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Abstract We present a new, efficient maximum empirical likelihood estimator for
the slope in linear regression with independent errors and covariates. The estimator
does not require estimation of the influence function, in contrast to other approaches,
and is easy to obtain numerically. Our approach can also be used in the model with
responses missing at random, for which we recommend a complete case analysis. This
suffices thanks to results byMüller and Schick (Bernoulli 23:2693–2719, 2017), which
demonstrate that efficiency is preserved. We provide confidence intervals and tests for
the slope, based on the limiting Chi-square distribution of the empirical likelihood,
and a uniform expansion for the empirical likelihood ratio. The article concludes with
a small simulation study.

Keywords Efficiency · Estimated constraint functions · Infinitely many constraints ·
Maximum empirical likelihood estimator · Missing responses · Missing at random

B Ursula U. Müller
uschi@stat.tamu.edu

Hanxiang Peng
hpeng@math.iupui.edu

Anton Schick
anton@math.binghamton.edu

1 Department of Statistics, Texas A&M University, College Station, TX 77843-3143, USA

2 Department of Mathematical Sciences, Indiana University Purdue University at Indianapolis,
Indianapolis, IN 46202-3267, USA

3 Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902-6000,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-017-0632-y&domain=pdf


182 U. U. Müller et al.

1 Introduction

We consider the homoscedastic regression model in which the response variable Y is
linked to a covariate X by the formula

Y = βX + ε. (1)

For reasons of clarity we focus on the case where X is one dimensional and β an
unknown real number. We will assume throughout that ε and X are independent and
that X has a finite positive variance. Our goal is to make inferences about the slope
β, treating the density f of the error ε and the distribution of the covariate X as
nuisance parameters. We shall do so by using an empirical likelihood approach based
on independent copies (X1,Y1), . . . , (Xn,Yn) of the base observation (X,Y ).

Model (1) is the usual linear regressionmodel with a nonzero intercept, even though
it is written without an explicit intercept parameter. Since we do not assume that the
error variable is centered, the mean E[ε] plays the role of the intercept parameter.
Working with this model and notation simplifies the explanation of the method and
the presentation of the proofs. The generalization to the multivariate case is straight-
forward; see Remark 1 in Sect. 2.

The linear regression model is one of the most useful statistical models, and many
simple estimators for the slope are available, such as the ordinary least squares esti-
mator (OLSE) which takes on the form

∑n
j=1

(
X j − X̄

)
Y j

∑n
j=1

(
X j − X̄

)2 (2)

rather than
∑n

j=1 X jY j/
∑n

j=1 X
2
j , because we do not assume that the errors are cen-

tered. However, these estimators are usually inefficient. The construction of efficient
(least dispersed) estimators is in fact quite involved. The reason for this is the assumed
independence between covariates and errors, which is a structural assumption that has
to be taken into account by the estimator to obtain efficiency. Efficient estimators for
β in model (1) were first introduced by Bickel (1982), who used sample splitting to
estimate the efficient influence function. To establish efficiencywemust assume that f
has finite Fisher information for location. This means that f is absolutely continuous
and the integral J f = ∫

�2f (y) f (y) dy is finite, where � f = − f ′/ f denotes the score
function for location. It follows from Bickel (1982) that an efficient estimator β̂ of β

is characterized by the stochastic expansion

β̂ = β + 1

n

n∑

j=1

(X j − E[X ])� f (Y j − βX j )

J fVar(X)
+ oP

(
n−1/2

)
. (3)

Further efficient estimators of the slopewhich require estimating the influence func-
tion were proposed by Schick (1987) and Jin (1992). Koul and Susarla (1983) studied
the case when f is also symmetric about zero. See also Schick (1993) and Forrester
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Inference about the slope in linear regression 183

et al. (2003), who achieved efficiency without sample splitting and instead used a
conditioning argument. Efficient estimation in the corresponding (heteroscedastic)
model without the independence assumption (defined by E(ε|X) = 0) is much easier:
Müller and Van Keilegom (2012), for example, proposed weighted versions of the
OLSE to efficiently estimate β in the model with fully observed data and in a model
with missing responses. See also Schick (2013), who proposed an efficient estimator
using maximum empirical likelihood with infinitely many constraints.

Like Müller and Van Keilegom (2012), we are interested in the common case that
responses are missing at random (MAR). This means that we observe copies of the
triplet (δ, X, δY ), where δ is an indicator variable with δ = 1 if Y is observed, and
where the probability π that Y is observed depends only on the covariate,

P(δ = 1|X,Y ) = P(δ = 1|X) = π(X),

with E[π(X)] = E[δ] > 0;we refer to themonographs byLittle andRubin (2002) and
Tsiatis (2006) for further reading. Note that the ‘MAR model’ we have just described
covers the ‘fullmodel’ (inwhich all data are completely observed) as a special casewith
π(X) = 1. To estimate β in the MAR model we propose a complete case analysis,
i.e., only the N = ∑n

j=1 δ j observations (Xi1 ,Yi1), . . . , (XiN ,YiN ) with observed
responses will be considered.

Complete case analysis is the simplest approach to dealing with missing data and is
frequently disregarded as naive and wasteful. In our application, however, the contrary
is true: Müller and Schick (2017) showed that general functionals of the conditional
distribution of Y given X can be estimated efficiently (in the sense of Hájek and Le
Cam) by a complete case analysis. Since the slope β is covered as a special case,
this means that an estimator of β that is efficient in the full model is also efficient
in the MAR model if we simply omit the incomplete cases. This property is called
‘efficiency transfer’. To construct efficient maximum empirical likelihood estimators
for β, it therefore suffices to consider the model with completely observed data. We
write β̂c for the complete case version of β̂ from (3). It follows from the transfer
principle for asymptotically linear statistics by Koul et al. (2012) that β̂c satisfies

β̂c = β + 1

N

n∑

j=1

δ j
(
X j − E[X |δ = 1]) � f

(
Y j − βX j

)

J fVar(X |δ = 1)
+ oP

(
n−1/2

)
(4)

and is therefore consistent for β. That β̂c is also efficient follows from Müller and
Schick (2017, Sect. 5.1). The efficiency property can alternatively be deduced from
arguments in Müller (2009), who gave the efficient influence function for β in the
MAR model, but with the additional assumption that the errors have mean zero; see
Lemma 5.1 in that paper.

In this paper we use an empirical likelihood approach with an increasing number
of estimated constraints to derive various inferential procedures about the slope. Our
approach is similar to Schick (2013), but our model requires different constraints. We
obtain a suitable Wilks’ theorem (see Theorem 1) to derive confidence sets for β and
tests about a specific value of β, and a point estimator of β via maximum empirical
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184 U. U. Müller et al.

likelihood, i.e., by maximizing the empirical likelihood. This estimator is shown to be
semiparametrically efficient.

Empirical likelihood was introduced by Owen (1988, 2001) for a fixed number of
known linear constraints to construct confidence intervals in a nonparametric setting.
More recently, his results have been generalized to a fixed number of estimated con-
straints by Hjort et al. (2009), who further studied the case of an increasing number of
known constraints; see also Chen et al. (2009). Peng and Schick (2013) generalized
the approach to the case of an increasing number of estimated constraints. The idea
of maximum empirical likelihood goes back to Qin and Lawless (1994), who treated
the case with a fixed number of known constraints. Peng and Schick (2017) general-
ized their result to the case with estimated constraints. Schick (2013) and Peng and
Schick (2016) treated examples with an increasing number of estimated constraints
and showed efficiency of the maximum empirical likelihood estimators.

The empirical likelihood is similar to the one considered for the symmetric loca-
tion model in Peng and Schick (2016). We shall derive results that are analogous to
those in that paper. In Sect. 3 we provide the asymptotic Chi-square distribution of the
empirical log-likelihood for both the full model and the MAR model. This facilitates
the construction of confidence intervals and tests about the slope β. In Sect. 4 we pro-
pose a new method for estimating β efficiently, namely a guided maximum empirical
likelihood estimator, as suggested by Peng and Schick (2017) for the general model
with estimated constraints. Efficiency of this estimator is entailed by a uniform expan-
sion for the local empirical likelihood (see Theorem 2), which follows from a local
asymptotic normality condition. Section 5 contains a simulation study. The proofs are
in Sect. 6.

