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Abstract We address the statistical estimation of composite functionals which may
be nonlinear in the probability measure. Our study is motivated by the need to estimate
coherent measures of risk, which become increasingly popular in finance, insurance,
and other areas associated with optimization under uncertainty and risk. We establish
central limit theorems for composite risk functionals. Furthermore, we discuss the
asymptotic behavior of optimization problems whose objectives are composite risk
functionals and we establish a central limit formula of their optimal values when an
estimator of the risk functional is used. While the mathematical structures accom-
modate commonly used coherent measures of risk, they have more general character,
which may be of independent interest.
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1 Introduction

Increased interest in the analysis of coherent measures of risk is motivated by their
application as mathematical models of risk quantification in finance and other areas.
This line of research leads to newmathematical problems in convex analysis, optimiza-
tion, and statistics. The risk assessment is expressed mathematically as a functional
of random variable, which may be nonlinear with respect to the probability measure.
Most frequently, the risk measures of interest in practice arise when we evaluate gains
or losses depending on the choice z, which represents the control of a decision maker
and random quantities, which may be summarized in a random vector X . More pre-
cisely, we are interested in the functional f (z, X), which may be optimized under
practically relevant restrictions on the decisions z. Most frequently, some moments of
the random variable Y = f (z, X) are evaluated. However, when models of risk are
used, the existing theory of statistical estimation is not always applicable.

Our goal is to address the question of statistical estimation of composite functionals
depending on randomvectors and theirmoments. Additionally, we analyze the optimal
values of such functionals, when they depend on finite-dimensional decisions within
a deterministic compact set. The known coherent measures of risk can be cast in the
structures considered here and we shall specialize our results to several classes of
popular risk measures. We emphasize, however, that the results address composite
functionals of more general structure with potentially wider applicability.

Axiomatic definition of risk measures was first proposed in Kijima and Ohnishi
(1993). The currently accepted definition of a coherent risk measure was introduced
in Artzner et al. (1999) for finite probability spaces and was further extended to more
general spaces in Ruszczyński and Shapiro (2006), Föllmer and Schied (2011). Given
a probability space (Ω,F , P), we consider the set of random variables defined on it,
which have finite pth moments and denote it by Lp(Ω,F , P). A coherent measure
of risk is a convex, monotonically increasing, and positively homogeneous functional
ρ : Lp(Ω,F , P) → R̄, which satisfies the translation property: ρ(Y +a) = ρ(Y )+a
for all a ∈ R. Here R̄ = R∪{+∞} andwe assume thatY represents losses, i.e., smaller
realizations are preferred. Related concepts are introduced in Rockafellar et al. (2006),
Föllmer and Schied (2002).

Ameasure of risk is called law-invariant, if it depends only on the distribution of the
random variable, i.e., if ρ(X) = ρ(Y ) for all random variables X,Y ∈ Lp(Ω,F , P)

having the same distribution.
A practically relevant law-invariant coherent measure of risk is the mean-

semideviation of order p ≥ 1 (see Ogryczak and Ruszczyński 1999, 2001; Shapiro
et al. 2009, s.6.2.2), defined in the following way:

ρ(X) = E[X ]+κ ‖(X − E[X ])+‖p = E[X ]+κ
[
E
[
(max{0, X − E[X ]})p]] 1

p , (1)

where κ ∈ [0, 1]. Note the nonlinearity with respect to the probability measure in
formula (1).

Another popular law-invariant coherent measure of risk is theAverage Value at Risk
at level α ∈ (0, 1] (see Rockafellar and Uryasev 2002; Ogryczak and Ruszczyński
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2002), which is defined as follows:

AVaRα(X) = 1

α

∫ 1

1−α

F−1
X (β) dβ = min

η∈R

{
η + 1

α
E[(X − η)+]

}
. (2)

Here, FX (·) denotes the distribution function of X . The reader may consult, for exam-
ple, (Shapiro et al. 2009, Chapter 6) and the references therein, for more detailed
discussion of these risk measures and their representation.

The risk measure AVaRα(·) plays a fundamental role as a building block in the
description of every law-invariant coherent risk measure via the Kusuoka represen-
tation. The original result is presented in Kusuoka (2001) for risk measures defined
on L∞(Ω,F, P), with an atomless probability space. It states that for every law-
invariant coherent risk measure ρ(·), a convex set M ⊂ P(0, 1] exists such that for
all Z ∈ L∞(Ω,F, P), it holds

ρ(X) = sup
m∈M

∫ 1

0
AVaRα(X) m(dα). (3)

Here P(0, 1] denotes the set of probability measures on the interval (0, 1]. This result
is extended to the setting of Lp spaces with p ∈ [1,∞); see Frittelli and Rosazza-
Gianin (2005), Pflug and Römisch (2007), Pflug and Wozabal (2010), Shapiro et al.
(2009), Dentcheva et al. (2010), and the references therein.

The extremal representation of AVaRα(X) on the right-hand side of (2) was used
as a motivation in Krokhmal (2007) to propose the following higher moment coherent
measures of risk:

ρ(X) = min
η∈R

{
η + 1

α
‖(X − η)+‖p

}
, p > 1. (4)

These riskmeasures are special cases of amore general family considered in Cheridito
andLi (2009); they are also examples of optimized certainty equivalents ofBen-Tal and
Teboulle (2007). In the paper Dentcheva et al. (2010), the explicit Kusuoka representa-
tion for the higher order risk measures (4) was described by utilizing duality theorems
from Rockafellar (1974). These risk measures are used for portfolio optimization in
Krokhmal (2007),where their advantages in comparison to the classicalmean-variance
optimization model of Markowitz (1952, 1987) is demonstrated on examples. The
recent work of Matmoura and Penev (2013) indicates that if such type of risk measure
is used as a risk criterion in European option portfolio optimization, the time evolution
of the portfolio is superior to the evolution of a portfolio optimized with respect to
the AVaR risk or with respect to the mean-variance optimization model of Markowitz.
Similar observations were recently made by Gülten and Ruszczyński (2015).

