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Abstract We define a mixed topology on the fiber space U, @" L" () over the space
M(2) of all finite non-negative measures (. on a separable metric space 2 provided
with Borel o -algebra. We define a notion of strong continuity of a covariant n-tensor
field on M (£2). Under the assumption of strong continuity of an information metric, we
prove the uniqueness of the Fisher metric as information metric on statistical models
associated with €2. Our proof realizes a suggestion due to Amari and Nagaoka to derive
the uniqueness of the Fisher metric from the special case proved by Chentsov by using
a special kind of limiting procedure. The obtained result extends the monotonicity
characterization of the Fisher metric on statistical models associated with finite sample
spaces and complement the uniqueness theorem by Ay—Jost—-Lé-Schwachhofer that
characterizes the Fisher metric by its invariance under sufficient statistics.

Keywords Monotonicity of the Fisher metric - Chentsov’s theorem - Mixed topology

1 Introduction

Recent successful applications of information geometry, see e.g. Amari (1987), Amari
and Nagaoka (2000), Ay et al. (2011), Shahshahani (1979), where the Fisher metric
plays a fundamental role, motivate us to find an answer to the following important
question. Is there another metric on statistical models with natural properties, which
we could name information metric?
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Intuitively, information metric should reflect the amount of non-negative informa-
tion of a statistical model, moreover

e it should measure “information loss” associated with a data processing and this
information loss is a non-negative quantity (Chentsov 1978, Axiom A);

e it must be invariant under sufficient statistics, that is, mappings between sample
spaces that preserve all information about the parameter x.

In statistical decision theory, a data processing is a statistical decision rule, which
can be deterministic or randomized. A deterministic decision rule is a measurable
map, which is also called a statistic. An indeterministic decision rule is a Markov
transition distribution (Chentsov 1982). Recently, Ay—Jost-Lé-Schwachhofer showed
that a transformation between statistical models which is associated with a Markov
transition distribution is a composition of the inverse of a transformation, which is
associated with a sufficient statistic, and a transformation which is associated with a
statistic (Ay et al. 2015, Theorem 4.10). Hence, assuming the condition of invariance
under sufficient statistics, the “information loss” condition is reduced to the case where
data processing is associated with a statistic.

Using the concept of a continuous local statistical covariant tensor field on statistical
models (Ay et al. 2015, Definition 2.8), see also Definition 10 below, and utilizing the
above discussion, we propose the following.

Definition 1 Given a class {2} of measure spaces, an information metric on sta-
tistical models (Definition 6), or more generally, on parametrized measure models
(M, 2, i, p) where Q € {Q} is a continuous local statistical non-negative definite
quadratic form Fy, @, p) (Definitions 8, 9, 10) that satisfies the following two con-
ditions:

1. the “information 108s” F(ar,Q, ., p) — F(M,Q1 k. (10).4x(p)) 15 @ nON-negative definite
quadratic form for any statistic k : Q — Q;

2. the “information 10SS” Fy. Q. i, p) — F(M, Q1 ks (). (p)) 18 Z€T0 (quadratic form) if
Kk 1is sufficient with respect to the parameter x € M.

Each of the conditions (1) and (2) in Definition 1 is natural and has its own appeal.
The condition (2) has been considered in Ay et al. (2015) as a criterion for a natural
metric on parametrized measure models. The condition (1) is simpler formulated
than the condition (2), since it does not depend on the notion of a sufficient statistic,
that depends on a statistical model under consideration and depends on the notion
of information implicitly. (For a modern definition of a sufficient statistic we refer
the reader to Ay et al. (in preparation), where Ay—Jost-Lé—Schwachhofer propose a
geometric definition of a sufficient statistic associated with a (signed) parametrized
measure model in terms of Banach manifolds in consideration, which agrees with the
old concept of sufficient statistics that uses the Fisher—-Neyman characterization.)

In 1972 Chentsov proved that on statistical models (M, 2, 1, p) associated with
finite sample spaces €2 the Fisher metric g/ (Example 11) is a unique metric, up to a
multiplicative constant, that satisfies (2) (Chentsov 1982). In Ay et al. (2015, Corol-
lary 4.11), for finite sample spaces €2, we derived the uniqueness (up to a multiplicative
constant) of a metric that satisfies the condition (1) on statistical models associated
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with € from the uniqueness of a metric on statistical models that satisfies the condition
(2) on €2, see Proposition 25 and the Appendix at the end of this note for a discussion
on the Chentsov theorem. The converse statement, every metric that satisfies the con-
dition (2) also satisfies the condition (1), follows from the monotonicity theorem for
the Fisher metric on statistical models associated with finite sample spaces.

In 2012 Ay—Jost-Lé-Schwachhofer proved that the Fisher metric is a unique metric,
up to a multiplicative constant, on statistical models that satisfies (2) (Ay et al. 2015,
Remark 3.23). [On parametrized measure models there are many information metrics
that satisfy the condition (2) (Ay et al. 2015, Theorem 2.10). This fact has been
observed earlier for parametrized measure models associated with finite sample spaces
by Campbell (1986)]. Further, Theorem 3.11 in Ay et al. (2015) states that, the Fisher
metric satisfies (1) if €2, € are smooth manifolds and u is dominated by a Lebesgue
measure.

