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Abstract As demonstrated in our previous work on T4, the space of phylogenetic
trees with four leaves, the topological structure of the space plays an important role in
the non-classical limiting behaviour of the sample Fréchet means in T4. Nevertheless,
the techniques used in that paper cannot be adapted to analyse Fréchet means in the
space Tm of phylogenetic trees with m(�5) leaves. To investigate the latter, this paper
first studies the log map of Tm . Then, in terms of a modified version of this map,
we characterise Fréchet means in Tm that lie in top-dimensional or co-dimension one
strata.Wederive the limitingdistributions for the corresponding sampleFréchetmeans,
generalising our previous results. In particular, the results show that, although they
are related to the Gaussian distribution, the forms taken by the limiting distributions
depend on the co-dimensions of the strata in which the Fréchet means lie.
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100 D. Barden et al.

1 Introduction

The concept of Fréchet means of random variables on ametric space is a generalisation
of the leastmean-square characterisation of Euclideanmeans: a point is a Fréchetmean
of a probabilitymeasureμ on ametric space (M, d) if itminimises the Fréchet function
for μ defined by

x �→ 1

2

∫
M

d(x, x ′)2dμ(x ′),

provided the integral on the right side is finite for at least one point x . Note that the
factor 1/2 will simplify some later computations. The concept of Fréchet means has
recently been used in the statistical analysis of data of a non-Euclidean nature. We
refer readers toBhattacharya and Patrangenaru (2005), Bhattacharya and Patrangenaru
(2014), Dryden et al. (2014), Dryden and Mardia (1998) and Kendall and Le (2011),
as well as the references therein, for the relevance of, and recent developments in,
the study of various aspects of Fréchet means in Riemannian manifolds. The Fréchet
mean has also been studied in the space of phylogenetic trees, as motivated by Billera
et al. (2001) and Holmes (2003). It was first introduced to this space independently
by Bacak (2014) and Miller et al. (2015), which both gave methods for computing it.
Limiting distributions of sample Fréchet means in the space of phylogenetic trees with
four leaves were studied in Barden et al. (2013), and it was used to analyse tree-shaped
medical imaging data in Feragen et al. (2013), while principal geodesic analysis on
the space of phylogenetic trees, a related statistical issue, was studied in Nye (2011),
Nye (2014), and Feragen et al. (2013).

A phylogenetic tree represents the evolutionary history of a set of organisms and is
an important concept in evolutionary biology. Such a tree is a contractible graph, that is,
a connected graphwith no circuits, where one of its vertices of degree 1 is distinguished
as the root of the tree and the other such vertices are (labelled) leaves. The space Tm

of phylogenetic trees with m leaves was first introduced in Billera et al. (2001). The
important feature of the space is that each point represents a tree with a particular
structure and specified lengths of its edges in such a way that both the structure and
the edge lengths vary continuously in a natural way throughout the space. The space
is constructed by identifying faces of a disjoint union of Euclidean orthants, each
corresponding to a different tree structure. In particular, it is a topologically stratified
space and also a C AT (0), i.e. globally non-positively curved, space (cf. Bridson and
Haefliger 1999). A detailed account of the underlying geometry of tree spaces can be
found in Billera et al. (2001) and a brief summary can be found in the Appendix to
Barden et al. (2013).

As demonstrated in Basrak (2010) and Hotz et al. (2013) for T3 and in Barden
et al. (2013) for T4, the global, as well as the local, topological structure of the space
of phylogenetic trees plays an important role in the limiting behaviour of sample
Fréchet means. These results imply that the known results (cf. Kendall and Le 2011)
on the limiting behaviour of sample Fréchet means in Riemannian manifolds cannot
be applied directly. Moreover, due to the increasing complexity of the structure of
Tm as m increases, the techniques used in Barden et al. (2013) for T4 could not be
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Limiting behaviour of Fréchet means in tree spaces 101

adapted to derive the limiting behaviour of sample Fréchet means in Tm for general m.
For example, although the natural isometric embedding of T4 is in 10-dimensional
Euclidean space R

10, it is intrinsically 2-dimensional, being constructed from 15
quadrants identified three at a time along their common axes. This made it possible in
Barden et al. (2013), followingBillera et al. (2001), to represent T4 as a union of certain
quadrants embedded inR3 in such a way that it was possible to visualise the geodesics
explicitly. That is, naturally, not possible for m > 4. The need to describe geodesics
explicitly arises as follows. In a complete manifold of non-positive curvature, the
global minimum of a Fréchet function would be characterised by the vanishing of its
derivative. In tree space, as in general stratified spaces, such derivatives do not exist at
non-manifold points. However, directional derivatives for a Fréchet function, which
serve our purpose, do exist at all points and for all tangential directions. They are
defined via the log map, which is a generalisation of the inverse of the exponential
map of Riemannian manifolds, and is expressed in terms of the lengths and initial
tangent vectors of unit speed geodesics.

In this paper, we derive the expression for the log map using the geometric structure
of geodesics in Tm obtained in Owen (2011) and Owen and Provan (2011). As a
result, we are able to establish a central limit theorem for iid random variables having
probability measureμ that has its Fréchet mean lying in a top-dimensional stratum. In
this case, our central limit theorem shows that sample means behave in a predictable
way, similar to the case for arbitrary Euclidean data although with a more complex
covariance structure. In particular, our result says that, as the size of a sample increases,
the mean of that sample approaches the true mean of the underlying distribution
in a quantifiable way. This means that we can use the mean of sample data as an
approximation of the true mean as we would do with Euclidean data. This opens
the door for work on confidence intervals, such as Willis (2016). Moreover, we take
advantage of the special structure of tree space in the neighbourhood of a stratum of
co-dimension one to obtain the corresponding results when the Fréchet mean of μ lies
in such a stratum. In particular, we show that, in this case, the limiting distribution can
take one of the three possible forms, distinguished by the nature of its support. Unlike
the Euclidean case, the limiting distributions in both cases here are expressed in terms
of the log map at the Fréchet mean ofμ. This is similar to the central limit theorem for
sample Fréchet means on Riemannian manifolds (cf. Kendall and Le 2011). Although
it may appear non-intuitive, it allows us to use the standard results on Euclidean
space. For example, in the top-dimensional case, the limiting distribution is a Gaussian
distribution and so some classical hypothesis tests can be carried out in a similar fashion
to hypothesis tests for data lying in a Riemannian manifold as demonstrated in Dryden
and Mardia (1998) for the statistical analysis of shape. However, in the case of co-
dimension one, the limiting distribution is non-standard and so the classical hypothesis
tests cannot easily be modified to apply. Further investigation is required and we aim
to pursue this, as well as the applications of the results to phylogenetic trees, in future
papers.

The remainder of the paper is organised as follows. To obtain the directional
derivatives of a Fréchet function, we need an explicit expression for the log map
that is amenable to calculation. This in turn requires a detailed analysis of the geo-
desics which we carry out in the next section using results from Owen (2011) and
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102 D. Barden et al.

Owen and Provan (2011). The resulting expression (6) for the log map in Theorem 1
and its modification (9) are then used in the following two sections which study the
limiting distributions for sample Fréchet means in Tm ; Sect. 3 concentrates on the case
when the Fréchet means lie in the top-dimensional strata, while Sect. 4 deals with the
case when they lie in the strata of co-dimension one. In the final section, we discuss
some of the problems involved in generalising our results to the case that the Fréchet
means lie in strata of arbitrary co-dimension.

2 The log map on a top-dimensional stratum

The log map is the generalisation of exp−1, the inverse of the exponential map on a
Riemannian manifold. For a tree T ∗ in Tm the log map, logT ∗ , at T ∗ takes the form

logT ∗(T ) = d(T ∗, T ) v(T ) (1)

as T varies, where v(T ) is a unit vector at T ∗ along the geodesic from T ∗ to T and
d(T ∗, T ) is the distance between T ∗ and T along that geodesic. This is well defined
since Tm is a globally non-positively curved space, or C AT (0)-space (cf. Bridson and
Haefliger 1999), and so this geodesic is unique.

Note that for data in Euclidean space, since tangent vectors at different points may
be identified by parallel translation. logT ∗(T ) would be represented by the difference
T − T ∗ of the two position vectors. Then, logT (T ∗) would be its negative T ∗ − T .
However, although for convenience we shall embed Tm in a Euclidean space, that
embedding is not unique and there is no canonical relation between logT ∗(T ), which
is a vector tangent to Tm at T ∗, and logT (T ∗) which is tangent at T . The log map
can be thought of as a projection from the more complicated tree space onto a simpler
Euclidean space, or more generally onto a Euclidean cone, that has minimal distortion
around T ∗, with the amount of possible distortion increasing as trees get further from
T ∗. Specifically, the logmap is a bijection for trees in the orthant ofT ∗. For trees outside
of this orthant, multiple trees can be mapped to the same Euclidean point, including
two trees with no edges in common. Thus, we generally cannot use information about
the position of a point on the tangent space to say something about the inverse tree,
and thus the log map is primarily a mathematical tool rather than something that has
biological meaning.

To analyse this log map further, we first recall some relevant aspects of the structure
of trees and tree spaces. Apart from the roots and leaves of a tree, which are the vertices
of degree 1 mentioned above, there are no vertices of degree two and the remaining
vertices, of degree at least 3, are called internal. An edge is called internal if both
its vertices are. A tree with m labelled leaves and unspecified internal edge lengths
determines a combinatorial type. Then, Tm is a stratified space with a stratum for each
such type: a given type with k (� m − 2) internal edges determines a stratum with
k positive parameters ranging over the points of an open k-dimensional Euclidean
orthant, each point representing the tree with those specific parameters as the lengths
of its internal edges. Note that, for this paper, we shall only consider the internal edges
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Limiting behaviour of Fréchet means in tree spaces 103

v1

v2

p− 1 edges

q − 1 edges

v

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

p+ q − 2 edges

Fig. 1 The edge between vertices v1 and v2 shrinks to 0 to form a vertex of degree p + q + 2

of a tree. So by ‘edge’ we always mean ‘internal edge’ and, to simplify the notation,
we consider Tm+2, rather than Tm .

