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Abstract In this paper, our aim is to revisit the nonparametric estimation of a square
integrable density f on R, by using projection estimators on a Hermite basis. These
estimators are studied from the point of view of their mean integrated squared error
on R. A model selection method is described and proved to perform an automatic bias
variance compromise. Then, we present another collection of estimators, of decon-
volution type, for which we define another model selection strategy. Although the
minimax asymptotic rates of these two types of estimators are mainly equivalent, the
complexity of the Hermite estimators is usually much lower than the complexity of
their deconvolution (or kernel) counterparts. These results are illustrated through a
small simulation study.
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1 Introduction

Consider an i.i.d. n-sample X1, . . . , Xn from an unknown density f . The nonparamet-
ric estimation of f has been the subject of such a huge number of contributions in the
past decades that it is difficult to make an exhaustive list of references. Roughly speak-
ing, there are two main approaches to estimate f , kernel or projection method. In the
projection method which is our concern here, for f belonging to L

2(R), considering
an orthonormal basis in L

2(R), estimators are built by estimating a finite number of
coefficients of the development of f ∈ L

2(R) on the basis. Fourier and wavelet bases,
for instance, are commonly used. Bases of orthogonal polynomials are also used for
compactly supported densities (see e.g., Donoho et al. 1996; Birgé and Massart 2007;
Efromovich 1999; Massart 2007; Tsybakov 2009 for reference books). For densities
with a non-compact support included in R

+, recent contributions use bases composed
of Laguerre functions (see e.g., Comte and Genon-Catalot 2015; Belomestny et al.
2016; Mabon 2017).

To our knowledge, for densities on R, the use of a Hermite basis is only considered
in Schwartz (1967) andWalter (1977). In this paper,we are going to revisit the nonpara-
metric estimation of f ∈ L

2(R) by using projection estimators on a Hermite basis. To
find the minimax asymptotic rates of convergence, authors generally assume that the
unknown density belongs to a function space specifying some regularity properties of
f . Here, we consider the Sobolev-Hermite spaces which are naturally associated with
the Hermite basis and are defined in Bongioanni and Torrea (2006). It turns out that the
Sobolev-Hermite space of regularity index s is included in the classical Sobolev space
with same index. Therefore, we are led to compare the performances of the projection
estimators on the Hermite basis with those of the deconvolution estimators which are
projection estimators on the sine cardinal basis. Deconvolution estimators have been
widely studied mainly for observations with additive noise and also for direct obser-
vations (see e.g., Comte et al. 2008). The optimal L

2-risk for density estimation on a
Sobolev ball with regularity index s is of order O(n−2s/(2s+1)), see Schipper (1996),
Efromovich (2008) and Efromovich (2009). For densities having a fifth-order moment
belonging to a Sobolev Hermite ball with the same regularity index s, we obtain the
same rate. Therefore, from the asymptotic point of view, no difference can be made
between these two classes of estimators at least for non-heavy tailed densities. Apart
from Sobolev spaces, we consider a class of Gaussian mixtures where Hermite-based
estimators also achieve the minimax convergence rates. Finally, we study Hermite
projection estimators in a different context, the estimation of the Lévy density of a
Lévy process in the pure-jump case.

Whilemost papers focus on derivingminimax convergence rates, the computational
efficiency of the proposed estimator is not often considered. This issue is especially
important for densities with a non-compact support.We prove that the Hermite estima-
tors have usually amuch lower complexity than the deconvolution estimators, resulting
in a noteworthy computational gain.
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Sobolev-Hermite nonparametric density estimation 31

The plan of the paper is as follows. In Sect. 2, we present the Hermite basis, and the
L
2-risk of the associated projection estimators is studied together with the possible

orders for the variance term. A data-driven choice of the dimension is proposed and the
associated estimator is proved to be realize adequately the bias–variance trade-off. In
Sect. 3, results on deconvolution estimators are presented. Section 4 is devoted to the
study of asymptotic rates of convergence. From this point of view, the two approaches
of the previous sections are proved to be equivalent, except in some special cases.
Then, we compare the complexity of the procedures and conclude that the Hermite
method has a substantial advantage from this point of view. Section 4.6 is devoted to
numerical simulation results and aims at illustrating the previous findings. In Sect. 5,
the estimation of the Lévy density is considered in the same framework as Belomestny
et al. 2015, Chapter “Adaptive estimation for Lévy processes.” A short conclusion is
delivered in Sect. 6, and proofs are gathered in Sect. 7.

2 Projection estimators on the Hermite basis

2.1 Hermite basis

Below, we denote by ‖.‖ the L
2-norm on R and by 〈·, ·〉 the L

2-scalar product.
The Hermite polynomial of order j is given, for j ≥ 0, by:

Hj (x) = (−1) jex
2 d j

dx j
(e−x2).

Hermite polynomials are orthogonal with respect to the weight function e−x2 and sat-
isfy:

∫
R
Hj (x)H�(x)e−x2dx = 2 j j !√πδ j,� (see e.g., Abramowitz and Stegun 1964).

The Hermite function of order j is given by:

h j (x) = c j Hj (x)e
−x2/2, c j =

(
2 j j !√π

)−1/2
(1)

The sequence (h j , j ≥ 0) is an orthonormal basis of L
2(R). The density f to be

estimated can be developed in the Hermite basis f = ∑
j≥0 a j ( f )h j where a j ( f ) =∫

R
f (x)h j (x)dx = 〈 f, h j 〉.
We define Sm = span(h0, h1, . . . , hm−1) the linear space generated by the m func-

tions h0, . . . , hm−1 and fm = ∑m−1
j=0 a j ( f )h j the orthogonal projection of f on Sm .

2.2 Hermite estimator and risk bound

Consider a sample X1, . . . , Xn of i.i.d. random variables with density f , belonging
to L

2(R). We define for each m ≥ 0, f̂m = ∑m−1
j=0 â j h j a projection estimator of f ,

with â j = n−1 ∑n
i=1 h j (Xi ), that is, an unbiased estimator of fm = ∑m−1

j=0 a j ( f )h j .
These estimators are considered in Schwartz (1967) and then in Walter (1977).

As usual, the L
2-risk is split into a variance and a square bias term. We give a more
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32 D. Belomestny et al.

accurate rate for the variance term than in the latter papers. Indeed,wehave the classical
decomposition

E(‖ f̂m − f ‖2) = ‖ f − fm‖2 +
m−1∑

j=0

Var(â j ) = ‖ f − fm‖2 + 1

n

m−1∑

j=0

Var(h j (X1))

≤ ‖ f − fm‖2 + Vm
n

, (2)

where

Vm =
∫

R

⎛

⎝
m−1∑

j=0

h2j (x)

⎞

⎠ f (x)dx = E

⎛

⎝
m−1∑

j=0

h2j (X1)

⎞

⎠ . (3)

The infinite norm of h j satisfies (see Abramowitz and Stegun 1964; Szegö 1975, p.
242):

‖h j‖∞ ≤ Φ0, Φ0 
 1, 086435/π1/4 
 0.8160. (4)

Therefore, we have Vm ≤ Φ2
0m, as usual for projection density estimator, see Massart

(2007), Chapter 7. However, more precise properties of the Hermite functions provide
refined bounds:

Proposition 1 (i) There exists constant c such that, for any density f and for any
integer m,

Vm ≤ cm5/6.

(ii) If E|X |5 < +∞, then there exists constant c′ such that for any integer m,

Vm ≤ c′m1/2.

(iii) Assume that there exists K > 0 with

| f (x)| ≤ g(x) := α
1

(1 + |x |)a , for |x | ≥ K and α > 0, a > 1.

Then, there exists c′′ such that, for m large enough, Vm ≤ c′′m
a+2

2(a+1) .

Proposition 1(i) shows that Vm is at most of order m5/6, a property obtained in
Walter (1977). However, (ii)–(iii) show that this order can be improved depending on
additional assumptions on f . At this point, it is worth stressing that, under the moment
assumption of (ii), the rate of variance term Vm/n is not m/n as usual but m1/2/n.
This means that, in this approach, the role of the dimension is played by m1/2. This
fact, together with the regularity spaces introduced below to evaluate the rate of the
bias term, allows to prove that the Hermite projection estimators is asymptotically
equivalent to the sine cardinal estimators.

In the next paragraph, we make no assumption on the regularity properties of f .
Moreover, because the variance order depends on assumptions on f , we do not want
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Sobolev-Hermite nonparametric density estimation 33

to consider it as given unlike in most model selection strategies. Our proposal of data-
driven m leads to an estimator whose L

2-risk automatically realizes the bias–variance
trade-off in a non-asymptotic way without knowing the regularity of the function f
nor knowing the rate of the variance term.

2.3 Model selection

For model selection, we must estimate the bias and the variance term. Define Mn =
{1, . . . ,mn}, where mn is the largest integer such that m

5/6
n ≤ n/ log(n) and set

m̂ = arg min
m∈Mn

{−‖ f̂m‖2 + p̂en(m)}, p̂en(m) = κ
V̂m
n

, V̂m = 1

n

n∑

i=1

m−1∑

j=0

h2j (Xi ),

(5)
where κ is a numerical constant. The quantity −‖ f̂m‖2 estimates −‖ fm‖2 = ‖ f −
fm‖2 − ‖ f ‖2, and we can ignore the (unknown) constant term ‖ f ‖2. Usually, the
penalty is chosen equal to κΦ2

0m/n, which is the known upper bound of the variance
term, where Φ0 is defined by (4). Here, we know that this rate is not the adequate one
and the fact that the order of Vm varies according to the assumptions on f justifies that
we rather use V̂m , an unbiased estimator of Vm . We can prove the following result.