2 Empirical likelihood approach

The construction of the empirical likelihood is crucial since we need to incorporate
the independence between the covariates and the errors to obtain efficiency. Let us
explain it for the full model. The corresponding approach for the missing data model
is then straightforward: in that case we will proceed in the same way, now with the
analysis based on the N complete cases, and with the random sample size N treated
like n.

Our empirical likelihoodRn(b), which wewant to maximize with respect to b ∈ R,
is of the form

Rn(b) = sup

⎧
⎨

⎩

n∏

j=1

nπ j : π ∈ Pn,

n∑

j=1

π j (X j − X̄)vn
(
Fb

(
Y j − bX j

)) = 0

⎫
⎬

⎭
.

HerePn is the probability simplex in dimension n, defined by

Pn =
⎧
⎨

⎩
π = (π1, . . . , πn)

� ∈ [0, 1]n :
n∑

j=1

π j = 1

⎫
⎬

⎭
,
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Inference about the slope in linear regression 185

X̄ is the sample mean of the covariates X1, . . . , Xn , Fb is the empirical distribution
function constructed from ‘residuals’ Y1 − bX1, . . . ,Yn − bXn , i.e.,

Fb(t) = 1

n

n∑

j=1

1
[
Y j − bX j ≤ t

]
, t ∈ R,

which serves as a surrogate for the unknown error distribution F . The function vn maps
from [0, 1] intoRrn and will be described in (6) below. The constraint

∑n
j=1 π j (X j −

X̄)vn(Fb(Y j − bX j )) = 0 in the definition of Rn(b) is therefore a vector of rn one-
dimensional constraints, where the integer rn tends to infinity slowly as the sample size
n increases. These constraints emerge from the independence assumption as follows.
Independence of X and ε is equivalent to E[c(X)a(ε)] = 0 for all square-integrable
centered functions c and a under the distributions of X and ε, respectively. This leads
to the empirical likelihood in Peng and Schick (2013). We do not work with these
constraints. Instead we use constraints in the subspace

{(X − E[X ]) a(ε) : a ∈ L2,0(F)} (5)

with L2,0(F) = {a ∈ L2(F) : ∫ a dF = 0}, which suffices since it contains the
efficient influence function; see (3). By our assumptions, F is continuous and F(ε) is
uniformly distributed on the interval [0, 1], i.e., F(ε) ∼ U . An orthonormal basis of
L2,0(F) is ϕ1 ◦ F, ϕ2 ◦ F, . . ., where ϕk denotes an orthonormal basis of L2,0(U ).
This suggests the constraints

n∑

j=1

π j {X j − E(X)}ϕk{F(Y j − bX j )} = 0, k = 1, . . . , rn,

which, however, cannot be used since neither F nor the mean of X is known. So we
replace thembyempirical estimators. In this articlewewillworkwith the trigonometric
basis

ϕk(x) = √
2 cos(kπx), 0 ≤ x ≤ 1, k = 1, 2, . . . ,

and take
vn = (

ϕ1, . . . , ϕrn
)�

. (6)

This yields our empirical likelihood Rn(b) from above.
Let us briefly discuss the complete case approach that we propose for the MAR

model. In the following a subscript ‘c’ will, as before when we introduced β̂c, indicate
that a complete case statistic is used. For example, Fb,c is the complete case version
of Fb, i.e.,

Fb,c(t) = 1

N

n∑

j=1

δ j1
[
Y j − bX j ≤ t

] = 1

N

N∑

j=1

1
[
Yi j − bXi j ≤ t

]
, t ∈ R.
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The complete case empirical likelihood is

Rn,c(b)=sup

⎧
⎨

⎩

N∏

j=1

Nπ j : π ∈ PN ,

N∑

j=1

π j (Xi j − X̄c)vN
(
Fb,c(Yi j − bXi j )

)=0

⎫
⎬

⎭
,

withPN and vn defined above. Note that we perform a complete case analysis, so the
above formula must involve X̄c = N−1∑n

j=1 δ j X j , which is a consistent estimator of
the conditional expectation E[X |δ = 1], as given in (4); see also Sect. 3 in Müller and
Schick (2017) for the general case. Moments of the covariate distribution are replaced
by moments of the conditional covariate distribution given δ = 1, when switching
from the full model to the complete case analysis.

Remark 1 If the covariate X is a p-dimensional vector we have

Y j = β�X j + ε j , j = 1, . . . , n,

and construct Fb using the ‘residuals’ Y j − b�X j . Now we need to interpret (5) with
X being p-dimensional. The empirical likelihood Rn(b) is then

sup

⎧
⎨

⎩

n∏

j=1

nπ j : π ∈ Pn,

n∑

j=1

π j
(
X j − X̄

) ⊗ vn

(
Fb

(
Y j − b�X j

))
= 0

⎫
⎬

⎭
,

where ⊗ denotes the Kronecker product. Since the Kronecker product of two vectors
with dimensions p and q is a vector of dimension pq, there are prn random constraints
in the above empirical likelihood. Working with this likelihood is notationally more
cumbersome, but the proofs are essentially the same. The complete case empirical
likelihood Rn,c(b) changes analogously. It equals

sup

⎧
⎨

⎩

N∏

j=1

Nπ j : π ∈ PN ,

N∑

j=1

π j
(
Xi j − X̄c

) ⊗ vN
(
Fb,c

(
Yi j − bXi j

)) = 0

⎫
⎬

⎭
.

3 A Wilks’ theorem

Wilks’ original theorem states that the classical log-likelihood ratio test statistic is
asymptotically Chi-square distributed. Our first result is a version of that theorem for
the empirical log-likelihood. It is given in Theorem 1 below and proved in the first
subsection of Sect. 6. As in the previous section we write Rn(b) for the empirical
likelihood and Rn,c(b) for the complete case empirical likelihood. Further let χγ (d)

denote the γ -quantile of the Chi-square distribution with d degrees of freedom.

Theorem 1 Consider the fullmodel and suppose that X alsohas afinite fourthmoment
and that the number of basis functions rn satisfies rn → ∞ and r4n = o(n) as n → ∞.
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Inference about the slope in linear regression 187

Then, we have

P(−2 logRn(β) ≤ χu(rn)) → u, 0 < u < 1.

The conclusion of this theorem is equivalent to (−2 logRn(β) − rn)/
√
rn

being asymptotically standard normal. This implies that the complete case version
(−2 logRn,c(β) − rN )/

√
rN is also asymptotically standard normal. This is a con-

sequence of the transfer principle for complete case statistics; see Remark 2.4 in the
article by Koul et al. (2012). More precisely, these authors showed that if the limiting
distribution of a statistic is L(Q), then the limiting distribution of its complete case
version isL(Q̃), where Q is the joint distribution of (X,Y ), belonging to somemodel,
and Q̃ is the distribution of (X,Y ) given δ = 1. One only needs to assume that Q̃
belongs to the samemodel as Q, i.e., it satisfies the same assumptions. Herewe assume
that the responses are missing at random, i.e., δ and Y are conditionally independent
given X . Therefore, we only need to require that the conditional covariate distribution
given δ = 1 and the unconditional covariate distribution belong to the same model.
Here the limiting distribution is not affected as it does not depend on Q.

Although the result for the MAR model is more general than the result for the full
model (which is covered as a special case), we can now, thanks to the transfer principle,
formulate it as a corollary, i.e., we only need to take the modified assumptions for the
conditional covariate distribution into account, and proveTheorem1 for the fullmodel.

Corollary 1 Consider the MAR model and suppose that the distribution of X given
δ = 1 has a finite fourth moment and a positive variance. Let the number of basis
functions rN satisfy 1/rN = oP (1) and r4N = oP (N ) as n → ∞. Then, we have

P(−2 logRn,c(β) ≤ χu(rN )) → u, 0 < u < 1.

Note that the conditions on the number of basis functions rn and rN in the full
model and the MAR model are equivalent since n and N increase proportionally,

N

n
= 1

n

n∑

i=1

δi → E[δ] almost surely,

with E[δ] > 0 by assumption.
The distribution of X given δ = 1 has densityπ/E[δ]with respect to the distribution

of X . Thus, the variance of the former distribution is positive unless X is constant
almost surely on the event {π(X) > 0}.
Remark 2 The above result shows that

{b ∈ R : −2 logRn,c(b) < χ1−α(rN )}

is a 1 − α confidence region for β and that

1
[−2 logRn,c(β0) ≥ χ1−α(rN )

]
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188 U. U. Müller et al.

is a test of asymptotic size α for testing the null hypothesis H0 : β = β0. Note that
both the confidence region and the test about the slope also apply to the special case of
a full model with N = n andRn in place ofRn,c. The asymptotic confidence interval
for the slope, for example, is

{b ∈ R : −2 logRn(b) < χ1−α(rn)}.

