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Abstract In this paper we employ the conditional probability integral transformation
(CPIT) method to transform a d-dimensional sample from two classes of generalized
multivariate distributions into a uniform sample in the unit interval (0, 1) or in the
unit hypercube [0, 1]d−1 (d ≥ 2). A class of existing uniform statistics are adopted
to test the uniformity of the transformed sample. Monte Carlo studies are carried
out to demonstrate the performance of the tests in controlling type I error rates and
power against a selected group of alternative distributions. It is concluded that the
proposed tests have satisfactory empirical performance and the CPIT method in this
paper can serve as a generalway to construct goodness-of-fit tests formany generalized
multivariate distributions.
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1 Introduction

Methodologies for multivariate statistical inference under the normal distribution have
been comprehensively studied, and various approaches to testing goodness-of-fit for
the multivariate normal distribution are available in the literature. Because various
violations of the normal assumption were noticed in modern high-dimensional data
analysis, researchers have been making efforts in developing theory for statistical
inference under a much wider class of multivariate distributions that possess similar
properties to those of themultivariate normal distribution. The family of the elliptically
contoured distributions (ECD for simplicity) is a natural extension to the family of
multivariate normal distributions (MVN for simplicity), see, for example, Fang and
Zhang (1990), and Gupta and Varga (1993). Some kind of symmetry is a special
characteristic that all ECDs commonly possess. For example, if a random vector x has
an ECD, then its linear transformation y = Ax+b (A is amatrix of suitable dimension
and b a constant vector of suitable dimension) also has an ECD; similarly, if a random
vector z has a spherically symmetric distribution (SSD for simplicity), then �z also
has an SSD for any orthogonal constant matrix �. An SSD is a standardized ECDwith
zero mean and a covariance matrix of the form σ 2 I (I stands for an identity matrix).
The symmetry of ECD orMVN is called affine invariance, and the symmetry of SSD is
called rotational invariance. Invariance is a common approach to developing a family
of multivariate distributions. Fang et al. (1990) summarizes various approaches to
generalizing the multivariate normal distribution to different families of symmetric
multivariate distributions.

Among the various symmetric multivariate distributions, the family of ECD pos-
sesses the closest properties to those of MVN, and the family of SSD possesses the
closest properties to those of the standard MVN. Statistical inference under SSD or
ECD received earlier attention compared with other symmetric multivariate distribu-
tions. For example, Zellner (1976) and Lange et al. (1989) studied statistical models
under SSD; Anderson et al. (1986), Fang and Zhang (1990), and Anderson (1993)
developed some theory on statistical inference under ECD; and Osiewalski and Steel
(1993) proposed robust Bayesian inference for the lq -spherical models. Somemethods
for statistical inference under SSD with non-independent samples were proposed by
Kariya and Eaton (1977) and Gupta and Kabe (1993). Some early methods for testing
spherical and elliptical symmetry were summarized in Fang and Liang (1999). A lot
of newmethods for statistical inference under SSD or ECD have been developed since
the past ten years, see, for example, Liang and Fang (2000), Manzottia et al. (2002),
Schott (2002), Zhu (2003), Huffer and Park (2007), and Liang et al. (2008).

Compared to the relatively rich literature on ECD and SSD, there are few
methodologies for statistical inference under a wide class of symmetric multivariate
distributions. The class of L p-norm spherical distributions and the class of l p-norm
symmetric distributions are two classes of symmetric multivariate distributions that
have been receiving attention in the area of generalized multivariate analysis (see, e.g.,
Osiewalski and Steel 1993).

Definition 1 (Gupta and Song 1997). A random vector ud = (U1, . . . ,Ud)
′ is

said to have an L p-norm uniform distribution, denoted by U(d, p), if ‖ud‖p =
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Test L p-norm Spherical and l p-norm Symmetric Distributions 139

(
∑d

i=1 |Ui |p)1/p = 1 (p > 0) and the joint p.d.f. (probability density function)
of U1, . . . ,Ud−1 is given by

f (u1, . . . , ud−1) = pd−1�(d/p)

2d−1�d(1/p)

(

1 −
d−1∑

i=1

|ui |p
)(1−p)/p

,

−1 < ui < 1, i = 1, . . . , d − 1,
d−1∑

i=1

|ui |p < 1. (1)

Definition 2 (Gupta and Song 1997). A d-variate random vector x is said to have
an L p-norm spherical distribution if x = Rud , denoted by x ∼ S(d, p), where
ud ∼ U(d, p) and R, which is independent of ud , is a nonnegative random variable.

Definition 3 (Yue and Ma 1995). Suppose that W1, . . . ,Wd are i.i.d. Weibull dis-
tributed with a fixed shape parameter p and density g(w) = pw p−1 exp(−w p)

(w > 0). Let w = (W1, . . . ,Wd)
′ (Wi > 0, i = 1, . . . , d) and u

d= (U1, . . . ,Ud)
′ =

w/‖w‖+
p , where ‖w‖+

p = (
∑d

i=1 W
p
i )1/p and “

d=” means that the two sides of the
random variables (r.v.) have the same probability distribution, denote the distribution
of u by u ∼ UWd(p). Define a class of distributions by

Ld(p) = {x : x
d= ru, r ≥ 0 and is a r.v. independent of u ∼ UWd(p)}, (2)

x is said to have a multivariate l p-norm symmetric distribution if x ∈ Ld(p).

From the above definitions, it can be easily understood that the family of S(d, p)
contains SSD as a special case (p = 2) and the family of Ld(p) contains as its special
cases (p = 1) the family of the multivariate l1-norm symmetric distributions (Fang
et al. 1990), and the family of mixtures of Weibull distributions. Some theoretical
properties of the distributions in S(d, p) and the distributions inLd(p) can be referred
to Gupta and Song (1997) and Yue and Ma (1995), respectively.

Similar to testing goodness-of-fit for ECD or SSD, testing goodness-of-fit for
S(d, p) and Ld(p) is even more challenging because much fewer characterization
properties for distributions in S(d, p) or Ld(p) are known. The purpose of this paper
is to construct a class of uniform tests for uniformity of two classes of generalized
multivariate uniformdistributions and then apply the uniform tests to testing goodness-
of-fit for distributions in either S(d, p) or Ld(p). This paper is organized as follows.
Section 2 is devoted to the theoretical construction of the tests. Section 3 presents
Monte Carlo studies on the performance of the tests. Some concluding remarks are
summarized in the last section.

2 Theoretical construction of the uniform tests

In this section we will construct two types of goodness-of-fit tests:
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140 J. Liang et al.