Theorem 1 Assume that f is bounded and that infa≤x≤b f (x) > 0 for some interval
[a, b]. Then there exists κ0 such that, for κ ≥ κ0, the estimator f̂m̂ where m̂ is defined
by (5) satisfies

E

(
‖ f̂m̂ − f ‖2

)
≤ C inf

m∈Mn

(

‖ f − fm‖2 + κ
Vm
n

)

+ C ′

n
,

where C is a numerical constant (C = 4 suits) and C ′ is a constant depending on
‖ f ‖∞.

The estimator f̂m̂ is adaptive in the sense that its risk bound achieves automatically
the bias–variance compromise, up to a negligible term of order O(1/n). It follows
from the proof that κ0 = 8 is possible. This value of κ0 is certainly not optimal;
finding the optimal theoretical value of κ in the penalty is not an easy task, even in
simple models (see for instance Birgé and Massart (2007) in a Gaussian regression
model). This is why it is standard to calibrate the value κ in the penalty by preliminary
simulations, as we do in Sect. 4.6. Actually, the assumption infa≤x≤b f (x) > 0 is due
to the fact that the proof requires the condition

∀m ≥ m0, Vm ≥ 1, and ∀a > 0,
∑

m∈Mn

e−a
√
Vm ≤ A < +∞. (6)

Condition (6) holds, as we can prove:

Proposition 2 If infa≤x≤b f (x) > 0 for some interval [a, b], then, form large enough,
Vm ≥ c′′m1/2 where c′′ is a constant.
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34 D. Belomestny et al.

3 Deconvolution estimators

Aswewant to compare the performances of projection estimators on the Hermite basis
to those of projection estimators on the sine cardinal basis, we recall the definition
of the latter estimators, i.e., the deconvolution estimators. Let ϕ(x) = sin(πx)/(πx)
which satisfies ϕ∗(t) = 1[−π,π ](t), where ϕ∗ denotes the Fourier transform of ϕ.
The functions (ϕ�, j (x) = √

�ϕ(�x − j), j ∈ Z) constitute an orthonormal system in
L
2(R). The space Σ� generated by this system is exactly the subspace of L

2(R) of
functions having Fourier transforms with compact support [−π�, π�]. The orthogonal
projection f̄� of f on Σ� satisfies f̄ ∗

� = f ∗1[−π�,π�]. Therefore,

‖ f − f̄�‖2 = 1

2π

∫

|t |≥π�

| f ∗(t)|2dt. (7)

The projection estimator f̃� of f is defined by:

f̃�(x) = 1

2π

∫ π�

−π�

e−i t x 1

n

n∑

k=1

ei t Xkdt = 1

n

n∑

k=1

sin(π�(Xk − x))

π(Xk − x)
. (8)

This expression corresponds to the fact that:

f̄� = 1

2π

∫ π�

−π�

e−i t x f ∗(t)dt =
∑

j∈Z
a�, jϕ�, j (x), a�, j = 〈 f, ϕ�, j 〉.

Contrary to f̂m , the estimator f̃� cannot be expressed as the corresponding sum with
the estimated coefficients ã�, j = 1

n

∑n
k=1 ϕ�, j (Xk) as this sum would be infinite and

not defined. To compute it in concrete, one can use (8) or a truncated version

f̃ (n)
� (x) =

∑

| j |≤Kn

ã�, jϕ�, j (x), ã�, j = 1

n

n∑

k=1

ϕ�, j (Xk),

which creates an additional bias but is comparable to the previous Hermite estimator.
We give the results for f̃� and f̃ (n)

� .

Proposition 3 The estimator f̃� satisfies

E(‖ f̃� − f ‖2) ≤ ‖ f − f̄�‖2 + �

n
.

If moreover M2 = ∫
x2 f 2(x)dx < +∞, then the estimator f̃ (n)

� satisfies

E

(
‖ f̃ (n)

� − f ‖2
)

≤ 2‖ f − f̄�‖2 + �

n
+ 4

�2(M2 + 1)

Kn
.

123



Sobolev-Hermite nonparametric density estimation 35

If � ≤ n and Kn ≥ n2, the last term is of order O(�/n) and can be associated to the
variance term �/n. Note that condition Kn ≥ n2 implies that the computation of a
large number of coefficients is required for f̃ (n)

� , for large n. In practice, we take Kn

even smaller than n in order to keep reasonable computation times.
As in the previous case, we can define a data-driven choice of the cutoff parameter �

and build adaptive estimators:

�̃ = argmin
�≤n

{

−‖ f̃�‖2 + κ̃
�

n

}

, �̃n = argmin
�≤n

{

−‖ f̃ (n)
� ‖2 + κ̃

�

n

}

, (9)

where κ̃ is a numerical constant. Note that

‖ f̃�‖2 = 1

n2
∑

1≤ j,k≤n

sin(π�(Xk − X j ))

π(Xk − X j )
, ‖ f̃ (n)

� ‖2 =
∑

| j |≤Kn

|ã�, j |2.

We give the result for f̃ (n)
� only, as ‖ f̃ (n)

� ‖2 is faster to compute if Kn is chosen in a
restricted range, Kn ≤ n, see Sects. 4.5 and 4.6. The following result holds.

Theorem 2 If Kn ≥ n2 and M2 = ∫
x2 f 2(x)dx < +∞, then there exists a numerical

constant κ̃0 such that, for κ̃ ≥ κ̃0, the estimator f̃ (n)

�̃n
where �̃n is defined by (9) satisfies

E

(∥
∥
∥ f̃ (n)

�̃n
− f

∥
∥
∥
2
)

≤ C1 inf
�≤n

(

‖ f − f�‖2 + κ̃
�

n
+ �(M2 + 1)

n

)

+ C2

n
,

where C1 is a numerical constant and C2 is a constant depending on ‖ f ‖∞.

For f̃
�̃
, an analogous risk bound may be obtained, without condition M2 < +∞

and without the term �(M2 + 1)/n in the bound. For Theorem 2, we refer to Comte
et al. (2008), Proposition 5.1, p. 97.

4 Comparison of rates of convergence and discussion

In this section, we compute the rates of convergence that can be deduced from the
optimization of the upper bounds of L

2-risks. This requires to assess the rate of decay
of the bias terms ‖ f − fm‖2 in the Hermite case, ‖ f − f̄�‖2 in the deconvolution
framework. The latter is usually obtained by assuming that the unknown density f
belongs to a Sobolev space. For the former, we consider the Sobolev-Hermite spaces
which are naturally linked with the Hermite basis.

4.1 Sobolev and Sobolev-Hermite regularity

For s > 0, the Sobolev-Hermite space with regularity s may be defined by:

Ws =
⎧
⎨

⎩
f ∈ L

2(R), ‖ f ‖2s,sobherm =
∑

n≥0

nsa2n( f ) < +∞
⎫
⎬

⎭
, (10)
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36 D. Belomestny et al.

where an( f ) = 〈 f, hn〉 is the n-th component of f in the Hermite basis. We
refer to Bongioanni and Torrea (2006) for a definition using operator theory. Let

F =
{∑

j∈J a j h j , J ⊂ N, finite
}
be the set of finite linear combinations of Hermite

functions and C∞
c the set of infinitely derivable functions with compact support. The

sets C∞
c and F are dense in Ws . As the Fourier transform of hn satisfies

h∗
n = √

2π inhn, (11)

f ∈ Ws if and only if f ∗ ∈ Ws . We now describe Ws when s is integer. Let

A+ f = f ′ + x f, A− f = − f ′ + x f.

The following result is proved in Bongioanni and Torrea (2006). For sake of clarity,
we give a simplified proof.

Proposition 4 For s integer, the Sobolev-Hermite space Ws is equal to:

Ws =

⎧
⎪⎨

⎪⎩
f ∈ L

2(R), f admits derivatives up to order s,

‖| f ‖|s,sobherm =
∑

j1, . . . , jm ∈ {−, +},
1 ≤ m ≤ s

‖A j1 . . . A jm f ‖ + ‖ f ‖ < +∞

⎫
⎪⎬

⎪⎭
.

Moreover, the following statements are equivalent: for s integer,

(1) f ∈ Ws,
(2) f admits derivatives up to order s which satisfy f, f ′, . . . , f (s), xs−� f (�), � =

0, . . . , s − 1 belong to L
2(R).

The two norms ‖ f ‖s,sobherm and ‖| f ‖|s,sobherm are equivalent.
Now, we recall the definition of usual Sobolev spaces. The Sobolev space with

regularity index s is defined by

Ws =
{

f ∈ L
2(R), ‖ f ‖2s,sob =

∫

R

(1 + t2s)| f ∗(t)|2dt < +∞
}

. (12)

If s is integer, then

Ws =
{
f ∈ L

2(R), f admits derivatives up to order s

such that ‖| f ‖|2s,sob = ‖ f ‖2 + ‖ f ′‖2 + · · · + ‖ f (s)‖2 < +∞
}

.

The two norms ‖| · ‖|s,sob and ‖ · ‖s,sob are equivalent. Therefore, for s integer, Ws ⊂
Ws . Moreover, the following properties are proved in Bongioanni and Torrea (2006):
for all s > 0,
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Sobolev-Hermite nonparametric density estimation 37

– Ws
� Ws . If f ∈ Ws has compact support, then f ∈ Ws .