4 Efficient estimation

Our next result gives a strengthened version of the uniform local asymptotic normality
(ULAN) condition for the local empirical likelihood ratio

Ln(t) = log

(
Rn(β + n−1/2t)

Rn(β)

)

, t ∈ R

in the full model. The usual ULAN condition is established for fixed compact intervals
for the local parameter t . Here we allow the intervals to grow with the sample size.

Theorem 2 Suppose X has a finite fourth moment, f has finite Fisher information
for location, and rn satisfies (log n)/rn = O(1) and r5n log n = o(n). Then, for every
sequence Cn satisfying Cn ≥ 1 and C2

n = O(log n), the uniform expansion

sup
|t |≤Cn

|Ln(t) − tΓn + J fVar(X)t2/2|
(1 + |t |)2 = oP (1) (7)

holds with

Γn = 1√
n

n∑

j=1

(X j − E[X j ])� f (X j − βX j ),

which is asymptotically normal with mean zero and variance J fVar(X).

The proof of Theorem 2 is quite elaborate and carried out in Sect. 6. Expansion (7)
is critical to obtain the asymptotic distribution of the maximum empirical likelihood
estimator. We shall follow Peng and Schick (2017) and work with a guided maximum
empirical likelihood estimator (GMELE). This requires a preliminary n1/2-consistent
estimator β̃n of β. One possibility is the OLSE, see (2), which requires the additional
assumption that the error has a finite secondmoment. Another possibility which avoids
this assumption is the solution β̃n to the equation

1

n

n∑

j=1

(X j − X̄)ψ(Y j − bX j ) = 0,

where ψ is a bounded function with a positive and bounded first derivative ψ ′ and a
bounded second derivative as, for example, the arctangent. Then,
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Inference about the slope in linear regression 189

β̃n = β − 1

n

n∑

j=1

(X j − μ)(ψ(ε j ) − E[ψ(ε)])
Var(X)E[ψ ′(ε)] + oP

(
n−1/2

)

and n1/2(β̃n − β) is asymptotically normal with mean zero and variance

Var(ψ(ε))

(E[ψ ′(ε)])2Var(X)
.

The GMELE associated with a n1/2-consistent preliminary estimator β̃n is defined
by

β̂n = argmax
n1/2|b−β̃n |≤Cn

Rn(b), (8)

where Cn is proportional to (log n)1/2. By the results in Peng and Schick (2017) the
expansion (7) implies

n1/2(β̂n − β) = Γn/(J fVar(X)) + oP
(
n−1/2

)
.

Thus, under the assumptions of Theorem2, theGMELE β̂n satisfies (3) and is therefore
efficient. The complete case estimator

β̂n,c = argmax
N1/2|b−β̃n,c|≤CN

Rn,c(b)

is then efficient in the MAR model, provided the conditional distribution of X given
δ = 1 has a finite fourth moment and a positive variance. Let us summarize our finding
in the following theorem.

Theorem 3 Suppose that the error density f has finite Fisher information for location
and that rn satisfies (log n)/rn = O(1) and r5n log n = o(n).

(a) Assume that the covariate X has a finite fourth moment and a positive variance.
Then, the GMELE β̂n satisfies expansion (3) and is therefore efficient in the full
model.

(b) Consider the MAR model and assume that given δ = 1 the covariate X has a
finite conditional fourth moment and a positive conditional variance. Then, the
complete case version β̂n,c of the GMELE satisfies expansion (4) and is efficient
in the MAR model.

The choice of rn (and rN ) is addressed in Remark 4 in Sect. 5.

Remark 3 A referee suggested the following. ‘An alternative (but asymptotically
equivalent) procedure to compute the maximum empirical likelihood estimator can
be based on the set of the generalized set of estimating equations g j (b) = (X j −
X̄)vn(Fb(Y j − bX j )) (with rn > 1) and the following program, i.e.,
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β̂EE
n = argmin

n1/2|b−β̃n |≤Cn

1

n

n∑

j=1

g j (b)
�
⎛

⎝1

n

n∑

j=1

g j (βn)g j (βn)
�
⎞

⎠

−1
1

n

n∑

j=1

g j (b),

where βn is a preliminary estimator defined as

βn = argmin
n1/2|b−β̃n |≤Cn

1

n

n∑

j=1

g j (b)
�Ŵ 1

n

n∑

j=1

g j (b)

for any positive semidefinite matrix Ŵ (and similarly for the complete case analysis).
This estimator is computationally simpler than the maximum empirical likelihood
estimator, especially if the dimension of β is larger than one.’

An even simpler estimatorwhich avoids the preliminary step is the estimatorβn with
Ŵ = (τ̂ 2n Irn )

−1, where Irn is the rn × rn identity matrix and τ̂ 2n = 1
n

∑n
j=1(X j − X̄)2.

This estimator reduces to

β̂S
n = argmin

n1/2|b−β̃n |≤Cn

∥
∥
∥
∥
∥
∥

1√
n

n∑

j=1

g j (b)

∥
∥
∥
∥
∥
∥

2

/τ̂ 2n = argmin
n1/2|b−β̃n |≤Cn

∥
∥
∥
∥
∥
∥

1√
n

n∑

j=1

g j (b)

∥
∥
∥
∥
∥
∥

2

.

Using arguments from the proof of Theorem 2, both estimators, β̂EE
n and β̂S

n , can
be shown to be efficient. In simulations the GMELE outperformed the alternative
estimators β̂EE

n and β̂S
n ; see Table 1 in Sect. 5.

5 Simulations

Here we report the results of a small simulation study carried out to investigate the
finite sample behavior of the GMELE (8) and the test from Remark 2. The simulations
were carried out with the help of the R package. The R function optimize was used to
locate the maximizers.

5.1 Comparing GMELE with the competing estimators from Remark 3

For this study we used the full model with β = 1 and sample size n = 100.Weworked
with two error distributions and two covariate distributions. As error distributions we
picked the mixture normal distribution .25N (−10, 1) + .5N (0, 1) + .25N (10, 1)
and the skew normal distribution with location parameter zero, scale parameter 1
and skewness parameter 4. As covariate distributions we chose the standard normal
distribution and the uniform distribution on (−1, 3). Table 1 reports simulated mean-
squared errors of the estimators, β̂S

n , β̂
EE
n and the GMELE, based on 2000 repetitions,

and for the choices rn = 1, . . . , 10. We used the OLSE as preliminary estimator for
the GMELE and β̂S

n , to specify the location of the search interval. As preliminary
estimator for β̂EE

n we used β̂S
n . We chose 2cn

√
log(n)/n as the length of the interval,

with cn = 1 for skew normal errors and cn = 10 for the mixture normal errors. As can
be seen from Table 1, the GMELE clearly outperforms the two competing approaches.
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Inference about the slope in linear regression 191

Table 1 Comparing the GMELE β̂n (M) with β̂S
n (S) and β̂EE

n (EE) from Remark 3

rn 1 2 3 4 5 6 7 8 9 10

Mixture normal error, normal covariate

S .625 3.79 1.53 .494 .345 .333 .314 .315 .295 .314

EE .625 4.09 2.22 .855 .629 .712 .742 .749 .801 .820

M .123 .16 .33 .373 .148 .144 .132 .131 .163 .158

Mixture normal error, uniform covariate

S .454 4.57 1.26 .339 .221 .212 .199 .197 .208 .217

EE .454 4.83 1.90 .629 .393 .380 .395 .466 .535 .621

M .094 .11 .19 .212 .067 .071 .089 .086 .077 .076

Skew normal error, normal covariate

S .028 .020 .015 .013 .012 .012 .012 .012 .012 .012

EE .028 .020 .015 .013 .012 .012 .012 .012 .012 .013

M .009 .009 .007 .008 .008 .008 .008 .008 .009 .009

Skew normal error, uniform covariate

S .027 .019 .013 .011 .009 .009 .009 .008 .009 .009

EE .027 .019 .014 .011 .009 .009 .009 .009 .009 .009

M .008 .006 .005 .005 .005 .005 .005 .005 .005 .006

The table entries are the simulated MSEs for the three estimators in the full model for sample size n = 100
based on 2000 repetitions

5.2 Performance with missing data

Here we report on the performance of the GMELE and the OLSE with missing data.
We again used the model Y = βX + ε with β = 1 and chose

π(X) = P(δ = 1|X) = 1/(1 + d exp(X))

with d = 0, .1 and .5 to produce different missingness rates. Note that d = 0 corre-
sponds to the full model.