Type I test Testing goodness-of-fit for U(d, p)
Let {x1, . . . , xn} be an i.i.d. sample, xi ∈ Rd (the d-dimensional Euclidean space)
for i = 1, . . . , n. We want to test the null hypothesis

H0 : {x1, . . . , xn} is a sample from U(d, p) for some given p > 0 (3)

versus the alternative hypothesis H1: the sample {x1, . . . , xn} is not from any c.d.f. in
U(d, p), where c.d.f. = cumulative distribution function.

Type II test Testing goodness-of-fit for UWd(p)
Let { y1, . . . , yn} be an i.i.d. sample, yi ∈ Rd+ = { y = (y1, . . . , yd)′ : yl > 0, l =
1, . . . , d}. We want to test the null hypothesis

H0 : { y1, . . . , yn} is a sample from UWd(p) for some given p > 0 (4)

versus the alternative hypothesis H1: the sample { y1, . . . , yn} is not from any c.d.f. in
UWd(p).

Testing hypotheses (3) and (4) will be transferred to testing uniformity in the unit
interval (0, 1) or to testing uniformity in the unit hypercube [0, 1]d−1. Liang et al.
(2008) gave a review on some uniform tests as follows.

2.1 Tests for uniformity in (0, 1)

1. Watson’s U 2-statistic
Let W 2 = 1/(12n) + ∑n

i=1[(2i − 1)/2n − U(i)]2, Watson (1962) proposed the
statistic

WU 2 = W 2 − n(Ū − 0.5)2 (5)

for testing uniformity in (0, 1), where Ū is the sample mean from an i.i.d. sample
{U1, . . . ,Un} and U(1) ≤ · · · ≤ U(n) is ordered array. Tables of critical values for
WU 2 are usually given for the modified form of WU 2:

MU 2 =
(

WU 2 − 1

10n
+ 1

10n2

)(

1 + 0.8

n

)

. (6)

The critical values of MU 2 are found to be only slightly dependent on the sample
size n, and they are 0.267 (α = 0.01), 0.187 (α = 0.05) and 0.152 (α = 0.10) from
Stephens (1970). Large values of MU 2 indicate evidence of non-uniformity of the
sample. For example, if MU 2 > 0.187, one rejects the null hypothesis of uniformity
in (0, 1) at the significance level α = 0.05.
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Test L p-norm Spherical and l p-norm Symmetric Distributions 141

2. Neyman’s smooth test
Let

π0(y) = 1,

π1(y) = √
12(y − 1/2),

π2(y) = √
5[6(y − 1/2)2 − 1/2],

π3(y) = √
7[20(y − 1/2)3 − 3(y − 1/2)],

π4(y) = 210(y − 1/2)4 − 45(y − 1/2)2 + 9/8,

which are Legendre polynomials, y ∈ [0, 1]. Denote by

tr =
n∑

i=1

πr (Ui ), r = 1, 2, 3, 4, (7)

where {U1, . . . ,Un} is an i.i.d. sample in (0, 1). Neyman’s smooth test (Neyman 1937)
with the 4th-degree polynomials is defined by

P2
4 = 1

n

4∑

r=1

t2r . (8)

Large values of P2
4 indicate evidence of non-uniformity of the sample. Critical values

for P2
4 for some small sample size n and for large n (n → ∞) were provided byMiller

and Quesenberry (1979). For example, for n > 50, the critical values for P2
4 were

given as 13.28 (α = 0.01), 9.49 (α = 0.05) and 7.78 (α = 0.10).

2.2 Tests for uniformity in [0, 1]d−1

Testing uniformity in the unit hypercube [0, 1]d−1 is to test whether an i.i.d. (d−1)
dimensional sample {z1, . . . , zn} can be considered from the uniform distribution in
[0, 1]d−1. The hypothesis can be set up as

H0 : z1, . . . , zn are uniformly distributed in [0, 1]d−1. (9)

The alternative hypothesis H1 implies rejection for H0 in (9). Liang et al. (2001)
proposed the following types of uniform statistics for testing uniformity in [0, 1]d−1.

Type 1 Approximate N (0, 1)-statistics

An = √
n

[(
U1 − Md−1

)
+ 2

(
U2 − Md−1

)]/
(5

√
ζ1)

D→ N (0, 1), (n → ∞)

(10)

under H0 in (9), where “
D→” means convergence in probability distribution. There

are three choices for An according to the three measures of discrepancy: symmetric,
centered, and star (Hickernell 1998).
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142 J. Liang et al.

Type 2 Approximate χ2-statistics

Tn = n
[(
U1 − Md−1

)
,
(
U2 − Md−1

)]
�−1

n

[(
U1 − Md−1

)
,
(
U2 − Md−1

)]′

D→ χ2(2), (n → ∞) (11)

under H0 in (9), where

�n =
(

ζ1 2ζ1
2ζ1

4(n−2)
n−1 ζ1 + 2

n−1ζ2

)

, (12)

and ζ1 and ζ2 are calculated differently according to the threemeasures of discrepancies
given as follows. There are also three choices for Tn .

The calculation of An in (10) and that of Tn in (11) are obtained according to any
of the following three measures of discrepancy. From an i.i.d. (d − 1)-dimensional
sample {z1, . . . , zn} in [0, 1]d−1, let zk = (zk1, . . . , zk,d−1)

′ (k = 1, . . . , n).

1. The symmetric discrepancy gives

U1 = 1

n

n∑

k=1

d−1∏

j=1

(
1 + 2zk j − 2z2k j

)
,

U2 = 2d

n(n − 1)

n∑

k<l

d−1∏

j=1

(
1 − |zk j − zl j |

)
, (13)

with M = 4/3, ζ1 = (9/5)d−1 − (6/9)d−1 and ζ2 = 2d−1 − (16/9)d−1;

2. The centered discrepancy gives

U1 = 1

n

n∑

k=1

d−1∏

j=1

(

1 + 1

2

∣
∣
∣zk j − 1

2

∣
∣
∣ − 1

2

∣
∣
∣zk j − 1

2

∣
∣
∣
2
)

,

U2 = 2

n(n − 1)

n∑

k<l

d−1∏

j=1

(

1 + 1

2

∣
∣
∣zk j − 1

2

∣
∣
∣ + 1

2

∣
∣
∣zl j − 1

2

∣
∣
∣ − 1

2

∣
∣
∣zk j − zl j

∣
∣
∣

)

, (14)

with M = 13/12, ζ1 = (47/40)d−1 − (13/12)2(d−1) and ζ2 = (57/48)d−1 −
(13/12)2(d−1);

3. The star discrepancy gives

U1 = 1

n

n∑

k=1

d−1∏

j=1

(
3 − zk j

2

)

,

U2 = 2

n(n − 1)

n∑

k<l

d−1∏

j=1

[
2 − max(zk j , zl j )

]
, (15)

with M = 4/3, ζ1 = (9/5)d−1 − (16/9)d−1 and ζ2 = (11/6)d−1 − (16/9)d−1.
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Test L p-norm Spherical and l p-norm Symmetric Distributions 143

The empirical finite-sample percentiles of An and Tn under the above three discrep-
ancies were provided in Liang et al. (2001) for some selected sample sizes (n = 25,
n = 50, n = 100 and n = 200). A large value of |An| or Tn indicates evidence of
non-uniformity for the underlying distribution of a sample from [0, 1]d−1.