A connection of measures of risk to the utility theories has been widely discussed in
the literature. Many of the risk measures of interest can be expressed via optimization
of the so-called optimized certainty equivalent (Ben-Tal and Teboulle 2007) for a
suitable choice of the utility function. Relations of risk measures to rank-dependent
utility functions are given inFöllmer andSchied (2011). InDentcheva andRuszczyński
(2014), it is established that law-invariant coherent measures of risk are a numerical
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representation of certain preference relation defined on the space of bounded quantile
functions, and are closely related to the dual utility theory.

In practical applications, we deal with samples and stochastic models of the under-
lying random quantities. Therefore, the questions pertaining to statistical estimation
of the measures of risk are crucial to the proper use of law-invariant measures of
risk. Several measures of risk have an explicit formula, which can be used as a plug-
in estimator, with the original measure P replaced by the empirical measure. The
empirical quantile is a natural estimator of the Value at Risk. A natural empirical
estimator of AVaRα(X) leads to the use of the L-statistic (see Jones and Zitikis 2003;
Dentcheva and Penev 2010). Furthermore, the Kusuoka representation, as well as the
use of distortion functions in insurance has motivated the construction and analysis of
empirical estimates of spectral measures of risk using L-statistic.We refer to Jones and
Zitikis (2003, 2007), Brazauskas et al. (2008), Beutner and Zähle (2010), Tsukahara
(2013), Belomestny and Krätschmer (2012) for more details on this approach. Some
risk measures, such as the tail risk measures of form (4), cannot be estimated via sim-
ple explicit formulae but are obtained as a solution of a convex optimization problem
with convex constraints. Although asymptotic behavior of optimal values of sample-
based expected value models has been investigated before (see Römisch 2003, Ch. 8;
Shapiro et al. 2009, Ch. 5 and the references therein), only few results address models
with risk measures. Römisch 2003, ch. 8 contains results on perturbation analysis for
optimization problems with risk functionals. In Dentcheva et al. (2011), risk measures
are used to design statistical tests for stochastic dominance and our results have direct
implications for those tests.

Our paper is organized as follows. Section 2 contains the key result of our paper,
which establishes a central limit formula for a composite risk functional. We provide
a characterization of the limiting distribution of the empirical estimators for such
functionals. Section 3 contains a central limit formula for risk functionals, which are
obtained as the optimal values of composite functionals. Section 4 provides asymptotic
analysis and central limit formulae for the optimal value of optimization problems
which use measures of risk in their objective functions. We pay special attention to
some popular measures and we discuss several illustrative examples in Sects. 2, 3,
and 4. In Sect. 5, we perform a simple simulation study to assess the accuracy of our
approximations. Section 6 concludes.

2 Estimation of composite risk functionals

In the first part of our paper, we focus on functionals of the following form:

ρ(X) = E
[
f1
(
E
[
f2 (E[ · · · fk(E[ fk+1(X)], X)] · · · , X)

]
, X
)]

, (5)

where X is anm-dimensional random vector, f j : Rm j ×R
m → R

m j−1 , j = 1, . . . , k,
with m0 = 1 and fk+1 : Rm → R

mk . Let X ⊂ R
m be the domain of the random

variable X . We denote the probability distribution of X by P .
Given a sample X1, . . . , Xn of independent identically distributed observations, we

consider the following plug-in empirical estimate of the value of ρ:
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ρ(n) =
n∑

i0=1

1

n

[
f1

( n∑

i1=1

1

n

[
f2

( n∑

i2=1

1

n

[
· · · fk

( n∑

ik=1

1

n
fk+1(Xik ), Xik−1

)]

· · · , Xi1

)]
, Xi0

)]
.

Our construction is primarily motivated by the aim to estimate coherent measures
of risk from the family of mean–semideviations (Ogryczak and Ruszczyński 1999,
2001).

Example 1 (Semideviations) Consider the functional (1) representing the mean–
semideviation of order p ≥ 1. In this case, (5) has parameters k = 2, m = 1, and

f1(η1, x) = x + κη
1
p
1 ,

f2(η2, x) = [max{0, x − η2}]p ,

f3(x) = x .
�

Example 2 (Composite semideviations) Consider now a slightly more complex struc-
ture, arising in systemic risk analysis. There are N random variables, Z1, . . . , ZN ,
representing performance of elements of a system. The semideviation risk measures
of the components are defined as follows:

ρ j (Z j ) = E[Z j ] + κ j
∥∥(Z j − E[Z j ])+

∥∥
p , j = 1, . . . , N .

A random N -dimensional line vector Y has support in the simplex
{
y ∈ R

N+ :
∑N

j=1 y j = 1
}
. We can now consider the random variable

S =
N∑

j=1

Y jρ j (Z j ),

representing the system’s performance. Our intention is to estimate the mean–
semideviation risk measure of S:

ρ(S) = E[S] + κ ‖(S − E[S])+‖p .

Substitution of the functional form of S yields the following expression of the systemic
risk:

ρ(S) =
N∑

j=1

E[Y j ]
(
E[Z j ] + κ j

∥∥(Z j − E[Z j ])+
∥∥
p

)

+κ

∥∥∥∥∥
∥

⎛

⎝
N∑

j=1

(
Y j − E[Y j ]

) (
E[Z j ] + κ j

∥∥(Z j − E[Z j ])+
∥∥
p

)
⎞

⎠

+

∥∥∥∥∥
∥
p

.
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742 D. Dentcheva et al.

We comprise all randomvariables in the 2N -dimensional vector X =(Y, Z1, . . . , ZN ).
We define the following functions:

f6 : R2N → R
N , f6(y, z) = z,

f5 : RN × R
2N → R

N , f5, j (η, y, z) = max
(
0, z j − η j

)p
, j = 1, . . . , N ,

f4 : RN × R
2N → R

N f4, j (η, y, z) = z j + κ jη
1/p
j , j = 1, . . . , N ,

f3 : RN × R
2N → R

N+1 f3(η, y, z) =
[

η
∑N

j=1 η j y j

]

,

f2 : RN+1 × R
2N → R

2, f2(η, y, z) =
[

ηN+1

max
(
0,
∑N

j=1 η j y j − ηN+1

)p

]

,

f1 : R2 × R
2N → R, f1(η, y, z) = η1 + κη

1/p
2 .