We used the same error and covariate distributions as before and worked with
the search interval β̃N ,c ± cN

√
log(N )/N based on the complete case version of the

OLSE. We chose cN = 1 for the skew normal errors and cN = 10 for the mixture
normal errors. The reported results are based on samples of size n = 70 and 140,
rn = 1, . . . , 10 basis functions and 2000 repetitions.

Table 2 reports simulated mean-squared errors of the OLSE and GMELE for rn =
1, . . . , 10. The mean-squared errors are multiplied by 10 for skew normal errors. We
also list the average missingness rates (MR).

The GMELE performs in most cases much better (smaller MSEs) than the OLSE,
except in some of the small samples. The results for the scenario with uniform covari-
ates are better than the corresponding figures for standard normal covariates. The
mean-squared errors for the skew normal errors are even better than those for mixture
normal errors.
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Table 2 Simulated MSEs for OLSE and GMELE with missing data

n MR (%) OLSE 1 2 3 4 5 6 7 8 9 10

Mixture normal error, normal covariate

70 0 .745 .246 .416 .631 .815 .402 .395 .341 .382 .345 .396

12 .969 .355 .583 .877 1.07 .588 .599 .555 .614 .544 .547

36 1.43 .712 1.15 1.58 1.82 1.34 1.31 1.23 1.31 1.24 1.27

140 0 .368 .073 .086 .136 .149 .047 .048 .044 .040 .038 .032

12 .461 .105 .142 .240 .260 .098 .077 .087 .094 .090 .081

36 .722 .188 .251 .447 .554 .245 .266 .299 .305 .274 .297

Mixture normal error, uniform covariate

70 0 .563 .176 .257 .390 .447 .209 .194 .232 .238 .214 .216

27 .876 .386 .601 .846 .961 .588 .587 .578 .623 .582 .565

56 1.80 1.25 1.89 2.21 2.63 1.94 2.01 1.89 2.01 2.01 1.94

140 0 .267 .051 .056 .091 .086 .020 .021 .019 .024 .018 .020

27 .435 .100 .116 .210 .204 .058 .042 .067 .076 .083 .075

56 .853 .329 .447 .696 .800 .439 .420 .425 .436 .441 .468

Skew normal error, normal covariate

70 0 .146 .141 .141 .119 .127 .129 .138 .143 .153 .149 .158

12 .185 .181 .178 .159 .168 .169 .179 .182 .198 .202 .211

36 .281 .281 .286 .269 .280 .285 .301 .313 .328 .330 .332

140 0 .070 .070 .061 .050 .050 .049 .050 .053 .055 .057 .056

12 .088 .087 .078 .062 .062 .062 .063 .066 .069 .071 .074

36 .142 .138 .127 .112 .117 .118 .119 .123 .127 .125 .130

Skew normal error, uniform covariate

70 0 .114 .112 .101 .084 .086 .086 .087 .096 .101 .107 .110

27 .172 .167 .160 .139 .150 .152 .159 .159 .178 .187 .202

56 .361 .354 .395 .381 .413 .404 .430 .449 .448 .469 .485

140 0 .053 .052 .042 .034 .033 .030 .032 .033 .033 .033 .034

27 .082 .081 .070 .059 .056 .054 .056 .057 .058 .060 .062

56 .166 .162 .155 .142 .138 .142 .154 .154 .159 .159 .176

The table entries are simulated mean-squared errors for mixture normal errors and 10 times the simulated
mean-squared errors for skew normal errors

5.3 Behavior for errors without finite Fisher information

A different scenario is considered in Table 3, namely when the errors are from an
exponential distribution. Since the exponential distribution has no finite Fisher infor-
mation for location it does not fit into our theory, but it still demonstrates superior
performance of the GMELE over the OLSE.

Remark 4 The choice of the number of basis vectors rn (and rN ) does affect the
performance of the GMELE. This suggests using a data-driven choice. One possibility
is the approach of Peng and Schick (2005, Sect. 5.1), who used bootstrap to select rn in
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Table 3 Simulated MSEs for exponential error

n MR (%) OLSE 1 2 3 4 5

Normal covariate

70 0 .0157 .0085 .0092 .0073 .0075 .0086

12 .0198 .0118 .0125 .0115 .0120 .0123

36 .0306 .0242 .0235 .0232 .0216 .0209

140 0 .0075 .0021 .0020 .0017 .0018 .0020

12 .0090 .0030 .0026 .0029 .0026 .0028

36 .0140 .0058 .0056 .0064 .0054 .0063

Uniform covariate

70 0 .0109 .0041 .0041 .0045 .0041 .0044

27 .0169 .0098 .0102 .0103 .0100 .0110

56 .0359 .0304 .0333 .0351 .0339 .0351

140 0 .0054 .0009 .0010 .0009 .0011 .0011

27 .0086 .0023 .0026 .0021 .0023 .0025

56 .0179 .0100 .0096 .0088 .0088 .0097

The table entries are the MSEs for rn = 1, . . . , 5 constraints when the errors are from an exponential
distribution (no finite Fisher information)

a related setting, with convincing results. The idea is to compute the bootstrap mean-
squared errors of the estimator (the GMELE in our case) for different values of rn ,
say for rn = 1, . . . , 10. Then, select the rn with the minimum bootstrap mean-squared
error.

5.4 Comparison of two tests

We performed a small study comparing the empirical likelihood test about the slope
from Remark 2 and the corresponding bootstrap test, which uses resampling instead
of the χ2 approximation to obtain critical values. The null hypothesis is β = β0 = 1,
and the nominal level is .05. As in Table 1 we consider only the full model and the
sample size n = 100. Table 4 reports the simulated significance level and power of
the two tests, using rn = 1, 2, . . . , 5 basis functions. The covariates X and the errors ε

were generated from the same distributions as before. The bootstrap resample size was
taken to be the same as the sample size (i.e., n = 100), while we used more repetitions
than before: in order to stabilize the results obtained by the bootstrap method we
worked with 10,000 repetitions. Our simulations indicate that the results based on
the χ2 approximation (denoted by χ2) are much more reliable than the results of the
bootstrap approach (denoted by B). For rn ≥ 3 the bootstrapped significance levels
are far away from the nominal level 5%: they are between 11 and 60%, i.e., the test
is far too liberal, which is in contrast to the χ2 approach. The significance levels for
rn = 1, 2 are reasonable for both tests. In terms of power the bootstrap test is better
than the χ2 test in the upper table with normal covariates; for uniform covariates it is
the other way round.
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Table 4 Simulated significance level and power of the empirical likelihood test about the slope using χ2

and bootstrap quantiles

Mixture normal error Skew normal error

1 2 3 4 5 1 2 3 4 5

Normal covariate

β = 1.0 χ2 .05 .06 .07 .09 .10 .05 .06 .07 .09 .10

B .03 .07 .16 .28 .42 .01 .04 .11 .20 .33

β = 1.2 χ2 .11 .11 .11 .13 .21 .52 .55 .64 .67 .72

B .19 .33 .51 .69 .86 .54 .74 .89 .95 .98

Uniform covariate

β = 1.0 χ2 .05 .06 .07 .09 .10 .06 .07 .08 .09 .11

B .02 .06 .14 .25 .39 .08 .15 .28 .44 .60

β = 1.2 χ2 .11 .10 .11 .13 .21 .54 .56 .65 .67 .71

B .05 .10 .19 .31 .54 .33 .26 .48 .62 .75

The table shows simulated significance level and power figures of the empirical likelihood test with null
hypothesis β = 1 at the nominal level α = .05. We consider the full model; the sample size is n = 100.
The test uses approximative χ2 quantiles (χ2) and bootstrap quantiles (B)

6 Proofs

This section contains the proofs of Theorem 1 (given in the first subsection) and of
Theorem 2. The proof of the uniform expansion that is provided in Theorem 2 is split
into three parts. In Sect. 6.2 we give six conditions and show that they are sufficient for
the expansion. That the conditions are indeed satisfied is shown separately in Sects. 6.3
and 6.4. Section 6.5 contains an auxiliary result. As explained in the introduction, we
only need to prove the results for the full model, i.e., the case when π(X) equals
one.