The metric on Tm+2 is induced by regarding the identification of a stratum τ with
a Euclidean orthant O as an isometry. Then each face, or boundary orthant of co-
dimension one, of O is identified with a boundary stratum σ of τ . A tree of type σ is
obtained from a tree of type τ by coalescing the vertices v1 and v2 of degree p and
q of the edge whose parameter has become zero, to form a new vertex v of degree
p + q − 2. See Fig. 1.

We are particularly interested in the top-dimensional strata. These are formed by
binary trees, in which all internal vertices have degree 3. A binary tree with m + 2
leaves has m + 1 internal vertices and m internal edges so that the corresponding
stratum has dimension m. There are (2m + 1)!! such strata in Tm+2 (cf. Schroder
1870). For these strata, the boundary relation results in two adjacent vertices of degree
3 coalescing to form a vertex of degree 4. Since each vertex of degree 4 can be formed
3 different ways, each stratum of co-dimension one is a component of the boundary
of three different top-dimensional strata. Figure 2 shows an example of these strata in
T4.

If a tree T ∗ lies in a top-dimensional stratum of Tm+2, since such a stratum can
be identified with an orthant O in R

m , we may identify the tangent space to Tm+2 at
T ∗ with R

m . Then, for each point T ∈ Tm+2, the geodesic from T ∗ to T in Tm+2
will start with a linear segment in O, which determines an initial unit tangent vector
v(T ) ∈ R

m at T ∗. Thus, we may identify the image of the log map defined in (1) as
the vector d(T ∗, T )v(T ) in Rm .

For example, the space T3 of trees with three leaves is the ‘spider’: three half
Euclidean lines joined at their origins. Denoting the length of the edge e of T by
|e|T , then d(T ∗, T ) = ||e|T ∗ − |e|T |, if T ∗ and T lie in the same orthant of T3,
and d(T ∗, T ) = |e|T ∗ + |e|T , otherwise. Thus, the log map for T3 can be expressed
explicitly as:

logT ∗(T ) =
{

(|e|T − |e|T ∗)e if T and T ∗ are in the same orthant;
−(|e|T + |e|T ∗)e otherwise,
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104 D. Barden et al.

Fig. 2 Three adjacent
top-dimensional strata in T4 and
their shared co-dimension one
stratum. A sample tree is shown
for each stratum, and the axes
are labelled by the
corresponding edge-type
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where e is the canonical unit vector determining the orthant in which T ∗ lies. Note
that we abuse notation by calling the (single) internal edge e in all 3 trees, despite
these edges dividing the leaves in different ways. The explicit expression for the log
map for the space T4 of trees with four leaves is already much more complicated than
this and was derived in Barden et al. (2013).

To obtain the expression for the log map at T ∗ for the space Tm+2 of trees with
m + 2 (m > 2) leaves, we first summarise without proofs the description, given in
Billera et al. (2001), Owen (2011), Owen and Provan (2011) and Vogtmann (2007),
of the geodesic between two given trees in Tm+2.

When an (internal) edge is removed from a tree, it splits the set of the leaves plus
the root into two disjoint subsets, each having at least two members, and we identify
the edges from different trees that induce the same split. Each edge has a ‘type’ that
is specified by the subset of the corresponding split that does not contain the root. For
example, in the tree in Fig. 3a, the edge labelled x3 has the edge-type {a, b}, while the
edge labelled x1 has the edge-type {a, b, c, d}. There are

M = 2m+2 − m − 4 (2)

possible edge-types. Twoedge-types are called compatible if they canoccur in the same
tree, and Tm+2 may be identified with a certain subset ofRM , each possible edge-type
being identified with a positive semi-axis in RM . To make this identification explicit,
we choose a canonical order of the edges by first ordering the leaves and then taking
the induced lexicographic ordering of the sets of (ordered) leaves that determine the
edges. Then, if � is a set of mutually compatible edge-types and O(�) is the orthant
spanned by the corresponding semi-axes in R

M , each point of O(�) represents a
tree with the combinatorial type determined by � and Tm+2 is the union of all such
orthants.
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Limiting behaviour of Fréchet means in tree spaces 105

Fig. 3 Trees, carrier, and
isometric embedding for
Example 1. a Tree T ∗. b Tree T .
c The geodesic between the trees
corresponding to u∗ and u is
marked with the dashed line.
The −x1,−x2,x3 octant does not
exist in tree space, but the −x2,
x3 quadrant does, so the
geodesic is restricted to lying in
the grey area. It bends at the
points p and q. d The isometric
embedding of the grey area in c
into V 2. Intuitively, this
corresponds to “unfolding” the
bends. u∗ and u are mapped to
v∗ and v. The Euclidean
geodesic between v∗ and v in
V 2 is contained in the grey area,
and thus can be mapped back
onto the geodesic in tree space

x3
x2

x1

1 2
3 4

5

r

-x3
-x2

-x1

1

2 3
4 5

r

u* = (u1*, u2*, u3*)

u = -(u1, u2, u3)

x1

x3

x2

pq

v* =(||A1||, ||A2||) 
                   =(||(u1*, u2*)||, || (u3* )||)

v =(-||B1||, -||B2||) 
           =(-||(u2)||, -||(u1,u3)||)

(a)

(c)

(d)

(b)

For a set of edges A in a tree T , define ‖A‖T =
√∑

e∈A |e|2T and write |A| for the
number of edges in A. For two given trees T ∗ and T , let E∗ and E be their respective
edge sets, or sets of non-trivial splits. Assume first that T ∗ and T have no common
edge, i.e. E∗ ∩ E = ∅. Then, the geodesic from T ∗ to T can be determined as follows.

Lemma 1 Let T ∗ and T be two trees with no common edges, lying in top-dimensional
strata of Tm+2. Then, there is an integer k, 1 � k � m, and a pair (A,B) of partitions
A = (A1, . . . , Ak) of E∗ and B = (B1, . . . , Bk) of E, all subsets Ai and B j being
non-empty, such that

(P1) for each i > j , the union Ai ∪ B j is a set of mutually compatible edges;

(P2) ‖A1‖T ∗
‖B1‖T

� ‖A2‖T ∗
‖B2‖T

� · · · � ‖Ak‖T ∗
‖Bk‖T

;
(P3) for all (Ai , Bi ), there are no non-trivial partitions C1∪C2 of Ai and D1∪ D2 of

Bi such that C2∪ D1 is a set of mutually compatible edges and ‖C1‖T ∗
‖D1‖T

<
‖C2‖T ∗
‖D2‖T

.
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106 D. Barden et al.

The geodesic is the shortest path through the sequence of orthants C = (O0, . . . ,Ok)

where

Oi = O(B1 ∪ · · · ∪ Bi ∪ Ai+1 ∪ · · · ∪ Ak) (3)

and has length ‖(‖A1‖T ∗ + ‖B1‖T , ‖A2‖T ∗ + ‖B2‖T , . . . , ‖Ak‖T ∗ + ‖Bk‖T )‖.

Note that (3) implies thatO0 = O(E∗) is the orthant in which T ∗ lies and that T is
inOk . These results, developed from Vogtmann (2007), are given in this form, though
not in a single lemma, in Owen and Provan (2011, section 2.3), where the properties
(P1), (P2) and (P3) are stated in identical terms. The edge set for Oi is denoted by E i

in the statement of Theorem 2.4 there and the formula for the length of the geodesic
is equation (1) in that statement.

Following Vogtmann (2007) and Owen and Provan (2011), respectively, we call
the orthant sequence C the carrier of the geodesic, and the pair of partitions (A,B)

the support of the geodesic. In general, the integer k and the support (A,B) need not
be unique. However, they are unique if all the inequalities in (P2) are strict (Owen and
Provan 2011, Remark, p.7) and, in this case, we shall refer to the carrier and support
as the minimal ones.

Under the above assumption, the integer k appearing in Lemma 1 is the number of
times that the geodesic includes a segment in the interior of one orthant followed by a
segment in the interior of a neighbouring orthant. Hence, the constraints 1 � k � m:
k = 1 implies that the geodesic goes through the cone point and k = m that it passes
through a sequence of top-dimensional orthants.

We can now give an isometric embedding C̃ in Rm of C ⊆ R
M with T ∗ mapped to

u∗ = (u∗
1, . . . , u∗

m) in the positive orthant, where the u∗
i > 0 represent the lengths of

the edges of T ∗, and with T mapped to u = −(u1, . . . , um) in the negative orthant,
where the ui > 0 are the lengths of the edges of T . Let (t∗1 , . . . , t∗m) be the coordinates
of T ∗ ordered by the canonical ordering given just before Lemma 1 that embeds Tm+2
in RM . Then, we can reorder the coordinates u∗

i such that the edges in A1 correspond
to the first |A1| positive semi-axes in R

m , the edges in A2 correspond to the next
|A2| positive semi-axes in R

m , etc., while the edges in B1 correspond to the first
|B1| negative semi-axes in R

m , the edges in B2 correspond to the next |B2| negative
semi-axes in R

m , etc. By (P1), the edge sets B1, . . . , Bi , Ai+1, . . . , Ak are mutually
compatible for all 0 � i � k, implying that the images of these edges in R

m are
mutually orthogonal, and so they determine an isometric embedding of Oi , defined
by (3), and hence the required isometric embedding C̃ of C. Let π be the inverse of
the permutation of the coordinates described above, so that

π : u∗ = (u∗
1, . . . , u∗

m) �→ t∗ = (t∗1 , . . . , t∗m). (4)

Example 1 Figure 3c shows the embedded geodesic and minimal carrier between the
trees T ∗ and T (see Fig. 3a, b), which correspond to the points u∗ and u, respectively.
The minimal support consists of A1 = {u∗

1, u∗
2}, A2 = {u∗

3}, B1 = {−u2}, and
B2 = {−u1,−u3}. For convenience, π is the identity permutation in this case. The
minimal carrier consists of the all positive octant determined by x1 > 0, x2 > 0 and
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Limiting behaviour of Fréchet means in tree spaces 107

x3 > 0; the 2-dimensional quadrant formed by the positive x3 and negative x2 axes;
and the all negative octant.

For any 1 � l � m, let V l be the subspace of Rl that is the union of the (closed)
orthants Pi , i = 0, . . . , l, where

Pi = {(x1, . . . , xl) ∈ R
l | x j � 0 for j � i and x j � 0 for j > i}.

