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Abstract Truncated data are commonly seen in studies of biomedicine, epidemiology,
astronomy and econometrics. Existing regressionmethods for analyzing left-truncated
and right-censored data have been developed under the assumption that the lifetime
variable of interest is independent of both truncation and censoring variables. In this
article, we propose a semiparametric accelerated failure time model that incorporates
both covariates and the truncation variable as regressors. The proposed model utilizes
the truncation information in statistical modeling and hence allows for dependent trun-
cation. For estimation, we develop a set of estimating equations constructed from the
log-rank and quasi-independence test statistics. We show that the resulting estimators
are consistent and asymptotically normal. We also propose an explicit formula for
variance estimation based on a kernel method. Finite-sample performances of the esti-
mators are studied by simulations. The proposed methodology is applied to analyze a
real data for illustration.
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1 Introduction

Truncateddata are commonly seen in studies of biomedicine, epidemiology, astronomy
and econometrics. Such data occur when the variables of interest can be observed
only if their values satisfy certain criteria. Left truncation refers to the situation that
the samples are available only when the variable of interest exceeds some threshold
value. An example of such data is the lifetime data collected from the Channing
house retirement community in Palo Alto, California (Hyde 1980). The data records
residents’ lifetime (age at death) and gender subject to the criteria that a resident had to
live long enough to enter the retirement center. Thus, the entry age stands for the left-
truncation variable. The data also include right censoring due to subjects’ withdrawal
or the end-of-study effect.

Most methods for analyzing left-truncated and right-censored data have been devel-
oped under the assumption that the lifetime variable is independent of both truncation
and censoring variables. In contrast to independent censorship which is not a testable
condition, there exist several nonparametric tests for verifying the quasi-independence
assumption on the truncation variable (Tsai 1990; Jones and Crowley 1992; Chen
et al. 1996; Martin and Betensky 2005; Emura and Wang 2010; Uña-Álvarez 2012;
Rodríguez Girondo and de Uña-Álvarez 2012). From these articles, we see an interest-
ing phenomenon that the null hypothesis of quasi-independence was often rejected in
some common real-world examples. This further implies that the sampling selection
criteria itself contains information about the variable of interest.

In this article, we propose a semiparametric accelerated failure time (AFT) model
that incorporates both covariates and the truncation variable as regressors.As an impor-
tant special case, the model includes the AFT model of Lai and Ying (1991) in which
the lifetime variable is conditionally independent of truncation variable given covari-
ates. A major goal of the proposed model is to allow dependent truncation, hereby
utilizing the truncation information in statistical modeling.

The article is organized as follows. In Sect. 2, we present the proposed model
and inference methods. In Sect. 3, we derive asymptotic properties of the proposed
estimator and suggest methods for variance estimation. Simulations and data analysis
are provided in Sects. 4 and 5, respectively. Concluding remarks are given in Sect. 6.
Technical proofs are provided in the appendix.

2 Proposed methodology

Let Y ∗ be the logarithms of lifetime. Similarly, let T and C be the logarithms of left-
truncation time and right-censoring time, respectively. Also, letX be a p-dimensional
covariate vectorwithout the intercept term.To avoid the trivial case,we assumePr(T ≤
Y ∗) > 0. We also impose a usual assumption that left truncation precedes right
censoring with probability one, i.e., Pr(T ≤ C) = 1. This assumption includes Type I
censoring of the formC = T +τ for some τ > 0, which often occurs in left-truncated
data (Uña-Álvarez 2010).

In left-truncated and right-censored data, observed variables include (T, Y, �, X)

subject to T ≤ Y ∗, where Y = Y ∗ ∧ C , � = I (Y ∗ ≤ C), a ∧ b = min(a, b)

123



Semiparametric inference for an accelerated failure time model 1075

and I (.) is the indicator function. Left-truncated and right-censored data consist of
random replications of (T, Y, �, X), denoted as (Ti , Yi , �i , Xi ), subject to Ti ≤ Yi ,
for i = 1, . . . , n. Under this sampling scheme, the cumulative distribution function of
(T, Y, �, X) is

F(t, y, δ, x) = Pr(T ≤ t, Y ∗ ∧ C ≤ y, I (Y ∗ ≤ C) ≤ δ, X ≤ x|T ≤ Y ∗).

Our objective is to utilize the information of both X and T , if dependent truncation
exists, in modeling the behavior of Y ∗.