6.1 Proof of Theorem 1

Let μ denote the mean and τ denote the standard deviation of X . We should point out
thatRn(b) does not change if we replace (X j − X̄) by (X j − X̄)/τ = Vj − V̄ , where

Vj = X j − μ

τ
and V̄ = 1

n

n∑

j=1

Vj .

Thus, for the purpose of our proofs, we may assume thatRn(b) is given by

Rn(b) = sup

⎧
⎨

⎩

n∏

j=1

nπ j : π ∈ Pn,

n∑

j=1

π j
(
Vj − V̄

)
vn

(
Fb

(
Y j − bX j

)) = 0

⎫
⎬

⎭
.
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In what follows we shall repeatedly use the bounds

|vn(y)|2 ≤ 2rn, |v′
n(y)|2 ≤ 2π2r3n , and |v′′

n (y)|2 ≤ 2π4r5n

for all real y.
Let us set Z j = Vjvn(F(ε j )) and Ẑ j = (Vj − V̄ )vn(Fβ(ε j )), j = 1, . . . , n. With

Z = Z1, we find the identities E[Z ] = 0 and E[Z Z�] = Irn , where Irn is the rn × rn
identity matrix, and the bound E[|Z |4] ≤ (2rn)2E[V 4] = O

(
r2n
)
. As shown in Peng

and Schick (2013), these results yield

Z̃n = 1√
n

n∑

j=1

Z j = OP

(
r1/2n

)
(9)

and

sup
|u|=1

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

(
u�Z j

)2 − 1

∣
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

Z j Z
�
j − Irn

∣
∣
∣
∣
∣
∣
= OP (rnn

−1/2). (10)

From Corollary 7.6 in Peng and Schick (2013) and r4n = o(n), the desired result
follows if we verify

1√
n

n∑

j=1

(
Ẑ j − Z j

)
= oP (1) and

1

n

n∑

j=1

|Ẑ j − Z j |2 = oP
(
r3n/n

)
.

Let

Δ j = vn
(
Fβ(ε j )

) − vn
(
F(ε j )

)
, j = 1, . . . , n.

In view of the identity Ẑ j −Z j = VjΔ j − V̄Δ j − V̄ vn(F(ε j )), the bound |vn|2 ≤ 2rn ,
and the fact n1/2V̄ = OP (1), it is easy to see the desired results follow from the
following rates:

S1 = 1√
n

n∑

j=1

VjΔ j = OP

(
r3/2n n−1/2

)
,

S2 = 1

n

n∑

j=1

Δ j = oP
(
r3/2n n−1/2

)
,

S3 = 1

n

n∑

j=1

vn(F(ε j )) = OP

(
r1/2n n−1/2

)
,

S4 = 1

n

n∑

j=1

V 2
j |Δ j |2 = OP

(
r3nn

−1
)

.
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Note that Δ1, . . . , Δn are functions of the errors ε1, . . . , εn only and satisfy

Mn = max
1≤ j≤n

|Δ j |2 ≤ 2π2r3n sup
t∈R

|Fβ(t) − F(t)|2 = OP

(
r3n/n

)
.

Conditioning on the errors thus yields

E[|S1|2|ε1, . . . , εn] = E[S4|ε1, . . . , εn] ≤ Mn .

This establishes the rates for S1 and S4. The other rates follow from |S2|2 ≤ Mn and
nE[|S3|2] = E[|vn(F(ε))|2] = rn .

6.2 Proof of Theorem 2

For t ∈ R, we let F̂nt = Fβ+n−1/2t and note that F̂nt is the empirical distribution
function of the random variables

ε j t = ε j − n−1/2t X j , j = 1, . . . , n.

These random variables are independent with common distribution function Fnt given
by

Fnt (y) = E
[
F̂nt (y)

]
= E

[
F
(
y + n−1/2t X

)]
, y ∈ R.

To simplify notation we introduce

R̂ j t = F̂nt (ε j t ), R jt = Fnt (ε j t ), R j = F(ε j ),

and

Ẑ j t = (Vj − V̄ )vn(R̂ j t ), Z jt = Vjvn(R jt ), Z j = Vjvn(R j ).

Sincewe areworkingwith the form of the empirical likelihood given in the previous
section, we have

Rn(β + n−1/2t) = sup

⎧
⎨

⎩

n∏

j=1

nπ j : π ∈ Pn,

n∑

j=1

π j Ẑ j t = 0

⎫
⎬

⎭
, t ∈ R.

Fix a sequence Cn such that Cn ≥ 1 and Cn = O((log n)1/2). The desired result
follows if we verify the uniform expansion

sup
|t |≤Cn

| − 2 logRn(β + n−1/2t) − |Z̃n|2 + 2tΓn − t2τ 2 J f |
(1 + |t |)2 = oP (1) (11)
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with Z̃n as in (9). To verify (11) we introduce

νn = E[X� f (ε)V vn(F(ε))].

We shall establish (11) by verifying the following six conditions.

sup
|t |≤Cn

sup
|u|=1

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

(
u� Ẑ j t

)2 − 1

∣
∣
∣
∣
∣
∣
= oP (1/rn) , (12)

sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

(
Ẑ j t − Z jt

)
∣
∣
∣
∣
∣
∣
= oP

(
r−1/2
n

)
, (13)

sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

(
Z jt − Z j − E[Z jt − Z j ]

)
∣
∣
∣
∣
∣
∣
= oP

(
r−1/2
n

)
, (14)

sup
|t |≤Cn

|n1/2E [Z1t − Z1] + tνn| = o
(
r−1/2
n

)
, (15)

|νn|2 → τ 2 J f , (16)

ν�
n Z̃n − Γn = 1√

n

n∑

j=1

[
ν�
n Z j − (X j − μ)� f (ε j )

]
= oP (1). (17)

These six conditions are proved in the next two subsections. We first establish their
sufficiency.

Lemma 1 The conditions (12)–(17) imply (11).

To prove this lemma, we use the following result which is a special case of Lemma
5.2 in Peng and Schick (2013). This version was used in Schick (2013).

Lemma 2 Let x1, . . . , xn be m-dimensional vectors. Set

x̄ = 1

n

n∑

j=1

x j , x∗ = max
1≤ j≤n

|x j |, ν4 = 1

n

n∑

j=1

|x j |4, S = 1

n

n∑

j=1

x j x
�
j ,

and let λ and Λ denote the smallest and largest eigenvalue of the matrix S. Then, the
inequality λ > 5|x̄ |x∗ implies

∣
∣
∣ − 2 log(R) − nx̄�S−1 x̄

∣
∣
∣ ≤ n|x̄ |3 (Λν4)

1/2

(λ − |x̄ |x∗)3
+ 4nΛ2|x̄ |4ν4

λ2 (λ − |x̄ |x∗)4

with

R = sup

⎧
⎨

⎩

n∏

j=1

nπ j : π ∈ Pn,

n∑

j=1

π j x j = 0

⎫
⎬

⎭
.
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Proof of Lemma 1 We introduce

T(t) = 1

n

n∑

j=1

Ẑ j t and S(t) = 1

n

n∑

j=1

Ẑ j t Ẑ
�
j t ,

and let λn(t) and Λn(t) denote the smallest and largest eigenvalues of S(t), i.e.,

λn(t) = inf|u|=1
u�

S(t)u = inf|u|=1

1

n

n∑

j=1

(
u� Ẑ j t

)2

and

Λn(t) = sup
|u|=1

u�
S(t)u = sup

|u|=1

1

n

n∑

j=1

(
u� Ẑ j t

)2
.

By (12), we have

sup
|t |≤Cn

|λn(t) − 1| = oP (1) and sup
|t |≤Cn

|Λn(t) − 1| = oP (1).

The conditions (13)–(15) imply

sup
|t |≤Cn

|n1/2T(t) − Z̃n + tνn| = oP
(
r−1/2
n

)
. (18)

This, together with (9) and (16) yields

sup
|t |≤Cn

n|T(t)|2 = OP (rn). (19)

Next, we find

sup
|t |≤Cn

max
1≤ j≤n

|Ẑ j t | ≤ (2rn)
1/2 max

1≤ j≤n
|Vj − V̄ | = oP

(
r1/2n n1/4

)

and

sup
|t |≤Cn

1

n

n∑

j=1

|Ẑ j t |4 ≤ (2rn)
2 1

n

n∑

j=1

|Vj − V̄ |4 = OP

(
r2n
)

.