For the given T ∗, T , and corresponding k from Lemma 1, there are k + 1 orthants in
the carrier of the geodesic between T ∗ and T . If k = m (the intrinsic dimension of
Tm+2), then the carrier C is isometric to C̃ = V m , withOi coinciding withPi and with
the geodesic from u∗ to u being a straight line contained in C̃. Otherwise if k < m, the
space C̃ is strictly contained in V m , and some of the top-dimensional orthants of V m

may not correspond to orthants in tree space. Additionally, the geodesic between u∗
and u in C̃ will bend at certain orthant boundaries within the ambient space V m . We
now give an isometric embedding onto V k of a subspace of C̃ containing the geodesic
in V m such that the image geodesic is a straight line.

The geodesic between u∗ and u passes through k orthant boundaries. At the i th
orthant boundary, the edges in Ai , which have been shrinking in length since the geo-
desic started at u∗, simultaneously reach length 0, and the edges in Bi simultaneously
appear in the tree with length 0 and start to grow in length. The length of each edge
in Ai changes linearly as we move along the geodesic, and thus since these lengths
all reach 0 at the same point, the ratios of these lengths to each other remain the same
along the geodesic. An analogous statement can be made for the lengths of the edges
in Bi (cf. Owen 2011, Corollary 4.3). The basic idea behind the embedding into V k is
that because the lengths of the edges in Ai , for any i , are all linearly dependent on each
other, we can represent those edges in V k using only one dimension, and analogously
for the edges in Bi .

More specifically, for 1 � i � k, let

v∗
i = (u∗|A1|+···+|Ai−1|+1, . . . , u∗|A1|+···+|Ai−1|+|Ai |),

be the projection of u∗ on the orthant O(Ai ). That is, the coordinates of v∗
i are the

lengths of the edges in Ai , ordered as chosen above. Similarly, let

vi = (u|B1|+···+|Bi−1|+1, . . . , u|B1|+···+|Bi−1|+|Bi |),

so that the coordinates of vi are the lengths of the edges in Bi , in that order. Then, the
geodesic between T ∗ and T in C is piece-wise linearly isometric with the Euclidean
geodesic between the vectors

v∗ = (‖v∗
1‖, . . . , ‖v∗

k‖) = (‖A1‖T ∗ , . . . , ‖Ak‖T ∗)

and

v = (−‖v1‖, . . . ,−‖vk‖) = (−‖B1‖T , . . . ,−‖Bk‖T )
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108 D. Barden et al.

in V k and, hence, in R
k . In particular, the Euclidean distance between these two

Euclidean points is the same as the distance between T ∗ and T in C. Thus, we have
the following result, the essence of which appears in Owen (2011, Theorem 4.10), to
which we refer readers for more detailed proof.

Lemma 2 For any given T ∗ and T in Tm+2 with no common edge and with T ∗ lying
in a top-dimensional stratum, there is an integer k, 1 � k � m, for which there are
two vectors v∗, v ∈ R

k , depending on both T ∗ and T , such that the geodesic between
T ∗ and T is homeomorphic and piece-wise linearly isometric, with the (straight)
Euclidean geodesic between v∗ and v, where v∗ lies in the positive orthant of Rk and
v in the closure of the negative orthant.

For Example 1, k = 2, and thus the grey area shown in Fig. 3c is isometrically
mapped to V 2, as shown in Fig. 3d.

In the general case where T ∗ and T have a common edge, say e, this common edge
determines, for each of the two trees, two quotient trees T ∗

i and Ti , i = 1, 2, described
as follows (cf. Owen 2011; Vogtmann 2007). The trees T ∗

1 and T1 are obtained by
replacing the subtree ‘below’ e with a single new leaf, so that e becomes an external
edge. These two replaced subtrees form the trees T ∗

2 and T2, with the ‘upper’ vertex
of the edge e becoming the new root. Then, the geodesic γ (t) between T ∗ and T is
isometric with (γe(t), γ1(t), γ2(t)), where γe is the linear path from |e|T ∗ to |e|T and
γi is the geodesic from T ∗

i to Ti in the corresponding tree space. For this, we treat
T1 and T2, the spaces of trees with no internal edges, as single points, so that any
geodesic in them is a constant path. Assuming that T ∗

i and Ti have no common edge
for i = 1 or 2, we may obtain, as above, a straightened image of each geodesic γi in
V ki with T ∗

i represented in the positive orthant and Ti in the negative one. Combining
these with the geodesic γe, which is already a straight linear segment, we have an
isometric representation of γ as a straight linear segment in R+ × V k1 × V k2 . In this
case, the sequence of strata containing the tree space geodesic between T ∗ and T is
contained in the product of the carriers for the relevant quotient trees, together with
an additional factor for the common edge. For example, if 0 < t1 < t2 < t3 < t4 < 1
and the geodesic γ1 spends [0, t2] in orthantO1, [t2, t3] in orthantO2, [t3, 1] in orthant
O3, while the geodesic γ2 spends [0, t1] in orthant P1, [t1, t4] in orthant P2, [t4, 1] in
orthant P3, then the carrier for the product geodesic would be the sub-sequence

O1 × P1,O1 × P2,O2 × P2,O3 × P2,O3 × P3

of the full lexicographically ordered sequence of nine products.
If T ∗ and T have more than one common edge, then either T ∗

1 and T1, or T ∗
2 and T2,

will have a common edge and we may repeat the process. Having done so as often as
necessary, we arrive at a sequence of orthants determined by the non-common edges of
T ∗ and T . These we relabelO0 toOk as in Lemma 1. IfO−1 is the orthant determined
by the axes corresponding to the common edges of T ∗ and T , then the sequence

O−1 × O0, O−1 × O1, . . . , O−1 × Ok
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Limiting behaviour of Fréchet means in tree spaces 109

is the carrier of the geodesic from T ∗ to T . Similarly, the support for the tree space
geodesic between T ∗ and T is found by interleaving the partitions in the supports of
the relevant quotient trees, so that property (P2) is satisfied in the combined support.
The resulting partitions A and B are then preceded by the set A0 = B0 of axes corre-
sponding to the common edges so that O−1 = O(A0) = O(B0), with the convention
that the corresponding ratio is −‖A0‖T ∗/‖B0‖T , and (3) is modified to

Oi = O(B0 ∪ B1 ∪ · · · ∪ Bi ∪ Ai+1 ∪ · · · ∪ Ak).

In this generalised context, the value k = 0 is now possible, implying that all edges
are common to T ∗ and T . In other words, they lie in the same orthant. Note that this
presentation differs slightly from that in Section 1.2 of Miller et al. (2015) in that, by
collecting all the common edges in a single member A0 = B0 of the support, we are
implicitly suppressing the axiom (P3) for that set. Note that the maximum value of the
number k, which is determined by the non-common edges of T ∗ and T , is m − |A0|
in the general case.

Definition 1 We call k, the number of changes of orthant in the uniqueminimal carrier
of the geodesic from T ∗ to T , the carrier number k(T ∗, T ) of T ∗ and T .

Clearly, k(T ∗, T ) = k(T, T ∗).
The minimal carrier and support determine the corresponding u∗, v∗

i , v
∗ and v in a

similar manner to the special case where there is no common edge between T ∗ and T
given in Lemma 2, modified to account for the common edges. For this, the first |A0|
coordinates of u∗ will be the (A0)T ∗ and those of u will be+(B0)T ; for k = k(T ∗, T )

and 1 � i � k,

v∗
i =

(
u∗|A0|+|A1|+···+|Ai−1|+1, . . . , u∗|A0|+|A1|+···+|Ai−1|+|Ai |

)
(5)

andvi ismodified similarly; and v∗ andv have additional first coordinates v∗
0 = (A0)T ∗

and v0 = (B0)T , respectively. Then, with this modification, the geodesic between T ∗
andT is homeomorphic andpiece-wise linearly isometric,with the (straight)Euclidean
geodesic between v∗ and v, where v∗ lies in the positive orthant of R|A0|+ × R

k . This
generalisation of Lemma 2 to the general case was obtained, with different notation,
in Billera et al. (2001), Owen (2011) and Vogtmann (2007). Then, the log map as
defined by (1) can be expressed using these vectors as follows.

Theorem 1 Fix T ∗ in a top-dimensional stratum of Tm+2 with coordinates t∗ =
(t∗1 , . . . , t∗m), where the ordering of the coordinates is that induced by the canonical

ordering for RM . For T ∈ Tm+2, there are vectors v∗ and v in R
|A0|+ ×R

k , where |A0|
is the number of common edges of T ∗ and T , k is the carrier number k(T ∗, T ) and v∗
lies in the positive orthant of the corresponding space, and a linear map ρ such that

logT ∗(T ) = ρ(v − v∗) = ρ(v) − t∗. (6)
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Proof Let v∗ have (|A0| + i)th coordinate ‖v∗
i ‖, i = 1, . . . , k, with the additional

initial coordinates v∗
0 when T ∗ and T have common edges, where v∗

i are as defined
by (5), and v be determined similarly. The piece-wise linear isometry that straightens
the geodesic from T ∗ to T , given in Lemma 2 for the special case as well as the above
for the general case, has an inverse on the positive orthant in R|A0|+ ×R

k . This inverse
is given by

χ : ei �→ 1

‖v∗
i ‖

v∗
i 1 � i � k, (7)

and the identity on the |A0| initial coordinates,where ei is the (|A0|+i)th standard basis
vector in R|A0|+ ×R

k . Note that, being a linear map, when A0 = ∅, χ((x1, . . . , xk)) =∑k
i=1 xi

1
‖v∗

i ‖v
∗
i , where (x1, . . . , xk) = ∑k

i=1 xi ei ∈ R
k . Although it is not expressed

precisely as it is here, the idea for a more detailed derivation of this in this case is
captured in Theorem 4.4 in Owen (2011), where χ is denoted by g0.