–
f ∈ Ws ⇒ xs f ∈ L

2(R). (13)

4.2 Rates of convergence

Now, we look at asymptotic rates of convergence. We first consider rates for Hermite
projection estimators. We already studied the variance rate Vm/n (see the bounds for
Vm in Proposition 1). If f belongs to

Ws(L) =
⎧
⎨

⎩
f ∈ L

2(R),
∑

n≥0

nsa2n( f ) ≤ L

⎫
⎬

⎭
,

then ‖ f − fm‖2 ≤ Lm−s . Plugging this and the bounds of Proposition 1 in Inequality
(2) gives the following rates of the L

2(R)-risk.

Proposition 5 Assume that f ∈ Ws(L) and consider the three cases (i), (ii), (iii) of
Proposition 1.

Case (i) (general case). For mopt = [n1/(s+(5/6))], E(‖ f̂mopt − f ‖2) � n− s
s+(5/6) .

Case (ii). For mopt = [n1/(s+(1/2))], E(‖ f̂mopt − f ‖2) � n− s
s+1/2 .

Case (iii). For mopt = [n1/(s+(a+2)/(2(a+1))], E(‖ f̂mopt − f ‖2) � n− s
s+(a+2)/[2(a+1)] .

Case (ii) gives the best rate. In view of the constraint onmn in Theorem 1, the adaptive
procedure reaches this best rate if m5/6

opt ≤ n/ log(n), that is s > 1/3. Note that the
rate in case (iii) is strictly better than in case (i) as (a + 2)/(a + 1) < 5/3 as soon as
a > 1/2. Cases (ii)–(iii) improve the results of Schwartz (1967) and Walter (1977).
Now, we can compare the rates to those of projection estimators in the sine cardinal
basis. The following result is deduced from Proposition 3 and (7).

Proposition 6 If

f ∈ Ws(R) =
{

f ∈ L
2(R), ‖ f ‖2s,sob =

∫

R

(1 + t2s)| f ∗(t)|2dt ≤ R

}

,

and �opt = n1/(2s+1), we have E(‖ f̃�opt − f ‖2) � n−2s/(2s+1). If moreover Kn ≥ n2,

E(‖ f̃ (n)
�opt

− f ‖2) � n−2s/(2s+1).

In Schipper (1996), it is proved that this rate is minimax optimal (with exact Pinsker
constant) on Sobolev balls (at least for an integer s), see also Efromovich (2009)
for s < 1/2. Rigollet (2006) uses the blockwise Stein method to build an adaptive
deconvolution estimator, which reaches the optimal rate with exact constant for any
s > 1/2.

Let us compare results of Proposition 6 and of Proposition 5. As Ws ⊂ Ws , see
Sect. 4.1, the comparison is relevant. In case (i), we see that the estimator f̃�opt has a
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38 D. Belomestny et al.

better rate than f̂mopt . In case (ii), the estimators have the same rate. In case (iii), the

estimator f̃�opt is slightly better than f̂mopt . In view of case (ii), the Hermite method is
competitive. Indeed, the moment condition for (ii) is not very strong. In this case, sine
cardinal estimators with cutoff parameter � and Hermite projection estimators on the
space Sm are asymptotically equivalent when � = m1/2.

4.3 Rates of convergence in some special cases

When the density f belongs to Ws for all s, we must obtain directly the exact rate of
decay of the bias term. This is possible for Gaussian and some related densities as one
can make an exact computation of the coefficients a j ( f ). Let

fμ(x) = 1√
2π

exp

(

−1

2
(x − μ)2

)

, (14)

and

f p,σ (x) = x2p

σ 2pC2p
fσ (x) with fσ (x) = 1

σ
√
2π

exp

(

− x2

2σ 2

)

and C2p = EX2p,

(15)
for X a standardGaussian variable. The distribution f p,σ (x)dx is equal to εG1/2 for ε a
symmetric Bernoulli variable,G a Gamma(p+(1/2), 1/(2σ 2)) variable, independent
of ε.

Proposition 7 Assume that f = fμ. Then for mopt = [(log(n)/ log(2)) + eμ2], we
have

E(‖ f̂mopt − fμ‖2) �
√
log n/n.

Assume that f = fσ . Then for mopt = [(log n)/λ] where λ = log
(

σ 2+1
σ 2−1

)2
, we have

E(‖ f̂mopt − fσ ‖2) �
√
log n/n.

The same result holds for f = f p,σ or any finite mixture of such distributions.
For f = fσ , the estimator f̃� satisfies,

E(‖ f̃� − f ‖2) � 1

�
exp (−�2/2σ 2) + n−1�.

For �opt = σ
√
2 log n, the rate of f̃�opt is

√
log n/n. The rate is identical to the one

obtained in Proposition 7. The result is analogous for f = f p,σ .
Finally, the Cauchy density will provide a counter-example. Let

f (x) = 1

π(1 + x2)
.
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Sobolev-Hermite nonparametric density estimation 39

From Proposition 1, case (iii), we take a = 2 and obtain for the variance term Vm �
m2/3. Using Proposition 4, we check that f ∈ W 1, f /∈ W 2. Moreover, by (13),
xs f /∈ Ws for s ≥ 3/2. Therefore, f /∈ W 3/2, so the best rate we can obtain is
n−s/s+(2/3) with s < 3/2, for mopt = [n1/(s+(2/3))].

For the sine cardinal method, f ∗(t) = exp (−|t |), so that ‖ f − f�‖ � exp (−2π�).
Therefore, for �opt = log n/2π , the estimator f̃�opt has a risk with rate log n/n. This
is much better than for the Hermite estimator.

This discussion on rates of convergence points out the interest of the adaptive
method. Indeed, it automatically realizes the bias–variance compromise and thus the
previous rates are reached without any specific knowledge on f .

4.4 Rates of convergence for Gaussian mixtures

Kim (2014) provides optimal rates of convergence for estimating densities that are
mean mixtures of normal distributions, that is for densities f in the class

F =
{

f : f (x) = φ � Π(x) =
∫

φ(x − u)dΠ(u), Π ∈ P(R)

}

where φ denotes the standard normal density and P(R) the set of all probability
measures on the real line. The minimax optimal rate for the mean square risk is√
log(n)/n. Moreover, the sine cardinal estimator f̃� reaches the upper bound for the

L
2-risk on the class F , for � ∝ √

log(n).
We study Hermite projection estimators for mean mixtures of Gaussian but also for

variance mixtures. We consider, as suggested in Kim (2014), the subclass Fsub(R) =
∪C>0Fsub(C),

Fsub(C) =
{

f : f (x) = φ � Π(x) =
∫

φ(x − u)dΠ(u), Π ∈ Psub(C)

}

where

Psub(C) := {Π ∈ P(R),Π(|u| > t) ≤ C exp(−t2/C) for all positive t}.

Proposition 8 For f ∈ Fsub(C) and mopt = [log(n)(eC + 1/ log(2))], we have

E(‖ f̂mopt − f ‖2) �
√
log(n)/n.

Now we define the class of variance mixtures that we consider: let v > 1,

G(v) =
{

f : f (x) =
∫ +∞

0

φ(x/u)

u
dΠ(u),Π([1/v, v]) = 1

}

.

In otherwords, f ∈ G(v) is the density ofσ X with X ∼ N (0, 1),σ ∼ Π ,σ ∈ [1/v, v]
with σ and X independent.
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Proposition 9 For f ∈ G(v), let

ρ0 =
(

v2 − 1

v2 + 1

)2

< 1. (16)

For mopt = [log(n)/| log(ρ0)|], we have

E(‖ f̂mopt − f ‖2) �
√
log(n)/n.

In the class of variance mixtures of Gaussians, the lower bound rate is not known.
However, in Ibragimov and Has’minskii (1980), Ibragimov (2001), the estimation of a
density on a compact set [a, b]which is analytical in the vicinity of [a, b] is considered.
The authors prove that the rate log(n)/n, is optimal in this class. The restricted class
given by G(v) considered in Proposition 9 gives a slightly improved rate, which is
coherent with the result of Proposition 7.

4.5 Complexity

In this paragraph, we compare the Hermite and deconvolution estimators from another
point of view: the computational efficiency.

Consider an estimator f̂n of a function f whose L
2-risk can be evaluated on a ball

B(L) of some functional space. Define its complexity C f̂n
(ε) as the minimal cost of

computing f̂n at the observation points X1, . . . , Xn , given that

sup
f ∈B(L)

E(‖ f̂n − f ‖2) ≤ ε2.

Let us compute the complexity of the estimate f̃�opt on the Sobolev ballWs(L). As

we need to evaluate the function sin(π�·)
π · at all points (Xk − X j ), 1 ≤ k, j ≤ n, the cost

of computing f̃�opt is of order n
2. Thus ε2 � n−2s/(2s+1) yields n � ε−2−1/s so that

C f̃�opt
(ε) � ε−4−2/s as ε → 0. So even in the case of infinitely smooth densities, the

complexity of the deconvolution estimate can not be (asymptotically) lower than ε−4.

A natural question is whether one can find an estimate with lower order of complexity.
Note that the complexity would be the same for a kernel estimator on a ball of a
Nikol’ski class with regularity s, see Tsybakov (2009), at least for kernels with a
non-compact support used in Ibragimov and Has’minskii (1980).

For the truncated estimator f̃ (n)
�opt

, the cost is of order nKn : indeed, onemust compute
the ϕ�, j (Xi ) for i = 1, . . . , n and | j | ≤ Kn . Consequently, compared to the previous
one, this estimate is competitive in term of computational cost as soon as Kn < n
(however, this choice would contradict Theorem 3.1 where Kn ≥ n2).