2.1 Preliminary

Our proposal was motivated by the work of Lai and Ying (1991) who considered the
following AFT model:

Y ∗ = β ′
0X + ε, (1)

where ε is the error termwith an unspecified density fε(·). The p-dimensional parame-
ter β0 describes the covariate effect on the log-lifetime Y ∗. Traditionally, it is assumed
that ε is independent of (T, C, X) (Lai and Ying 1991). It follows that Y ∗ and (T, C)

are conditionally independent given X. This implies that, after adjusting for the effect
ofX, the truncation T contains no information about the lifetime Y ∗. Accordingly, Lai
and Ying (1991) proposed a rank-based estimation approach based on left-truncated
and right-censored data (Ti , Yi , �i , Xi ), subject to Ti ≤ Yi , for i = 1, . . . , n.

We revisit the AFT regression procedure of Lai and Ying (1991). Note that the
residual lifetime eYi (β) = Yi −β ′Xi is left truncated by e

T
i (β) = Ti −β ′Xi . In terms

of the residual scale, Ri (β) = ∑
j I {eTj (β) ≤ eYi (β) ≤ eYj (β)} represents the number

at risk for a subject i . Lai and Ying (1991) proposed the log-rank type estimating
function

Un(β) =
n∑

i=1

�iφi (β)

⎡

⎣Xi − 1

Ri (β)

∑

j

X j I {eTj (β) ≤ eYi (β) ≤ eYj (β)}
⎤

⎦,

where φi (β) is a weight function. With the Gehan weight φi (β) = Ri (β), it is easy
to see that Un(β) is equal to

UG
n (β) =

n∑

i=1

n∑

j=1

�i (Xi − X j )I {eTj (β) ≤ eYi (β) ≤ eYj (β)}.

Under the special case of no truncation (i.e., eTj (β) = −∞), the form of UG
n (β)

reduces to the usual Gehan-type estimating function (Section 7.4.3 of Kalbfleisch
and Prentice 2002) which is monotone in each component of β. This useful property
has been applied by Jin et al. (2003) to solve the estimating equation using a linear
programming method and construct a resampling-based variance estimator.
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1076 T. Emura, W. Wang

To facilitate further discussions, we derive an alternative expression for UG
n (β).

Define sgn(x) as -1, 0, or 1 if x < 0, x = 0, or x > 0, respectively. After some
calculations provided in Appendix A1, we get

UG
n (β) = −

∑

i< j

(Xi − X j )sgn{eYi (β) − eYj (β)}I {�e T

i j (β) ≤ ẽYi j (β)}Qi j (β), (2)

where
�
e
T

i j (β) = eTi (β) ∨ eTj (β), a ∨ b ≡ max(a, b), ẽYi j (β) = eYi (β) ∧ eYj (β), and

Qi j (β) = �i� j + �i (1 − � j )I {eYi (β) < eYj (β)}
+ (1 − �i )� j I

{
eYi (β) > eYj (β)

}
.

Here, Qi j (β) indicates whether a pair (i, j) is orderable and I {�e T

i j (β) ≤ ẽYi j (β)} indi-
cates whether the pair is comparable (Martin and Betensky 2005). The new expression
in Eq. (2) is a U-statistic which will be used in subsequent discussions.

2.2 Proposed model

We consider relaxing the independent truncation assumption by utilizing the informa-
tion of T in the following regression model:

Y ∗ = β ′
0X + γ0T + ε, (3)

where ε is an error term with an unspecified density function fε(·). We assume that
ε and (T, C, X) are independent. Note that the parameter γ0 explicitly measures the
dependency of Y ∗ on T , conditional on the covariate X, such that

γ0 = Cov(Y ∗, T |X)

Var(T |X)
.

If γ0 = 0 is assumed to be known, the model (3) reduces to the model (1). Hence, the
newmodel is a broader version of Lai and Ying’s model under an unknown population
parameter γ0.

One can interpret the regression parameters β0 as the effect of the covariate X on
the lifetime Y ∗, after adjusting for the value of truncation time T . For the Channing
house example, the covariate “gender” is coded as X = 1 for male and X = 0 for
female, and the truncation time T is the potential entry age. Then, the parameter β0
in the model (3) represents the difference of log-lifetime between male and female
residents in the Channing house having the same potential entry age.