In our paper, we extend the aforementioned results as follows. Our first observation
is the following:

Theorem 2 (The monotonicity of the Fisher metric) Let 21, Q23 be topological spaces

with Borel o-algebra, k : Q21 — 0 a statistic. Assume that (M, Q1, 1, p1) and

(M, 2, ki(101), kx(p1)) are 2-integrable parametrized measure models. Then for all
F F

x €MandV € T, M we have g(M,QIJLl,[’l)(V’ V) > g(M»Qz,K*(ul),K*(m))(V’ V).

Theorem 2 is possibly known to experts in the field, but we include it here as well
as its short proof since we have not seen a precise statement with a proof of it in an
available source and we wish to discuss its consequence. We obtain immediately from
the Ay—Jost-Lé-Schwachhofer theorem (Ay et al. 2015, Remark 3.23) and Theorem 2
the following

Corollary 3 Let {2} be the class of topological spaces provided with Borel o -algebra.
Any continuous local statistical non-negative definite quadratic form F on statistical
models associated with {2} that satisfies the condition (2) in Definition 1 also satisfies
the condition (1) in Definition 1. In other words, the condition (2) is stronger than the
condition (1) for those F.

To prove the uniqueness result for an information metric that satisfies the weaker
monotonicity condition (1) in Definition 1 we pose a topological condition on such an
information metric. This condition is formulated in terms of the strong continuity, the
notion we introduce in Definition 18.

For a measurable space (€2, X) let us denote by M(L) the subset of all finite
non-negative measures on 2.

Theorem 4 (The uniqueness of the Fisher metric) Let {2} be the class of separable
metrizable topological spaces provided with Borel o-algebra. Assume that F is a
continuous local statistical non-negative definite quadratic form defined on all 2-
integrable statistical models (M, 2, i, p) (Definitions 6, 10) where Q € {Q2}. If F
satisfies the monotonicity condition (1) in Definition 1.1 and the associated quadratic
form F on M(S2) (Definition 10) is strongly continuous for all Q, then F is the Fisher
quadratic form up to a multiplicative constant.
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Corollary 5 Let {2} be the class of separable metrizable topological spaces provided
with Borel o -algebra. Any continuous local statistical non-negative definite quadratic
form F on statistical models associated with {2} that satisfies the condition (1) in
Definition 1 also satisfies the condition (2) in Definition 1, if the associated form
F on M(Q) satisfies the strong continuity condition for all Q. In other words, the
combination of the condition (1) and the strong continuity condition is stronger than
the condition (2) for those F.

In Remark 26 below we argue how we consider Theorem 4 as a generalization of
the characterization the Fisher metric by its monotonicity in the case of finite sample
spaces, which is equivalent to the Chentsov theorem. Since there are many measure
classes which are invariant under statistics, see e.g. Bogachev (2007, vol. II, Chapter 9)
for discussion, we conjecture that without the strong continuity assumption there exists
a local statistical continuous metric that satisfies (1) but does not satisfy (2).

The remainder of our paper is organized as follows. In Sect. 2, we recall the notion
of a k-integrable parametrized measure model and the notion of a local statistical con-
tinuous covariant tensor field that have been introduced by Ay—Jost-Lé—Schwachhofer
in Ay et al. (2015). In Sect. 3, we prove Theorem 2. In Sect. 4, we assume that €2 is a
separable metrizable topological space provided with Borel o-algebra. We introduce
a mixed topology on the space L}, (2) := U e pm(@) @ L" (2, ), which enjoys nice
properties (Proposition 17). Using this topology we introduce the notion of strongly
continuous covariant n-tensors on M (2) (Definition 18). In Sect. 5, we prove Theo-
rem 4 by deriving it from the special case associated with finite sample spaces. Finally,
we include an appendix containing a note on the Chentsov uniqueness theorem.

The idea to derive the uniqueness of the Fisher metric from its special case proved
by Chentsov for finite sample spaces has been proposed by Amari and Nagaoka (2000,
p- 39) as follows “Here we shall only observe that Chentsov’s theorem leads to the
Fisher metric and the «-connections if a kind of limiting procedure is permitted”, see
also Remark 26(3) on a similar idea due to Morozova—Chentsov. In this note we have
found such limiting procedure in terms of strong continuity associated with the mixed
topology.

2 k-integrable parametrized measure models and local statistical
continuous tensor fields

For py € M(2) denote by

M (2, 1o)== {1t = ol ¢ € L'(2, o), ¢ > 0, po-ae.l,
Pi(2, po) = {n € My (2, pno) = pn() = 1}.

Definition 6 (Ay et al. 2015, Definition 2.4; cf. Amari 1987, §2, p. 25; Amari and
Nagaoka 2000, §2.1) Let k > 1. A k-integrable parametrized measure model is a
quadruple (M, 2, i, p) consisting of a smooth (finite or infinite dimensional) Banach
manifold M and a continuous map p : M — M_(Q, u) provided with the L'-
topology such that there exists a density potential p = g—i : M x Q — R satisfying
p(x) = p(x, w)du(w) and the following conditions:
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1. the function x — In p(x, w) = In dﬁ—g)(a)) : M — Ris defined and continuously
Gateaux-differentiable for p-almost all w € €2,

2. for all continuous vector field V on M the function w — dy In p(x, w) belongs to
L¥(Q, p(x)); moreover, the function x > [|dy In p(x, ) k@, px)) is continuous
on M.

We call M the parameter space of (M, 2, u, p). We call (M, 2, u, p) a statistical
model if p(M) C P+(2, ).