With these definitions, the system’s risk has the form (5), where m = 2N and k = 5.
�

The above example illustrates that functionals in the form (5) with relatively
complex form of ρ may often appear in practice. Further examples of this type
can be given from the area of multi-criteria optimization (Jahn 2011). A common
approach there is an aggregation of the separate criteria. While the linear aggrega-
tion, similar to Example 2 is the most common way to go, sometimes a nonlinear
aggregation makes better sense. In cost–benefit analysis, for example, it makes sense
to analyze the cost–benefit ratio and this leads again to a functional of the form
(5).

To formulate the main theorem of this section, we introduce several relevant quan-
tities. We define:

f̄ j (η j ) =
∫

X
f j (η j , x) P(dx), j = 1, . . . , k,

μk+1 =
∫

X
fk+1(x) P(dx),

μ j = f̄ j (μ j+1), j = 1, . . . , k.

Suppose I j are compact subsets of Rm j such that μ j+1 ∈ int(I j ), j = 1, . . . , k. We
introduce the notationH = C1(I1)×Cm1(I2)×· · · Cmk−1(Ik)×R

mk , where Cm j−1(I j )
is the space of continuous functions on I j with values in R

m j−1 equipped with the
supremum norm. The space R

mk is equipped with the Euclidean norm, and H with
the product norm. We use Hadamard directional derivatives of the functions f j

(·, x)
at points μ j+1 in directions ζ j+1, i. e.,
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f ′
j (μ j+1, x; ζ j+1) = lim

t↓0
s→ζ j+1

1

t

[
f j (μ j+1 + ts, x) − f j (μ j+1, x)

]
.

For every direction d = (d1, . . . , dk, dk+1) ∈ H, we define recursively the sequence
of vectors:

ξk+1(d) = dk+1,

ξ j (d) =
∫

X
f ′
j

(
μ j+1, x; ξ j+1(d)

)
P(dx) + d j

(
μ j+1

)
, j = k, k − 1, . . . , 1.

(6)

Theorem 1 Suppose the following conditions are satisfied:

(i)
∫ ‖ f j (η j , x)‖2 P(dx) < ∞ for all η j ∈ I j , and

∫ ‖ fk+1(x)‖2P(dx) < ∞;
(ii) For all x ∈ X , the functions f j (·, x), j = 1, . . . , k, are Lipschitz continuous:

‖ f j (η
′
j , x) − f j (η

′′
j , x)‖ ≤ γ j (x)‖η′

j − η′′
j‖, ∀ η′

j , η
′′
j ∈ I j ,

and
∫

γ 2
j (x) P(dx) < ∞.

(iii) For all x ∈ X , the functions f j (·, x), j = 1, . . . , k, are Hadamard directionally
differentiable.

Then

√
n
[
ρ(n) − ρ

] D−→ ξ1(W ),

where W (·) = (
W1(·), . . . ,Wk(·),Wk+1

)
is a zero-mean Brownian process on I =

I1 × I2 × · · · × Ik . Here W j (·) is a Brownian process of dimension m j−1 on I j ,
j = 1, . . . , k, and Wk+1 is an mk-dimensional normal vector. The covariance function
of W has the following form:

cov
[
Wi (ηi ),Wj (η j )

] =
∫

X
[
fi (ηi , x) − f̄i (ηi )

] [
f j (η j , x) − f̄ j (η j )

]�
P(dx),

ηi ∈ Ii , η j ∈ I j , i, j = 1, . . . , k,

cov
[
Wi (ηi ),Wk+1

] =
∫

X
[
fi (ηi , x) − f̄i (ηi )

] [
fk+1(x) − μk+1

]�
P(dx),

ηi ∈ Ii , i = 1, . . . , k,

cov
[
Wk+1,Wk+1

] =
∫

X
[
fk+1(x) − μk+1

] [
fk+1(x) − μk+1

]�
P(dx). (7)

Proof We define I = I1 × I2 × · · · × Ik , M = m0 + m1 + · · · + mk , and the vector-
valued function f : I × X → R

M with block coordinates f j (η j , x), j = 1, . . . , k,
and fk+1(x). Similarly, we define f̄ : I → R

M with block coordinates f̄ j (η j ),
j = 1, . . . , k, and μk+1. Consider the empirical estimates of the function f̄ (η):
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744 D. Dentcheva et al.

h(n)(η) = 1

n

n∑

i=1

f (η, Xi ), n = 1, 2, . . . .

Due to assumptions (i)–(ii), all functions h(n) are elements of the space H.
Furthermore, assumptions (i)–(ii) guarantee that the class of functions f (η, ·), η ∈

I , is Donsker, that is, the following uniform Central Limit Theorem holds (see Van
der Vaart 1998, Ex.19.7): √

n
(
h(n) − f̄

) D−→ W, (8)

where W is a zero-mean Brownian process on I with covariance function

cov
[
W (η′),W (η′′)

] =
∫

X
[
f (η′, x) − f̄ (η′)

] [
f (η′′, x) − f̄ (η′′)

]�
P(dx). (9)

This fact will allow us to establish asymptotic properties of the sequence
{
ρ(n)

}
.

First, we define a subset H of H containing all elements (h1, . . . , hk, hk+1) for
which h j+1(h j+2(· · · hk(hk+1) · · · )) ∈ I j , j = 1, . . . , k. We define an operator � :
H → R as follows

Ψ (h) = h1
(
h2
( · · · hk(hk+1) · · · )).

By construction the value of ρ(X) is equal to the value of Ψ
(
f̄
)
and the value of ρ(n)

is equal to the value of Ψ
(
h(n)

)
.

To derive the limit properties of the sequence
{
ρ(n)

}
we shall use Delta Theorem

(see, Römisch 2006). The essence of applying the theorem is in identifying conditions
under which a statement about a limit result related to convergence in distribution of a
scaled version of a statistic h(n), can be translated into a statement about a convergence
in distribution of a scaled version of a transformed statistic �(h(n)).