Without truncation, wewill have Pr(T ≤ Y ∗) = 1which happens when all possible
values of T fall below the lower boundary of Y ∗. In the Channing house example
where T denotes the logarithm of the age entering the study, “no truncation” refers to
T = −∞whichmeans that all subjects in the target populationwould be recruited into
the study since they were just born. However, the real Channing house data are subject
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Semiparametric inference for an accelerated failure time model 1077

to a truncation mechanism which yields a biased sample from the target population by
imposing an additional constraint T ≤ Y ∗ with Pr(T ≤ Y ∗) < 1.Wewill demonstrate
that with appropriate estimation schemes, such sampling bias can be corrected even
if the truncation mechanism is informative.

To further illustrate the proposed model (3), we generalize the model of Martin and
Betensky (2005) to a regression setting in which the lifetime and truncation time, after
the logarithm transformation, jointly follow a bivariate normal distribution

[
Y ∗
T

]

∼ N

( [
β ′

0X
μL

]

,

[
σ 2
Y ∗ ρσY ∗σT

ρσY ∗σT σ 2
T

])

.

It follows that

Y ∗|X, T ∼ N

(

β ′
0X + ρ

σY ∗

σT
(T − μL), σ 2

Y ∗(1 − ρ2)

)

.

This implies that the model (3) holds with γ0 = ρσY ∗/σT and an independent error

ε ∼ N

(

−ρ
σY ∗

σT
μL , σ 2

Y ∗(1 − ρ2)

)

.

The parameter β0 is interpreted as the population effect of X on Y ∗ since Y ∗|X ∼
N (β ′

0X, σ 2
Y ∗) holds true. Nevertheless, it is wrong to fit the model (1) under the

framework of Lai and Ying (1991) since the error Y ∗ − β ′
0X is clearly dependent on

T . As we will see in our simulations, such a naïve method yields systematic bias for
estimating the population parameter β0.

2.3 Estimation of regression coefficients

We need a set of estimating functions for the joint estimation of β = (β1, . . . , βp)
′

and γ . Define εYi (β, γ ) = Yi − β ′Xi − γ Ti and εTi (β, γ ) = Ti − β ′Xi − γ Ti . Note
that εYi (β, γ ) is left-truncated by εTi (β, γ ) satisfying εTi (β, γ ) ≤ εYi (β, γ ). In light
of Eq. (2), log-rank statistics with the Gehan weight can be modified as

SLogrankn (β, γ ) = −
∑

i< j

(Xi − X j )sgn{(εYi (β, γ ) − εYj (β, γ )}

× I {�ε T

i j (β, γ ) ≤ ε̃Yi j (β, γ )}Oi j (β, γ ),

where
�
ε
T

i j (β, γ ) = εTi (β, γ ) ∨ εTj (β, γ ), ε̃Yi j (β, γ ) = εYi (β, γ ) ∧ εYj (β, γ ), and

Oi j (β, γ ) = �i� j + �i (1 − � j )I {εYi (β, γ ) < εYj (β, γ )}
+ (1 − �i )� j I {εYi (β, γ ) > εYj (β, γ )}.

Note that Oi j (β, γ ) = 1 if a pair (i, j) is orderable and Oi j (β, γ ) = 0, otherwise.
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1078 T. Emura, W. Wang

The second estimating function utilizes the assumption that ε = Y ∗ − β ′
0X− γ0T

and T −β ′
0X−γ0T are independent. Motivated by the quasi-independence test based

on the conditional Kendall’s tau statistics (Martin and Betensky 2005), we set

SKendalln (β, γ )

=
∑

i< j

sgn[{εTi (β, γ ) − εTj (β, γ )}{εYi (β, γ ) − εYj (β, γ )}]

×I {�ε T

i j (β, γ ) ≤ ε̃Yi j (β, γ )}Oi j (β, γ ).

The estimator (β̂, γ̂ ) jointly solves SLogrankn (β, γ ) = 0 and SKendalln (β, γ ) = 0.

It is important to note that both SLogrankn (β, γ ) and SKendalln (β, γ ) are non-
monotonic step functions in each components of (β, γ ) [see the functional property
of SLogrankn (β, γ ) described in Appendix A2]. Accordingly the Newton-type algo-
rithms and even the linear programming developed by Jin et al. (2003) are not directly
applicable.

We suggest the Nelder–Mead simplex algorithm for minimizing non-differentiable
functions (Nelder and Mead 1965). Define an objective function

{||SLogrankn (β, γ )||2 + |SKendalln (β, γ )|2}/n2,

where || · ||2 is the Euclid (L2) norm, defined to be ||a||2 ≡ a′a for a vector a. Then,
solving the estimating functions corresponds to minimizing the objective function.