Now, let us look at the projection estimator f̂mopt for f ∈ Ws(L). The cost of

computing a projection estimator f̂m at observation points X1, . . . , Xn corresponds to
the cost of computing h j (Xi ) for i = 1, . . . , n and j = 0, . . . ,m − 1, i.e., is of order
nm. Thus, we derive the following proposition.
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Table 1 Complexity for density estimation in different contexts

Projection estimator on a
compact set A Besov
ball of B2,s,∞(A)

Projection estimator on
R Sobolev-Hermite
ball Ws (L)

Deconvolution estimator
on R Sobolev ball
Ws (L)

ε−2−2/s ε−2−3/s ε−4−2/s

(best case α = 1/2)

Proposition 10 Assume that f ∈ Ws(L) and consider the three cases (i), (ii), (iii) of

Proposition 1. The complexity of the estimate f̂mopt is given by C f̂ (ε) ∼ ε−2− 2(α+1)
s

with α = 5/6, 1/2, (a + 2)/[2(a + 1)],, respectively.
Proof of Proposition 10. Taking ε2 � n−2s/(2s+1), hence n � ε−2−1/s , and the three
values of mopt given Proposition 5 yield the result. ��

As can be seen, the complexity order of the Hermite-based estimate f̂mopt is lower
than the complexity order of the deconvolution estimate f̃�opt provided s > α. So
in the case of densities with finite fifth moment already for s > 1/2, our approach
leads to estimates with much lower complexity. The difference between the estimates
f̂mopt and f̃�opt becomes especially pronounced in the limiting case s → ∞, where
C f̂mopt

(ε) � ε−2 while C f̃�opt
(ε) � ε−4 as ε → 0, resulting in a huge computational

gain.
For any projection estimator, the cost of computation if of order nmopt where mopt

is the optimal dimension. In the case of a density with compact support A, if we
evaluate the L

2-risk of a projection estimator on a Besov ball of B2,s,∞(A) , we have
ε2 � n−2s/(2s+1) withmopt � n1/(2s+1), thus a cost of order ε−2−2/s , see Barron et al.
(1999) for rates and definition of Besov spaces. All these results are summarized in
Table 1.

4.6 Simulation illustrations

In this section, we propose a few illustrations of the previous theoretical findings. To
that aim, we consider several densities, fitting different assumptions of our setting.

(i) A Gaussian N (0, 1),
(ii) A Gaussian N (0, σ 2), σ = 0.5,
(iii) A mixed Gaussian density 0.4N (−3, σ 2) + 0.6N (3, σ 2), σ = 0.5,
(iv) A Gamma γ (3, 0.5) density,
(v) A mixed Gamma 0.4γ (2, 1/2) + 0.6γ (16, 1/4)
(vi) A beta density β(3, 3),
(vii) A beta density β(3, 6),
(viii) Laplace density f (x) = e−|x |/2,
(ix) A Cauchy density, f (x) = 5/[π(1 + (5x)2)].
Density (i) is proportional to the first basis function h0 and should be perfectly

estimated in the Hermite procedure, densities (vi) and (vii) are compactly supported

123



42 D. Belomestny et al.

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 1 Left: m �→ V̂m/
√
m for 1 sample of densities (i) (blue line), (iv) (cyan stars), (vi) (red dashed), (ix)

(green x marks) and m �→ V̂m/m5/6 for 1 sample of densities (i) (blue dashed) and (ix) (green dash-dot).
Right: the same as previously for 10 samples color figure online

and density (ix) does not admit any moment (in particular no fifth moment, so it does
not fit case (ii) of Proposition 1). Hermite functions are recursively computed via (34)
and with normalization (1).

We plot in Fig. 1, the representation of m �→ V̂m/
√
m for 1 and 10 samples drawn

from densities (i), (iv), (vi), (ix) (see (5)). It seems that the ratio is stable along the
repetitions and converges to a fixed value, which is the same in the first three cases.
On the contrary, m �→ V̂m/m5/6 given for (i) and (ix) seems to decrease and to tend
to zero in any case. It is tempting to conclude from these plots that the order of Vm is
O(m1/2) in a rather general case.

We have implemented the Hermite projection estimator f̂m̂ with m̂ given in (5),
f̃ (n)

�̃n
with �̃n given by (9) and the kernel estimator given by the function ksdensity

ofMatlab. For the model selection steps of the first two estimators, the two constants κ

and κ̃ of the procedures have been both calibrated by preliminary simulations including
other densities than the onesmentioned above (to avoid overfitting): the selected values
were κ = κ̃ = 4. We considered two sample sizes n = 250 and n = 1000, but as
the sine cardinal procedure is rather slow, we only took K250 = K1000 = 100. The
theoretical value Kn = n2 is unreachable in practice (the computing time becomes
much too large), and our choice of Kn is consistent with the complexity considerations
of Sect. 4.5.

For mn , we should take (n/ log(n))6/5, which is of order 100 for n = 250 and 400
for n = 1000. We took m250 = m1000 = 200 as a compromise. The cutoff �π is
selected among 100 equispaced values between 0 and 10. For each distribution, we
present in Table 2 theMISE computed over 200 repetitions, together with the standard
deviation. In the three cases, we provide also the mean (and standard deviations in
parenthesis) of the selected dimension (Hermite), cutoff (Sine cardinal) or bandwidth
(kernel).

We can see from the results of Table 2 that the Hermite and sine cardinal methods
give very similar results, except for theN (0, 1) where the Hermite projection is much
better as expected, as the procedure most of the time chooses m = 1. The kernel
method seems globally less satisfactory. The noteworthy difference between the first
twomethods is the computation time: as themodels are nested in theHermite projection
strategy, all coefficients can be computed once for all, and then, the dimension is
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Table 2 Results after 200 iterations of simulations of density (i)–(ix)

f n = 250 n = 1000

Hermite Sin. Card. Kernel Hermite Sin. Card. Kernel

(i) 0.5(1.4) 2.0(1.8) 2.9(2.1) 0.1(0.4) 0.6(0.5) 1.1(0.6)

1.08(0.32) 0.77(0.08) 0.35(0.03) 1.08(0.53) 0.87(0.08) 0.27(0.01)

(ii) 4.7(4.7) 4.7(4.9) 6.0(4.2) 1.4(1.3) 1.4(1.4) 2.1(1.3)

8.87(3.69) 1.46(0.21) 0.17(0.01) 11.6(5.1) 1.65(0.24) 0.13(0.005)

(iii) 4.9(2.6) 5.5(2.5) 24.2(14.5) 1.5(0.9) 1.5(0.9) 11.1(3.1)

11.6(1.5) 1.28(0.13) 0.51(0.12) 14.3(2.0) 1.53(0.10) 0.39(0.04)

(iv) 5.6(3.4) 5.3(3.4) 4.6(2.9) 1.8(1.0) 1.8(1.0) 1.9(1.0)

6.28(2.64) 1.25(0.19) 0.27(0.02) 11.9(4.5) 1.7(0.25) 0.21(0.01)

(v) 7.2(3.6) 6.6(2.8) 17.1(2.6) 2.4(0.9) 2.7(0.8) 10.2(1.2)

15.1(2.0) 1.13(0.20) 0.74(0.07) 18.2(2.6) 1.67(0.27) 0.57(0.02)

(vi) 7.2(7.2) 7.3(7.4) 12.8(8.3) 3.2(2.6) 3.3(2.7) 4.8(2.7)

46.5(10.5) 3.14(0.29) 0.07(0.005) 63.3(27.3) 3.6(0.65) 0.05(0.002)

(vii) 17.2(11.3) 19.3(15.6) 19.4(12.2) 5.8(3.1) 6.3(4.1) 7.0(4.0)

104(25.5) 4.77(0.91) 0.05(0.004) 143(13.5) 5.89(0.85) 0.04(0.002)

(viii) 7.4(2.0) 6.7(3.0) 5.5(3.2) 2.6(0.8) 2.5(0.8) 2.3(1.1)

2.5(2.96) 1.03(0.25) 0.36(0.04) 7.8(4.4) 1.42(0.32) 0.27(0.01)

(ix) 21.6(9.1) 21.5(9.3) 18.6(10.6) 6.9(2.9) 6.9(3.0) 7.6(3.9)

65(25) 3.7(0.7) 0.10(0.01) 97(21) 4.71(0.77) 0.08(0.004)

For each density (i)–(ix), first line: MISE ×1000 with (std ×1000) in parenthesis; second line: mean of
selected dimension (Hermite), cutoff (sine cardinal) or bandwidth (kernel) with std in parenthesis

selected. In the sine cardinal strategy, each time � is changed, all the coefficients have
to be recalculated. For instance, when the maximal dimension proposed mn is 50,
and Kn is 100, the elapsed times for 100 simulations is: for n = 250, around 0.5s
for Hermite, 41s for sine cardinal; for n = 1000, around 1.2s for Hermite, 137s for
sine cardinal, all times measured on the same personal computer to give an order of
the difference. This is coherent with the lower complexity property of the Hermite
method.

Table 2 also provides the selected dimensions, cutoffs and bandwidths. As could be
expected, m̂ , �̃ vary in opposite way, compared to ĥ.Without surprise also, the selected
dimensions and cutoffs increase when the sample size increases. What is remarkable
is the values of the selected dimensions for β-distributions, which are very large.
Globally, we can see that these values are very different from one distribution to the
other. Contrary to the theoretical result, the Cauchy density is estimated with similar
MISEs in the Hermite and sine cardinal methods.