Since v∗ = v∗
0 + ∑k

i=1 ‖v∗
i ‖ ei , we have that χ(v∗) = u∗ and that χ maps the

initial segment of the straight geodesic in R|A0|+ ×R
k , together with its initial tangent

vector v − v∗, onto those of the geodesic in V m . The permutation π , which maps the
positive orthant in V m into Tm ⊂ R

M where M is defined by (2), is also an isometry
preserving the initial segments of the geodesics. It follows that

logT ∗(T ) = π ◦ χ(v − v∗). (8)

Noting that the maps π and χ are linear and π ◦χ(v∗) = t∗, the required result follows
by taking ρ = π ◦ χ . ��

Figure 4 shows the log map for the tree T ∗ for Example 1.
Although Tm+2 is C AT (0), logT ∗ is not a one-to-one map. In particular, if T1 and

T2 are two different trees such that k(T ∗, T1) = k(T ∗, T2) is not maximal, then it is
possible that logT ∗(T1) = logT ∗(T2), as observed in the case of T4 in Barden et al.
(2013). As another example, consider two trees T ∗, T ∈ Tm+2 with no common edges
such that the geodesic between them passes through the cone point with a given length
l. Then for any other tree T ′ with a geodesic to T ∗ of length l, passing through the
cone point, we also have that logT ∗(T ) = logT ∗(T ′).

Fig. 4 The log map for tree T ∗
in Example 1. The vector
between u∗ and logT ∗ (T ) is
shown as a dashed line. It
coincides with the geodesic
between T ∗ and T in the starting
orthant, but then continues into
the ambient space, while the
geodesic must bend to remain in
the tree space

u* = (u1*, u2*, u3*)

u = -(u1, u2, u3)

x1

x3

x2

logT*(T)
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Recalling that each component of v∗
i and vi is, respectively, the length of an edge

in Ai and Bi then, with some ambiguity in the ordering of the edges of T ∗, another
equivalent way to express logT ∗ is

logT ∗(T ) = {B̄0 − Ā0} −
k∑

j=1

‖B j‖T + ‖A j‖T ∗

‖A j‖T ∗
Ā j

where Ā j = (eT ∗)e∈A j . To derive the limiting distribution of sample Fréchet means,
the ordering must be kept explicit and independent of T . Hence, we have to use the
expression for the log map given by (8), even though it is not as transparent as this
one.

Note also that, although the definitions for both π and χ implicitly depend on the
ordering we chose for the coordinates of u∗, the composition π ◦ χ is independent of
that choice, and so the log map is well defined, as long as we chose the same ordering
for u∗ for both π and χ .

The minimal carrier that determines the maps π and χ as well as the vectors v∗
and v depends on both T ∗ and T , although we have suppressed that dependence in the
notation.However, there are onlyfinitelymany choices for the carrier number k(T ∗, T )

and theminimal support when T ∗ is fixed and T varies within a given stratum of Tm+2.
In particular, if k(T ∗, T ) remains constant in a neighbourhood of (T ∗, T ), then π and
χ do not change for small enough changes in T ∗ and T . It follows that there are only
finitelymany possibilities for the form (6) thatπ◦χ takeswhen T varies in Tm+2.Here,
by form, we mean the algebraic expression of logT ∗ as a map. That is, by ‘logT ∗(T1)
and logT ∗(T2) taking the same form’, wemean that they can be obtained using a single
algebraic expression for logT ∗ . Since the permutation π returns all the axes to their
canonical order, this expression is determined by the partition A of the edges of T ∗,
with the subsets of non-common edges possibly permuted. For example, in the case
of T4, logT ∗ only takes two possible forms, depending on whether the geodesic from
T ∗ to T passes through the cone point or not where the cone point, the origin in RM ,
represents the tree whose two edges have zero length. The two corresponding subsets
of T4 are, respectively, indicated by the unions of light and dark grey regions in Figure
3 of Barden et al. (2013) when T ∗ is the tree corresponding to (xi , x j ). The different
possibilities for the form (6) give rise to a polyhedral subdivision of tree space Tm+2,
defined as follows.

Definition 2 For a fixed T ∗ lying in a top-dimensional stratumofTm+2, the polyhedral
subdivision of tree space Tm+2, with respect to T ∗, is determined by the possible forms
that logT ∗ can take: each polyhedron of the subdivision is the closure of the set of trees
T that have a particular form for logT ∗(T ). We shall call each such top-dimensional
polyhedron a maximal cell of the polyhedral subdivision and let DT ∗ be the subset of
Tm+2 consisting of all trees that lie on the boundaries of maximal cells determined by
the polyhedral subdivision with respect to T ∗.

Note that, if the geodesics to T1 and T2 from T ∗ pass through the same sequence of
strata, then logT ∗(T1) and logT ∗(T2) take the same form. However, the converse is not
always true. For example, it is possible that T1 and T2 lie in different strata, but in the
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same maximal cell. Hence, the definition of polyhedral subdivision of Tm+2 defined
here is similar to, but coarser than, the concept of ‘vistal polyhedral subdivision’
given in section 3 of Miller et al. (2015). This is due to the fact that, while A and
B in the minimal support play a symmetric role for the geodesic between T ∗ and
T , their roles in the log map logT ∗ are asymmetric. When T varies, as long as the
corresponding partition A either is unchanged or, at most, its subsets corresponding
to the non-common edges are permuted, the algebraic expression for logT ∗ remains
the same.

This polyhedral subdivision varies continuously with respect to T ∗. If T lies in the
interior of a maximal cell of the subdivision and T ∗, itself in a top-dimensional (open)
stratum, varies in a small enough neighbourhood, then the support for T ∗ and T is
unique. Then, the derivative of the log map will be well defined.

When T lies on the boundary of a maximal cell of the subdivision, but not on a
stratum boundary, the possible supports for T ∗ and T are those determined by the
polyhedra to which that boundary belongs. However, all these supports give rise to
the same geodesic between T ∗ and T , as they must, since Tm+2 is a C AT (0)-space,
and among them will be the minimal support that we are assuming for our analysis.
Moreover, in this case, there is at least one non-minimal support for T ∗ and T with
the property that, for the corresponding v∗ and v, ‖v∗

i ‖/‖vi‖ = ‖v∗
i+1‖/‖vi+1‖ for

some i � 1.
Recall that from Definition 1 that the carrier number counts the number of orthants

that the geodesic from T ∗ to T meets in a linear segment of positive length. It will
become clear later that the set of trees T for which, for a given T ∗, the carrier number
k(T ∗, T ) is less than its possible maximum m − |A0|, where |A0| is the number of
common edges of T ∗ and T , plays a role that distinguishes the limiting distributions
of sample Fréchet means in the tree spaces from those in Euclidean space. Hence, we
introduce the following definition.

Definition 3 A point T ∈ Tm+2 is called singular, with respect to a tree T ∗ lying in
a top-dimensional stratum, if the carrier number k(T ∗, T ) of T ∗ and T is less than
m − |A0|. The set of such singular points will be denoted by ST ∗ .

The following result describes the image, under logT ∗ , in the tangent space at T ∗
of the set ST ∗ : although ST ∗ may be rather complex, its image is relatively simple.

Corollary 1 If T ∗ ∈ Tm+2 lies in a top-dimensional stratum, then the image, under
logT ∗ , of the set ST ∗ of the singular points with respect to T ∗ is contained in the union
of the hyperplanes xi t∗j = x j t∗i , 1 � i �= j � m, in R

m.

Proof The number of orthants in the minimal carrier of the geodesic from T ∗ to T is
less than m − |A0| if and only if the dimension ji of some vector v∗

i is greater than

one for i � 1. Then, χ maps the line determined by ei inR
|A0|+ ×R

k into the subspace
of Rm that is the intersection of the co-dimension one hyperplanes xi ′u∗

j ′ = x j ′u∗
i ′ in

R
m , where j1 + · · · + ji−1 < i ′ �= j ′ � j1 + · · · + ji and where the ordering of the

coordinates u∗
i ′ , and hence of the xi ′ , is as in the minimal carrier. Then, applying the

permutation π and using the same notation for the permuted x-coordinates, the result
follows. ��
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logT*(T)

u* = (u1*, u2*, u3*)

x1

x3

x2

Fig. 5 The grey area is part of the hyperplane x1 ·u∗
2 = x2 ·u∗

1, which contains some of the singular points
for the log map logT ∗ for Example 1

For example, see Fig. 5 for an illustration of one of the hyperplanes for Example 1.
To describe the limiting behaviour of sample Fréchet means, it will be more con-

venient to have a modified version of the log map, 	T ∗ , at T ∗ defined by

	T ∗(T ) = logT ∗(T ) + t∗. (9)

In the present context, where T ∗ lies in a top-dimensional stratum,	T ∗(T ) = π◦χ(v).
Note that, when T ∗ lies in a top-dimensional stratum, the map corresponding to

	T ∗ here obtained in Barden et al. (2013) in the case of T4 was expressed as the
composition of a similarly defined map on Q5, a simpler auxiliary stratified space,
with a map from Q5 to T4. Instead of the log map, that map on Q5 was expressed
in terms of the gradient of the squared distance function. The relationship between
the latter and the log map shows that the resulting expression in Barden et al. (2013)
is equivalent to the one defined here. The derivation of 	T ∗ from logT ∗ implicitly
requires that the tangent space to Tm+2 at T ∗, in which the image of logT ∗ lies, be
translated to the parallel copy R

m at the origin, in which it makes sense to add the
coordinate vector t∗. As a result, for all T̃ ∗ in the same stratum as T ∗, the image of
	T̃ ∗ will lie in this same subspace Rm .

3 Fréchet means on a top-dimensional stratum

Let μ be a probability measure on Tm+2 and assume that the Fréchet function for μ

is finite. The space Tm+2 being C AT (0) implies that the Fréchet function for μ is
strictly convex so that, in particular, the Fréchet mean of μ is unique when it exists.
In this section, we consider the case when this mean, denoted by T ∗, lies in a top-
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dimensional stratum. For this, as in the previous section, we identify any tree T̃ ∗ in
the stratum of Tm+2 in which T ∗ lies with the point in the positive orthant of Rm

having the lengths of the internal edges of T̃ ∗ as coordinates in the canonical order.
In particular, T ∗ = (t∗1 , . . . , t∗m).