In Definition 6 the continuous Gateaux-differentiability of In p(x, w) in x € M
means the continuity of the Gateaux-differential D In p(x, @) as a function on T M
(Hamilton 1982, chapter 1.3).

Remark 7 In Definition 6 we represent a tangent vector V € T, M by the function
dy In p(x, w) € L'(Q, p(x)). This representation is independent of the choice of a
reference measure in M (€2, w), it depends only on the map p : M — M (2, ).

Definition 8 (Ay et al. 2015, Definition 2.2) A section 7 of the bundle T*M &, times
®T*M is called a weakly continuous covariant n-tensor, if the value t(V,) is a
continuous function for any continuous n-vector field V,, on M.

Definition 9 (Ay et al. 2015, Definition 2.1) A covariant n-tensor field on M(2)
assigns to each u € M() a multilinear map 7, : @" L"(Q, u) — R that is
continuous w.r.t. the product topology on " L™ (2, w).

Definition 10 (Locality and continuity condition) (Ay et al. 2015, Definition 2.8)
Given a class {2} of measure spaces, a statistical covariant continuous n-tensor field
A assigns to each parametrized measure model (M, 2, i, p) where Q € {Q} aweakly
continuous (in the sense of Definition 8) covariant n-tensor field Al @, u,p) On M
(cf. Definition 9). A statistical covariant continuous n-tensor field A is called local
if there is a covariant n-tensor field A on M () with the following property for any
parametrized measure model (M, 2, u, p) and any V; € T, M

Al 2w, p Vs oo Vi) = Apy Oy, In p(x), ..., 9y, In p(x)). (D

From now on, if a weakly continuous covariant tensor A on a k-integrable statistical
model (M, @2, u, p) satisfies (1) for Al u,p) = A, we shall write A = p*(A).

Example 11 (cf. Remark 22). In Ay et al. (2015) Ay—Jost-Lé—Schwachhofer showed
that the Fisher quadratic form
& VW)= [y In G oy Injir, o) dpo) @
and the Amari—Chentsov 3-symmetric tensor
TACV, W, X)x = /Q dv In p(x, w)dw In p(x, w)dx In px, ) dp(x) (3

are local statistical continuous covariant tensor fields.
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3 The monotonicity of the Fisher metric

In this section, we consider topological spaces €2 provided with Borel o -algebra. We
prove Theorem 2, and discuss some related problems (Remark 14).

Recall that a statistic ¥ : 21 — €2 induces the linear operator « : L! (21, u1) —
L'(Q0, k4(111)) defined by Ay et al. (2015, (3.2))

Cdi(f )
K 0= =g 2 )

for f € LY'(Q, 1) and y € Q.

Remark 12 The operator «, is well defined, since by the Radon—Nikodym theorem,
f e Ll(Ql, 1) ifand only if f - w1 is a measure dominated by w1, i.e., the null set of
w1 is also a null set of f - 1. Now assume that Z C €27 is a null set of x4 (1£1). Then
x~1(Z) is also a null set of & and hence of f - ;. It follows that Z is a null set of
k«(f - 1), and by the Radon—Nikodym theorem «. ( f - i¢1) is dominated by k. (i41).

Some time we will write 4 ( f), if f may belong to L? (21, 1) for different 1.
The following Lemma 13 is an expression of the well-known fact that condition

expectation reduces the L”-norm, see e.g. Neveu (1965, §4.3).

Lemma 13 For all p > 2 we have k,(LP (21, 1)) C LP (2, k«(1e1)). The linear
map k4 contracts LP-norm:

ks (N Lr@oenur)) < N lLe@y,un)
forall f € LP(R21, uy).

Proof Let f € LP(2, ;1) and y € Q. For a sequence of open sets 2, = Ag D
-+ DA, D---> yand a statistic k : Q1 — 2, we set

R
) = T

By the Holder inequality, we have

Jecra 1f P

14
Ul OD? = == A,

Since lim,,— o0 | f 12 (¥) = k(] f1)(y), we deduce from the above inequality

(e (1 FDON? = ke (LFIP) (D). )
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The uniqueness of the Fisher metric as information metric 885

Using (5), we obtain

||K*(f)||€p(92,,(*(m)) = /{22 lies ()P dicse (1)

5/ (K*(Ifl))”d/c*(m)f/ e (LF17) i) = (1 f e o)
Qo Q)

which implies immediately Lemma 13. O

Proof of Theorem 2 By Remark 7 the geometry of a parametrized measure model
(M, 21, 1, p1) does not depend on the choice of a reference measure 1. Thus, to
prove Theorem 2 at a point x € M, we can assume that p;(x) = u; and hence
p1(x, w) = 1. Abusing the notation, for a function p : M x Q@ — R and forx € M,
we denote by p(x) the function 2 — R such that p(x)(w) = p(x, w). Then we have
Kffl(ﬁl(x))(/c(w)) = 1 for all . Now let V € Ty M. Then we have

dy (Inwy! (p1(x)) = dyi (p1(x)). (6)
Next, we shall prove the following equality
dyii (pr(x0) = ki By p1(x)). @
To prove (7) it suffices to show that the following equality holds
vt (p1(x) = 1 By p1(x)), (3)
where the RHS and LHS of (8) are understood as signed measures.
The condition (2) in Definition 6 implies that dy p; € LZ(Ql, u1) C LY, ni),
since (M, 21, 11, p1) is a 2-integrable parametrized measure model. Hence, for any
measurable subset A in €2, we can apply the differentiation under integral [see e.g.