To this end, we have to verify Hadamard directional differentiability of Ψ (·) at f̄ .
Observe that the point f̄ is an element of H , becauseμ j+1 ∈ int(I j ), j = 1, . . . , k.

Moreover, due to assumption (ii), the following inequality is true for every j =
1, . . . , k:

‖h j (h j+1(h j+2(· · · hk(hk+1) · · · ))) − μ j‖
≤ ‖h j − f̄ j‖ + ‖ f̄ j (h j+1(h j+2(· · · hk(hk+1) · · · ))) − f̄ j (μ j+1)‖
≤ ‖h j − f̄ j‖ +

∫
γ j (x) P(dx) · ‖h j+1(h j+2(· · · hk(hk+1) · · · )) − μ j+1‖.

Recursive application of this inequality demonstrates that f̄ is an interior point of H .
Therefore, the quotients appearing in the definition of the Hadamard directional deriv-
ative are well defined.

Conditions (ii) and (iii) imply that the functions f̄ (·) and h(n)(·) are also Hadamard
directionally differentiable. Consider the operator Ψk(h) = hk(hk+1) at h ∈ int(H).
Let d = (d

1 , . . . , d

k , d


k+1) ∈ H be a sequence of directions converging in norm to
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an arbitrary direction d ∈ H, when  → ∞. For a sequence t ↓ 0 and  sufficiently
large, we have

Ψ ′
k(h; d) = lim

→∞
1

t

[
Ψk(hk + td


k , hk+1 + td


k+1) − Ψk(hk, hk+1)

]

= lim
→∞

1

t

([hk + td

k ](hk+1 + td


k+1) − hk(hk+1)

)

= lim
→∞

1

t

(
hk(hk+1 + td


k+1) − hk(hk+1)

)+ d
k (hk+1 + td


k+1)

= h′
k(hk+1; dk+1) + dk(hk+1).

Consider now the operator Ψk−1(h) = hk−1
(
hk(hk+1)

) = hk−1
(
Ψk(h)

)
. By the chain

rule for Hadamard directional derivatives, we obtain

Ψ ′
k−1(h; d) = h′

k−1

(
Ψk(h);Ψ ′

k(h; d)
)+ dk−1

(
Ψk(h)

)
.

In this way, we can recursively calculate the Hadamard directional derivatives of the
operators Ψ j (h) = h j

(
h j+1( · · · hk(hk+1) · · · )) as follows:

Ψ ′
j (h; d) = h′

j

(
Ψ j+1(h);Ψ ′

j+1(h; d)
)+d j

(
Ψ j+1(h)

)
, j = k, k−1, . . . , 1. (10)

Now the Delta Theorem (see, Römisch 2006), relation (8), and the Hadamard direc-
tional differentiability of Ψ (·) at f̄ imply that

√
n
[
ρ(n) − ρ(X)

] = √
n
[
Ψ
(
h(n)

)− Ψ
(
f̄
)] D−→ Ψ ′( f̄ ,W

)
. (11)

The application of the recursive procedure (10) at h = f̄ and d = W leads to formulae
(6). The covariance structure (7) of W follows directly from (9). ��

We return to Example 2 and apply Theorem 1.

Example 3 (Semideviations continued) We have defined the mappings

f̄1(η1) = E[X ] + κη
1
p
1 =

∫
f1(η1, x)P(dx),

f̄2(η2) = E
{[

max{0, X − η2}
]p}

,

and the constants

μ3 = E[X ], μ2 = E
{[

max{0, X − E[X ]}]p}, μ1 = ρ(X).

We assume that p > 1 and I2 ⊂ R is a compact interval containing the support of
the random variable X . The interval I1 = [0, a] ⊂ R can be defined by choosing a
so that a ≥ |X −E(X)|p; for example, a may be equal to the diameter of the support
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746 D. Dentcheva et al.

of X raised to power p. The space H is C1(I1) × C2(I2) × R and we take a direction
d ∈ H. Following (6), we calculate

ξ2(d) = f̄ ′
2(μ3; d3) + d2(μ3) = −pE

{[
max{0, X − μ3}

]p−1}
d3 + d2(μ3),

ξ1(d) = f̄ ′
1

(
μ2; ξ2(d)

)+ d1
(
μ2
) = κ

p
μ

1
p −1

2 ξ2(d) + d1
(
μ2
)
.

We obtain the expression

ξ1(W ) = W1
(
E
{
[max{0, X − E[X ]}]p})+ κ

p

(
E
{
[max{0, X − E[X ]}]p}) 1−p

p

×
(
W2 (E[X ]) − pE

{
[max{0, X − E[X ]}]p−1

}
W3

)
. (12)

The covariance structure of the process W can be determined from (7). The process
W1(·) has the constant covariance function:

cov
[
W1(η

′),W1(η
′′)
] =

∫

X
[
f1(η

′, x) − f̄1(η
′)
] [

f1(η
′′, x) − f̄1(η

′′)
]

P(dx) = Var[X ].

It follows that W1(·) has constant paths. The third coordinate, W3, has variance equal
to Var[X ]. It also follows from (7) that cov

[
W1(η),W3

] = Var[X ]. Therefore,W1 and
W3 are, in fact, one normal random variable, which we denote by V1.

Observe that (12) involves only the value of the process W2 at μ3 = E[X ]. The
variance of the random variable V2 = W2(E[X ]) and its covariance with V1 can be
calculated from (7) in a similar way:

Var[V2] = E

{(
[max{0, X − E[X ]}]p − E

(
[max{0, X − E[X ]}]p))2

}
,

cov[V2, V1] = E
{(
[max{0, X−E[X ]}]p−E

(
[max{0, X−E[X ]}]p)) (X−E[X ])} .