2.3 Construction of the uniform tests for U(d, p)

Theorem 1 Let {u1, . . . , un} be an i.i.d. sample from U(d, p). Denote by ui =
(Ui1, . . . ,Uid)

′ for i = 1, . . . , n. For each fixed i (1 ≤ i ≤ n), define the follow-
ing random variables:

B1(i) = |Ui1|p,
B2(i) = {(1 − |Ui1|p)−1|Ui2|p,

...
...

...

Bk(i) = {(1 −
k−1∑

j=1

|Ui j |p)−1|Uik |p, (16)

for k = 2, . . . , d − 1. Then the following assertions are true:

(1) For each fixed i (1 ≤ i ≤ n), the random variables {B1(i), . . . , Bd−1(i)} are
mutually independent, and Bk(i) has a beta distribution β(1/p, (d − k)/p) (k =
1, . . . , d − 1).

(2) The n(d−1) random variables {B1(i), . . . , Bd−1(i) : i = 1, . . . , n} aremutually
independent.

Proof For each fixed 1 ≤ i ≤ n, ui = (Ui1, . . . ,Uid)
′ ∼ U(d, p), Theorem 2.1

in Gupta and Song (1997) gives the marginal density function of (Ui1, . . . ,Uim)′
(1 ≤ m ≤ d − 1) as

fm(u1, . . . , um) = pm�(d/p)

2m�m(1/p)�((d − m)/p)

(

1 −
m∑

l=1

|ul |p
) d−m

p −1

,

−1 < ul < 1,
m∑

l=1

|ul |p < 1. (17)

In particular, let m = 1, Ui1 has a density function

fui1(u1) = p�(d/p)

2�(1/p)�((d − 1)/p)

(
1 − |u1|p

)(d−1)/p−1
, −1 < u1 < 1.

It is easy to derive B1(i) = |Ui1|p has a density function

gB1(i)(b1) = �(d/p)

�(1/p)�((d − 1)/p)
b

1
p−1

1 (1 − b1)
d−1
p −1

, 0 < b1 < 1.
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144 J. Liang et al.

That is, B1(i) ∼ β(1/p, (d − 1)/p), the beta distribution with parameters (1/p,
(d − 1)/p). From marginal density function (17), for each fixed k = 2, . . . , d − 1,
the conditional density function of Uik |(Ui1, . . . ,Ui,k−1) can be obtained as

fuik |(ui1,...,ui,k−1)(uk)

=
p�

(
d−k+1

p

)

2�
(
1
p

)
�

(
d−k
p

)

(

1 − |uk |p
1 − ∑k−1

j=1 |ui j |p
) d−k

p −1
⎛

⎝1 −
k−1∑

j=1

|ui j |p
⎞

⎠ ,

k−1∑

j=1

|ui j |p < 1. (18)

It is easy to derive the density function of the conditional distribution for Bk(i) =
(1 − ∑k−1

j=1 |Ui j |p)−1|Uik |p
∣
∣(Ui1, . . . ,Ui,k−1) is

fBk (i)(bk) =
�

(
d−k+1

p

)

�
(
1
p

)
�

(
d−k
p

)b
1
p −1

k (1 − bk)
d−k
p −1

, 0 < bk < 1.

That is, Bk(i) = (1−∑k−1
j=1 |Ui j |p)−1|Uik |p

∣
∣(Ui1, . . . ,Ui,k−1) ∼ β(1/p, (d−k)/p).

Because this conditional distribution does not depend on (Ui1, . . . ,Ui,k−1), we can
conclude Bk(i) ∼ β(1/p, (d − k)/p),and Bk(i) is independent of (Ui1, . . . ,Ui,k−1)

for each fixed 1 ≤ i ≤ n and for k = 2, . . . , d − 1. This leads to the mutual
independence of {B1(i), . . . , Bd−1(i)} for each fixed 1 ≤ i ≤ n. Because {u1, . . . , un}
is an i.i.d. sample from U(d, p) by assumption, and {B1(i), . . . , Bd−1(i)} depend on
ui only, we can conclude that the n(d − 1) random variables {B1(i), . . . , Bd−1(i) :
i = 1, . . . , n} are mutually independent. This completes the proof. ��

Denote by Fbj (·; p) the c.d.f. of β(1/p, (d− j)/p) ( j = 1, . . . , d−1). Let random
variables vi = (Vi1, . . . , Vi,d−1)

′ be given by

Vi j = Fbj (Bj (i); p), i = 1, . . . , n; j = 1, . . . , d − 1. (19)

Based on Theorem 1, a class of goodness-of-fit tests forU(d, p) can be constructed.
Let u1, . . . , un be i.i.d. observations. Perform the transformation

Original i.i.d. sample in Theorem 1: {u1, . . . , un}
⇒ {B1(i), . . . , Bd−1(i) : i = 1, . . . , n; in Rd−1 by (16)}
⇒ {v1, . . . , vn : in [0, 1]d−1 by (19)}. (20)

If the null hypothesis H0 in (3) is true for the underlying distribution of the i.i.d.
sample {u1, . . . , un}, the random variables Vi j ’s given by (19) are mutually indepen-
dent and the Vi j has a uniform distribution U (0, 1). Considering the random vector
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Test L p-norm Spherical and l p-norm Symmetric Distributions 145

vi = (Vi1, . . . , Vi,d−1)
′ ∈ [0, 1]d−1, we can transfer a test for (3) to a test for multi-

variate uniformity

H0 : the vi ’s are uniformly distributed in [0, 1]d−1, (21)

versus H1 that implies that H0 in (21) is not true. Similarly, considering the random
variables Vi j ∈ (0, 1), we can transfer a test for (3) to a test for univariate uniformity

H0 : the Vi j ’s are uniformly distributed in (0, 1), (22)

versus H1 that implies that H0 in (22) is not true. The statistics An in (10) and Tn in
(11) can be employed to test (21), and the statistics MU 2 in (6) and P2

4 in (8) can be
employed to test (22). As a result, each of these four statistics can be used as a test for
hypothesis (3).