In Fig. 2, density and 25 estimators are plotted for models (iii), (vii) and (ix). Risks
and standard deviation for the 25 curves are given above each plot, together with the
mean of the selected dimension, cutoff or bandwidth. The methods are comparable,
even for the Cauchy distribution, except for the mixtures, where the kernel method
fails. The first two lines illustrate the improvement obtained when increasing n. We
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Fig. 2 True density f in bold blue for Model (iii) (first two lines), Model (vii) (third line) and Model (ix)
(fourth line), together with 25 estimates (green/gray) with n = 250 (lines 1 and 3) or n = 1000 (lines
2 and 4). First column: Hermite; second column: Sine cardinal; third column: kernel. Above each plot:
MISE ×1000 and std ×1000 in parenthesis, followed par the mean of selected dimensions, cutoffs and
bandwidths (all means over the 25 samples) color figure online
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note again that the selected dimensions in the Hermite method are possibly rather high
(see the beta and the Cauchy densities). However, computation time remains very
short.

5 Pure jump Lévy processes

We now look at projection Hermite estimators in a different context, namely the
estimation of the Lévy density of a Lévy process.

Let (Lt , t ≥ 0) be a real-valued Lévy process, i.e., a process with stationary inde-
pendent increments with characteristic function of the form:

φt (u) = E(exp iuLt ) = exp tψ(u), ψ(u) =
∫

R

(eiux − 1)n(x)dx (17)

where we assume that the Lévy density n(·) satisfies

(H1)
∫

R

|x |n(x)dx < ∞.

Uner (H1) and (17), the process (Lt ) is of pure jump type, has no drift component,
finite variation on compacts and satisfiesE(|Lt |) < +∞ (see e.g., Bertoin 1996, Chap.
1). The distribution of (Lt ) is entirely specified by n(·), which describes the jumps
behavior. We assume that the process is discretely observed with sampling interval
Δ and set (Zk = ZΔ

k = LkΔ − L(k−1)Δ, k = 1, . . . , n) which are independent,
identically distributed random variables with common characteristic function φΔ(u).
In Belomestny et al. (2015), second chapter, “Adaptive estimation for Lévy processes,”
methods of estimation of the function

g(x) = xn(x)

in this context are presented and studied under the asymptotic framework of high-
frequency data, i.e., the sampling interval Δ = Δn tends to 0 while n and the total
length time of observations nΔn tend to infinity.

In here, we consider the same framework and propose estimators of g using the
Hermite functions basis. For simplicity, we omit the index n in notations and denote
Δ = Δn , Zk = ZΔn

k , k = 1, . . . , n. The following additional assumptions are
required.

(H2) The function g belongs to L
2(R).

(H3)
∫
R

|x |7n(x)dx < ∞.

Assumption (H2) is obviously needed for the projection method. Assumption (H3)
implies that E|Z1|7 < +∞. Let PΔ denote the distribution of Z1. In the above refer-
ence, the following property is proved (Proposition 3.3, p. 84): the measure

μΔ(dx) = 1

Δ
x PΔ(dx) = gΔ(x)dx (18)
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where gΔ(x) = Eg(x − Z1) = ∫
g(x − z)PΔ(dz) and μΔ(dx) weakly converges to

g(x)dx as Δ → 0. In view of this property, the measure

μ̂n(dx) = 1

nΔ

n∑

k=1

ZkδZk (dx) (19)

will play the role of empirical measure for the estimation of g. By (H2), the function
g can be developed in the Hermite basis:

g =
∑

j≥0

a j (g)h j , a j (g) =
∫

g(x)h j (x)dx = 〈g, h j 〉.

We define, for m ≥ 0, the projection estimator ĝm of g on the space Sm by:

ĝm =
m−1∑

j=0

â j h j , â j = 1

nΔ

n∑

k=1

Zkh j (Zk). (20)

Now, â j is no more an unbiased estimator of a j (g). For t a function, we set when it is
well defined,

R(t) = 1

Δ
E(Z1t (Z1)) −

∫
t (x)g(x)dx . (21)

Thus, we have Eâ j = a j (g) + R(h j ). The following holds:

Proposition 11 Assume that (H1)–(H3) hold. Consider for m ≥ 0, the estimator ĝm
of g and denote by gm the orthogonal projection of g on Sm. Then

E

(
‖ĝm − g‖2

)
≤ ‖g − gm‖2 + Vm

nΔ
+ ‖g‖21ρm,Δ , (22)

where

Vm := 1

Δ

m−1∑

j=0

E

(
Z2
1h

2
j (Z1)

)
≤ c

(
E(Z2

1)

Δ

√
m + E(|Z1|7)

Δ
log(m)

)

, (23)

and

ρm,Δ =

⎧
⎪⎨

⎪⎩

C

2π
Δ2 if C := ∫

u2|g∗(u)|2du < +∞,

8‖g‖2Δ2 m otherwise

(‖g‖1 denotes the L
1-norm of g).
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First, let us recall some small sample properties of moments and absolute moments
of Z1, see e.g., Belomestny et al. (2015). Under (17), (H1) and (H3), it holds that

E(Z2
1)

Δ
=

∫
x2n(x)dx + o(1) and

E(|Z1|7)
Δ

=
∫

|x |7n(x)dx + o(1), (24)

where o(1) means that the term tends to 0 as Δ tends to 0 (see Proposition 3.1 and
3.2, pp. 82–83). Now, let us compare the projection Hermite estimators (ĝm,m ≥ 0)
to the estimators studied in the latter reference. In Section 4.1, p. 87, a deconvolution
estimator is studied, given by:

g†� (x) = 1

nΔ

n∑

k=1

Zk
sin(π�(Zk − x))

π(Zk − x)
.

Looking at Proposition 4.3, p. 90 and Proposition 4.4, p. 91, we see that the sine
cardinal estimators and the projection Hermite estimators are equivalent for � = m1/2

with the same optimal rates of convergence. Then, in Section 4.2, p. 105, the estimation
of g1A where A is a compact subset of R is considered by a projection method on
finite dimensional subspaces of L

2(A). Here, on the contrary, the Hermite method
gives better results as can be seen from Proposition 4.6, p. 110. The difference lies in
the additional bias term ρm,Δ which is smaller.

6 Concluding remarks

This paper is concerned with the nonparametric estimation of the density of an i.i.d.
sample. Although there is an ocean of papers on this topic, it seems that the method
developed here has not received yet much attention. Under the assumption that the
unknown density belongs to L

2(R), we build and study projection estimators using an
orthonormal basis composed of Hermite functions. Usually, for projection estimators,
the variance term of the L

2-risk is proportional to the dimension of the projection
space. The special feature of the Hermite function basis is that the variance term is
governed by the square root of the dimension.Moreover, we introduce specific regular-
ity function spaces to evaluate the order of the bias term, namely the Sobolev Hermite
spaces. This allows to prove that Hermite estimators are asymptotically equivalent
to sine cardinal estimators. From the practical point of view, Hermite estimators are
much faster to compute.

Adaptive estimators are studied, using an appropriate data-driven choice of the
dimension.

This paper is only concerned with L
2-risks, but L

p-risks have also been studied
by many authors (see the classical reference Donoho et al. 1996). Moreover, the L

1-
approach is especially developed inDevroye andGyörfi (1985). In this setting, adaptive
estimators have been constructed byDevroye andLugosi (2001). The study ofLp-risks
with the Hermite approach would be an interesting field of further investigation.
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7 Proofs

7.1 Proof of Propositions 1 and 2

We start by proving Proposition 1.
(i). The following bound comes from Szegö (1975, p. 242) where an expression of

C∞ is given:

∀x ∈ R, |h j (x)| ≤ C∞( j + 1)−(1/12), j = 0, 1, . . . . (25)

Therefore, Vm ≤ C2∞
∑m−1

j=0 ( j + 1)−(1/6) ≤ 6
5C

2∞m5/6.

(ii). Now, as in Walter (1977), we use the following expression for the Hermite
function hn (see Szegö (1975, p. 248)):

h j (x) = λ j cos

(

(2 j + 1)1/2x − jπ

2

)

+ 1

(2 j + 1)1/2
ξ j (x) (26)

where λ j = |h j (0)| if j is even, λ j = |h ′
j (0)|/(2 j + 1)1/2 if j is odd and

ξ j (x) =
∫ x

0
sin [(2 j + 1)1/2(x − t)] t2h j (t)dt. (27)

By the Cauchy–Schwarz inequality, ξ2j (x) ≤ ∫ |x |
0 t4dt

∫ |x |
0 h2j (t)dt ≤ |x |5

5 × 1
2 . More-

over,

λ2 j = (2 j)!1/2
2 j j !π1/4 , λ2 j+1 = λ2 j

√
2 j + 1√
2 j + 3/2

.

By the Stirling formula and its proof, λ2 j ∼ π−1/2 j−1/4, λ2 j+1 ∼ π−1/2 j−1/4 and
for all j , there exists constants c1, c2 such that, for all j ≥ 1,

c1
π1/2 j1/4

≤ λ j ≤ c2
π1/2 j1/4

. (28)

Therefore, h2j (x) ≤ 2
c22

π j1/2
+ 1

2 j+1
|x |5
5 . This yields:

∫
h2j (x) f (x)dx ≤ 2

c22
π j1/2

+ 1

5(2 j + 1)
E|X |5,

which implies Vm � m1/2.
Now, we study case (iii). The following bound for h j is given in Markett (1984,

p. 190): There exist positive constants C, γ , independent of x and j , such that, for
J = 2 j + 1,

|h j (x)| ≤ C(J 1/3 + |x2 − J |)−1/4, x2 ≤ 2J,

≤ C exp (−γ x2), x2 > 2J.
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Consider a sequence (a j ) such that a j → +∞, a j/
√

j → 0 with J = 2 j + 1 large
enough to ensure aJ√

J
≤ 1/

√
2, aJ ≥ K . As

∫
h2j (x)dx = 1, aJ <

√
J , aJ ≥ K and

g is decreasing,

∫
h2j (x) f (x)dx ≤ 2C‖ f ‖∞

∫ aJ

0
(J 1/3 + J − x2)−1/2dx + g(aJ ).