Formula (12) becomes

ξ1(W ) = V1 + κ

p

(
E
{
[max{0, X − E[X ]}]p}) 1−p

p

×
(
V2 − pE

{
[max{0, X − E[X ]}]p−1

}
V1
)

. (13)

We conclude that

√
n
[
ρ(n) − ρ

] D−→ N (0, σ 2),

where the variance σ 2 can be calculated in a routine way as a variance of the right-hand
side of (13), by substituting the expressions for variances and covariances of W1,W2,
and W3. �
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Remark 1 Following Example 3, we could derive the limiting distribution of√
n
[
ρ(n)−ρ

]
for p = 1 aswell. However, the riskmeasure for p = 1 has an equivalent

min–max formulation, for which a Central Limit Theorem has already been derived
in the literature (see, Shapiro 2008; Shapiro et al. 2009, Section 6.5).

3 Estimation of risk measures representable as optimal values of
composite functionals

As an extension of the methods of Sect. 2, we consider the following general setting.
Functions f1 : Rd × R

s → R, f2 : Rd × R
m → R

s , and a random vector X in R
m

are given. Our intention is to estimate the value of a composite risk functional

� = min
z∈Z f1 (z,E[ f2(z, X)]) . (14)

where Z ⊂ R
d is a nonempty compact set.

We note that the compactness restriction is made for technical convenience and can
be relaxed.

Let X1, . . . , Xn be a random iid sample from the probability distribution P of X .
We construct the empirical estimate

ρ(n) = min
z∈Z f1

(
z, 1

n

n∑

i=1
f2(z, Xi )

)
.

Our intention is to analyze the asymptotic behavior of ρn , as n → ∞.
Following the method of Sect. 2, we define the mapping Φ : Z × C(Z) → R as

follows:

Φ(z, h) = f1 (z, h(z)) .

The space Rd × C(Z) is equipped with the product norm of the Euclidean norm on
R
d and the supremum norm on C(Z). We also define the functional v : C(Z) → R,

v(h) = min
z∈Z Φ(z, h). (15)

Setting

h̄(z) = E[ f2(z, X)],
h(n)(z) = 1

n

n∑

i=1
f2(z, Xi ),

we see that

� = v(h̄),

�(n) = v(h(n)), n = 1, 2 . . . .
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Let Ẑ denote the set of optimal solutions of problem (14).

Theorem 2 In addition to the general assumptions, suppose the following conditions
are satisfied:

(i) The function f2(z, ·) is measurable for all z ∈ Z ;
(ii) The function f1(z, ·) is differentiable for all z ∈ Z , and both f1(·, ·) and its

derivative with respect to the second argument, ∇ f1(·, ·), are continuous with
respect to both arguments;

(iii) An integrable function γ (·) exists such that

‖ f2(z
′, x) − f2(z

′′, x)‖ ≤ γ (x)‖z′ − z′′‖

for all z′, z′′ ∈ Z and all x ∈ X ; moreover,
∫

γ 2(x) P(dx) < ∞.

Then √
n
[
ρ(n) − ρ

] D−→ min
z∈Ẑ

〈∇ f1 (z,E[ f2(z, X)]) ,W (z)〉 , (16)

where W (z) is a zero-mean Brownian process on Z with the covariance function

cov
[
W (z′),W (z′′)

] =
∫

X
(
f2(z

′, x) − E[ f2(z′, X)])( f2(z′′, x)

−E[ f2(z′′, X)])� P(dx). (17)

Proof Observe that assumptions (i)–(ii) of Theorem 1 are satisfied due to the com-
pactness of the set Z and assumptions (ii)–(iii) of this theorem. Therefore, formula
(8) holds: √

n
(
h(n) − h̄

) D−→ W.

The limiting process W is a zero-mean Brownian process on Z with covariance func-
tion (17).

Furthermore, due to assumption (ii), the function Φ(·, h) is continuous. As the set
Z is compact, problem (15) has a nonempty solution set S(h). By virtue of (Bon-
nans and Shapiro 2000, Theorem 4.13), the optimal value function v(·) is Hadamard
directionally differentiable at h̄ in every direction d with

v′(h̄; d) = min
z∈S(h̄)

Φ ′
h(z, h̄)d,

where Φ ′(z, h) is the Fréchet derivative of Φ(z, ·) at h. Therefore, we can apply the
delta method (see, Römisch 2006) to infer that

√
n
(
v(h(n)) − v(h̄)

) D−→ min
z∈S(h̄)

Φ ′
h(z, h̄)W.
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Substituting the functional form of Φ, we obtain

Φ ′
h(z, h̄) = ∇ f1

(
z,E[ f2(z, X)])δz,

where δz is the Dirac measure at z. Application of this operator to the processW yields
formula (16). Observe that W (·) has continuous paths and the minimum exists. ��
Corollary 1 If, in addition to conditions of Theorem 2, the set Ẑ contains only one
element ẑ, then the following central limit formula holds:

√
n
[
ρ(n) − ρ

] D−→ 〈∇ f1
(
ẑ,E[ f2(ẑ, X)]),W (ẑ)

〉
, (18)

where W (ẑ) is a zero-mean normal vector with the covariance

cov
[
W (ẑ),W (ẑ)

] = cov
[
f2(ẑ, X), f2(ẑ, X)

]
.

The following examples show that two notable categories of risk measures fall into
the structure (14).

Example 4 (Average Value at Risk) Average Value at Risk (2) is one of the most
popular and most basic coherent measures of risk. Recall that for a random variable
X , it is representable as follows:

AVaRα(X) = min
z∈R

{
z + 1

α
E[(X − z)+]

}
.

This measure fits in the structure (14) by setting

f1(z, η) = z + 1

α
η

f2(z, X) = max(0, X − z).

The plug-in empirical estimators of (2) have the following form

ρ(n) = min
z∈R

{

z + 1

αn

n∑

i=1

(
max(0, Xi − z)

)
}

.

If the support of the distribution of X is bounded, then so is the support of all empirical
distributions and we can assume that the set Z contains the support of the distribution.
Observe that all assumptions of Theorem 2 are satisfied. If the distribution function of
the randomvariable X is continuous atα, then the solution of the optimization problem
at the right-hand side of (2) is unique. In that case, the assumptions of Corollary 1 are
also satisfied. We conclude that

√
n
[
ρ(n) − ρ

] D−→ 1

α
W,
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where W is a normal random variable with zero mean and variance

Var[W ] = E

[(
max(0, X − ẑ) − E

[
max(0, X − ẑ

])2]
.