It should be pointed out that acceptance of H0 in (21) can lead to acceptance of H0
in (22), but the contrary is usually not true. This implies that univariate uniformity of
all one-dimensional marginal distributions does not automatically lead to multivariate
uniformity for the joint distribution, see the illustration by Fig. 1 in Liang et al. (2008).

2.4 Construction of the uniform tests for UWd( p)

Theorem 2 Let {hi = (Hi1, . . . , Hid)
′ : i = 1, . . . , n} be an i.i.d. sample from

UWd(p). For each fixed i (1 ≤ i ≤ n), define the following random variables:

D1(i) = H p
i1,

D2(i) = (1 − H p
i1)

−1H p
i2,

...
...

...

Dk(i) =
⎛

⎝1 −
k−1∑

j=1

H p
i j

⎞

⎠

−1

H p
ik, (23)

for k = 2, . . . , d − 1. Then the following assertions are true:

(1) For each fixed i (1 ≤ i ≤ n), the random variables {D1(i), . . . , Dd−1(i)}
are mutually independent, and Dk(i) has a beta distribution β(1, d − k) (k =
1, . . . , d − 1).

(2) The n(d−1) randomvariables {D1(i), . . . , Dd−1(i) : i = 1, . . . , n} aremutually
independent.

Proof For each fixed i = 1, . . . , n, Corollary 3 in Yue and Ma (1995) gives the
marginal density function of (Hi1, . . . , Him)′ (1 ≤ m ≤ d − 1) as
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146 J. Liang et al.

gm(h1, . . . , hm) = pm�(d)

�(d − m)
·

m∏

l=1

h p−1
l

(

1 −
m∑

l=1

h p
l

)d−m−1

,

hl > 0,
m∑

l=1

h p
l < 1. (24)

In particular, let m = 1, Hi1 has a density function

g1(h1) = p�(d)

�(d − 1)
· h p−1

1

(
1 − h p

1

)d−2
, 0 < h1 < 1.

The density function of D1(i) = H p
i1 can be easily derived as

fD1(d1) = �(d)

�(d − 1)�(1)
(1 − d1)

d−2, 0 < d1 < 1.

That is, D1(i) ∼ β(1, d − 1). From marginal density function (24), for each fixed
k = 2, . . . , d − 1, the conditional density function of Hik |(Hi1, . . . , Hi,k−1) can be
obtained as

fhik |(hi1,...,hi,k−1)(hk)

= p�(d − k + 1)

�(d − k)
h p−1
k

(

1 − h p
k

1 − ∑k−1
j=1 h

p
i j

)d−k−1
⎛

⎝1 −
k−1∑

j=1

h p
i j

⎞

⎠

−1

,

0 < hi j < 1,
k−1∑

j=1

h p
i j < 1. (25)

It is easy to derive the density function of the conditional distribution for Dk(i) =
(1 − ∑k−1

j=1 H
p
i j )

−1H p
ik

∣
∣(Hi1, . . . , Hi,k−1) is

fDk (i)(dk) = �(d − k + 1)

�(d − k)
(1 − dk)

d−k−1, 0 < dk < 1.

That is, Dk(i) = (1 − ∑k−1
j=1 H

p
i j )

−1H p
ik

∣
∣(Hi1, . . . , Hi,k−1) ∼ β(1, d − k)

(k = 2, . . . , d − 1). Because this conditional distribution does not depend on
(Hi1, . . . , Hi,k−1), we can conclude Hk(i) ∼ β(1, d − k),and Hk(i) is indepen-
dent of (Hi1, . . . , Hi,k−1) for each fixed 1 ≤ i ≤ n and for k = 2, . . . , d − 1.
This leads to the mutual independence of {D1(i), . . . , Dd−1(i)} for each fixed
1 ≤ i ≤ n. Because {h1, . . . , hn} is an i.i.d. sample from UWd(p) by assump-
tion, and {H1(i), . . . , Hd−1(i)} depend on hi only, we can conclude that the n(d − 1)
random variables {D1(i), . . . , Dd−1(i) : i = 1, . . . , n} are mutually independent.
This completes the proof. ��
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Denote by Gbj (·) the c.d.f. of β(1, d − j) ( j = 1, . . . , d − 1). Let ci =
(Ci1, . . . ,Ci,d−1)

′ be given by

Ci j = Gbj (Dj (i)), i = 1, . . . , n; j = 1, . . . , d − 1. (26)

Based on Theorem 2, a class of tests for UWd(p) can be constructed. Let h1, . . . , hn
be i.i.d. observations. Perform the transformation

Original i.i.d. sample in Theorem 2: {h1, . . . , hn}
⇒ {D1(i), . . . , Dd−1(i) : i = 1, . . . , n; in Rd−1+ by (23)}
⇒ {c1, . . . , cn : in [0, 1]d−1 by (26)}, (27)

where Rd+ = { y = (y1, . . . , yd)′ ∈ Rd , yi ≥ 0, i = 1, . . . , d}. If the null
hypothesis H0 in (4) is true for the underlying distribution of the i.i.d. sample
{h1, . . . , hn}, the random variables Ci j ’s given by (26) are mutually independent
and the Ci j has a uniform distribution U (0, 1). Considering the random vector
ci = (Ci1, . . . ,Ci,d−1)

′ ∈ [0, 1]d−1, we can transfer a test for (4) to a test for multi-
variate uniformity

H0 : the ci ’s are uniformly distributed in [0, 1]d−1, (28)

versus H1 that implies that H0 in (28) is not true. Similarly, considering the random
variables Ci j ∈ (0, 1), we can transfer a test for (4) to a test for univariate uniformity

H0 : the Ci j ’s are uniformly distributed in (0, 1), (29)

versus H1 that implies that H0 in (29) is not true. Therefore, the statistics introduced
in Sect. 2.1 can be adopted to test hypotheses (3) and (4).