First, we use the log map to give a necessary and sufficient condition for T ∗ to
be the Fréchet mean of μ as follows, generalising the characterisation of Fréchet
means on complete and connected Riemannian manifolds of non-negative curvature.
In particular, it shows that, when T is a random variable on Tm+2 with distri-
bution μ and T ∗ is in a top-dimensional stratum, then T ∗ is the Fréchet mean
of μ if and only if T ∗ is the Euclidean mean of the Euclidean random variable
	T ∗(T ).

Lemma 3 Assume that the Fréchet mean T ∗ of μ lies in a top-dimensional stratum.
Then, T ∗ is characterised by the following condition:∫

Tm+2

	T ∗(T ) dμ(T ) = T ∗. (10)

Proof It can be checked that, since T ∗ lies in a top-dimensional stratum, the squared
distance d(T ∗, T )2 is differentiable at T ∗ and its gradient at T ∗ is−2 logT ∗(T ). Thus,
as discussed in Barden et al. (2013) T ∗, lying in a top-dimensional stratum, is the
Fréchet mean of a given probability measure μ on Tm+2 if and only if∫

Tm+2

logT ∗(T ) dμ(T ) = 0.

Then, the required result follows by re-expressing the above condition for T ∗ to be
the Fréchet mean of μ in terms of 	T ∗ given by (9). ��

The derivation of the central limit theorem for Fréchet means in Tm+2 requires the
study of the change of 	T ∗ as T ∗ changes with T remaining fixed. For this we recall
that, for a fixed T , the minimal support for the geodesic between T ∗ and T determines
a particular maximal cell, in which T lies, of the polyhedral subdivision with respect
to T ∗. When the minimal support for the geodesic between T̃ ∗ and T is the same as
that for T ∗ and T , we shall say that the two resulting maximal cells correspond to
each other. We have the following result on the derivative of 	T ∗ with respect to T ∗,
noting that the derivative of the map

(x1, . . . , xl) �→ 1

‖(x1, . . . , xl)‖ (x1, . . . , xl)

is

M†
(x1,...,xl )

= 1

‖(x1, . . . , xl)‖ Il − 1

‖(x1, . . . , xl)‖3

⎛
⎜⎝

x1
...

xl

⎞
⎟⎠(

x1 · · · xl
)
,

where, in particular, when l = 1, M†
x1 = 0.
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Lemma 4 Assume that T ∗ ∈ Tm+2 lies in a top-dimensional stratum. Then, for any
fixed T ∈ Tm+2 lying in the interior of a maximal cell of the polyhedral subdivision
with respect to T ∗, 	T ∗(T ) is differentiable with respect to T ∗. Moreover, for such T , if
v∗

i is as defined in (5) prior to Theorem 1 and vi defined analogously for i = 1, . . . , k,
where k = k(T ∗, T ), then the derivative of 	T ∗(T ) at T ∗, with respect to T ∗, is given
by

MT ∗(T ) = P�
T ∗, T diag

{
v1M†

v∗
1
, . . . , vk M†

v∗
k

}
PT ∗, T (11)

where vi = ‖vi‖ and PT ∗, T denotes the matrix representing the permutation π defined
by (4).

Note that, for the sub-matrix vi M†
v∗

i
to be non-zero, v∗

i must be at least 2-dimensional

and, by definition, vi is non-positive so that T must lie in ST ∗ . In particular, if
k(T ∗, T ) = m − |A0|, in other words, if the geodesic between T ∗ and T is ‘straight’,
then the derivative of 	T ∗(T ) at T ∗ is zero. This could be seen directly: since, in
that case, the tree space geodesic between T ∗ and T would be a Euclidean geodesic
between them. Then, logT ∗(T ) = t − t∗ so that 	T ∗(T ) = t independent of t∗.

Proof By the discussion preceding the lemma, the edges common to T ∗ and T will
make no contribution to the derivative. Since the polyhedral subdivision is continuous
with respect to T ∗, it is sufficient to show that, when T̃ ∗ is sufficiently close to T ∗,
so that in particular T ∗ and T̃ ∗ lie in the same top stratum and T lies in the interior
of the corresponding maximal cells of the polyhedral subdivisions with respect to T ∗
and T̃ ∗, we have

	T̃ ∗(T ) − 	T ∗(T )

≈ (T̃ ∗ − T ∗) P�
T ∗, T diag

{
v1M†

v∗
1
, . . . , vk M†

v∗
k

}
PT ∗, T

+‖T ‖ o(‖T̃ ∗ − T ∗‖). (12)

To show (12), it is sufficient to assume that T ∗ and T have no common edge.Moreover,
since πT ∗, T , and so PT ∗, T , is a linear map, its derivative is identical with itself. Hence,

by applying the appropriate permutation to re-order the ũ∗ and u corresponding to T̃ ∗
and T when necessary, it is sufficient to show that

{	T̃ ∗(T ) − 	T ∗(T )}P�
T ∗, T

≈(ũ∗ − u∗) diag
{
v1M†

v∗
1
, . . . , vk M†

v∗
k

}
+ ‖T ‖ o(‖T̃ ∗ − T ∗‖).

Since T lies in the interior of a maximal cell of the polyhedral subdivision of
Tm+2 with respect to T ∗, then v∗

i /vi > v∗
i+1/vi+1 for all i , where all vi are negative.

By continuity, all these strict inequalities hold when v∗
i is replaced by ṽ∗

i if T̃ ∗ is
sufficiently close to T ∗. Hence, T lies in the interior of a maximal cell of the poly-
hedral subdivision of Tm+2 with respect to T̃ ∗. Thus, the only difference between
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the expressions for 	T ∗(T ) and 	T̃ ∗(T ) is that v∗ and v∗
i in the former are replaced

by ṽ∗ and ṽ∗
i , respectively, in the latter. It follows that, in this case, the difference

{	T̃ ∗(T ) − 	T ∗(T )}P�
T ∗, T can be expressed as

(
v1

(
1

‖ṽ∗
1‖

ṽ∗
1 − 1

‖v∗
1‖

v∗
1

)
, . . . , vk

(
1

‖ṽ∗
k‖

ṽ∗
k − 1

‖v∗
k‖

v∗
k

))
.

The required result follows by applying the first-order Taylor expansion to each sub-
vector component and using the formula preceding the statement of the Lemma. ��

If T lies on the boundary of a maximal cell of the polyhedral subdivision of Tm+2
with respect to T ∗, each choice of maximal cell of the polyhedral subdivision with
respect to T ∗ will determine a support for the geodesic from T ∗ to T . If we restrict the
neighbouring T̃ ∗ to move from T ∗ in a direction such that T lies in the corresponding
maximal cell of the polyhedral subdivision with respect to T̃ ∗, then the argument in the
proof for Lemma 4 still holds. Thus, 	T ∗(T ) will have all directional derivatives, at
T ∗, with respect to T ∗ having similar forms to that given in Lemma 4. However, some
different directions will require different choices of maximal cell of the polyhedral
subdivision with respect to T ∗ in which T lies. Thus, the directional derivative will
have different forms and 	T ∗(T ) will not be differentiable.

Lemma 4 enables us to obtain the limiting distribution of the sample Fréchet means
of a sequenceof iid randomvariables onTm+2 when theFréchetmeanof the underlying
probability measure lies in a top-dimensional stratum as follows, recalling that DT ∗ ,
defined in Definition 2, is the subset of Tm+2 consisting of all trees that lie on the
boundaries of maximal cells determined by the polyhedral subdivision with respect
to T ∗. On one hand, the result shows that, in this case, the limiting distribution,
being a Gaussian distribution, bears a certain similarity to that of the sample means
of Euclidean random variables. On the other hand, recalling that the derivative of
	T ∗(T ) at T ∗ is zero if T /∈ ST ∗ , it also shows that the role played by ST ∗ in the
limiting behaviour of the sample Fréchet means is reflected in the covariance structure
of the Gaussian distribution, departing from the limiting distribution of the sample
means of Euclidean random variables.

Theorem 2 Let μ be a probability measure on Tm+2 with finite Fréchet function and
with Fréchet mean T ∗ lying in a top-dimensional stratum. Assume that μ(DT ∗) = 0.
Suppose that {Ti : i � 1} is a sequence of iid random variables in Tm+2 with
probability measure μ and denote by T̂n the sample Fréchet mean of T1, . . . , Tn.
Then,

√
n(T̂n − T ∗) d−→ N (0, A�V A), as n → ∞,

where V is the covariance matrix of the random variable logT ∗(T1), or equivalently
that of 	T ∗(T1), and

A = {I − E [MT ∗(T1)]}−1 , (13)

123



Limiting behaviour of Fréchet means in tree spaces 117

assuming that this inverse exists, and where MT ∗(T ) is the m × m matrix defined by
(11).

Proof The main argument underlying the proof is similar to that of the proof in Bar-
den et al. (2013) for T4, i.e. to express the difference between the Fréchet mean of
the underlying probability measure and the sample Fréchet means in terms of the dif-
ference 	T̃ ∗(Ti ) − 	T ∗(Ti ). However, the proof in Barden et al. (2013) relies on an
explicit embedding that is only valid for T4. As a consequence of Lemma 4, we can
now achieve this for any tree space.

Since T̂n is the Fréchet sample mean of T1, . . . , Tn , then for sufficiently large n, T̂n

will be close to T ∗ a.s. (cf. Ziezold 1977) and, in particular, lie in the same stratum as
T ∗. Thus, the above results (10) and (12) give

√
n(T̂n − T ∗) = 1√

n

n∑
i=1

{	T̂n
(Ti ) − T ∗}

= 1√
n

n∑
i=1

{	T ∗(Ti ) − T ∗} + 1√
n

n∑
i=1

{	T̂n
(Ti ) − 	T ∗(Ti )}

≈ 1√
n

n∑
i=1

{	T ∗(Ti ) − T ∗} + √
n(T̂n − T ∗)1

n

n∑
i=1

MT ∗(Ti )

+ o(‖T̂n − T ∗‖) 1√
n

n∑
i=1

‖Ti‖.

Hence,

√
n(T̂n − T ∗)

{
I − 1

n

n∑
i=1

MT ∗(Ti )

}

≈ 1√
n

n∑
i=1

{
	T ∗(Ti ) − T ∗} + o(‖T̂n − T ∗‖) 1√

n

n∑
i=1

‖Ti‖.