Jost (2005, Theorem 16.11, p. 213)] to obtain the following [cf. Ay et al. (2015, (2.6))
for a slightly different proof]

av/ ﬁlle:/ dy 1 .
=1(A) =1 (A)

This equality implies (8) immediately. Hence (7) holds.
Let us continue the proof of Theorem 2. Using (7), and recalling that p; (x, w) = 1,
we obtain from (6)

dy (Inwf! (p1(x)) = k" By p1(x) = ki By In p1) (x).

Since dy In pi(x) € L2(Q1, p1(x)) forall x € M, by Lemma 13, we obtain
k" (dy In p1)(x) ||L2(QZ,K::'1 (p1(x)) < [[dy In ﬁl(x)”LZ(szl,pl(x))- )
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886 H.V.Lé

Noting that the RHS of (9) is equal to gﬁw,gl wip) and the LHS of (9) is equal to
g&,ﬂz,x*(m) ca(pr)e W€ deduce Theorem 2 from (9). O

Remark 14 1. It is not hard to see that if €21, €2, are metric topological spaces, «
and f are continuous, then the inequality (9) becomes an equality if and only if
f(@) = ki (f)(k (w)) for all w.

2. Lemma 13 implies that the absolute value TAC of the Amari-Chentsov tensor
defined by f"AC(V) = |TAC(V, V, V)| for V e TM also satisfies the version of
Definition 1 on statistical fields which measure “information loss”.

4 Mixed topology and strongly continuous covariant tensor fields

In this section, we assume that €2 is a separable metric topological space provided with

Borel o -algebra. Let R’éo := [0, 00)"". We introduce a mixed topology on the spaces

£2(Q) = Upeme " L"(Q. 1) and L5(R) = Unerm) L" (. 1)

which has good properties (Proposition 17). Using the mixed topology, we introduce
the notion of strongly continuous covariant n-tensor fields on M (£2) (Definition 18),
whose examples are the Fisher quadratic form (Remark 22) and all continuous func-
tions on E’;(Qn) (Example 19), where €2, is a finite sample space consisting of n
elementary events.

4.1 Mixed topology on L (R2)

It is known that M (€2) possesses many different important topologies, e.g., the total
variation topology, the strong topology and the weak topology. The total variation is
used in Definition 6. Now we recall the notion of weak topology on M (£2), which
plays prominent role in measure theory and especially in probability theory (Bogachev
2007; Billingsley 1999). Denote by Cj(£2) the space of all bounded continuous real
functions on .

Definition 15 (cf. Bogachev 2007, vol. II, Definition 8.1.1) A sequence of Borel
measures i, on 2 is called weakly convergent to a Borel measure p (writing as
e = ) if for every f € Cp(2) one has

liorln/gfduaz/gfdu.

It is known that the weak topology on M () is generated by fundamental neigh-
borhoods of u, u € M(2), defined as follows (Bogachev 2007, Definition 8.1.2)

Up, ... fre() == Iv: ’/ fidu —/ fidv
Q Q

where f; € Cp(R2),k € Nand ¢ > 0.

<8f0rie[1,k]], (10)
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Remark 16 1. The weak topology on M (2) is weaker than the total variation topol-
ogy, hence for any k-integrable parametrized measure model (M, 2, i, p) the
embedding p : M — M (R, n) — M(Q) is also continuous with respect to
the weak topology on M (£2).

2. Since Q is a separable metric topological space, for each u € M(2) the sub-
space Cp(L2) is a dense subset in L" (€2, ) with respect to the L" (€2, u)-topology
(Adams and Fournier 2006; Jost 2005; Bogachev 2007).

Let us denote by £ (2) the fibration over M (£2) whose fiber over u € M(R) is
the space @"L" (€2, w). Note that the product topology on @"L" (2, ) is generated
by the product norm defined as follows. For f = (fi, ..., fn) € ®"L"(2, ) let

n

1 lzago = D il

i=1

Denote by  the projection L)) (2) — M ().

We are going to define a topology on L} (£2) by specifying its base. For an n-tuple of
functions f € @"Cp(R2) = (Cp(2))", an open set U C M(2) in the weak topology
and ¢ > 0 we set

O(f. U.e)={[g.nl: peU, §e@®"L"(Q pand g — fllgw <& (1D

where [g, 1] means a pair.
Note that

O(f,UiU;, &) =U;0(f, Ui,e) and O(f,N;Ui, &) =N;0(f, Ui, e). (12)

Proposition 17 The collection B of all subsets O(f, U, &) where f e (Cp(QN*, U
is open set in M(R2) and ¢ > 0 generates a unique topology on L (S2), which we
shall call the mixed topology. Furthermore, the restriction of this topology to each
fiber ®@"L" (2, ) is equal to the L" (2, w)-topology on the fiber. Consequently, the
space (Cp(2))" x M(RQ) is a dense subset in the mixed topology. The projection
o L(R2) = M(RQ) is continuous with respect to the mixed topology on the domain
and the weak topology on the target space.

Proof To prove the first assertion of Proposition 17 it suffices to show that the following
conditions hold.

1. The (base) elements in B cover L' (2).

2. Let O(fl, Ui, 1) and O(fz, U,, &7) be base elements. If their 1ntersect10n I is
non-empty, then for each [ f u] € I, there is a base element O ( f3, Us, €3) such
that [ f, 1] € O(f, Us, &3) C 1.