2.5 Extension of the uniform tests

The uniform distribution on the unit sphere in the sense of traditional Euclidean norm,
the L p-norm, or the l p-norm plays an important role in constructing generalized mul-
tivariate distributions through a stochastic representation. For example, the family of

spherical distributions in Fang et al. (1990) is generated by x
d= RUd with Ud having

a uniform distribution on the unit sphere of the Euclidean space Rd and R > 0 being

independent of Ud ; the ECD is generated by y
d= u + RAUd with u ∈ Rd and A

being a constant matrix; the family of the L p-norm symmetric distribution S(d, p) in

Definition 2 is generated by x
d= Rud with ud ∼ U(d, p) (the uniform distribution on

the L p-norm unit sphere); the family of the l p-norm symmetric distribution Ld(p) in

Definition 3 is generated by x
d= ru, with r ≥ 0 being independent of u ∼ UWd(p) in

Definition 3. As a result of the stochastic representation, testing goodness-of-fit of any
distribution in these families can be easily transferred to testing uniformity of some
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uniform distribution in the unit sphere. If we allow the stochastic representation some
kind of dependence, the L p-norm symmetric distribution S(d, p) in Definition 2 can
be generalized to a much wider family:

GS(d, p) = {x, x
d= Rud , P(x = 0) = 0, ud ∼ U(d, p),

and R > 0 is any random variable.} (30)

It is obvious that S(d, p) in Definition 2 is a subfamily of GS(d, p) with the restric-
tion that R > 0 is independent of ud ∼ U(d, p). Similarly, the l p-norm symmetric
distribution Ld(p) in Definition 3 can be generalized to a much wider family:

GLd(p) = { y : y
d= ru, P( y = 0) = 0, u ∼ UWd(p),

and r ≥ 0 is any random variable.} (31)

It is easy to see that if {x1, . . . , xn} is an i.i.d. sample from GS(d, p), then

{u1 = x1/‖x1‖, . . . , un = xn/‖xn‖} (32)

is an i.i.d. sample from U(d, p). Similarly, if { y1, . . . , yn} is an i.i.d. sample from
GLd(p), then

{
h1 = y1/‖ y1‖+

p , . . . , hn = yn/‖ yn‖+
p

}
(33)

is an i.i.d. sample fromUWd(p). Based on (32) and (33), we can transfer the goodness-
of-fit test for the family of GS(d, p) or GLd(p) to a test for uniformity by using the
uniform tests in Sect. 2.4. Suppose that {x1, . . . , xn} is an i.i.d. sample. The goodness-
of-fit test for the family of GS(d, p) is to test the null hypothesis

H0 : {x1, . . . , xn} is from GS(d, p) (34)

versus the alternative hypothesis that {x1, . . . , xn} is not from GS(d, p). The
goodness-of-fit test for the family of GLd(p) based on an i.i.d. sample { y1, . . . , yn}
is to test the null hypothesis

H0 : { y1, . . . , yn} is from GLd(p) (35)

versus the alternative hypothesis that { y1, . . . , yn} is not from GLd(p). Perform the
following transformation for the sample {x1, . . . , xn}:

Original i.i.d. sample: {x1, . . . , xn : in Rd}
⇒ {u1, . . . , un : in Rd by (32)}
⇒ {B1(i), . . . , Bd−1(i) : i = 1, . . . , n; in Rd−1 by (16)}
⇒ {v1, . . . , vn : in [0, 1]d−1 by (19)}. (36)
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If the null hypothesis H0 in (3) is true for the underlying distribution of the i.i.d.
sample {x1, . . . , xn}, the random variables Vi j ’s obtained through (36) are mutually
independent and the Vi j has a uniform distribution U (0, 1). Considering the random
vector vi = (Vi1, . . . , Vi,d−1)

′ ∈ [0, 1]d−1, we can transfer a test for (3) to a test for
multivariate uniformity

H0 : the vi ’s are uniformly distributed in [0, 1]d−1, (37)

versus H1 that implies that H0 in (37) is not true. Similarly, considering the random
variables Vi j ∈ (0, 1), we can transfer a test for (3) to a test for univariate uniformity

H0 : the Vi j ’s are uniformly distributed in (0, 1), (38)

versus H1 that implies that H0 in (38) is not true. The statistics An in (10) and Tn in
(11) can be employed to test (37), and the statistics MU 2 in (6) and P2

4 in (8) can be
employed to test (38). As a result, each of these four statistics can be used as a test for
hypothesis (3).

It should be pointed out that acceptance of H0 in (37) can lead to acceptance of H0
in (38), but the contrary is usually not true. This implies that univariate uniformity of
all one-dimensional marginal distributions does not automatically lead to multivariate
uniformity for the joint distribution, see the illustration by Fig. 1 in Liang et al. (2008).

Similar to the transformation in (36), we perform the following transformation for
an i.i.d. sample { y1, . . . , yn}:

Original i.i.d. sample: { y1, . . . , yn : in Rd+}
⇒ {h1, . . . , hn : in Rd+ by (33)}
⇒ {D1(i), . . . , Dd−1(i) : i = 1, . . . , n; in Rd−1+ by (23)}
⇒ {c1, . . . , cn : in [0, 1]d−1 by (26)}, (39)

where Rd+ = { y = (y1, . . . , yd)′ ∈ Rd , yi ≥ 0, i = 1, . . . , d}. If the null
hypothesis H0 in (4) is true for the underlying distribution of the i.i.d. sample
{ y1, . . . , yn}, the random variables Ci j ’s obtained by (26) are mutually indepen-
dent and the Ci j has a uniform distribution U (0, 1). Considering the random vector
ci = (Ci1, . . . ,Ci,d−1)

′ ∈ [0, 1]d−1, we can transfer a test for (4) to a test for multi-
variate uniformity

H0 : the ci ’s are uniformly distributed in [0, 1]d−1, (40)

versus H1 that implies that H0 in (40) is not true. Similarly, considering the random
variables Ci j ∈ (0, 1), we can transfer a test for (4) to a test for univariate uniformity

H0 : the Ci j ’s are uniformly distributed in (0, 1), (41)

versus H1 that implies that H0 in (41) is not true. Therefore, the statistics introduced
in Sect. 2.1 can be adopted to test hypotheses (3) and (4).
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3 Monte Carlo study

In this section we carry out Monte Carlo studies on the performance of the uniform
tests An in (10), Tn in (11), MU 2 in (6) and P2

4 in (8) for testing goodness-of-fit for
the two families of generalized multivariate distributions GS(d, p) and GLd(p) as
stated by two hypotheses (34) and (35) in Sect. 2.5. For the convenience of generating
i.i.d. samples, we employ the two subfamilies: (1) the L p-norm spherical distribution
S(d, p) (Gupta and Song 1997); and (2) the l p-norm symmetric distribution Ld(p)
(Yue and Ma 1995) for illustrating the power performance of testing hypothesis (34)
and (35), respectively. The empirical type I error rates for MU 2 and P2

4 , and the type I
error rates for An and Tn under the three discrepancies (symmetric, centered, and star)
and the power of all uniform statistics will be studied. In calculating the type I error
rates and power, the corresponding percentiles for the multivariate uniform statistics
An and Tn are chosen as those of their limiting distributions, respectively. That is, we
consider An ∼ N (0, 1) and Tn ∼ χ2(2) for all sample sizes n. The percentiles of
MU 2 and P2

4 are given in Sect. 2.1. That is, for MU 2, they are 0.267 (1− α = 99%),
0.187 (1−α = 95%) and 0.152 (1−α = 90%); for P2

4 , they are 13.28 (1−α = 99%),
9.49 (1 − α = 95%) and 7.78 (1 − α = 90%).