Set x = (J 1/3 + J )1/2y in the integral. This yields:

∫ aJ

0

dx√
J 1/3 + J − x2

=
∫ aJ /(J 1/3+J )1/2

0

dy
√
1 − y2

= Arcsin

(
aJ

(J 1/3 + J )1/2

)

≤ 2
aJ√
J

,

as for 0 ≤ x ≤ 1/
√
2, Arcsinx ≤ 2x . Now, we choose the sequence (a j ) and consider

a j = j1/(2(a+1)). We deduce
∫
h2j (x) f (x)dx � j−a/(2(a+1)), which leads to

Vm � m
a+2

2(a+1) . (29)

��
Now we turn to the proof of Proposition 2 and we look at the lower bound. We

have, setting c = infa≤x≤b f (x), and using (26),
∫

h2j (x) f (x)dx ≥ c
∫ b

a
h2j (x)dx

≥ cλ2j

∫ b

a
cos2

(

(2 j + 1)1/2x − jπ

2

)

dx

+ c
2λ j

(2 j + 1)1/2

∫ b

a
cos

(

(2 j + 1)1/2x − jπ

2

)

ξ j (x)dx .

We have j−3/4c1/
√

π ≤ 2λ j

(2 j+1)1/2
≤ j−3/4√2/πc2 and

∣
∣
∣
∣

∫ b

a
cos

(

(2 j + 1)1/2x − jπ

2

)

ξ j (x)dx

∣
∣
∣
∣ ≤

∫ b

a

|x |5/2√
10

dx := C.

Thus, the second term is lower bounded by −C j−3/4c1/
√

π . For the first term, λ2j ≥
j−1/2c21/π and

∫ b

a
cos2

(

(2 j + 1)1/2x − jπ

2

)

dx = 1

2
(b − a) +

∫ b

a
cos

(
2(2 j + 1)1/2x − jπ

)
dx

= 1

2
(b − a) + O

(
1

j1/2

)

.
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Therefore,
∫
h2j (x) f (x)dx ≥ cj−1/2c21/π

[
b−a
2 + O( 1

j1/2
)
]

− C j−3/4c1/
√

π. Con-

sequently, for j large enough,
∫
h2j (x) f (x)dx ≥ c′ j−1/2. This implies, Vm ≥ c′′m1/2.

��

7.2 Proof of Theorem 1

Let Sm be the space spanned by {h0, . . . , hm−1} and Bm = {t ∈ Sm, ‖t‖ = 1}. We
have f̂m = argmint∈Sm γn(t) where γn(t) = ‖t‖2 − 2n−1 ∑n

i=1 t (Xi ) and γn( f̂m) =
−‖ f̂m‖2. Now, we write, for two functions t, s ∈ L

2(R) ,

γn(t) − γn(s) = ‖t − f ‖2 − ‖s − f ‖2 − 2νn(t − s)

where

νn(t) = 1

n

n∑

i=1

[t (Xi ) − 〈t, f 〉].

Then, for any m ∈ Mn = {1 ≤ m ≤ mn}, mn ≤ n/ log n, and any fm ∈ Sm ,

γn( f̂m̂) + p̂en(m̂) ≤ γn( fm) + p̂en(m).

This yields ‖ f̂m̂ − f ‖2 ≤ ‖ f − fm‖2 + p̂en(m) − p̂en(m̂) + 2νn( f̂m̂ − fm). We use
that

2νn( f̂m̂ − fm) ≤ 4 sup
t∈Bm∨m̂

ν2n (t) + 1

4
‖ f̂m̂ − fm‖2,

and some classical algebra to obtain:

1

2
‖ f̂m̂ − f ‖2 ≤ 3

2
‖ f − fm‖2 + p̂en(m) + 4

(

sup
t∈Bm∨m̂

ν2n (t) − p(m ∨ m̂)

)

+(4p(m ∨ m̂) − pen(m̂)) + (pen(m̂) − p̂en(m̂)). (30)

We can choose p(m) such that

∑

m′∈Mn

E

(

sup
t∈Bm∨m′

ν2n (t) − p(m ∨ m′)
)

+
≤ c

n
. (31)

Indeed, for this, we apply the Talagrand Inequality (see Klein and Rio 2005):

E

(

sup
t∈Bm

ν2n (t) − 4H2

)

+
≤ C1

n

(

v2e−C2
nH2

v2 + M2
1

n
e
−C3

nH
M1

)
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where E
(
supt∈Bm ν2n (t)

) ≤ Vm
n := H2, supt∈Bm Var(t (X1)) ≤ supt∈Bm E(t2(X1)) ≤

‖ f ‖∞ := v2 and supt∈Bm supx |t (x)| ≤
√
supx

∑m−1
j=0 h2j (x) ≤ C ′∞m5/12 ≤

C ′∞
√
n := M1 (see (25)). Therefore, we obtain

E

(

sup
t∈Bm

ν2n (t) − 4
Vm
n

)

+
≤ C1

n

(
‖ f ‖∞e−C ′

2Vm + e−C ′
3
√
Vm

)
.

Therefore, with the choice p(m) = 4Vm/n, (31) holds under condition (6) which is
ensured by Proposition 2. Taking expectation in (30) yields

1

2
E(‖ f̂m̂ − f ‖2) ≤ 3

2
‖ f − fm‖2 + pen(m) + E(4p(m ∨ m̂) − pen(m̂))

+ E(pen(m̂) − p̂en(m̂))+ + c

n
. (32)

Let us define

Y (m)
i :=

m−1∑

j=0

h2j (Xi ), V̂m = 1

n

n∑

i=1

Y (m)
i ,

and the set inspired by Bernstein Inequality Ω :=

⎧
⎨

⎩
∀m ∈ Mn,

1

n

∣
∣
∣
∣
∣
∣

n∑

i=1

(
Y (m)
i − E

(
Y (m)
i

))
∣
∣
∣
∣
∣
∣
≤

√

2VmC ′′∞m5/6 log(n)

n
+ 4C ′′∞m5/6 log(n)

3n

⎫
⎬

⎭

with C ′′∞ := (C ′∞)2 and C ′∞ is the constant appearing in M1 above. We split the term
to study in (32) as follows:

E(pen(m̂) − p̂en(m̂))+ ≤ E
[
(pen(m̂) − p̂en(m̂))+1Ω

] + E
[
(pen(m̂) − p̂en(m̂))+1Ωc

]
.

On Ω ,

|V̂m̂ − Vm̂ | ≤
√
2Vm̂C ′′∞m̂5/6 log(n)/n + 4C ′′∞m̂5/6 log(n)/(3n)

≤ 1

2
Vm̂ + 7

3
C ′′∞

m̂5/6 log(n)

n
,

using that 2xy ≤ x2 + y2 applied to
√
2V A = 2

√
V/2

√
A ≤ V/2+ A with V = Vm̂

and A = C ′′∞m̂5/6 log(n)/n. Thus, by definition of Mn ,

E
[
(pen(m̂) − p̂en(m̂))+1Ω

]
+ ≤ 1

2
E(pen(m̂)) + c

n
.
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On the other hand, E
[
(pen(m̂) − p̂en(m̂))+1Ωc

] ≤ 2κP(Ωc). Now, by applying
Bernstein inequality, we get

P(Ωc) ≤
∑

m∈Mn

2e−2 log(n) ≤ c

n
.

Indeed, we have P(|Sn/n| ≥ √
2v2x/n + bx/(3n)) ≤ 2e−x for Sn = ∑n

i=1(Ui −
E(Ui )), Var(U1) ≤ v2, |Ui | ≤ b. In our case Ui = Y (m)

i and v2 = VmC ′′∞m5/6,
b = C ′′∞m5/6 and we took x = 2 log(n).

So Eq. (32) becomes

1

2
E(‖ f̂m̂ − f ‖2) ≤ 3

2
‖ f − fm‖2 + pen(m) + E(4p(m ∨ m̂) − pen(m̂))

+1

2
E(pen(m̂)) + c

n

≤ 3

2
‖ f − fm‖2 + pen(m) + E

(

4p(m ∨ m̂) − 1

2
pen(m̂)

)

+ c

n
.

Now we note that, for κ ≥ 8 := κ0, 4p(m ∨ m̂) − 1
2pen(m̂) ≤ pen(m). Finally, we

get, for all m ∈ Mn ,

E(‖ f̂m̂ − f ‖2) ≤ 3‖ f − fm‖2 + 4pen(m) + c

n
,

which ends the proof. ��

7.3 Proof of Proposition 3

The first inequality is standard. Let us study f̃ (n)
� (x). We write that

‖ f̃ (n)
� − f ‖2 = ‖ f̃ (n)

� − E f̃ (n)
� ‖2 + ‖E( f̃ (n)

� ) − f ‖2
≤ ‖ f̃ (n)

� − E f̃ (n)
� ‖2 + 2‖E( f̃ (n)

� ) − f̄�‖2 + 2‖ f̄� − f ‖2.