Since {	T ∗(Ti ) : i � 1} is a sequence of iid random variables in R
m with mean T ∗

and {MT ∗(Ti ) : i � 1} is a sequence of iid random matrices, the following theorem
follows from the standard Euclidean result as in Barden et al. (2013). ��

Recalling that MT ∗(T1) = 0 for T1 not lying in the singularity set of logT ∗ , we see
that the contribution to E[MT ∗(T1)] consists of all singular points of logT ∗ . Form = 1,
i.e. the case for T3, the only possible choice for k is k = 1 = m which implies that
MT ∗(T ) ≡ 0, so that the above result for this special case is the same as that obtained in
Hotz et al. (2013). For m = 2, i.e. the case for T4, the only possible case for T lying in
the singularity set of logT ∗ is when k = 1, which corresponds to the geodesic between
T ∗ and T passing through the origin and 	T ∗(T ) = −‖T ‖ 1√

(t∗1 )2+(t∗2 )2
(t∗1 , t∗2 ). Then,

the corresponding MT ∗(T ) has the expression
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MT ∗(T ) = −‖T ‖ 1

‖T ∗‖3
(−t∗2

t∗1

) (−t∗2 t∗1
)
,

so that the above result for this case recovers that in Barden et al. (2013).
Note that μ induces, by logT ∗ , a probability distribution μ′ on the tangent space of

Tm+2 at T ∗. Then, the sample Fréchet means of μ′ are the standard Euclidean means

1

n

n∑
i=1

logT ∗(Ti ) = 1

n

n∑
i=1

{
	T ∗(Ti ) − T ∗} ,

so that the rescaled sample Fréchet means have the limiting distribution N (0, V ).
However, the sample Fréchet means of μ′ are generally different from logT ∗(T̂n), the
log images of the sample Fréchet means of μ, and there is no closed expression for
the relationship between the two.

It is also interesting to compare the result of Theorem 2 with the limiting distrib-
utions for the sample Fréchet means on Riemannian manifolds obtained in Kendall
and Le (2011). Both limiting distributions take a similar form, with the role played
by curvature in the case of manifolds being replaced here by the global topological
structure of the tree space.

4 Fréchet means on a stratum of co-dimension one

A stratum O(�) of co-dimension one corresponding to the set � of mutually com-
patible edge-types arises as a boundary face of a top-dimensional stratum when one,
and only one, internal edge of the latter is given length zero so that its two vertices
are coalesced to form a new vertex of valency four. The four incident edges determine
disjoint subsets A, B, C, X of leaves and root, where X contains the root. Then, an
additional internal edge may be introduced to �, namely α, β or γ that correspond,
respectively, to the sets of leaves A ∪ B, A ∪ C or B ∪ C . This gives top-dimensional
strata O(� ∪ α), O(� ∪ β) or O(� ∪ γ ), all of whose boundaries contain the stra-
tumO(�). Moreover, these are the only such top-dimensional strata. For example, in
Fig. 2, the leaves and root subsets are A = {a, b}, B = {c}, C = {d}, and X = {r},
while the sets of edge-types are � = {{a, b}}, α = {{c, d}}, β = {{a, b, d}} and
γ = {{a, b, c}}.

If A > B > C is the canonical order of the sets of leaves, then α < β < γ

is the induced order of the edges and corresponding semi-axes and, if we write the
coordinates of a tree T ∗ in O(�) as (t∗2 , . . . , t∗m), we can write the coordinates of
trees in the neighbouring orthants as (t∗α, t∗β, t∗γ , t∗2 , . . . , t∗m) where precisely two of
t∗α, t∗β and t∗γ are zero, since the remaining m − 1 edge-types are common to all the
trees involved in these three orthants and their common boundary component. Note
however that, although the coordinates (t∗α, t∗β, t∗γ ) and (t∗2 , . . . , t∗m) can be chosen in
canonical order, the resulting sequence (t∗α, t∗β, t∗γ , t∗2 , . . . , t∗m) will not in general be
in canonical order.

It is clear now that the tree space Tm+2 is not locally a manifold at any tree in the
strata of co-dimension one. However, the stratification enables us to define, at a tree in

123



Limiting behaviour of Fréchet means in tree spaces 119

a stratum of positive co-dimension, its tangent cone (cf. Bridson and Haefliger 1999)
to consist of all initial tangent vectors of smooth curves starting from that tree. Then,
the tangent cone to Tm+2 at a tree in a stratum of co-dimension one is an open book
(cf. Hotz et al. 2013) with three pages extending each of the three strata and with the
stratum of co-dimension one in which the tree lies being extended to form its spine.

The definition of the log map (1) applies equally to a tree T ∗ in a stratum σ of
co-dimension one: if the geodesic from T ∗ to T passes through one of the three strata
whose boundary includes σ , the unit vector component of logT ∗(T ) is taken in the
same direction in the page of the tangent book that corresponds to that stratum. The
scalar component of the log map is still the distance between the trees. Similarly, the
definition (9) for 	T ∗ remains valid in this case.

From now on, we assume that T ∗ lies in a stratum O(�) of co-dimension one.
Although the squared distance d(T ∗, T )2 is no longer differentiable at T ∗, it has
directional derivatives along all possible directions. Hence, the condition for T ∗ to be
the Fréchet mean of a probability measure μ on Tm+2, i.e. the condition for T ∗ to
satisfy

∫
Tm+2

d(T ∗, T )2 dμ(T ) <

∫
Tm+2

d(T ′, T )2 dμ(T ) for any T ′ �= T ∗,

becomes that the Fréchet function forμ has, at T ∗, non-negative directional derivatives
along all possible directions. To investigate the latter condition,we label the three strata
joined at the stratumO(�), of co-dimension one, in which T ∗ lies as the α-, β- and γ -
strata and denote by logα

T ∗ , log
β
T ∗ and log

γ

T ∗ , respectively, the modifications of the map
logT ∗ that agree with logT ∗ on the domains for which the image lies in the pages of the
tangent book tangent to the α-, β- and γ -strata, respectively, and are zero elsewhere.
That is, for example,

logα
T ∗(T ) =

⎧⎨
⎩
logT ∗(T ) if T is such that logT ∗(T ) lies in the page of the

tangent book tangent to the α-orthant
0 otherwise.

Write eα , eβ and eγ for the outward unit vectors in the tangent book at T ∗ lying in the
page tangent to the α-, β- and γ -strata, respectively, and orthogonal to its spine, and
define

Ii =
∫
Tm+2

〈logi
T ∗(T ), ei 〉 dμ(T ), i = α, β, γ.

We also define logs
T ∗ to be the modification of logT ∗ with respect to the spine of the

tangent book, the tangent space to O(�), analogous to the above logi
T ∗ . Then, we

have the following characterisation of T ∗ in a stratum of co-dimension one to be the
Fréchet mean of μ, in terms of the derivatives of the Fréchet function along the three
directions orthogonal to the tangent space to O(�), as well as the Euclidean mean of
logs

T ∗(T ), where T is a random variable on Tm+2 with distribution μ.
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Lemma 5 With the notation and definition above, a given tree T ∗ in a stratum O(�)

of co-dimension one is the Fréchet mean of a given probability measure μ on Tm+2 if
and only if

Iα � Iβ + Iγ , Iβ � Iγ + Iα, Iγ � Iα + Iβ (14)

and
∫
Tm+2

logs
T ∗(T ) dμ(T ) = 0. (15)

Proof Recall that since T ∗ ∈ O(�), the condition for T ∗ to be the Fréchet mean
of a probability measure μ on Tm+2 is that the Fréchet function for μ has, at T ∗,
non-negative directional derivatives along all possible directions.

For any vector w at T ∗ which is tangent to O(�), the non-negativity of the direc-
tional derivative along w can be expressed as

∫
Tm+2

〈logs
T ∗(T ), w〉 dμ(T ) � 0. Since

−w also tangent to O(�) at T ∗, this inequality must be an equality for all such w,
which gives (15). Hence, by linearity, the non-negativity of directional derivatives, of
the Fréchet function for μ, at T ∗ along all possible directions may be characterised
by requiring the non-negativity of the directional derivatives along the eα , eβ and eγ

directions, together with (15). However, analogously to the deduction in Barden et al.
(2013), it can be checked that the requirement for the directional derivative along each
of the eα , eβ and eγ directions to be non-negative is, respectively, equivalent to each
of the inequalities (14). ��

To see the relation between the inequalities (14) and the asymptotic behaviour of
sample Fréchet means, wewill use a foldingmap Fα (cf. Hotz et al. 2013) that operates
on the tangent book at T ∗. The map Fα folds the two pages that are tangent to the β-
and γ -strata onto each other, so that they form the complement inRm of the closure of
the page tangent to the α-stratum. Define Fβ and Fγ similarly. Then, Fα ◦ logT ∗ maps
Tm+2 toRm and, in fact, is the limit of logT̃ ∗ when T̃ ∗ tends to T ∗ from the α-stratum.
In addition, we modify the definition (7) of χT ∗, T (ei ) to be π−1

T ∗, T (eα) when, and only
when, the v∗

i in (7) contains t∗α and is 1-dimensional. With this modification and by
noting that the argument leading to Lemma 2, as well as its result, still hold when T ∗
lies in a stratum of co-dimension one, the results of Theorem 1 and Lemma 4 can be
extended to obtain the expression for Fα ◦ logT ∗ and its derivative, and the analogues
with β or γ replacing α, when the necessary care is taken of which stratum is to contain
the initial geodesic. Moreover,

∫
Tm+2

〈Fα ◦ logT ∗(T ), eα〉 dμ(T ) = Iα − Iβ − Iγ . (16)

These observations lead to the following lemma which extends the results obtained
in Hotz et al. (2013) for open books and in Barden et al. (2013) for T4 and relates
the Fréchet means of large samples avoiding a stratum to the strict-positivity of the
derivative of the Fréchet function along the corresponding orthogonal direction to the
tangent space to O(�).
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Lemma 6 Let T ∗ be the Fréchet mean of a given probability measure μ on Tm+2,
and lie in a stratum O(�) of co-dimension one. Assume that μ(DT ∗) = 0, where DT ∗
is defined in Definition 2, and that, at T ∗, Iα < Iβ + Iγ . If {Ti : i � 1} is a sequence
of iid random variables in Tm+2 with probability measure μ then, for all sufficiently
random large n, the sample Fréchet mean T̂n of T1, . . . , Tn cannot lie in the α-stratum.