The first condition (1) holds by Remark 16.2.
Now let us prove that (2) holds. For f € @"L" (2, u) we set

B(f, &, 1) i={f" € ®"L"(Q, ) and || f' — fllznan < ).

@ Springer



888 H.V.Lé

Note that 7 N7 ~! (w) is an open subsgt of 7! (@) in I:” (€2, n)-topology, since it is
the intersection of two open balls B( fi, €1, u) and B(f2, €2, n). Using (12), we can
assume w.l.o.g.

Ur=Ug 7o 1),
Uz = Us,,... .5.6.(12)-
Let §; be a number such that

Ufl ,,,,, ﬁ»ﬁlw,g’m,ﬁl(ﬂ) cuinty, (13)

and moreover §; < min{l, 1, &2}. Next we choose a positive number 8, < §; such
that

If = fillng <e1 =8 and |If = Pllirg < & — b (14)

Then we choose [ f3, w] € I N~ () with the following properties

. .. 1
f3 € (Cp(2)" and || f3 — fllLr < 152- (15)

We obtain from (14) and (15)
.. 3 .
/3= fillLpwy <& — 132 fori =1,2. (16)

We write fg = (f31, ..., f3'). Note that |f3i — ffl” and |f3i — f2i|” are continuous
bounded functions on €2 for all i € [1, n]. Now we set

Us = Ug gt fim fiin ] fim g ielin), (boyyn (H)-

(17)
Since 8, < §; we obtain from (17) and (13)

Froeeos fiaB1oes@m 81 (W) CUI N0

Clearly, (15) implies that [f, u] € O(fg, Us, 41—‘82). Hence, setting &3 := %82, to
complete the proof of the first assertion of Proposition 17, it suffices to show that

L

Let [I;, u'l e 0(f3, Us, 4—1‘82). To prove (18) we need to show that [h, w'l eI, or
equivalently

[, )] € O(Fi, Us, &) fori=1,2. (19)
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The uniqueness of the Fisher metric as information metric 889

Since u’ € Uz C U; fori = 1, 2, (19) is equivalent to
Ih — fillingey < & fori =1,2. (20)

Taking into account [fz, ule 0(}3, Us, }‘82), we obtain

L 1
A= fallonq) < 152. (21)

Since u’ € Uz, we derive from (16) and (17)

- - - - 1 5
I3 = fillLrqwy < 13 = fillnge + §82 <er— §52- (22)

In the same way we obtain

B 5
/3 — fallonq) < e — §32- (23)

Clearly, (21), (22), and (23) imply (20). This proves the first assertion of Proposition 17.
The second assertion of Proposition 17 follows from Remark 16.2, observing that
a ball B( f , &, 1) is the intersection of the open set O ( f ,U(w), &) with the fiber
@"L" (Q, I'L)~
Finally, the last assertion is obvious, since the preimage 7~ 1(U) of an open set
U C M(S) is the union of all open sets of the form O(f, U, ¢), f € (Cp(£2))" and
& > 0. This completes the proof of Proposition 17. O

4.2 Strongly continuous covariant n-tensor on M (2)

Definition 18 A covariant n-tensor field on M (2) is called strongly continuous, if it
is a continuous function on £} (2) with respect to the mixed topology.

Example 19 Let 2, := {w1, ..., w,} be a finite sample space of n elementary events.
Let §,,; denote the Dirac measure concentrated at w;. Let u; = Zfz | Cibw; € M(R2),
where | < n and ¢; > 0. Then, for all £k > 1, Lk(Qn, W) is homeomorphic to
Cp(2)) = R!, which is provided with the usual (vector space) topology. Furthermore,
the weak topology on M(2,) = R coincides with the usual topology on R%, C
R”". Hence the subset M (£2,) consisting of positive measures on €2, is dense in
M(2;,). We observe that 77 : Ei(Qn) — M(L2,) is a fiber bundle whose fiber over
W is homeomorphic to (RY*. A covariant k-tensor field F on M(£2,) = RZ,is a
continuous function on Ellz(Qn). Since 7~ (M (R,)) is open and dense in LIIE(Q,,),
the function F is defined uniquely by its restriction to 7 ~' (M4.(€2,)). In particular,
the Fisher metric defined on M, (R,) is associated with the quadratic form g7 :
K%(Q,,) — Rdefined by g7 ([f1, f2, u]) = an f1 - f2du, see also Remark 22.
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Proposition 20 Let g € Cp(R2) and ¢ : M(2) — R be a continuous function with
respect to the weak topology. We define a covariant n-tensor field Ty . on M(2) by
setting

Toc(Lfts -y fus D) i= c(p) -/Qg S fadp

Then T, . is a strongly continuous covariant n-tensor field on M(2).
Proof By Proposition 17, w : LI'(2) — M (L) is a continuous function, hence c(u)
is a continuous function on £ (€2). Thus to prove Proposition 20 it suffices to assume

that c(u) = 1, i.e., it suffices to show that Ty | descends to a continuous function on
L7 (2) provided with the mixed topology. Equivalently, we need to show that the set

O(a.b) = {[f. pl € Ly a < Te1(f. ) < b)
is an open set in the mixed topology for any —oo < a < b < oo.
Let[f,u] € O(a+¢e,b—¢), where ¢ < %(b — a). We will show that there is an
open set O(fl, Up,6) > [f, (] such that
Tp1(0(fi1. U1, 8)) C (a,b). (24)