We note that the assumption of the boundedness of the support of the random variable
X is not restrictive, because we could take a sufficiently large set Z , which would
contain the corresponding quantile of the distribution function of X and all empirical
quantiles for sufficiently large sample sizes.

Additionally, we refer to anothermethod for estimating theAverageValue at Risk at
all levels simultaneously, which was discussed in Dentcheva and Penev (2010), where
also central limit formulae under different set of assumptions were established. �

Example 5 (Higher order Inverse Risk Measures) Consider a higher order inverse risk
measure (4) with c = 1

α
> 1:

ρ[X ] = min
z∈R

{
z + c

∥∥max(0, X − z)
∥∥
p

}
, (19)

where p > 1 and ‖ · ‖p is the norm in the Lp space. We define:

f1(z, y) = z + cy
1
p ,

f2(z, x) = (
max(0, x − z)

)p
.

If the support of the distribution of X is bounded, so is the support of all empirical
distributions. In this case, we can find a bounded set Z (albeit larger than the support
of X ) such that all solutions of problems (19) belong to this set. For p > 1 and c > 1
problem (19) has a unique solution, which we denote by ẑ.

The plug-in empirical estimators of (19) have the following form

ρ(n) = min
z∈R

⎧
⎨

⎩
z + c

(
1

n

n∑

i=1

(max(0, Xi − z))p
) 1

p

⎫
⎬

⎭
. (20)

Observe that all assumptions of Theorem 2 and Corollary 1 are satisfied. We conclude
that

√
n
[
ρ(n) − ρ

] D−→ c

p

(
E
[(
max(0, X − ẑ)

)p])
1−p
p
W, (21)

where W is a normal random variable with zero mean and variance

Var[W ] = E

[((
max(0, X − ẑ)

)p − E
[(
max(0, X − ẑ)

)p])2]
.

�
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4 Estimation of optimized composite risk functionals

In this section, we are concerned with optimization problems in which the objective
function is a composite risk functional. Our goal is to establish a central limit formula
for the optimal value of such problems.

Our methods allow for the analysis of more complicated structures of optimized
risk functionals:

� = min
u∈U E

[
f1
(
u,E

[
f2
(
u,E[· · · fk(u,E[ fk+1(u, X)], X)] · · · , X

)]
, X
)]

. (22)

Here X is a m-dimensional random vector, f j : U × R
m j × R

m → R
m j−1 , j =

1, . . . , k, with m0 = 1 and fk+1 : U × R
m → R

mk . We assume that U is a compact
set in a finite-dimensional space and the optimal solution û of this problem is unique.

We define the functions:

f̄ j (u, η j ) =
∫

X
f j (u, η j , x) P(dx), j = 1, . . . , k,

f̄k+1(u) =
∫

X
fk+1(u, x) P(dx),

and the quantities

μk+1 = f̄k+1(û),

μ j = f̄ j (û, μ j+1), j = 1, . . . , k.

We assume that compact sets I1, . . . , Ik are selected so that int(Ik) ⊃ f̄k+1(U ), and
int(I j ) ⊃ f̄ j+1(U, I j+1), j = 1, . . . , k − 1. Let us define the space

H = C(0,1)
1 (U × I1) × C(0,1)

m1
(U × I2) × · · · C(0,1)

mk−1
(U × Ik) × Cmk (U ),

where C(0,1)
m j−1(U × I j ) is the space of Rm j−1 -valued continuous functions on U ×

I j , which are differentiable with respect to the second argument with continuous
derivatives on U × I j . We denote the Jacobian of f j (u, η j , x) with respect to the
second argument at η∗

j ∈ I j by f ′
j (u, η∗

j , x). For every direction d ∈ H, we define
recursively the sequence of vectors:

ξk+1(d) = dk+1,

ξ j (d) =
∫

X
f ′
j (û, μ j+1, x)ξ j+1(d) P(dx) + d j (μ j+1), j = k, k − 1, . . . , 1.

(23)
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The empirical estimator is

�(n) = min
u∈U

n∑

i=1

1

n

[
f1

(
u,

n∑

i=1

1

n

[
f2

(
u,

n∑

i=1

1

n

[
· · · fk

(
u,

n∑

i=1

1

n
[ fk+1(u, X)], X

)]

· · · , X

)]
, X

)]
.

We establish the following result.

Theorem 3 Suppose the following conditions are satisfied:

(i)
∫
X ‖ f j (u, η j , x)‖2 P(dx) < ∞ for all η j ∈ I j , u ∈ U , j = 1, . . . , k, and∫
X ‖ fk+1(u, x)‖2P(dx) < ∞ for all u ∈ U ;

(ii) The functions f j (·, ·, x), j = 1, . . . , k, and fk+1(·, x) are Lipschitz continuous
for every x ∈ X :

‖ f j (u
′, η′

j , x) − f j (u
′′, η′′

j , x)‖ ≤ γ j (x)
(‖u′ − u′′‖ + ‖η′

j − η′′
j‖
)
, j = 1, . . . , k.

‖ fk+1(u
′, x) − fk+1(u

′′, x)‖ ≤ γk+1(x)‖u′ − u′′‖,

for all η′
j , η

′′
j ∈ I j , u′, u′′ ∈ U ; moreover,

∫
γ 2
j (x) P(dx) < ∞, j = 1, . . . , k +

1;
(iii) The functions f j (u, ·, x), j = 1, . . . , k, are continuously differentiable for every

x ∈ X , u ∈ U ; moreover, their derivatives are continuous with respect to the
first two arguments.

