||2θn

by (15) from the condition (i). This leads

to

(
maxi θ2i

V1+||π−π̄ ||2θn

)1/2

→ 0 from the condition (ii), so we have N ( ˆ̄π−π̄)2√
Var(T1)

→ 0 in

probability. Combining (I) and (II), we conclude T−∑k
i=1 ni (πi−π̄)2√
Var(T1)

→ N (0, 1) in

distribution. 	


H Proof of Theorem 4

1. Proof of 1 : We prove β(Tnew2) ≥ β(Tnew1). For this, we only need to show
that V1 ≥ V1∗ from Corollary 2. Let f (x) = 2x2(1 − x)2 + x(1−x)

n , then

f (x) is convex for 0 < x < 1
2 − 1√

3

√
1 + 1

n since f ′′(x) > 0 for 0 <

x < 1
2 − 1√

3

√
1 + 1

n . Furthermore, V1 = ∑k
i=1 f (πi ) and V1∗ = k f (π̄) for

π̄ = 1
N

∑k
i=1 niπi . From the convexity of f , if ni = n for all 1 ≤ i ≤ k, we

have 1
kV1 = 1

k

∑k
i=1 f (πi ) ≥ f (π̄) = 1

kV1∗. Therefore, V1 ≥ V1∗ which leads to
limk→∞(β(Tnew2) − β(Tnew1)) ≥ 0 for the given 0 < πi < 1

2 − 1√
3
for all i .

Under the given condition, B̂0k = 2k(1 + op(1)) and

Tnew2 =
∑k

i=1 ni (π̂i − ˆ̄π)2 − ∑k
i=1 π̂i (1 − π̂i )

√

2k ˆ̄π(1 − ˆ̄π)

(1 + op(1))

Tχ =
∑k

i=1 ni (π̂i − ˆ̄π)2 − k ˆ̄π(1 − ˆ̄π)
√

2k ˆ̄π(1 − ˆ̄π)

(1 + op(1))
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which leads to

Tnew2 − Tχ = k ˆ̄π(1 − ˆ̄π) − ∑k
i=1 π̂i (1 − π̂i )

√

2k ˆ̄π(1 − ˆ̄π)

(1 + op(1)).

Using k ˆ̄π(1 − ˆ̄π) ≥ ∑k
i=1 π̂i (1 − π̂i ), limk→∞ P(Tnew2 − Tχ ≥ 0) → 1 which

leads to limk→∞(β(Tnew2) − β(Tχ )) ≥ 0.
2. Proof of 2: Note that A1i = 2(1 + o(1)) and A2i = 4(1 + o(1)) where o(1) is

uniform in i . Using π̄ = (k−γ + δkα−1)(1 + O(k−1)) and θ̃ = π̄(1 + o(1)), we
obtain

V1 =
(

2
k∑

i=1

θ2i + 4
k∑

i=1

θi

ni

)

(1 + o(1))

=
(

2(k − 1)k−2γ + 2(k−γ + δ)2 + (k − 1)k−γ

n
+ k−γ + δ

nkα

)

=
(

2k1−2γ + 2δ2 + 4k1−γ

n

)

(1 + o(1))

V1∗ = 2k(k−γ + δkα−1)2(1 + O(k−1)) + 4θ̃
k∑

i=1

1

ni

= 2k1−2γ + 4δkα−γ + 2δ2k2α−1

+4(k−γ + δkα−1)

(
k − 1

n
+ 1

nkα

)

(1 + o(1))

= 2k1−2γ + 4δkα−γ + 2δ2k2α−1 + 4
k1−γ + δkα

n
(1 + o(1))

so

V1∗ − V1

V1
= (2δkα−γ + δ2(k2α−1 − 1)) + 2 δkα

n (1 + o(1))

k1−2γ + 2δ2 + 2 k1−γ

n (1 + o(1))
. (28)

(a) if α + γ < 1 and α ≥ 1
2 , then kα−γ = o(k2α−1), therefore (28) =

δ2k2α−1 I (α �= 1
2 )+2 kα

n

k1−2γ +δ2+2 k1−γ

n

→ 0 where I (·) is an indicator function.

(b) if α + γ < 1, α < 1
2 and α ≥ γ , then (28) = 2δkα−γ −δ2+2 kα

n

k1−2γ +δ2+2 k1−γ

n

→ 0.

(c) if α + γ < 1, α < 1
2 , γ ≤ 1

2 and α < γ , then (28)= −δ2+2 kα
n

k1−2γ +δ2+2 k1−γ

n

→ 0.

(d) if α + γ < 1, α < 1
2 and γ > 1

2 , then there are two cases depending on the

behavior of n. When k1−γ

n → 0, then (28) → −δ2

δ2
= −1. When k1−γ

n → ∞,

(28) = kα
n

k1−γ

n

(1 + o(1)) = kα+γ−1 → 0.
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(e) if α + γ > 1, α > 1
2 and γ < 1

2 , then (28) = δ2k2α−1+2 kα
n

k1−2γ +2 k1−γ

n

(1 + o(1)) → ∞.

(f) ifα+γ > 1,α > 1
2 andγ ≥ 1

2 , then (28)=
kα−γ +δ2k2α−1+2 kα

n

I (γ= 1
2 )+δ2+2 k1−γ

n

(1+o(1)) → ∞.

(g) if α+γ > 1, α < 1
2 and γ > 1

2 , then α < γ and (28)= −δ2+2 kα
n

δ2+2 k1−γ

n

(1+o(1)) =
−δ2+ kα

n

δ2+2 k1−γ

n

(1 + o(1)). There are two situations depending n. When kα

n → ∞,

(28) = −δ2+ kα
n

2δ2+ k1−γ

n

(1 + o(1)) → ∞. When kα

n → 0, we have k1−γ

n → 0, so we

derive (28) = −δ2

δ2
(1 + o(1)) → −1.

In (a) ∪ (b) ∪ (c) = {(α, γ ) : 0 < α < 1, 0 < γ < 1, 0 < α + γ < 1, 0 <

γ ≤ 1
2 }, we have limn

V1∗
V1

= 1 leading to limn(β(Tnew1) − β(Tnew1)) = 0. In

(e) ∪ ( f ) = {(α, γ ) : 0 < α < 1, 0 < γ < 1, α + γ > 1, 1 > α > 1
2 }, we have

lim V1∗
V > 1 which leads to limn(β(Tnew1) − β(Tnew2)) > 0.

In (e) and (g), the performances are different depending on the sample sizes.
3. We first have

V1 = 2(k−γ + δ)2 + 2(k − 1)k−2γ + 4(δ + k−γ )

n
+ 4(k − 1)

k−γ

nkα

=
(

2δ2 + 2k1−2γ + 4k1−γ−α

n

)

(1 + o(1)).

Since θ̃ = π̄(1 − π̄) = δ+kα−γ+1

kα+1 (1 + o(1)) = k−γ (1 + o(1)) from 0 < α < 1
and 0 < γ < 1,

V∗
1 = 2k1−2γ + 4k−γ

n
+ (k − 1)k−γ

nkα

=
(

2k1−2γ + 4k1−γ−α

n

)

(1 + o(1)).

If 1 − 2γ < 0 and k1−γ−α = o(n), then V1 = δ2(1 + o(1)) and V∗
1 = o(1), we

have V1
V∗
1

→ ∞ which leads to β(Tnew2) − β(Tnew1) > 0. 	
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