Lemma 21 The restriction of Ty 1 to each fiber @"L" (2, ) is continuous in the
product L" (2, w)-topology. Moreover, if |h — SllLrey < 1then

T 1 (Lf, D) = T2y (k. p])| < sup g() - 2" 1 = £l

: (1 +2) Hml’im,m)

i=1 k=1

Proof Write f— h=a= (a1, ...,ay). Expanding hy - --h, = IT7_,(f; — a;) and
using Holder’s inequality, we obtain

1 Te 1 (Lf > 1]) — T 1 (LR, 1))

< supg(w) - > / \aiy - ai i Fipy | di
¢ RNV /R S R
<supg(w)-2"- comax o lag i@ 1l -
Q (Ln)={it, ik U e n—k}
(25)
Note that in (25) the set {1, . .., ju—k} may be empty but the set {i1, ..., it} is always

non-empty. Since D7, llaillLr (@, < 1, we have
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max lai lLr .0 - N fji lnce,
[Lnl={i1, s i} e Sk} " (@.s2) Ink .1)

< Z il (2.10) (1 + ZZ £l M)) (26)

i=1 k=1
Clearly Lemma 21 follows from (25) and (26). O

Continuation of the proof of Proposition 20. We define a function G : £}(Q2) — R
by setting

G(Lf. n)) = sup g (@) 2”(1 +ZZ||f,||m M))

i=1 k=1

Let us pick an element /1 = ((fi)1. - .., (f1)n) € (C5(R))" N B(f, 8, u) where 8
is so small such that the following equalities hold:

8<min[l,;q], 27)
2 16G(Lf. )

Te 1 (f1, 1) = Tg 1 (fs 1) < — (28)
and

G(h, 1) — G(Lfr, ]| < % (29)

forall h € B( fl, 8, ). The existence of § follows from the positivity of G, from
Lemma 21 and from the continuity of the restriction of G to each fiber DL (2, ).
We define a neighborhood Uy = Ui ([ f1, u]) containing p as follows:

Ut = Uggfie ) GO (ol 2 ()
where A depends on g, fl w and is so small such that

&

A< 3 (30)

and for 4’ € Uy we have

IGfi. ') = G(Lfi. uD)] < €1y

OOI(")

The existence of A satisfying (31) is ensured by the continuity of the function
G ([ f1, n]) in variable u.
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1\£0W we shall show that O(fl, Uy, $) > [f, 1] satisfies (24). Assume that [fz, uwle
O(f1, Ui, 6). Then

Te 1 (L, 1)) = Tg 1 (Lf > iD| < |Tg 1 (T, ') = Te 1 (Lf1s 12/D)]
F1 T 1 (Lf1s D) = Tea (Lf1s D]+ Tt (Lo i1]) = Te 1 (LFs Dl (32)

Let us estimate the first term in the RHS of (32). By Lemma 21 we have

o1 ((h, 1] = T (Lf1 WDI < k= fillepen - G 1D (33)

Taklng into account 31, (29) and the choice of § in (27), we obtain from (33), noting
that fi € B(f,8, u) = f € B(f1.6. ):

Te 1 ([h, WD) — T (Lf1, WD < 8- G(LfL /D)
3¢

s(c+GUAuD) <8(c+5+GAU D) <o G4

We estimate the second term in the RHS of (32) as follows, using the fact u €
Ui = Ui ([ f1, n]) with A satisfying (30):

Te 1 (Lf1 /D) = Tea (L1, uD)| < A < % (35)

Using (34), (35) and estimating the last term in the RHS of (32) by (28), we obtain
from (32)

3
T 1 (Th 1) — Te 1 (LF u])] < —+ + o= (36)

& 16 8

Equation (36) implies that Tg,l([ﬁ, 1'l) € (a, b). Hence (24) holds. The proof of
Proposition 20 is completed. O

Remark 22 Let 1g : 2 — R denote the constant function taking the value 1.
Then 1g € Cp(K2). Let (M, 2, u, p) be a 2-integrable parametrized measure model.
By (1) the 2-tensor field 71,1 induces the following local statistical 2-tensor g on
(M, 2, u, p):

&x(V, W) = (Tig,1) p(x)(@v In p(x), 0w In p(x))
= / dy In p(x) - dw In p(x) dp(x). 37
Q
The RHS of (37) is the Fisher metric g. Thus, the Fisher metric is induced from
the strongly continuous covariant 2-tensor field 77,1 on M(2). In the same way,

the Amari—-Chentsov tensor T4C is induced from the strongly continuous covariant
3-tensor field T, 1 on M ().
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5 The uniqueness of the Fisher metric

Recall that §,, denotes the Dirac measure concentrated at w € 2.

Lemma 23 (cf. Bogachev 2007, Example 8.1.6) The set of all measures of the form
ZlN:l Cibu;, ci > 0, is dense in M(RQ) in the weak topology. The convex hull of the
set of Dirac measures is dense in the space P(2).