Thus, we derive

sup
|t |≤Cn

∣
∣
∣ − 2 logRn

(
β + n−1/2t

)
− nT(t)� (S(t))−1

T(t)
∣
∣
∣ = oP (1), (20)
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since by Lemma 2 the left-hand side is of order OP (r5/2n n−1/2 + r4n/n). For a positive
definite matrix A and a compatible vector x , we have

|x�A−1x − x�x | ≤ x�A−1x sup
|u|=1

|1 − u�Au| ≤ |x |2
λ

sup
|u|=1

|1 − u�Au|

with λ the smallest eigenvalue of A. This, together with (12) and (19) yields

sup
|t |≤Cn

n|T(t)�(S(t))−1
T(t) − T(t)�T(t)| = oP (1). (21)

With the help of (9), (16) and (18) we verify

sup
|t |≤Cn

∣
∣
∣n|T(t)|2 − |Z̃n|2 + 2tν�

n Z̃n − t2|νn|2
∣
∣
∣ = oP (1). (22)

The results (20)–(22) yield the expansion

sup
|t |≤Cn

∣
∣
∣ − 2 logRn

(
β + n−1/2t

)
− |Z̃n|2 + 2tν�

n Z̃n − t2|νn|2
∣
∣
∣ = oP (1).

From (16) and (17) we derive the expansion

sup
|t |≤Cn

∣
∣
∣2t

(
ν�
n Z̃n − Γn

)
− t2

(|νn|2 − τ 2 J f
)∣∣
∣

(1 + |t |)2 = oP (1).

The desired result (11) follows from the last two expansions. ��

6.3 Proofs of (14)–(17)

We begin by mentioning properties of f and F that are crucial to the proofs. Since f
has finite Fisher information for location, we have

∫

| f (y + t) − f (y + s)| dy ≤ B1|t − s|, (23)

|F(t) − F(s)| ≤ B1|t − s|, (24)

|F(t + s) − F(t) − s f (t)| ≤ B2|s|3/2, (25)
∫

|F(y + s) − F(y) − s f (y)| dy ≤ B1s
2 (26)

for all real s and t , and some constants B1 and B2, see, for example, Peng and Schick
(2016).
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Next, we look at the process

Hn(t) = 1√
n

n∑

j=1

(
hnt (X j ,Y j ) − E [hnt (X,Y )]

)
, t ∈ R,

where hnt are measurable functions from R
2 to R

mn such that hn0 = 0. We are
interested in the cases mn = 1 and mn = rn . A version of the following lemma was
used in Peng and Schick (2016).

Lemma 3 Suppose that the map t �→ hnt (x, y) is continuous for all x, y ∈ R and

E
[
|hnt (X,Y ) − hns(X,Y )|2

]
≤ Kn|t − s|2, s, t ∈ R (27)

for some positive constants Kn. Then, we have the rate

sup
|t |≤Cn

|Hn(t)| = OP

(
CnK

1/2
n

)
.

Proof of (14) The desired result follows from Lemma 3 applied with

hnt (X,Y ) = V
[
vn

(
Fnt

(
ε − n−1/2t X

))
− vn (F (ε))

]
, t ∈ R,

and Kn = 2π2r3n B
2
1 E[V 2(X1 − X)2]/n. Indeed, we have hn0 = 0 and (27) in view

of (24). Note also that rnC2
n Kn → 0. ��

Proof of (15) Since V and ε are independent and V has mean zero, we obtain the
identity

n1/2E [Z1t − Z1] + tνn = n1/2E [V1vn (Fnt (ε1t ))] + tνn = n1/2 (Δ1(t) + Δ2(t))

with

Δ1(t) = E

[

V
∫

[vn(Fnt (y)) − vn(F(y))]
[
f (y + n−1/2t X) − f (y)

]
dy

]

and

Δ2(t) = E

[

V
∫

vn(F(y))
[
f (y + n−1/2t X) − f (y) − n−1/2t X f ′(y)

]
dy

]

.

It follows from (23) and (24) that

|Δ1(t)| ≤
(
2π2r3n

)1/2
B1E[|X |]B1E[|V X |]t2/n.
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Integration by parts shows that

Δ2(t) = −E

[

V
∫

v′
n(F(y)) f (y)

[
F(y + n−1/2t X) − F(y) − n−1/2t X f (y)

]
dy

]

.

It follows from (24) that f is bounded by B1. This, together with (26), yields the
bound

|Δ2(t)| ≤
(
2π2r3n

)1/2
B2
1 E

[
|V X2|

]
t2/n.

From these bounds we conclude

sup
|t |≤Cn

∣
∣
∣n1/2E [Z1t − Z1] + tνn

∣
∣
∣ = O

(
r3/2n (log n)n−1/2

)
= o

(
r−1/2
n

)
,

which is the desired (15). ��
Proof of (16) and (17) Note that νn can be written as

νn = E
[
X� f (ε)V vn(F(ε))

] = τ E
[
V � f (ε)V vn(F(ε))

]
.

The functions Vϕ1(F(ε)), Vϕ2(F(ε)), . . . form an orthonormal basis of the space
V = {Va(ε) : a ∈ L2,0(F)}. Thus, νn is the vector consisting of the first rn Fourier
coefficients of (X − μ)� f (ε) = τV � f (ε) with respect to this basis. Because (X −
μ)� f (ε) is a member of V , Parseval’s theorem yields

|νn|2 → E
[(

(X − μ)� f (ε)
)2
]

= τ 2 J f

and

E

[(
ν�
n V vn(F(ε)) − (X − μ)� f (ε)

)2
]

→ 0.

The former is (16) and the latter implies (17). ��

6.4 Proofs of (12) and (13)

We begin by deriving properties of R̂ j t and R jt which we need in the proofs of (12)
and (13). For this we introduce the leave-one-out version R̃ j t of R̂ j t defined by

R̃ j t = 1

n − 1

∑

i :i �= j

1[εi t ≤ ε j t ] = n

n − 1
R̂ j t − 1

n − 1
1[ε j t ≤ ε j t ],

which satisfies

|R̂ j t − R̃ j t | ≤ 2

n − 1
. (28)
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We abbreviate R̃ j0 by R̃ j . In the ensuing arguments we rely on the following properties
of these quantities, where B1 and B2 are the constants appearing in (24) and (25):

max
1≤ j≤n

sup
|t |≤Cn

|R̃ j t − R jt − R̃ j + R j | = OP

(
n−5/8 (Cn log n)1/2

)
, (29)

max
1≤ j≤n

|R̃ j − R j | = OP

(
n−1/2

)
, (30)

sup
|t |≤Cn

|R jt − R j | ≤ B1Cnn
−1/2 (|X j | + E[|X |]) , (31)

sup
|t |≤Cn

|R jt − R j + n−1/2t (X j − μ) f (ε j )|

≤ B2C
3/2
n n−3/4

√
2
(
|X j |3/2 + E

[
|X |3/2

])
. (32)

The second statement follows from properties of the empirical distribution function
and the last two statements from (24) and (25), respectively. To prove (29) we use
Lemma 4 from Sect. 6.5. Let ζ j (t) = R̃ j t − R jt − R̃ j + R j and m = n − 1. These
randomvariables are identically distributed, and (n−1)ζn(t) equals Ñ (n−1/2t, Xn, εn)

from the beginning of Sect. 6.5, with the role of Yi played by εi . Lemma 4 gives

P

(

max
1≤ j≤n

sup
|t |≤Cn

|ζ j (t)| > 4KC1/2
n (n − 1)−5/8 (log(n − 1))1/2

)

≤ nP

(

sup
|t |≤Cn

|ζn(t)| > 4KC1/2
n m−5/8(logm)1/2

)

≤ nP
(
|Xn| > m1/4

)
+ nE

[
1
[
|Xn| ≤ m1/4

]
pm (εn,Cn, K )

]

≤ 2E[|X |41
[
|X | > m1/4

]
+ Cn2 exp(−K log(m))

for m > 2 and K > 6B1(1 + E[|X |]) and some constant C . The desired (29) is now
immediate.