Then

√
n
[
ρ(n) − ρ

] D−→ ξ1(W ),

where W (·) = (
W1(·), . . . ,Wk(·),Wk+1

)
is a zero-mean Brownian process on I =

I1 × I2 × · · · × Ik . Here W j (·) is a Brownian process of dimension m j−1 on I j ,
j = 1, . . . , k, and Wk+1 is an mk-dimensional normal vector. The covariance function
of W (·) has the following form

cov
[
Wi (ηi ),Wj (η j )

]

=
∫

X
[
fi (û, ηi , x) − f̄i (û, ηi )

][
f j (û, η j , x) − f̄ j (û, η j )

]�
P(dx),

ηi ∈ Ii , η j ∈ I j , i, j = 1, . . . , k

cov
[
Wi (ηi ),Wk+1

]

=
∫

X
[
fi (û, ηi , x) − f̄i (û, ηi )

][
fk+1(û, x) − f̄k+1(û)

]�
P(dx), (24)

ηi ∈ Ii , i = 1, . . . , k

cov
[
Wk+1,Wk+1

]

=
∫

X
[
fk+1(û, x) − f̄k+1(û)

][
fk+1(û, x) − f̄k+1(û)

]�
P(dx).
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Proof We follow the main line of argument of the proof of Theorem 1. We define
M = m0 +m1 +· · ·+mk and the vector-valued function f : U × I ×X → R

M with
block coordinates f j (u, η j , x), j = 1, . . . , k, and fk+1(u, x). Similarly, we define
f̄ : U × I → R

M with block coordinates f̄ j (u, η j ), j = 1, . . . , k, and f̄k+1(u).
Consider the empirical estimates of the function f̄ (u, η):

h(n)(u, η) = 1

n

n∑

i=1

f (u, η, Xi ), n = 1, 2, . . . .

Due to our assumptions, for sufficiently large n all these functions are elements of the
space H.

Owing to assumptions (i)–(ii), the class of functions f (u, η, ·), u ∈ U , η ∈ I , is
Donsker, that is the following uniform Central Limit Theorem, holds (see Van der
Vaart 1998, Ex. 19.7): √

n
(
h(n) − f̄

) D−→ W, (25)

where W is a zero-mean Brownian process on U × I with covariance function

cov
[
W (u′, η′),W (u′′, η′′)

]

=
∫

X
[
f (u′, η′, x) − f̄ (u′, η′)

][
f (u′′, η′′, x) − f̄ (u′′, η′′)

]�
P(dx). (26)

This fact will allow us to establish asymptotic properties of the sequence
{
ρ(n)

}
. We

define an operator � : H → R as follows

Ψ (u, h) = h1
(
u, h2

(
u, · · · hk(u, hk+1(u)) · · · )

)
.

By definition,

ρ(X) = min
u∈U Ψ

(
u, f̄

)
,

ρ(n) = min
u∈U Ψ

(
u, h(n)

)
.

To apply Delta Theorem to the sequence
{
ρ(n)

}
, we have to verify Hadamard direc-

tional differentiability of the optimal value function v(·) = minu∈U Ψ (u, ·) at f̄ .
Observe that our assumptions imply that the conditions of (Bonnans and Shapiro
2000, Thm. 4.13) are satisfied. As the optimal solution set is a singleton, the function
v(·) is differentiable at f̄ with the Fréchet derivative

v′( f̄ ) = Ψ ′(û, f̄ ),

where Ψ ′(u, f ) is the Fréchet derivative of Ψ (u, ·) at f . The remaining derivations
are identical as those in the proof of Theorem 1. We only need to substitute û as an
additional argument of all functions involved. ��

123



754 D. Dentcheva et al.

Example 6 (Optimization problems with mean–semideviation) Consider now an opti-
mization problem involving a mean–semideviation measure of risk

min
u∈U ρ[ϕ(u, X)] = E[ϕ(u, X)] + κ

(
E
[(

ϕ(u, X) − E[ϕ(u, X)])p+
]) 1

p
, (27)

where ϕ : Rd × X → R. We have

f1(η1, u, x) = κη
1
p
1 + ϕ(u, x),

f2(η2, u, x) = {[
max{0, ϕ(u, x) − η2}

]p}
,

f3(u, x) = ϕ(u, x),

and

f̄1(η1, u) = κη
1
p
1 + E[ϕ(u, X)],

f̄2(η2, u) = E
{[

max{0, ϕ(u, X) − η2}
]p}

,

f̄3(u) = E[ϕ(u, X)].

We assume that p > 1. Suppose û is the unique solution of problem (27). We set
μ3 = E[ϕ(û, X)]. Thenμ2 = E

{[
max{0, ϕ(û, X)−E[ϕ(û, X)]}]p} andμ1 = ρ(X).

Following (23), we calculate

ξ2(d) = f̄ ′
2(μ3, û; d3) + d2(μ3) = −pE

{[
max{0, ϕ(û, X) − μ3}

]p−1}
d3 + d2(μ3),

ξ1(d) = f̄ ′
1

(
μ2, û; ξ2(d)

)+ d1
(
μ2
) = κ

p
μ

1
p −1

2 ξ2(d) + d1
(
μ2
)
.

We obtain the expression

Ψ ′
1( f̄ ;W ) = W1

(
E
{[

max{0, ϕ(û, X) − E[ϕ(û, X)]}]p})

+ κ

p

(
E
{[

max{0, ϕ(û, X) − E[ϕ(û, X)]}]p}
) 1−p

p

×
(
W2
(
E[ϕ(û, X)])− pE

{[
max{0, ϕ(û, X) − E[ϕ(û, X)]}]p−1}

W3

)
. (28)

The covariance structure of the process W can be determined from (26), similar to
Example 3. The process W1(·) has the constant covariance function:

cov
[
W1(η1(û)),W1(η1(û))

] = Var[ϕ(û, X)].
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The third coordinate, W3 has variance equal to Var[ϕ(û, X)]. In addition,
cov(W1(η1(û)),W3) = Var[ϕ(û, X)],

and thus W1 and W3 have the same normal distribution and are perfectly correlated.
The variance function of W2(·) and its covariance with W1 (and W3) can be calcu-

lated in a similar way:

Var[W2(E[ϕ(û, X)])] = E

{([
max{0, ϕ(û, X) − E[ϕ(û, X)]}]p

−E
([
max{0, ϕ(û, X) − E[ϕ(û, X)]}]p)

)(
ϕ(û, X) − E[ϕ(û, X)]

)}
.