Proof 1. A version of Lemma 23 for finite Baire measures is proved in Bogachev
(2007, Example 8.1.6). We apply Bogachev’s argument for the proof of Lemma 23.
Suppose we are given a neighborhood U > u of the form (10). We may assume
that the total variation norm ||| < 1. There are simple (step) functions g; such
thatsup,cq | fi (w) —gi(w)| < e¢/4foralli € [1, k]. To prove Lemma 23 it suffices
to show that U contains a measure v = lezl ¢i8y,; such that for all i € [1, k] we

have
/gi dMZ/gi dv. (38)
Q Q

Let Q = U'}izl A{ be a finite partition into disjoint measurable sets corresponding

to gi,i.e., g = az"jXA!" Then
[ 1%} Ik
Q=U;,. ., A NAT N NAJ

is a finite partition corresponding to g; for all i € [1, k]. Set ¢;,...,, := /L(Alll N
A2n...nAF) andlet .., beapointin A} NAZN...N A, Then (38) holds for
V=2 C 18wy, ..., - SINCE u is a non-negative measure, we have ¢;,..;, > 0.
This completes the proof of the first assertion of Lemma 23.

2. The second assertion follows immediately, since by the above construction of
Z,-N=1 cidg; We have D" ¢; = (). O

Proof of Theorem 4 Assume that F is a metric defined on all 2-integrable statistical
models (M, 2, i, p) that satisfies the condition of Theorem 4 and FQ denotes the
associated strongly continuous quadratic form on M (2). Denote by gé the quadratic
form on M (L) that is associated with the Fisher metric gF . We shall show that
Fo=c- g'g for some constant c.

By Proposition 25 it suffices to consider the case €2 is non-discrete. Let «;, : 2 —
2, be a statistic such that «, (2) = 2,,. Let us choose points {w1, ..., w,} € 2 such
that «, (w;) are distinct points in €2,,. Let us consider the following map

Kn

Q3 Q3 Q,,
where i, identifies «,(w;) with w; for all i € [1, n]. Note that i,, is also a statistic

and k, o i, = Id. Let u,f € P4(2,). Observe that (P4 (Qy), Qu, 1}, Id) is a 2-
integrable statistical model. By the monotonicity assumption of F, and using «, o
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ip = Id, we conclude that the metric F defined on the 2-integrable statistical model
(P+(2,), 2, (in)*(u;f), (in)+(1d)) is defined uniquely by the metric F defined on the
2-integrable statistical model (P, (£2,), 2,, ,ujl‘, 1d). By Proposition 25 the metric F
defined on the 2-integrable statistical model (P4 (2y,), Qn, w7, Id) coincides with the
Fisher metric up to a multiplicative constant c. Hence, the restriction of FQ to the
subspace of L%(SZ)

n

L3@1, . 00) 2 LA, fa il € L3(Q)] ptn = D cibuy, i > 0

i=1

coincides with the restriction of gg up to the multiplicative constant ¢, since Fg is
strongly continuous.

Now we shall show that the constant ¢ does not depend on the choice of a collection
{w1, ..., ws}. Let {o], ..., w,} be another collection of distinct m points on €. Let
Qn = {of, ..., @)} be the union of {wy, ..., w,} and {0}, ..., w;,}. We consider
the following sequence of statistics

i,N iN KN KN,
Q5 Qv = Q3 Qv = Q.

where i,, v and iy are the natural embeddings and « and k , are sufficient statistics
such that ky o iy = Id and ky , 0 i, ;v = Id. By Proposition 25, the constant ¢ that
depends on {wi, ..., w,} equals the constant ¢ that depends on {f, ..., @} }. In
the same way we prove that the constant ¢’ that depends on {], ..., w},} equals the
constant ¢’ that depends on {w{, ..., @} }. Hence the constant ¢ does not depend on
the choice of {wy, ..., w,}.

We denote by DT (Q) the set of all measures j, = Z?:l ¢ibw;, ci > 0, where
w; € Q. By Lemma 23 the subset

L£3(2, D) :={[f1, fr, ul € L3(R)| u € DT(Q)}

is dense in E%(Q) in the mixed topology. Since the restriction of Fg to E%(Q, D)
coincides with the restriction of gg up to the multiplicative constant ¢, taking into

account the strong continuity of Fg, this completes the proof of Theorem 4. O
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Appendix: The Chentsov uniqueness theorem

In this appendix we recall a reformulation of the Chentsov theorem (Chentsov 1978,
Theorem 11.1, p. 159) on the uniqueness of the Fisher metric in the language of
information geometry by Amari and Nagaoka (Proposition 24), which is simpler than
the original formulation by Chentsov in the category language. In Proposition 25 we
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formulate a result in Ay et al. (2015) that characterizes the Fisher metric on finite
sample spaces via the monotonicity. Then we discuss in Remark 26 some problems in
generalizing the Chentsov theorem to a larger class of measure spaces that contains
also non-discrete measure spaces.

Let us denote by P (£2,,) the subset of P(£2,) that consists of positive measures.

Proposition 24 (Amari and Nagaoka 2000, Theorem 2.6, p. 38) Assume that
{(gn)};2 | is a sequence of Riemannian metrics on P4 (S2,) for each n that are invariant
with respect to sufficient statistics; i.e., foralln,m, S C P+(2,), and F : Q, — Q,
such that F is a sufficient statistic for S, the induced metrics on S and F,(S) are
assumed to be invariant. Then there exists a positive real number c such that, for all
n, g, coincides with the Fisher metric on P1(2,) scaled by a factor of c.

Amari and Nagaoka did not supply their proof of Proposition 24. We recommend
the reader to Campbell (1986) for a slight generalization of the Chentsov theorem,
whose proof is close to the original Chentsov’s proof. For the reader convenience
we recall the following monotonicity characterization of the Fisher metric on finite
sample spaces.