3.1 Type I error rates in testing the L p-norm spherical distribution

In the study on type I error rates of testing the L p-norm spherical distribution, the null
distribution is chosen as x ∼ Ru, where R ∼ χ2(5) (the Chi-square distribution with
5 degrees of freedom) and u ∼ U(d, p) with different choices of (d, p). The sample
size n is chosen as n = 25, 50, 100, and200 for each choice of (d, p). The stochastic
representation given by Theorem 2 of Liang and Ng (2008) is employed to generate
empirical samples from S(d, p). The empirical type I error rates are computed by

Type I error rate = Number of rejections

Number of replications
. (42)

Table 1 presents the simulation results on the type I error rates of An and Tn , and those
of MU 2 and P2

4 , when testing goodness-of-fit for the L p-norm spherical distribution
with the significance level α = 0.05 and number of replications = 2000. Similar
simulation results were also obtained for the significance levels α = 0.01 and 0.10,
but these are not presented to save space. The following empirical conclusions can be
summarized.

(1) When using the limiting distributions instead of the finite-sample distributions,
the two multivariate uniform statistics An and Tn , and the two univariate uniform
statistics MU 2 and P2

4 can maintain feasible control of the type I error rates for
the sample size n as small as n = 25 and the population dimension d as high as
d = 10;
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Table 1 Type I error rates of the test statistics (α = 0.05)

Statistics Discrepancy n Dimension d = 5 Dimension d = 10

p = 1/2 p = 1 p = 3 p = 1/2 p = 1 p = 3

An Symmetric 25 0.0695 0.0720 0.0675 0.0740 0.0670 0.0730

50 0.0600 0.0605 0.0550 0.0675 0.0585 0.0600

100 0.0385 0.0490 0.0460 0.0635 0.0525 0.0520

200 0.0480 0.0430 0.0465 0.0490 0.0575 0.0430

Centered 25 0.0570 0.0525 0.0620 0.0555 0.0540 0.0630

50 0.0540 0.0565 0.0570 0.0615 0.0575 0.0535

100 0.0570 0.0570 0.0600 0.0555 0.0510 0.0425

200 0.0490 0.0485 0.0450 0.0575 0.0495 0.0505

Star 25 0.0470 0.0505 0.0485 0.0500 0.0525 0.0645

50 0.0400 0.0455 0.0530 0.0555 0.0585 0.0540

100 0.0485 0.0500 0.0440 0.0540 0.0550 0.0425

200 0.0490 0.0510 0.0510 0.0510 0.0495 0.0500

Tn Symmetric 25 0.0540 0.0575 0.0525 0.0530 0.0435 0.0490

50 0.0455 0.0570 0.0460 0.0510 0.0425 0.0515

100 0.0520 0.0560 0.0585 0.0505 0.0460 0.0540

200 0.0535 0.0490 0.0550 0.0460 0.0555 0.0465

Centered 25 0.0585 0.0605 0.0540 0.0480 0.0465 0.0525

50 0.0515 0.0580 0.0570 0.0475 0.0530 0.0500

100 0.0515 0.0505 0.0555 0.0525 0.0525 0.0585

200 0.0530 0.0495 0.0530 0.0585 0.0540 0.0445

Star 25 0.0560 0.0605 0.0610 0.0600 0.0580 0.0670

50 0.0540 0.0580 0.0605 0.0590 0.0640 0.0625

100 0.0500 0.0535 0.0585 0.0630 0.0660 0.0515

200 0.0605 0.0565 0.0635 0.0640 0.0570 0.0565

MU2 25 0.0445 0.0415 0.0420 0.0420 0.0465 0.0515

50 0.0430 0.0450 0.0515 0.0525 0.0465 0.0460

100 0.0395 0.0485 0.0555 0.0505 0.0490 0.0460

200 0.0500 0.0460 0.0435 0.0550 0.0500 0.0475

P2
4 25 0.0535 0.0510 0.0425 0.0535 0.0435 0.0565

50 0.0455 0.0470 0.0535 0.0555 0.0490 0.0505

100 0.0395 0.0460 0.0500 0.0475 0.0550 0.0540

200 0.0495 0.0490 0.0570 0.0515 0.0555 0.0480

(2) The population dimension seems to have little influence on the type I error rates
of the statistics An , Tn , MU 2, and P2

4 . This is shown in Table 1 for the cases of
the same sample sizes but doubled dimension. This is a good indication in testing
high-dimensional goodness-of-fit in the sense of avoiding curse of dimensionality.
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3.2 Power in testing the L p-norm spherical distribution

The empirical power of the tests is computed by (42) when choosing the following six
non-L p-norm spherical alternative distributions.

(1) the population x = (X1, . . . , Xd)
′ ∼ Nd(0, Id), the d-dimensional standard

normal distribution;
(2) the population x = (X1, . . . , Xd)

′ ∼ multivariate t-distribution with zero mean
and identity covariance matrix, and the parameter m = 5 in Fang, Kotz, and Ng
(1990, Chapter 3);

(3) the population x = (X1, . . . , Xd)
′ ∼ multivariate Kotz-type distribution with

zero mean and identity covariance matrix, and the parameter (N , r, s) = (1, 1, 1)
in Fang et al. (1990, Chapter 3);

(4) the population x = (X1, . . . , Xd)
′ ∼ N + L pS, which means that x = (x′

1, x
′
2)

′
with x1 ∼ S( f, p) and x2 ∼ Nd− f (0, Id− f ), where f = [d/2], and [·] means
the integer part of a real number (e.g., [5/2] = 2, [10/2] = 5);

(5) the population x = (X1, . . . , Xd)
′ ∼ t + L pS, which means that x = (x′

1, x
′
2)

′
with x1 ∼ S( f, p) and x2 ∼ (d − f )-dimensional t-distribution with zero mean
and identity covariance matrix, and the parameter m = 5;

(6) the population x = (X1, . . . , Xd)
′ ∼ K + L pS, which means that x = (x′

1, x
′
2)

′
with x1 ∼ S( f, p) and x2 ∼ (d − f )-dimensional Kotz-type distribution with
zeromean and identity covariance matrix, and the parameter (N , r, s) = (1, 1, 1).