Proof Since T̂n converges to T ∗ a.s. as n tends to infinity (cf. Ziezold 1977) we only
need to show that, for all sufficiently large n, T̂n cannot lie in the neighbourhood of
T ∗, restricted to the α-stratum.

Consider the probabilitymeasureμα induced fromμ by Fα◦logT ∗ on the Euclidean
space. Then, under the given conditions, it follows from (16) that the Euclidean mean
of μα lies on the open half of the Euclidean space complement to the page tangent
to the α-stratum (cf. also Hotz et al. (2013)). Thus, for all sufficiently large n, the
Euclidean mean of the induced random variables Fα ◦ logT ∗(T1), . . . , Fα ◦ logT ∗(Tn),

T̂ α
n = 1

n

n∑
i=1

Fα ◦ logT ∗(Ti ),

does not lie in the closed half of this Euclidean space where the page tangent to the
α-stratum lies. This implies that, for all sufficiently large n,

〈T̂ α
n , eα〉 < 0. (17)

If it were possible that, for arbitrarily large n, T̂n lies in the α-stratum, we could
obtain a contradiction. Firstly, noting the observations prior to the lemmaand following
the arguments of the proof for Lemma 4, for all sufficiently large n, we have

1

n

n∑
i=1

	T̂n
(Ti ) = 1

n

n∑
i=1

Fα ◦ 	T ∗(Ti ) + (T̂n − T ∗)1
n

n∑
i=1

MT ∗(Ti )

+ o(‖T̂n − T ∗‖)1
n

n∑
i=1

‖Ti‖,
(18)

where MT ∗(T ) is given by (11) and Fα ◦	T ∗ = Fα ◦ logT ∗ +T ∗. However, on the one
hand, since 1

n

∑n
i=1 	T̂n

(Ti ) = T̂n and since T̂n lies in the α-stratum, 〈T̂n, eα〉 > 0, so
that

〈
1

n

n∑
i=1

	T̂n
(Ti ), eα

〉
> 0. (19)

While, on the other hand, it follows from 〈T ∗, eα〉 = 0 and from (17) that

〈
1

n

n∑
i=1

Fα ◦ 	T ∗(Ti ), eα

〉
= 〈T̂ α

n , eα〉 < 0. (20)
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It can also be checked that

MT ∗(Ti ) eα = vα
i

‖v∗
i,s‖

eα,

where vα
i = vi,s , if tα corresponds to a coordinate of v∗

i,s and if the dimension of v∗
i,s

is greater than one, and vα
i = 0 otherwise. Then, since vα

i � 0, for each i

〈(T̂n − T ∗) MT ∗(Ti ), eα〉 = vα
i 〈T̂n, eα〉 � 0. (21)

Equations (20) and (21) together imply that, for all sufficiently large n, the
eα-component of the right hand side of (18) is negative, which contradicts (19). ��

With the result of Lemma 6, we now have the limiting distribution of the sample
Fréchet means on Tm+2 given by the next theorem, which is the generalisation of the
result for T4 given in Theorem 2 in Barden et al. (2013). In particular, it shows that
the limiting distribution can take any of four possible forms, all related to a Gaussian
distribution, depending on the number of the strictly positive derivatives of the Fréchet
function along the three directions orthogonal to the tangent space toO(�). For clarity,
we have assumed in the following that the coordinates (ti , t2, . . . , tm), i = α, β, γ ,
discussed at the beginning of the section are all in the canonical order, so that they give
the coordinates for trees in each of the three strata. Otherwise, a further permutation
of the coordinates, which we have suppressed, will be necessary to bring them into
canonical order and so to validate the result.

Theorem 3 Let T ∗ in a stratum O(�) of co-dimension one be the Fréchet mean of a
given probability measure μ on Tm+2. Assume that μ(DT ∗) = 0, whereDT ∗ is defined
in Definition 2. Let further {Ti : i � 1} be a sequence of iid random variables in Tm+2
with probability measure μ and write T̂n for the sample Fréchet mean of T1, . . . , Tn.

(a) If all three inequalities in (14) are strict then, for all sufficiently large n, T̂n will
lie in the stratum O(�) and the sequence

√
n{( ˆtn

2 , . . . , ˆtn
m) − (t∗2 , . . . , t∗m)} of

the coordinates of
√

n{T̂n − T ∗} on the spine will converge in distribution to
N (0, A�

s Vs As) as n → ∞, where Vs is the covariance matrix of the random
variable logs

T ∗(T1), As = P�
s APs, Ps is the projection matrix to the subspace of

R
m with the first coordinate removed and A is as given in (13).

(b) If the first inequality in (14) is an equality and the other two are strict then, for
all sufficiently large n, T̂n will lie in the α-stratum and

√
n{T̂n − T ∗} d−→ (max{0, η1}, η2, . . . , ηm), as n → ∞,

where (η1, . . . , ηm) ∼ N (0, A�V A), V is the covariance matrix of Fα◦logT ∗(T1)
and A is as in (13) with t∗1 = 0.

(c) If the first two inequalities in (14) are equalities and the third is strict then, for all
sufficiently large n, T̂n will lie either in the α-stratum or in the β-stratum and the
limiting distribution of

√
n{T̂n − T ∗}, as n → ∞, will take the same form as that
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of (η1, . . . , ηm) above, where the coordinates of T̂n are taken as ( ˆtn
α , ˆtn

2 , . . . , ˆtn
m),

respectively (− ˆtn
β , ˆtn

2 , . . . , ˆtn
m), if T̂n is in the α-stratum, respectively the β-stratum.

(d) If all the equalities in (14) are actually equalities, then we have the same result
as in (a).

Proof (a) By Lemma 6, when n is sufficiently large, T̂n must lie in the stratumO(�) of
co-dimension one so that it has zero first coordinate, i.e. T̂n = (0, ˆtn

2 , . . . , ˆtn
m). Noting

that Fα ◦ logs
T̂n

= logs
T̂n
, the result (15) of Lemma 5 shows that ˆtn

i , i = 2, . . . , m,

are the respective coordinates of
1

n

∑n
i=1 Fα ◦ 	T̂n

(Ti ), the sample Euclidean mean

of Fα ◦ 	T̂n
(T1), . . . , Fα ◦ 	T̂n

(Tn). Then, a modification of the proof of Theorem 2
to restrict it to the relevant coordinates of {Fα ◦ 	T̂n

(Ti ) : i � 1} gives the required
limiting distribution of

√
n{( ˆtn

2 , . . . , ˆtn
m) − (t∗2 , . . . , t∗m)}.

(b) We deduce from the assumed strict inequalities, from (15) and (16) and from
Lemma 6 that T ∗ is the Euclideanmean of Fα◦	T ∗(T1) and that, when n is sufficiently
large, T̂n can only lie in the closure of the α-stratum, so that it has coordinates T̂n =
( ˆtαn , ˆtn

2 , · · · ˆtn
m).

Write

F̃α ◦ 	T̂n
(T ) =

{
	T̂n

(T ) if t̂ n
α > 0

Fα ◦ 	T̂n
(T ) if t̂ n

α = 0.
(22)

Then, F̃α ◦ 	T̂n
(T ) lies in R

m and, by (15), t̂ n
j , j = 2, . . . , m, are the respective

coordinates of
1

n

∑n
i=1 F̃α◦	T̂n

(Ti ). To see relationship between
1

n

∑n
i=1 F̃α◦	T̂n

(Ti )

and ˆtn
α , we note that, if ˆtn

α > 0,

1

n

n∑
i=1

F̃α ◦ 	T̂n
(Ti ) = 1

n

n∑
i=1

	T̂n
(Ti ) = T̂n, (23)

where the first equality follows from the definition of F̃α ◦ 	T̂n
(T ) and the second

follows from Lemma 3 as T̂n lies in a top-dimensional stratum. Hence,

〈
1

n

n∑
i=1

F̃α ◦ 	T̂n
(Ti ), eα

〉
= 〈T̂n, eα〉 = ˆtαn .

On the other hand, if ˆtαn = 0, then T̂n lies in O(�) and

1

n

n∑
i=1

F̃α ◦ 	T̂n
(Ti ) = 1

n

n∑
i=1

Fα ◦ 	T̂n
(Ti ).
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Applying Lemma 5 and (16) to the empirical distribution centred on T1, . . . , Tn with
equal weights 1/n, we also have

〈
1

n

n∑
i=1

F̃α ◦ 	T̂n
(Ti ), eα

〉
� 0.

Thus,

t̂ n
α = max

{
0,

〈
1

n

n∑
i=1

F̃α ◦ 	T̂n
(Ti ), eα

〉}
.

Now, similarly to the proofs of Theorem 2 and Lemma 6, the observations prior to
Lemma 6 imply that

1√
n

n∑
i=1

{
F̃α ◦ 	T̂n

(Ti ) − T ∗}

= 1√
n

n∑
i=1

{
Fα ◦ 	T ∗(Ti ) − T ∗} + 1√

n

n∑
i=1

{
F̃α ◦ 	T̂n

(Ti ) − Fα ◦ 	T ∗(Ti )
}

≈ 1√
n

n∑
i=1

{
Fα ◦ 	T ∗(Ti ) − T ∗} + 1√

n
(T̂n − T ∗)

n∑
i=1

MT ∗(Ti ) (24)

+ o(‖T̂n − T ∗‖) 1√
n

n∑
i=1

‖Ti‖,

where MT ∗(T ) is given by (11). Since the first coordinate of T ∗ is zero, so too are
the entries, except for the diagonal one, in the first row and column of MT ∗(T ) and
so also are the corresponding entries in the matrix A. Moreover, noting the comments
following Lemma 4 and the definition of M† prior to that lemma, we see that the first
diagonal entry of MT ∗(T ) is always non-positive. Thus, the first diagonal entry of A
must be positive, so that this is also the case for {I − 1

n

∑n
i=1 MT ∗(Ti )}−1, when n is

sufficiently large.
Thus, when ˆtn

α > 0, it follows from (23) and (24) that

√
n(T̂n − T ∗) ≈ 1√

n

n∑
i=1

{
Fα ◦ 	T ∗(Ti ) − T ∗}

{
I − 1

n

n∑
i=1

MT ∗(Ti )

}−1

+ o(‖T̂n − T ∗‖) 1√
n

n∑
i=1

‖Ti‖.