Note that statements (28)–(31) yield the bounds

sup
|t |≤Cn

|R̂ j t − R j | ≤ B1Cnn
−1/2 (|X j | + E[|X |]) + n−1/2ξn, j = 1, . . . , n,

(33)
which we need for the next proof. Here ξn is a positive random variable which satisfies
ξn = OP (1).

Proof of (12) Given (10) and the properties of rn , it suffices to verify

sup
|u|=1

sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

(
u� Ẑ j t

)2 − 1

n

n∑

j=1

(
u�Z j

)2
∣
∣
∣
∣
∣
∣
= oP (1/rn) . (34)
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Using the Cauchy–Schwarz inequality we bound the left-hand side of (34) by
2(DnΛn)

1/2 + Dn with

Λn = sup
|u|=1

1

n

n∑

j=1

(
u�Z j

)2
and Dn = sup

|t |≤Cn

1

n

n∑

j=1

|Ẑ j t − Z j |2.

Given (10), it therefore suffices to prove Dn = oP (1/r2n ). This follows from (33), the
inequality

Dn ≤ sup
|t |≤Cn

1

n

n∑

j=1

(
2V̄ 2|vn

(
R̂ j t

)
|2 + 2V 2

j |vn
(
R̂ j t

)
− vn

(
R j
) |2

)

≤ 4rn V̄
2 + 4π2r3n

1

n

n∑

j=1

V 2
j sup

|t |≤Cn

|R̂ j t − R j |2 = OP

(
r3nC

2
n/n

)
,

and the rate r5n log n = o(n). ��
Proof of (13) In view of the rate V̄ = OP (n−1/2) and the identity

Ẑ j t − Z jt = Vj

(
vn(R̂ j t ) − vn(R jt )

)
− V̄

(
vn(R̂ j t ) − vn(R j )

)
− V̄ vn(R j ),

the desired (13) is implied by the following three statements:

1√
n

n∑

j=1

vn(R j ) = OP

(
r1/2n

)
, (35)

sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

(
vn(R̂ j t ) − vn(R j )

)
∣
∣
∣
∣
∣
∣
= OP

(
Cnr

3/2
n

)
, (36)

sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

Vj

[
vn(R̂ j t ) − vn(R jt )

]
∣
∣
∣
∣
∣
∣
= oP

(
r−1/2
n

)
. (37)

We obtain (35) from E[vn(F(ε))] = 0 and E[|vn(F(ε)|2] = rn . Also, (36) follows
from (33) and the fact that its left-hand side is bounded by

(2π2r3n )
1/2 1√

n

n∑

j=1

sup
|t |≤Cn

|R̂ j t − R j |.

Using (28) we find

sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

Vj

[
vn(R̂ j t ) − vn(R̃ j t )

]
∣
∣
∣
∣
∣
∣
= OP

(
r3/2n n−1/2

)
.
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Taylor expansions, the bound |v′′′
n |2 ≤ 2π6r7n and equations (28), (31) and (33) show

that

sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

Vj

[

vn(R̃ j t ) − vn(R j ) − v′
n(R j )(R̃ j t − R j )

−1

2
v′′
n (R j )

(
R̃ j t − R j

)2
]
∣
∣
∣
∣
∣
∣

and

sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

Vj

[

vn(R jt ) − vn(R j ) − v′
n(R j )(R jt − R j )

−1

2
v′′
n (R j )

(
R jt − R j

)2
]
∣
∣
∣
∣
∣
∣

are of order r7/2n C3
nn

−1. Using the identity

(a + b + c)2 − a2 − b2 + 2db = c2 + 2(a + d)b + 2(a + b)c

with a = R jt − R j , b = R̃ j − R j , c = R̃ j t − R jt − R̃ j + R j and d = n−1/2t (X j −
μ) f (ε j ) = n−1/2tτVj f (ε j ), togetherwith properties (29)–(32),wederive the bounds

sup
|t |≤Cn

|(R̃ j t − R j )
2 − (R jt − R j )

2 − (R̃ j − R j )
2 + 2n−1/2tτVj f (ε j )(R̃ j − R j )|

≤ ζn(1 + |X j |)3/2, j = 1, . . . , n,

with ζn = OP (n−9/8C3/2
n (log n)1/2). If follows that the left-hand side of (37) is

bounded by |T1|/2 + Cnτ |T2| + T3 + T4, where

T1 = 1√
n

n∑

j=1

Vjv
′′
n (R j )

(
R̃ j − R j

)2
,

T2 = 1

n

n∑

j=1

V 2
j v

′′
n (R j ) f (ε j )

(
R̃ j − R j

)
,

T3 = sup
|t |≤Cn

∣
∣
∣
1√
n

n∑

j=1

Vjv
′
n(R j )(R̃ j t − R jt )

∣
∣
∣,

and

T4 = OP

(
r3/2n n−1/2 + r7/2n C3

nn
−1 + r5/2n n−5/8C3/2

n (log n)1/2
)

= oP
(
r−1/2
n

)
.
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We calculate

E
[
|T1|2|ε1, . . . , εn

]
= 1

n

n∑

j=1

|v′′
n (R j )|2

(
R̃ j − R j

)4 = OP

(
r5nn

−2
)

.

Thus, |T1| = oP (r−1/2
n ). Next, we write T2 as the vector U-statistic

T2 = 1

n(n − 1)

∑

i �= j

V 2
j v

′′
n (F(ε j )) f (ε j )

(
1[εi ≤ ε j ] − F(ε j )

)

and obtain

E[|T2|2] ≤ E[|k(ε)|2]
n

+ 2E[V 4
2 |v′′

n (F(ε2)|2 f 2(ε2)(1[ε1 ≤ ε2] − F(ε2))
2]

n(n − 1)

with k(x) = E[v′′
n (F(ε)) f (ε)(1[x ≤ ε] − F(ε))]. Using the representation f (y) =∫∞

y � f (z) f (z) dz and Fubini’s theorem, we calculate

k(x) =
∫ ∞

−∞
v′′
n (F(y)) f (y)(1[x ≤ y] − F(y)) f (y) dy

=
∫ ∞

x
(v′

n(F(z)) − v′
n(F(x))� f (z) f (z) dz

−
∫ ∞

−∞
[v′

n(F(z))F(z) − vn(F(z))])� f (z) f (z) dz.

Thus, |k| is bounded by a constant times r3/2n and we see that E[|T2|2] = O(r3n/n +
r5n/n

2). This proves Cn|T2| = OP (r−1/2
n ).

We bound T3 by the sum T31 + T32 + T33, where

T31 = sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

Wjv
′
n(R j )(R̃ j t − R jt )

∣
∣
∣
∣
∣
∣
,

T32 = sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

Vj1[|Vj | > n1/4]v′
n(R j )(R̃ j t − R jt )

∣
∣
∣
∣
∣
∣
,

T33 = sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

E[V 1[|V | > n1/4]]v′
n(R j )(R̃ j t − R jt )

∣
∣
∣
∣
∣
∣
,

and Wj = Vj1[|Vj | ≤ n1/4] − E[V 1[|V | ≤ n1/4]. Since V has a finite fourth
moment, we obtain the rates max1≤ j≤n |Vj | = oP (n1/4) and E[|V |1[|V | >

n1/4]] ≤ n−3/4E[V 41[|V | > n1/4]] = o(n−3/4). Thus, we find P(T32 > 0) ≤
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P(max1≤ j≤n |Vj | > n1/4) → 0 and T33 = oP (n−3/4r3/2n ), using (29) and (30). This

shows T32 + T33 = oP (r−1/2
n ).

To deal with T31 we express it as

T31 = sup
|t |≤Cn

n1/2

∣
∣
∣
∣
∣
∣

1

n(n − 1)

∑

i �= j

W jv
′
n(F(ε j ))

(
1[εi t ≤ ε j t ] − Fnt (ε j t )

)
∣
∣
∣
∣
∣
∣
.

Let us set

knt (z) = E
[
Wvn

(
F
(
z + n−1/2t X

))]
, z ∈ R.

Using (24) we obtain the bound

E
[
|knt (ε j t ) − kns(ε js)|2

]
≤ 2π2r3n B

2
1 E

[
W 2(X j − X)2

]
|t − s|2/n

and derive with the help of Lemma 3

sup
|t |≤Cn

∣
∣
∣
∣
∣
∣

1√
n

n∑

j=1

(knt (ε j t ) − E[knt (ε j t )])
∣
∣
∣
∣
∣
∣
= OP

(
r3/2n Cnn

−1/2
)

.