The term ‖ f̄� − f ‖2 is the usual bias term. Moreover,

E

(
‖ f̃ (n)

� − E f̃ (n)
� ‖2

)
=

∑

| j |≤Kn

Var(ã�, j ) = 1

n

∑

| j |≤Kn

Var(ϕ�, j (X1))

≤ 1

n

∑

| j |≤Kn

E[ϕ2
�, j (X1)] ≤ �

n

because
∑

j∈Z |ϕ�, j (x)|2 ≤ �. This is the standard variance term order.
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The new term is

‖E( f̃ (n)
� ) − f̄�‖2 =

∑

| j |≥Kn

|a�, j |2 ≤ 2 sup
j

| ja�, j |2
∑

j>Kn

j−2 ≤ 2

Kn
sup
j

| ja�, j |2.
(33)

We write that ja�, j = j
√

�
∫

ϕ(�x − j) f (x)dx = √
�(I1 + I2) where

I1 = �

∫
xϕ(�x − j) f (x)dx, I2 = −

∫
(�x − j)ϕ(�x − j) f (x)dx

and we bound I1 and I2.

|I1| ≤ �

√∫
|ϕ(�x − j)|2dx

∫
x2 f 2(x)dx = √

�
√
M2, where M2 =

∫
x2 f 2(x)dx .

On the other hand, |I2| ≤ supu∈R |uϕ(u)| ∫ f (x)dx ≤ 1. We obtain:

| ja�, j | ≤ �
√
M2 + √

� ≤ �(
√
M2 + 1).

Plugging this in (33), we find the bound: ‖E( f̃ (n)
� ) − f̄�‖2 ≤ 4�2(M2 + 1)/Kn . This

term is O(�/n) if � ≤ n and Kn ≥ n2. ��

7.4 Proof of Proposition 4

Using the relations (see e.g., Abramowitz and Stegun 1964):

2xHn(x) = Hn+1(x) + 2nHn−1(x), H ′
n(x) = 2nHn−1(x), n ≥ 1, (34)

we get:

A+hn = √
2nhn−1, A−hn = √

2(n + 1)hn+1.

We deduce:

√
2h′

n = √
n hn−1−

√
n + 1hn+1, 2x hn = √

2(n + 1) hn+1+
√
2n hn−1, (35)

Assume first that f ∈ L
2(R), f admits derivatives up to order s, and for j1, . . . , jm ∈

{−,+} and 1 ≤ m ≤ s, A j1 . . . A jm f ∈ L
2(R). We prove that

∑
n≥0 n

sa2n( f ) < +∞.

We do the proof only for f compactly supported and refer to Bongioanni and Torrea
(2006) otherwise.
For the proof, set A−1 = A−, A+1 = A+ so that, for n − j ≥ 0, A jhn =√
2(n + d j )hn− j , d j = 0 if j = 1, d j = 1 if j = −1 . Thus, for n− j1− j2−· · ·− jm ≥

0,
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A j1 . . . A jm hn =
√
2(n + d j1) × · · · ×

√
2(n + d jm )hn− j1− j2−···− jm .

Now, for f compactly supported,

〈A j f, hn〉 = 〈 f, A− j hn〉 =
√
2(n + d− j )〈 f, hn+ j 〉.

Iterating yields, for n + j1 + j2 + · · · + jm ≥ 0,

〈A j1 . . . A jm f, hn〉 = 〈 f, A− jm A− jm−1 . . . A− j1hn〉
=

∏

1≤k≤m

√
2(n + d− jk )〈 f, hn+ j1+ j2+···+ jm 〉.

Therefore,
∑

n≥0(〈A j1 . . . A jm f, hn〉)2 < +∞ is equivalent to
∑

n+ j1+ j2+···+ jm≥0

nma2n+ j1+ j2+···+ jm ( f ) < ∞.

Now assume that
∑

n≥0 na
2
n( f ) < +∞. We have f = ∑

n≥0 an( f )hn . We can write
for n1 large enough:∣

∣
∣
∣
∣

n1+n2∑

n=n1

an( f )hn(x)

∣
∣
∣
∣
∣
≤

(
n1+n2∑

n=n1

n7/6a2n( f )h
2
n(x)

n1+n2∑

n=n1

n−7/6

)1/2

≤ C
n1+n2∑

n=n1

na2n( f ).

Thus, the series for f converges uniformly, f is continuous and satisfies for all x ,
f (x) = ∑

n≥0 an( f )hn(x). Therefore, we have:

f (y) − f (x) =
∑

n≥0

an( f )
∫ y

x
h′
n(t)dt

= a0( f )(h0(x) − h0(y)) + 2−1/2
∑

n≥1

an( f )

×
∫ y

x
(
√
n hn−1(t) − √

n + 1hn+1(t))dt.

Set SN (t) = ∑N
n=1 an( f )(

√
n hn−1(t) − √

n + 1hn+1(t)) and S(t) = ∑
n≥1 an( f )

(
√
n hn−1(t)−√

n + 1hn+1(t)). The function S(t) is well defined by assumption and
SN converges to S in L

2(R). Therefore, as N tends to infinity,
∫ y
x |SN (t) − S(t)|dt ≤√

y − x‖SN − S‖ → 0. We have proved that

f (y) − f (x) = a0( f )
∫ y

x
h′
0(t)dt +

∫ y

x
S(t)dt.

Thus, f is absolutely continuous and f ′ = S belongs to L
2(R). Analogously, we

prove that x f belongs to L
2(R). Thus, A+ f, A− f belong to L

2(R).
Next, by the same reasoning as above, using that

∑
n n

2an( f ) < +∞ the series for
f ′(t) = S(t) is uniformly convergent and f ′(t) is continuous.We proceed analogously
to prove that f ′ is absolutely continuous and that x f ′ and f ′′ belong toL

2(R). Iterating
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the reasoning,we obtain that f admits continuous derivatives up to s−1 and that f (s−1)

is absolutely continuous and that f, f ′, . . . , f (s), xk−m f (k−m),m = 0, . . . , s − 1 all
belong to L

2(R). This shows that, for j1, . . . , jm ∈ {−,+}, 1 ≤ m ≤ s, A j1 . . . A jm f
belongs to L

2(R). ��

7.5 Proof of Proposition 7

Let fμ be the density N (μ, 1), then

a j ( fμ) = 〈 fμ, h j 〉 =
∫

R

h j (x)e
− 1

2 (x−μ)2 dx√
2π

= c j√
2π

∫

R

Hj (x)e
− x2

2 − 1
2 (x−μ)2dx

= c j√
2π

e− μ2

4

∫

R

Hj (x)e
−(x− μ

2 )
2
dx = c j√

2π
e− μ2

4

∫

R

Hj

(
v + μ

2

)
e−v2dv.

Now, we use the following formula, obtained by the Taylor formula and the recurrence
relation H ′

n = 2nHn−1:

Hj (x + y) =
n∑

k=0

(
n
k

)

(2x)k Hn−k(y).

This yields

a j ( fμ) = c j√
2π

e− μ2

4

j∑

k=0

(
j
k

)

μ j−k
∫

R

Hk(v)e−v2dv

and
∫
R
Hk(v)e−v2dv = (1/(ckc0))〈hk, h0〉 = 0 if k �= 0. Therefore, we get

a j ( fμ) = c j√
2π

μ j

c20
e− μ2

4 = μ j

√
2π1/22 j j !e

− μ2

4 . (36)

Then

‖ fμ − ( fμ)m‖2 =
∑

j≥m

a2j ( fμ) = e−μ2/2

2
√

π

∑

j≥m

μ2 j

2 j j ! = e−μ2/2

2
√

π

∑

j≥0

μ2( j+m)

2 j+m( j + m)!

≤ 1

2
√

πm!
(

μ2

2

)m

as
1

(m + j)! ≤ 1

m! j ! .

Using Stirling’s formula, we get

‖ fμ − ( fμ)m‖2 � 1

2π
√
2m

exp

(

−m log

(
2m

eμ2

))

.
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Thereforemopt = [(log(n)/ log(2))+eμ2] yields ‖ fμ −( fμ)mopt‖2 � 1/(n
√
log(n)).

Combining with Proposition 1, we obtain the first result.
To prove the second result, we use the following proposition.

Proposition 12 Recall that a j ( f ) = ∫
f (x)h j (x)dx. For j ≥ 0, we have:

a2 j ( fσ ) = c2 j

(
1

1 + σ 2

)1/2
(2 j)!
j !

(
σ 2 − 1

σ 2 + 1

) j

, a2 j+1( fσ ) = 0.

For n ≥ p, j ≥ 0,

|a2 j ( f p,σ )| ≤ C(p, σ 2)c2 j
(2 j)!

( j − p)!
∣
∣
∣
∣
σ 2 − 1

σ 2 + 1

∣
∣
∣
∣

j−p

, a2 j+1( f p,σ ) = 0.

We can now deduce the risk of f̂m when f = fσ . We have:

a22 j ( fσ ) ∼ π−1 j−1/2 1

1 + σ 2

(
σ 2 − 1

σ 2 + 1

)2 j

. (37)

Therefore, setting λ = log

[(
σ 2+1
σ 2−1

)2]

yields ‖ f − fm‖2 � 1√
m
exp (−λm). Combin-

ing with Proposition 1, we obtain E(‖ f̂m − f ‖2) � 1√
m
exp (−λm) + n−1√m, and

thus Proposition 7. ��

Proof of Proposition 12. We first compute the coefficients of the centered Gaussian
density. As Hermite polynomials of odd index are odd, the coefficients with odd index
are null. We compute the coefficients with even index. Let

σ̄ 2 = (1 + σ−2)−1 = σ 2

1 + σ 2 . (38)

Note that if 2σ̄ 2 = 1, i.e., σ 2 = 1, the coefficients are null except for n = 0.
We have

∫
x2p fσ̄ (x)dx = C2pσ̄

2p with C2p = 3 × 5 × 7 × · · · × (2p − 1) = (2p)!
2p p! .