In particular, for all sufficiently large n, the first coordinate of the random vector given
by the first term on the right is positive. When ˆtn

α = 0, the above approximation
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still holds except for the first coordinate. In that case, 〈( ˆTn − T ∗)MT ∗(Ti ), eα〉 = 0,
following from the form of MT ∗(T ) noted above, and by (24), for sufficiently large n,

〈
1√
n

n∑
i=1

{
Fα ◦ 	T ∗(Ti ) − T ∗} , eα

〉
� 0

up to higher order terms, which is equivalent to

〈
1√
n

n∑
i=1

{
Fα ◦ 	T ∗(Ti ) − T ∗}

{
I − 1

n

n∑
i=1

MT ∗(Ti )

}−1

, eα

〉
� 0

up to higher order terms. Hence, for sufficiently large n, we have

√
n(T̂n − T ∗) ≈ (max{0, ηn

1}, ηn
2 , . . . , η

n
m),

where

(ηn
1 , η

n
2 , . . . , η

n
m) = 1√

n

n∑
i=1

{
Fα ◦ 	T ∗(Ti ) − T ∗}

{
I − 1

n

n∑
i=1

MT ∗(Ti )

}−1

,

so that the required result follows from a similar argument to that of the proof for
Theorem 2.

(c) In this case, it follows from Lemma 5 that T ∗ is the Euclidean mean both of
Fα ◦ 	T ∗(T1) and of Fβ ◦ 	T ∗(T1). Moreover, the integral Iγ becomes zero and so,
since the integrand is non-negative, the support of the measure on the tangent book at
T ∗ induced by μ is contained in the union of the leaves tangent to the α- and β-strata
together with the spine.

It is nowmore convenient to represent the union of theα- andβ-strata by coordinates
in the two orthants {(t1, . . . , tm) : t2, . . . , tm � 0} of Rm . For this, we map:

(tα, t2, . . . , tm) �→ (tα, t2, . . . , tm) and (tβ, t2, . . . , tm) �→ (tβ, t2, . . . , tm)R,

where R = diag{−1, Im−1}. Similarly, we define maps 	̃(t1,...,tm )(T ) to accord with
this by 	̃(−tβ ,t2,...,tm )(T ) = 	(tβ ,t2,...,tm )(T )R, while 	̃(tα,t2,...,tm ) = 	(tα,t2,...,tm ).

Since 	(0α,t2,...,tm )(T ) = 	(0β ,t2,...,tm )(T )R, the map 	̃ is indeed a.s. well defined
for points (0, t2, . . . , tm). Clearly,

	̃(t1,t2...,tm )(T ) =
{

F̃α ◦ 	(t1,t2,...,tm )(T ) if t1 � 0
F̃β ◦ 	(−t1,t2,...,tm )(T )R if t1 � 0
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where F̃α , similarly F̃β , is defined by (22). Under this new coordinate system, since
Fα ◦ 	T ∗(T1) = Fβ ◦ 	T ∗(T1)R a.s., we have in particular that

T ∗ =
∫
Tm+2

	̃(0,t∗2 ,...,t∗m )(T ) dμ(T ). (25)

By Lemma 6, the given assumption also implies that, for sufficiently large n, T̂n

will a.s. lie either in the α-stratum or in the β-stratum. If T̂n lies in the α-stratum, then
ˆtn
α > 0 and

( ˆtαn , t̂2n , . . . , ˆtn
m) = 1

n

n∑
i=1

	T̂n
(Ti ) = 1

n

n∑
i=1

	̃
( ˆtαn , ˆt2n ,..., ˆtm

n )
(Ti ) (26)

and, if T̂n lies in the β-stratum with (original) coordinates T̂n = (− ˆtn
β ,− ˆtn

2 , . . . , ˆtn
m),

then

(−t̂ n
β ,− ˆtn

2 , . . . ,− ˆtn
m) = 1

n

n∑
i=1

	T̂n
(Ti )R = 1

n

n∑
i=1

	̃
(− ˆtn

β ,− ˆtn
2 ,...,− ˆtn

m )
(Ti ). (27)

If T̂n lies on the stratum O(�) of co-dimension one then, by applying the argument
in (b) to both ˆtn

α = 0 and ˆtn
β = 0, we also have

(0,− ˆtn
2 , . . . ,− ˆtn

m) = 1

n

n∑
i=1

	
(0α,− ˆtn

2 ,...,− ˆtn
m )

(Ti ) = 1

n

n∑
i=1

	̃
(0, ˆtn

2 ,..., ˆtn
m )

(Ti ) a.s..

(28)

Recalling that, under the new coordinate system,

T̂n ≡
{

( ˆtαn , t̂2n , . . . , ˆtm
n ) if T̂n is in the α-stratum

(− ˆtn
β ,− ˆtn

2 , . . . ,− ˆtn
m) if T̂n is in the β-stratum

we have by (25), (26), (27) and (28) that, in terms of the new coordinates,

√
n{T̂n − T ∗} = 1√

n

n∑
i=1

{
	̃T ∗(Ti ) − (0, t∗2 , . . . , t∗m)

}

+ 1√
n

n∑
i=1

{
	̃T̂n

(Ti ) − 	̃T ∗(Ti )
}

.

Hence, since (24) still holds under this new coordinate system when F̃α ◦ 	T̂n
and

Fα ◦ 	T ∗ there are replaced by 	̃T̂n
and 	̃T ∗ , respectively, a similar argument to that
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of the proof for Theorem 2 shows that the central limit theorem now takes the required
form.

(d) Noting that all integrands in (14) are non-negative, the three equalities will
together imply that logT ∗(T1) = logs

T ∗(T1) a.s., so that for i = α, β, γ

〈
n∑

i=1

{
Fi ◦ 	T ∗(Ti ) − T ∗} , ei

〉
= 0 a.s.. (29)

On the other hand, if it were possible that, for arbitrarily large n, T̂n lies in one of
the α- β- or γ -strata, say the α-stratum, then 〈T̂n − T ∗, eα〉 > 0. On the other hand,
since

T̂n − T ∗ = 1

n

n∑
i=1

{
	T̂n

(Ti ) − T ∗}

≈ 1

n

n∑
i=1

{
Fα ◦ 	T ∗(Ti ) − T ∗} + 1

n
(T̂n − T ∗)

n∑
i=1

MT ∗(Ti ),

and since, as noted in (b), the first diagonal element of MT ∗(Ti ) is non-positive and
the remaining entries in the first row and column of MT ∗(Ti ) are all zero, we have by
(29) that

〈T̂n − T ∗, eα〉 ≈
〈
1

n
(T̂n − T ∗)

n∑
i=1

MT ∗(Ti ), eα

〉
� 0.

This contradiction implies that, for all sufficiently large n, T̂n must lie in the stratum
O(�) of co-dimension one. Thus, the argument for (a) implies that, when the inequal-
ities in (14) are all equalities, the central limit theorem for the sample Fréchet means
takes the same form as that when the three inequalities are all strict. ��

Similar to the note at the end of the previous section, one can also consider the
distribution μ′, induced by logT ∗ from μ on the tangent book of Tm+2 at T ∗. Then,
one can apply the result of Hotz et al. (2013) to obtain the limiting distribution of
the sample Fréchet means of μ′. Again, although the limiting distribution obtained in
this way retains the local topological feature of the space, the influence of the global
topological structure is lost. More importantly, since there is no clear relationship
between the sample Fréchet means ofμ andμ′, the limiting distribution for the former
cannot be easily deduced from that for the latter.

5 Strata of higher co-dimension

The structure of tree space in the neighbourhood of a stratum of higher co-dimension
is basically similar to, but in detail rather more complex than, that of a stratum of
co-dimension one. For example, a stratum σ of co-dimension l, where 2 � l � m,
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corresponds to a set of m − l mutually compatible edge-types. It arises as a boundary
(m − l)-dimensional face of a stratum τ of co-dimension l ′, where 0 � l ′ < l and
when the internal edges of the trees in σ are a particular subset of m − l of the internal
edges of the trees in τ . For this situation, we say that σ bounds τ and τ co-bounds σ .

Recall from the previous section that the tangent cone to Tm+2 at a tree T in σ

consists of all initial tangent vectors to smooth curves starting from T , the smoothness
only being one-sided at T . For simplicity assume, without loss of generality, that
under the isometric embedding of Tm+2 in RM all trees in σ have zero for their first l
coordinates. Then, the tangent cone at T has a stratification analogous to that of Tm+2
itself in the neighbourhood of T : for each stratum τ of co-dimension l ′ that co-bounds
σ in Tm+2 there is a stratum (Rl−l ′

τ )+ ×R
m−l in the tangent cone at T , which may be

identified with a subset of the full tangent space of RM at T , where Rm−l is the (full)
tangent subspace to σ at T and (Rl−l ′

τ )+ is the orthant determined by the edge-types
that have positive length in τ but zero length in σ . For example, the cone point in T4
is a stratum of co-dimension two. Its tangent cone can be identified with T4 itself.
This rather involved structure of the tangent cone results in a much more complicated
description of the log map and, consequently, of its behaviour. Nevertheless, with the
above conventions, it is possible to generalise our expression for the log map to this
wider context and hence to obtain analogues of Theorem 1 as well as Lemma 4. These
results can then be used to describe, in a fashion similar to those of Lemmas 5 and 6,
certain limiting behaviour of sample Fréchet means when their limit lies in a stratum
of higher co-dimension. For example, the limiting behaviour of sample Fréchet means
in T4 when the true Fréchet mean lies at the cone point has been studied in Barden
et al. (2013). The picture given there is incomplete and, although those results can
be further refined and improved, it is clear that a complete description of the limiting
behaviour of sample Fréchet means in the wider context is still a challenge and the
global topological structure of the space will play a crucial role.
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