The simulation for empirical power of the four statistics was carried out with 2000
replications by MATLAB code (available from the authors upon request). Table 2
(p = 1/2) and Table 3 (p = 1), respectively, present the power values (the rejection
rates) in testing goodness-of-fit for the six alternative distributions, where Table 2 only
presents the results for the sample size n = 25 because almost all power values for
n = 50 are equal to 1 for p = 1/2.

Based on Tables 2 and 3, we can summarize our empirical conclusions on the
power performance of the uniform statistics in testing goodness-of-fit for the L p-norm
spherical distribution as follows.

(1) Similar to the performance in their type I error rates, all four uniform statistics An ,
Tn , MU 2, and P2

4 are not sensitive to the increase of the dimension. For example,
when the dimension d increases from d = 5 to d = 10, the four statistics have
similar power performance for each of the selected alternative distributions;

(2) For the two multivariate uniform statistics An and Tn , their power performance is
different for different choices of discrepancy measures. The symmetric discrep-
ancy tends to be the best, centered discrepancy the second, and the star discrepancy
the worst in all cases;

(3) The two multivariate uniform statistics An and Tn cannot outperform the two uni-
variate uniform statistics MU 2 and P2

4 in all cases and vice versa. So in practical
applications, all of these statistics can be used together to give more confidence
in drawing conclusions.
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Table 4 Type I error rates of the test statistics (α = 0.05)

Statistics Discrepancy n Dimension d = 5 Dimension d = 10

p = 1/2 p = 1 p = 3 p = 1/2 p = 1 p = 3

An Symmetric 25 0.0710 0.0605 0.0460 0.0470 0.0515 0.0570

50 0.0635 0.0430 0.0575 0.0560 0.0530 0.0600

100 0.0495 0.0445 0.0590 0.0515 0.0535 0.0560

200 0.0555 0.0475 0.0540 0.0440 0.0445 0.0480

Centered 25 0.0590 0.0575 0.0655 0.0530 0.0500 0.0575

50 0.0740 0.0445 0.0600 0.0720 0.0590 0.0575

100 0.0465 0.0555 0.0650 0.0440 0.0490 0.0515

200 0.0560 0.0485 0.0535 0.0530 0.0515 0.0450

Star 25 0.0650 0.0665 0.0625 0.0505 0.0470 0.0505

50 0.0710 0.0480 0.0570 0.0675 0.0600 0.0610

100 0.0565 0.0535 0.0655 0.0650 0.0555 0.0530

200 0.0585 0.0505 0.0480 0.0405 0.0395 0.0515

Tn Symmetric 25 0.0750 0.0700 0.0690 0.0615 0.0525 0.0670

50 0.0540 0.0410 0.0560 0.0600 0.0665 0.0715

100 0.0580 0.0470 0.0515 0.0445 0.0495 0.0565

200 0.0525 0.0530 0.0580 0.0620 0.0570 0.0555

Centered 25 0.0680 0.0690 0.0650 0.0660 0.0740 0.0745

50 0.0645 0.0495 0.0480 0.0785 0.0655 0.0630

100 0.0590 0.0545 0.0620 0.0470 0.0590 0.0625

200 0.0550 0.0515 0.0505 0.0650 0.0635 0.0520

Star 25 0.0685 0.0670 0.0460 0.0465 0.0400 0.0425

50 0.0535 0.0420 0.0540 0.0545 0.0515 0.0490

100 0.0525 0.0530 0.0625 0.0565 0.0465 0.0470

200 0.0455 0.0395 0.0345 0.0320 0.0365 0.0375

MU2 25 0.0685 0.0640 0.0590 0.0460 0.0440 0.0520

50 0.0535 0.0345 0.0520 0.0585 0.0565 0.0515

100 0.0440 0.0475 0.0555 0.0450 0.0485 0.0500

200 0.0505 0.0485 0.0445 0.0455 0.0465 0.0505

P2
4 25 0.0450 0.0490 0.0595 0.0460 0.0415 0.0445

50 0.0580 0.0335 0.0540 0.0605 0.0465 0.0410

100 0.0345 0.0450 0.0545 0.0435 0.0455 0.0475

200 0.0485 0.0505 0.0450 0.0530 0.0500 0.0465

3.3 Type I error rates in testing the l p-norm symmetric distribution

The null distribution is chosen as x ∼ ru, where r ∼ χ2(2) and u ∼ UWd(p) with
different choices of (d, p). The sample size n is chosen as n = 25, 50, 100, and 200 for
each choice of (d, p). Stochastic representation (2) is employed to generate empirical
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samples fromUWd(p). Table 4 presents the simulation results when testing goodness-
of-fit for the l p-norm symmetric distribution with the significance level α = 0.05 and
number of replications = 2000. Similar simulation results were also obtained for the
significance levels α = 0.01 and 0.10, but these are not presented to save space.
The same conclusions as those from testing goodness-of-fit of the L p-norm spherical
distribution can be obtained: all statistics can maintain feasible control of the type I
error rates for the sample size as small as n = 25.

3.4 Power in testing the l p-norm symmetric distribution

The following six non-l p-norm symmetric alternative distributions are chosen for
testing goodness-of-fit of the l p-norm symmetric distribution.

(1) the population x = (X1, . . . , Xd)
′ ∼ χ2(2), which means that X1, . . . , Xd are

i.i.d. and X1 ∼ χ2(2);
(2) the population x = (X1, . . . , Xd)

′ ∼ F(2, 5), which means that X1, . . . , Xd are
i.i.d. and X1 ∼ F(2, 5) (the F-distribution with degrees of freedom (2, 5));

(3) the population x = (X1, . . . , Xd)
′ ∼Rayleigh, which means that X1, . . . , Xd are

i.i.d. and X1 has a Rayleigh distribution with p.d.f. 2x exp(−x2) (x > 0);
(4) the population x = (X1, . . . , Xd)

′ ∼ χ2 + l pn, which means that x = (x′
1, x

′
2)

′
with x1 ∼ L f (p) ( f = [d/2]) and x2 ∼ χ2(2), (the components of x2 are i.i.d.
χ2(2));

(5) the population x = (X1, . . . , Xd)
′ ∼ F + l pn, which means that x = (x′

1, x
′
2)

′
with x1 ∼ L f (p) and x2 ∼ F(2, 5) (the components of x2 are i.i.d. F(2, 5));

(6) the population x = (X1, . . . , Xd)
′ ∼ R + L pS, which means that x = (x′

1, x
′
2)

′
with x1 ∼ L f (p) and x2 ∼Rayleigh distribution (the components of x2 are i.i.d.,
and each of them has a Rayleigh distribution with p.d.f. 2x exp(−x2) (x > 0).