Using that (see e.g., Lebedev 1972, formula (4.9.2), p. 60)

H2 j (x) =
j∑

k=0

(−1)k(2 j)!
k!(2 j − 2k)! (2x)

2 j−2k,
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we obtain:

a2 j ( fσ ) = (2 j)!c2 j σ̄
σ

j∑

k=0

(−1)k

k!(2 j − 2k)!2
2 j−2kC2( j−k)σ̄

2( j−k)

= c2 j
σ̄

σ

(2 j)!
j ! (2σ̄ 2 − 1) j

= c2 j

(
1

1 + σ 2

)1/2
(2 j)!
j !

(
σ 2 − 1

σ 2 + 1

) j

.

Note that |(σ 2 − 1)/(1 + σ 2)| < 1. Analogously,

a2 j ( f p,σ ) = (2 j)!
j ! c2 j

(
σ̄

σ

)2p+1 j∑

k=0

(−1)k j ! 22 j−2k σ̄ 2( j−k)

k!(2 j − 2k)!C2p
C2( j−k+p)

= (2 j)!
j ! c2 j

(
σ̄

σ

)2p+1 j∑

k=0

(−1)k j !
k!( j − k)! (2σ̄

2) j−k C2( j−k+p)

C2( j−k)C2p

= (2 j)!
j ! c2 j

(
σ̄

σ

)2p+1 j∑

m=0

(−1) j−m j !
m!( j − m)! (2σ̄

2)m
C2(m+p)

C2mC2p
.

Now, we use the following result which is proved in Chaleyat-Maurel and Genon-
Catalot (2006, Lemma 3.1, p. 1459):

C2(m+p)

C2mC2p
=

p∑

r=0

m(m − 1) . . . (m − r + 1)

(
p

r

)
2r

C2r
.

After some computations, we get:

a2 j ( f p,σ ) = (2 j)!
( j − p)!c2 j

(
σ̄

σ

)2p+1

(2σ̄ 2 − 1) j−pSp where

Sp =
p∑

r=0

(n − p)! p! 2r
(n − r)! j !(p − r)!C2r

(2σ̄ 2)r (2σ̄ 2 − 1)p−r .

Therefore,

|Sp| ≤ c(p)
(
2σ̄ 2 + |2σ̄ 2 − 1|

)p
,

which allows to bound |a2 j ( f p,σ )| and ends the proof. ��
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7.6 Proof of Proposition 8

Let f ∈ Fsub(C). We have from (36),

a j ( f ) = 〈h j , f 〉 = E(h j (X + M)) where X ∼ N (0, 1), M ∼ Π,

and X, M independent,

= E
(
E(h j (X + M)|M)

) = 1
√
2π1/22 j j !E

(

M je− M2
4

)

.

Therefore

2
√

π
∑

j≥m

a2j ( f ) =
∑

j≥m

1

j !2 j
E
2
(

M je− M2
4

)

≤
∑

j≥m

1

j !2 j
E

(

M2 je− M2
2 1M2/2≤λm

)

+ E
(
1M2/2>λm

)

Let us look at the first term of the sum above.

E

⎛

⎝
∑

j≥m

M2 j

j !2 j e
− M2

2 1M2/2≤λm

⎞

⎠ = E

⎛

⎝

(
M2

2

)m

e−
M2
2

∑

j≥0

1

( j + m)!

(
M2

2

) j

1M2/2≤λm

⎞

⎠

≤ E

⎛

⎜
⎝

(
M2

2

)m

m! e−
M2
2

∑

j≥0

1

j !

(
M2

2

) j

1M2/2≤λm

⎞

⎟
⎠

= E

⎛

⎜
⎝

(
M2

2

)m

m! 1M2/2≤λm

⎞

⎟
⎠

where we used that 1/( j +m)! ≤ 1/( j ! m!). Now, gathering the two terms again, we
get

∑

j≥m

a2j ( f ) ≤ 1

2π1/2

(
(λm)m

m! + Π(|u| >
√
2λm)

)

≤ 1

2π1/2

(
(λm)m

m! + Ce−2λm/C
)

.

By Stirling’s formula

(λm)m

m! ∼ (λm)m/(
√
2πm(m/e)m) = (λe)m/

√
2πm.

We choose λ = 1/(2e); thus, the decrease of the square bias term is exponentially
fast. The choice mopt = [a log(n)] with a = eC + 1/ log(2). Combining this with
Proposition 1 gives the rate

√
log(n)/n for the L

2-risk of the estimator. ��
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7.7 Proof of Proposition 9

From Proposition 12 and formula (37), we have

∑

j≥m

a22 j ( fσ ) � 1

π

1

1 + σ 2

∑

j≥m

1√
j

(
σ 2 − 1

σ 2 + 1

)2 j

.

Now for f ∈ G(v), we get

‖ f − f2m‖2 � 1

π

∑

j≥m

1√
j

∫ v

1/v

1

1 + u2

(
u2 − 1

u2 + 1

)2 j

dΠ(u)

≤ 1

π

1√
m

∫ v

1/v

1 + u2

4u2

(
u2 − 1

u2 + 1

)2m

dΠ(u)

≤ 1

4π

1√
m

(
1 + v2

)
ρm
0

where ρ0 is given by (16). Therefore, choosing mopt = [log(n)/| log(ρ0)|] gives a
squared bias of order 1/(n

√
log(n)) and a variance of order

√
log(n)/n, thus a rate of

order
√
log(n)/n.

7.8 Proofs of Proposition 11

Using notation (21), we have:

E(‖ĝm − g‖2) = E(‖ĝm − Eĝm‖2) + ‖E(ĝm) − gm‖2 + ‖gm − g‖2

=
m−1∑

j=0

Var(â j ) +
m−1∑

j=0

R2(h j ) + ‖gm − g‖2.

First,
∑m−1

j=0 R2(h j ) = supt∈Sm ,‖t‖=1 R
2(t) and the bound for this term follows from

the following Lemma:

Lemma 1 Let t ∈ Sm and assume that (H1) and (H2) hold.
(1) If C := ∫

u2|g∗(u)|2du < +∞, then

|R(t)| ≤ Δ‖t‖‖g‖1C1/2/
√
2π.

(2) Otherwise:
|R(t)| ≤ 2

√
2‖g‖1‖g‖‖t‖Δ√

m. (39)

On the other hand, we have:

m−1∑

j=0

Var(â j ) = 1

n

m−1∑

j=0

Var

(
1

Δ
Z1h j (Z1)

)

≤ 1

nΔ
Vm .
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We need to bound z2h2j (z). To that aim, we use relation (26) for h j . We bound ξ j (x)

given by (27) as in the proof of Proposition 1 by: |ξ j (x)|2 ≤ |x |5/10, and using (28)
we obtain for j ≥ 1,

z2h2j (z) ≤ 2c22
π

z2√
j

+ 2

5

|z|7
2 j + 1

.

As a consequence

1

Δ
E

[
Z2
1h

2
j (Z1)

]
≤ 2c22

E(Z2
1)

Δ
+ 2

5(2 j + 1)

E(|Z1|7)
Δ

.

The bound on Vm given in (23) follows. ��
Proof of Lemma 1. For case (1), we refer to Comte and Genon-Catalot (2009), Propo-
sition 4.1, p. 4099.

For case (2), we have (see (21) and (18)) for t ∈ Sm ,

R(t) = 1

Δ
EZ1t (Z1) − 〈t, g〉 =

∫
t (z)μΔ(dz) − 〈t, g〉 =

∫
t (z)Eg(z − Z1)dz − 〈t, g〉

= E

(∫
t (z + Z1) − t (z)

)

g(z)dz = E

(

Z1

∫ 1

0
du

(∫
g(z)t ′(z + uZ1)dz

))

.

Thus,

|R(t)| ≤ E|Z1|‖g‖‖t ′‖.
Under (17), (H1), we have

E(|Z1|) ≤ Δ

∫
|x |n(x)dx = Δ‖g‖1, (40)

(see Proposition 3.2, p. 83 in Belomestny et al. 2015). Now, by Lemma 2 below,
‖t ′‖ ≤ √

2m‖t‖ so the proof of Lemma 1 is complete. ��
Lemma 2 ∀m ≥ 0, ∀t ∈ Sm, ‖t ′‖2 ≤ 2m‖t‖2.
Proof of Lemma 2. A function t ∈ Sm can be written t = ∑m−1

j=0 a j h j . Thus, t ′ =
∑m−1

j=0 a j h′
j . We use h′

0(x) = −h1(x)/
√
2 and Formula (35) to obtain:

√
2t ′(x) = −a0h1(x) +

m−1∑

j=1

a j (
√
jh j−1(x) − √

j + 1 h j+1(x))

= a1h0(x) + (
√
2a2 − a0)h1(x) +

m−2∑

j=2

(√
j + 1a j+1 − √

ja j−1

)
h j (x)

−am−2
√
m − 1 hm−1(x) − am−1

√
m hm(x).
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This implies, for m ≥ 2

‖t ′‖2 = 1

2

⎛

⎝a21 + (
√
2a2 − a0)

2 +
m−2∑

j=2

(√
j + 1a j+1 − √

ja j−1

)2 + (m − 1)a2m−2 + ma2m−1

⎞

⎠

≤ 1

2

(
a21 + 2a20 + 4a22)

)
+ m

2

⎛

⎝2
m−2∑

j=2

(
a2j+1 + a2j−1

)
+ a2m−2 + a2m−1

⎞

⎠

≤ 2m
m−1∑

j=0

a2j = 2m‖t‖2.

For m = 0, 1, the same inequality holds obviously. ��
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