We conclude that

√
n
[
ρ(n) − ρ

] D−→ N (0, σ 2),

where the variance σ 2 can be calculated in a routine way as a variance of the right-hand
side of (28), by substituting the expressions for variances and covariances of W1,W2,
and W3. �

5 A simulation study

In this section, we illustrate the convergence of some estimators discussed in this
paper to the limiting normal distribution. Many previously known results for the case
p = 1 have been investigated thoroughly in the literature (see, e.g., Stoyanov et al.
2010) and we will not dwell upon these here. We will only illustrate the case about
Higher order Inverse Risk Measures as discussed in Example 4 for the case p > 1.
More specifically, we take independent identically distributed observations Xi , i =
1, 2, . . . , n from an independent identically distributed X ∼ N (10, 3) observations.
We take ε = 0.05 and p = 2. In that case c = 20. Numerical calculation in Matlab
delivers the theoretical argument minimum z∗ = 14.5048 and the value of the risk
in (19) being ρ[X ] = 15.5163. The standard deviation of the random variable in
the right-hand side of (21) is 16.032. The plug-in estimator ρ(n) of this risk can be
represented as a solution of a convex optimization problem with convex constraints
and hence a unique solution can be found by any package that solves such type of
problems. We have used the cvx package that can be operated within matlab.
Denoting di = max(Xi − z, 0), i = 1, 2, . . . , n and putting all di , i = 1, 2, . . . , n in
a vector d we can rewrite our optimization problem as follows:

min
z,d

{

c 1
n1/p

(
n∑

i=1
d p
i

)1/p

+ z

}

subject to Xi − z ≤ di , di ≥ 0, i = 1, 2, . . . , n. (29)

The numerical solution to this optimization problem gives us the estimator ρ(n). To
get an idea about the speed of convergence to the limiting distribution in (20) we
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Fig. 1 Density histogram of the distribution of the estimator ρn for increasing values of n and its normal
approximation using Theorem 2 and X ∼ N (10, 3)

simulate m = 2500 risk estimators ρ
(n)
j , j = 1, 2, . . . , 2500 for a given sample size

n and draw their histogram. The number of bins for the histogram is determined by
the rough “squared root of the sample size” rule. This histogram is superimposed to
the N (15.5163, (16.032/

√
n)2) density. As n is increased, our theory suggests that

the histogram and the normal density graph will look more and more similar in shape.
Their closeness indicates how quickly the central limit theorem pops up in this case.

Figure 1 shows that the central limit theorem indeed represents a very good approxi-
mationwhich improves significantlywith increasing sample size. The small downward
bias that appears in Fig. 1a is getting increasingly irrelevant with growing sample size.
We have experimented with different values of p such as p = 1, 1.5, 2 and 2.5 and
we have also changed the value of ε (respectively, c = 1/ε). The tendency shown
in Fig. 1 is largely upheld, however, as expected, the standard errors are increased
when c and/or p is increased. In addition, the limiting normal approximation seems
to be more accurate for the same sample sizes when a smaller value of p is used.
This discussed effect is illustrated on Fig. 2 where p = 1 (i.e., the case of AVaR),
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Fig. 2 Density histogram of the distribution of the estimator ρn for different values of p when X ∼
N (10, 3)

p = 1.5, p = 2 (where a different sample in comparison to the sample in Fig. 1,) and
p = 2.5 was simulated). The remaining quantities have been kept fixed to n = 2000
and c = 20. We stress that increasing the sample size in Fig. 2d makes the histogram
look much more like the limiting normal curve so that the discrepancy observed there
is indeed just due to the limiting approximation popping up at larger samples when p
is increased.

We also experimented with different distributions for the random variable X. We
took specifically t distributions with degrees of freedom ν such as 4, 6, 8 and 60,
shifted to have the same mean of 10 like in the normal simulated data. The results of
this comparison for p = 2, ε = 0.05 and n = 4000 are shown in Fig. 3. The variances
of the t-distributed variables, being equal to ν/(ν − 2), are finite and even smaller
than the variance of the normal random variable in Fig. 1. However, the heavier tails
of the t distribution adversely affect the quality of the approximation. Despite the
fact that the limiting distribution of the risk estimator is still normal when ν = 6 and
ν = 8, the heavy tailed data cause the normal approximation to be relatively poor
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Fig. 3 Density histogram of the distribution of the estimator ρn for n = 4000 and X ∼ tν with ν being
60, 8, 6 and 4

even at n = 4000. The case ν = 60 is closer to normal distribution and hence the
approximation works better in this case.

Note that the limiting distribution when p = 2 involves the fourth moment of the t
distribution and this moment is finite for ν = 6, 8 and 60 but is infinite when ν = 4.
As a result, it can be seen from Fig. 3d that the normal approximation collapses in
this case. In addition, Fig. 3 shows that for attaining similar quality in Kolmogorov
metric for the asymptotic approximation like in the case of normally distributed X,

in Fig. 1c, much bigger samples are needed. For the fixed sample size of 4000, the
quality of the normal approximation worsens as ν decreases from 60 to 8 and then
to 6. Furthermore, and outside of the scope of the present paper, we note that if the
distribution of X has even heavier tails than the t distribution (for example, if it is in
the class of stable distributions with stability parameter in the range (1,2)) then the
limiting distribution of the risk may not be normal at all.
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6 Conclusions

Motivated by the need to estimate coherent riskmeasures, we introduce a general com-
posite functional structure in which many known coherent risk measures can be cast.
We establish central limit theorems by reformulating the problems in functional spaces,
using the infinite dimensional delta method, and Donsker theory. The applicability of
the procedure hinges on verifying smoothness conditions of the related functionals.
The potential applicability of our central limit theorems, however, extends beyond
functionals representing coherent risk measures. Our short simulation study indicates
that the central limit theorem-type approximations are very accurate when the sample
size is large, p is in reasonable limits between 1 and 3 and the tails of the distribu-
tion of X are not very heavy. We note that for smaller sample sizes, the technique of
concentration inequalities may be more powerful and accurate when evaluating the
closeness of the approximation. It is possible to derive concentration inequalities for
estimators of statistical functionals with the structure that has been introduced in our
paper. This is subject of ongoing research.
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