We therefore obtain the rate T31 = oP (r−1/2
n ), if we verify

sup
|t |≤Cn

|U (t)| = OP

(
r3/2n n−1 log n

)
, (38)

where U (t) is the vector U-statistic equaling

1

n(n − 1)

∑

i �= j

[
Wjv

′
n(F(ε j ))

(
1[εi t ≤ ε j t ] − Fnt (ε j t )

)
+ knt (εi t ) − E[knt (εi t )]

]
.

It is easy to verify that U (t) is degenerate. Let tk = −Cn + 2kCn/n, k = 0, . . . , n.
Then, we have

sup
|t |≤Cn

|U (t)| ≤ max
1≤k≤n

(

|U (tk)| + sup
tk−1≤t≤tk

|U (t) −U (tk)|
)

. (39)

For t ∈ [tk−1, tk], we find

|U (t) −U (tk)| ≤ (2π2r3n )
1/2

(
2n1/4(N+

k + N−
k ) + 2B1Cnn

−3/2S
)

(40)
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with

S = 1

n

n∑

j=1

(|Wj |(|X j | + E[|X |]) + E[|W |]|X j | + 2E[|WX |] + E[|W |]E[|X |]),

N+
k = 1

n(n − 1)

∑

i �= j

1
[
tk−1Di j < εi − ε j ≤ tk Di j

]
1[Di j ≥ 0],

N−
k = 1

n(n − 1)

∑

i �= j

1
[
tk Di j < εi − ε j ≤ tk−1Di j

]
1[Di j < 0],

and Di j = n−1/2(Xi − X j ). We writeUl(t) for the lth component of the vectorU (t).
Then, we have

P

(

max
1≤k≤n

|U (tk)| > η

)

≤
n∑

k=1

rn∑

l=1

P
(
|Ul(tk)| > ηr−1/2

n

)
, η > 0.

Since Ul(t) is a degenerate U-statistic whose kernel is bounded by

bl = 2n1/4
(√

2πl + √
2
)

≤ 27n1/4l

and has second moment bounded by 2(πl)2, we derive from part (c) of Proposition
2.3 of Arcones and Giné (1993) that

sup
|t |≤C

P((n − 1)|Ul(t)| > η) ≤ c1 exp

(

− c2η√
2πl + b2/3l η1/3n−1/3

)

for universal constants c1 and c2. Using the above we obtain

P

(

max
1≤k≤n

|U (tk)| >
K 3r3/2n log n

n − 1

)

≤
n∑

k=1

rn∑

l=1

P
(
(n − 1)|Ul(tk)| > K 3rn log n

)

≤ nrnc1 exp

( −c2K 3 log(n)√
2π + 9K (log n)1/3n−1/6

)

, K > 0.

This shows that
max
1≤k≤n

|U (tk)| = OP (r3/2n n−1 log n). (41)

To deal with N+
k we introduce the degenerate U-statistic

Ñ+
k = 1

n(n − 1)

∑

i �= j

1[Di j ≥ 0]ξk(i, j)
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with

ξk(i, j) =1[tk−1Di j < εi − ε j ≤ tk Di j ] − F(ε j + tk Di j ) + F(ε j + tk−1Di j )

− F(εi − tk−1Di j ) + F(εi − tk Di j ) + F2(tk Di j ) − F2(tk−1Di j )

and F2 the distribution function of ε1 − ε2. It is easy to see that

|N+
k − Ñ+

k | ≤ 6B1Cnn
−3/2 1

n(n − 1)

∑

i �= j

|Xi − X j |.

The kernel of the U-statistic Ñ+
k is bounded by 8 and has second moment bounded

by Dnn−3/2 with Dn = 2B1CnE[|X1 − X2|]. Thus, by part (c) of Proposition 2.3 in
Arcones and Giné (1993), we see that the corresponding degenerate U-statistic Ñ+

k
satisfies

n∑

k=1

P

(

|Ñ+
k | >

K 3(log n)3/2n−1/2

n − 1

)

≤ nc1 exp

(

− c2K 3(log n)3/2

D1/2
n n−1/4 + 4K (log n)1/2

)

.

The above shows that

max
1≤k≤n

N+
k = OP

(
n−3/2 (log n)3/2

)
. (42)

Similarly one obtains

max
1≤k≤n

N−
k = OP

(
n−3/2 (log n)3/2

)
. (43)

The desired (38) follows from (39)–(43) and S = OP (1). This concludes the proof of
(13). ��

6.5 Auxiliary results

Let X and Y be independent random variables. Let (X1,Y1), . . . , (Xm,Ym) be inde-
pendent copies of (X,Y ). For reals t , x and y, set

N (t, x, y) =
m∑

i=1

(1[Yi − t Xi ≤ y − t x] − 1[Yi ≤ y])

and

Ñ (t, x, y) = N (t, x, y) − E[N (t, x, y)].
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Lemma 4 Suppose X has finite expectation and the distribution function F of Y is
Lipschitz: |F(y) − F(x)| ≤ Λ|y − x | for all x, y and some finite constant Λ. Then,
the inequality

P

(

sup
|t |≤δ

|Ñ (t, x, y)| > 4η

)

≤ (8M + 4) exp

( −η2

2mΛδE[|X − x |] + 2η/3

)

holds for η > 0, δ > 0, real x and y and every integer M ≥ mΛδE[|X − x |]/η. In
particular, for C ≥ 1 and K ≥ 6Λ(1 + E[|X |]), we have

pm(y,C, K ) = sup
|x |≤m1/4

P

(

sup
|t |≤C/m1/2

|Ñ (t, x, y)| > 4KC1/2m3/8(logm)1/2

)

≤
(

12 + 8m3/8C1/2)

6(logm)1/2

)

exp(−K log(m)), y ∈ R.

Proof Fix x and y and set ν = E[|X − x |]. Abbreviate N (t, x, y) by N (t) and
Ñ (t, x, y) by Ñ (t), set

N+(t) =
m∑

i=1

(1[Y j − t (X j − x) ≤ y] − 1[Y j ≤ y])1[X j − x ≥ 0],

N−(t) =
m∑

i=1

(1[Y j − t (X j − x) ≤ y] − 1[Y j ≤ y])1[X j − x < 0]

and let Ñ+(t) = N+(t) − E[N+(t)] and Ñ−(t) = N−(t) − E[N−(t)]. Since F is
Lipschitz, we obtain

|E[N+(t1)] − E[N+(t2)]| ≤ mΛ|t1 − t2|ν.

For s ≤ t ≤ u, we have

N+(s) − E[N+(u)] ≤ N+(t) − E[N+(t)] ≤ N+(u) − E[N+(s)]

and thus

Ñ+(s) − mΛ|u − s|ν ≤ Ñ+(t) ≤ Ñ+(u) + mΛ|u − s|ν.

It is now easy to see that

sup
|t |≤δ

|Ñ+(t)| ≤ max
k=−M,...,M

|N+(kδ/M)| + mΛδν/M
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for every integer M . From this we obtain the bound

P( sup
|t |≤δ

|Ñ+(t)| ≥ 2η) ≤
M∑

k=−M

P(|Ñ+(kδ/M) > η) + P(mΛδν/M > η).

The Bernstein inequality and the fact that the variance of

(1[Y − t (X − x) ≤ y] − 1[Y ≤ y])1[X ≥ x]

is bounded by Λ|t |ν yield

P(|Ñ+(kδ/M)| > η) ≤ 2 exp

(

− η2

2mΛδν + 2η/3

)

.

Thus, we have

P( sup
|t |≤δ

|Ñ+(t)| > 2η) ≤ 2(2M + 1) exp

(

− η2

2mΛδν + 2η/3

)

for M ≥ mΛδν/η. Similarly, one verifies for such M ,

P( sup
|t |≤δ

|Ñ−(t)| > 2η) ≤ 2(2M + 1) exp

(

− η2

2mΛδν + 2η/3

)

.

Since Ñ (t) = Ñ+(t) + Ñ−(t), we obtain the first result. The second result follows
from the first one by taking δ = Cm−1/2, η = KC1/2m3/8(logm)1/2 and observing
the inequality (logm)1/2m−3/8 ≤ 1. ��
Acknowledgements We thank two reviewers and the Associate Editor for their knowledgeable comments
and suggestions, which helped us improve the paper.
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