Proposition 25 (Ay etal. 2015, Corollary 4.11) Let F be a continuous local statistical
quadratic 2-form defined on statistical models associated with finite sample spaces
{2} such that F is monotone under statistics. Then F coincides with the Fisher metric
up to a multiplicative constant.

Remark 26 1. Chentsov defined the Fisher metric only on the positive sector Py (£2,,)
of the space of all probability measures, because the expression for the Fisher
metric in (2) is well defined only on P,.(€2,). In this paper we follow the approach
in Ay et al. (2015) by requiring that an information metric F is obtained by (1)
from the associated 2-form F , which is not only defined on P4 (£2,) but also
defined on M(£2,) (in general case, on M(£2)) and hence on P(£2,) (resp. on
P(2)). This small difference is important, since for a non-discrete space 2 we do
not know how to define a notion of a positive measure without using a reference
measure /o. Since the Fisher metric g© satisfies the mentioned requirement, see
Example 19, Proposition 25 is equivalent to the Chentsov uniqueness theorem.
Clearly, Theorem 4 generalizes Proposition 25.

2. As we mentioned above, the original Chentsov theorem can be equivalently refor-
mulated in terms of the associated form F. Note that the space P(£2,) (resp.
M(2,)) is not a manifold, or a manifold with boundary, but a stratified space
which admits different embeddings into Euclidean spaces. In Ay et al. (2016) and
in the present paper we do not consider smooth tensor fields on P(€2;) (resp. on
M(£2,,)) but (strongly or point-wise) continuous tensor fields on M (£2) which do
not require the notion of a smooth structure on M (2).

3. In Morozova et al. (1991, §5) Morozova—Chentsov also suggested a method to
extend the Chentsov uniqueness theorem to the case of non-discrete measure spaces
Q. Theirideais similar to the Amari—-Nagaoka idea, namely they wanted to consider
a Riemannian metric on infinite measure spaces as limit of Riemannian metrics on
finite measure spaces. They did not discuss a condition under which such a limit
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exists. In fact, they did not give a definition of limit of such metrics. If the limit exists
they called it finitely generated. They stated that the Fisher metric is the unique
finitely generated metric that is invariant under sufficient statistics (resp. that is
monotone). One may speculate that since such a Riemannian metric depends on
base measures u and tangent vectors at © Morozova—Chentsov’s approach requires
a definition of topology on the space L%(Q).

References

Adams, R.A., Fournier, J.J.F. (2006). Sobolev spaces. Amsterdam: Elsevier/Academic Press.
Amari, S. (1987). Differential geometrical theory of statistics. In: Differential geometry in statistical infer-
ence. Lecture note-monograph series, (Vol. 10). California: Institute of Mathematical Statistics.
Amari, S., Nagaoka, H. (2000). Methods of information geometry. Translations of mathematical monographs
(Vol. 191). Providence/Oxford: American Mathematical Society/Oxford University Press.

Ay,N.,Jost,J.,L&, H. V., Schwachhéfer, L. (2015). Information geometry and sufficient statistics. Probability
Theory and related Fields, 162, 327-364. arXiv:1207.6736.

Ay, N., Jost, J., L&, H. V. and Schwachhéfer, L., Information geometry (book in preparation).

Ay, N., Olbrich, E., Bertschinger, N., Jost, J. (2011). A geometric approach to complexity. Chaos, 21,
37-103.

Billingsley, P. (1999). Convergence of probability measures. New York: Wiley.

Bogachev, V.I. (2007). Measure Theory (Vol. I, II). Berlin: Springer.

Campbell, L. L. (1986). An extended Chentsov characterization of a Riemannian metric. Proceedings of
the American Mathematical Society, 98, 135-141.

Chentsov, N. (1978). Algebraic foundation of mathematical statistics. Mathematische Operationsforschung
und Statistik Serie Statistics, 9, 267-276.

Chentsov, N. (1982). Statistical decision rules and optimal inference. Translation of mathematical mono-
graphs (Vol. 53). Providence: American Mathematical Society.

Hamilton, R. (1982). The inverse function theorem of Nash and Moser. Bulletin of the American Mathe-
matical Society, 7, 65-222.

Jost, J. (2005). Postmodern analysis. Berlin: Springer.

Morozova, E., Chentsov, N. (1991). Natural geometry of families of probability laws, Itogi Nauki i Techniki,
Current problems of mathematics, Fundamental directions 83 (pp. 133-265). Moscow.

Neveu, J. (1965). Mathematical foundations of the calculus of probability. San Francisco: Holden-Day Inc.

Shahshahani, S. (1979). A new mathematical framework for the study of linkage and selection. Memoirs of
the American Mathematical Society, volume 17, Nr. 211.

@ Springer


http://arxiv.org/abs/1207.6736

	The uniqueness of the Fisher metric as information metric
	Abstract
	1 Introduction
	2 k-integrable parametrized measure models and local statistical continuous tensor fields
	3 The monotonicity of the Fisher metric
	4 Mixed topology and strongly continuous covariant tensor fields
	4.1 Mixed topology on mathcalLnn(Ω)
	4.2 Strongly continuous covariant n-tensor on mathcalM(Ω)

	5 The uniqueness of the Fisher metric
	Acknowledgements
	Appendix: The Chentsov uniqueness theorem
	References