The simulation was carried out with 2000 replications by MATLAB code (available
from the authors upon request). Table 5 presents the power values (the rejection rates)
in testing goodness-of-fit for the six alternative distributions, where only the results for
the sample size n = 25 are presented because most of the power values for n ≥ 50 are
equal to 1. The results in Table 5 show that the statistics are very powerful in testing
goodness-of-fit of these non-l p-norm symmetric distributions in most cases.

4 Concluding remarks

Testing goodness-of-fit for the two families of generalized multivariate distributions
GS(d, p) and GLd(p) is a challenging topic. GS(d, p) contains the L p-norm spher-
ical distributions as its special case, and GLd(p) contains the l p-norm symmetric
distributions as its special case. The main difficulty in constructing the goodness-of-fit
tests is the challenge of developing the distributional characterization properties for
these types of distributions. The uniform tests in this paper are developed from the
principle of conditional probability integral transformation (CPIT), which was dated
back to Rosenblatt (1952) and O’Reilly and Quesenberry (1973). One of the benefits
from CPIT is the easiness in test construction and numerical computation of the test
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statistics due to the fact that most popular computer programs such as MATLAB and
SAS provide the internal functions for computing many cumulative distribution func-
tions and their inverse functions. Another benefit from CPIT is the fast convergence
of the null distributions of the test statistics to their limiting null distributions because
CPIT transforms a sample into a uniform one in the unit interval (0, 1) or into one
in the hypercube [0, 1]d−1 (d ≥ 2), which is always bounded with probability 1.
This is verified by the simulation results in Sect. 3, where it shows that even for the
population dimension d as high as d = 10 and the sample size n as low as n = 25, the
type I error rates of the test statistics are regularly controlled within a feasible range
of the preassigned significance level. Compared to many traditional approaches to
constructing goodness-of-fit tests that are based on the large sample theory, although
we use their large sample percentiles for the Monte Carlo studies on type I error rates
and power, the uniform tests in this paper turn out to control their type I error rates
very well. Liang et al. (2001) carried out a comprehensive Monte Carlo study on the
convergence of the multivariate uniform statistics An given by (10) and Tn given by
(11). The fast convergence of An and Tn in testing hypotheses (3) and (4) can be also
verified by the simulation results on the type I error rates in Tables 1 and 4.

In the choice of statistics for testing uniformity, it is noted that the multivariate
uniform tests An or Tn cannot always outperform the univariate ones MU 2 and P2

4 .
It is no wonder that different measures for uniformity were developed under different
points of view.Themultivariatemeasures of uniformity An andTn were both developed
through approximating a figure of merit for measuring non-uniformity for a given
sample in a high-dimensional unit cube, while the univariate indicesMU 2 and P2

4 only
measure the linear uniformity of a sample in the unit interval (0, 1). Non-uniformity
of a sample in a high-dimensional unit cube usually implies non-uniformity of any
one-dimensional marginal distribution of the sample, whereas the uniformity in (0, 1)
of a one-dimensional marginal distribution of a high-dimensional sample usually does
not reflect uniformity of the sample in the hypercube [0, 1]d (d ≥ 2). Because of
the different starting points for measuring uniformity in the hypercube [0, 1]d , An

and Tn have different performance for the three types of discrepancies (symmetric,
centered, and star). This is reflected by the results in Tables 2, 3, and 5. The effect from
choosing different discrepancies to construct the two measures An and Tn was studied
in Liang et al. (2001). The empirical conclusion is that An and Tn under symmetric
discrepancy usually perform the best in identifying non-uniformity in the hypercube
[0, 1]d ; An and Tn under centered discrepancy perform the second; and An and Tn
under the star discrepancy perform the worst. The results in Tables 2, 3, and 5 basically
verify the empirical conclusion in Liang et al. (2001) about the choice of discrepancy
in measuring uniformity in [0, 1]d . Although it is an open theoretical problem to
prove that the symmetric discrepancy is always the best, the centered discrepancy the
second, and the star discrepancy the worst, it helps to get better understanding by
thinking about the difference of their starting points. The star discrepancy is defined
by measuring the generalized distance between the empirical distribution function of
a set of projected sample on [0, 1]d and the distribution function of a set of d i.i.d.
uniform distributions U (0, 1). The centered discrepancy is anchored to the center
point (1/2, . . . , 1/2) of the hypercube [0, 1]d compared to the star discrepancy that is
anchored to the origin (0, . . . , 0) of [0, 1]d . The center discrepancy is invariant under
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some kind of reflections. The symmetric discrepancy is anchored to an average of some
function values over all possible vertices of the hypercube. This kind of average may
reduce the drawback from choosing a fixed reference point like the star and centered
discrepancies. Averaging over possible vertices may act as a kind of compensation for
choosing a fixed vertex or the center of the cube. This could shed some light on the
fact that the two measures of uniformity An and Tn under the symmetric discrepancy
perform better than those cases under the star and the centered discrepancies in most
cases as demonstrated by the empirical results in Tables 2, 3, and 5.

It is pointed out that CPIT only results in necessary tests for goodness-of-fit. This
implies thatwhen the test rejects null hypothesis (3) or (4), one can be confident that the
null hypothesis is not true at the given significance level, but the non-rejection of the
test, in general, does not lead to the truth of the null hypothesis. In other words, some
distributions that are not in the family of GS(d, p) or GLd(p) could pass the uniform
tests for hypothesis (3) or (4) at a given significance level. The necessity of goodness-
of-fit tests without sufficiency is a common drawback that most goodness-of-fit tests
in the literature possess. Construction of necessary and sufficient test statistics is a
challenging topic in goodness-of-fit area. This is true even for the normal distribution.
The uniform tests based on the CPIT method in this paper provide a general way to
construct tests for goodness-of-fit for many generalized multivariate distributions for
which the CPIT is easy to obtain. Furthermore, the uniform tests in this paper seem
to control their type I error rates very well and have satisfactory power performance.
Because no existing goodness-of-fit tests for the same purpose are available in the
literature, we are not able to carry out a simple Monte Carlo comparison between the
uniform tests and others. We hope to see some comparable tests for the same purpose
will be available in the future.
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