In our numerical studies, we use R optim routine for implementing the Nelder–
Mead algorithm. To ascertain the right solution, one needs to supply a reliable

initial value. One possible suggestion is the initial value (β̂
LY

, 0) where β̂
LY

solves
SLogrankn (β, 0) = 0 and is the estimator of Lai and Ying (1991) with the Gehan weight.

Here, β̂
LY

is found by minimizing ||SLogrankn (β, 0)||2/n2 with the initial value β = 0.

Another possible initial value is (0, 0). In our simulations (Sect. 4), we use (β̂
LY

, 0)
since it reaches the solutions through all the repetitions. In real data analysis, we
suggest trying both methods.

2.4 Estimation of survival function

We consider estimation of the survival function Sε(t) = Pr(ε > t). Notice
that {(εTi (β̂, γ̂ ), εYi (β̂, γ̂ ), �i ); i = 1, . . . , n} form approximately homogeneous
(identically distributed) samples of left-truncated and right-censored data subject to
εTi (β̂, γ̂ ) ≤ εYi (β̂, γ̂ ). Therefore, we can estimate Sε(t) by the product-limit estima-
tor (Tsai et al. 1987)

Ŝε( t; β̂, γ̂ ) =
∏

u≤t

{

1 −
∑

j I ( εYj (β̂, γ̂ ) = u, � j = 1 )
∑

j I ( εTj (β̂, γ̂ ) ≤ u ≤ εYj (β̂, γ̂ ) )

}

.

123



Semiparametric inference for an accelerated failure time model 1079

Remark Since {(εTi (β̂, γ̂ ), εYi (β̂, γ̂ ), �i )} and {(εTj (β̂, γ̂ ), εYj (β̂, γ̂ ), � j )} are

dependent for i 
= j , the asymptotic properties of Ŝε( t; β̂, γ̂ ) do not directly fol-
low from those of the product-limit estimator. As for the consistency of Ŝε( t; β̂, γ̂ ),
this dependency will be asymptotically negligible (Theorem 3). However, the depen-
dency makes it difficult to derive the asymptotic normality of Ŝε( t; β̂, γ̂ ), and also
influences the asymptotic variance.

3 Asymptotic analysis

3.1 Asymptotic theory

Let � ⊂ Rp+1 be the parameter space for (β, γ ), and (β0, γ0) ∈ � be the true
parameter value. Asymptotic properties of (β̂, γ̂ ) are constructed by expressing the
estimating functions as a functional of the empirical distribution function,

Fn(t, y, δ, x) = 1

n

n∑

i=1

I (Ti ≤ t, Yi ≤ y, �i ≤ δ, Xi ≤ x),

and then applying the asymptotic theory for empirical processes (e.g., Van Der Vaart
and Wellner 1996). By straightforward calculations given in Appendix B.1,


(Fn; β, γ ) ≡ 1

n2

[
SLogrankn (β, γ )

SKendalln (β, γ )

]

=
∫∫

h{(t1, y1, δ1, x1), (t2, y2, δ2, x2);β, γ }dFn(t1, y1, δ1, x1)

× dFn(t2, y2, δ2, x2), (4)

where h is a deterministic function given by

h{(t1, y1, δ1, x1), (t2, y2, δ2, x2); β, γ }
≡ 1

2

[ −(x1 − x2)sgn{y1 − β′x1 − γ t1 − (y2 − β′x2 − γ t2)}
sgn{(t1 − β′x1 − γ t1 − (t2 − β′x2 − γ t2))(y1 − β′x1 − γ t1 − (y2 − β′x2 − γ t2))}

]

× I {(t1 − β′x1 − γ t1) ∨ (t2 − β′x2 − γ t2) ≤ (y1 − β′x1 − γ t1) ∧ (y2 − β′x2 − γ t2)}
× {δ1δ2 + δ1(1 − δ2)I (y1 − β′x1 − γ t1 < y2 − β′x2 − γ t2)

+(1 − δ1)δ2 I (y1 − β ′x1 − γ t1 > y2 − β ′x2 − γ t2)}.

Since 
(Fn; β, γ ) = 0 holds at (β, γ ) = (β̂, γ̂ ), one can regard (β̂, γ̂ ) as a
Z-estimator based on the function
(Fn; ·) : � 
→ Rp+1.As
(Fn; β, γ ) is not dif-
ferentiable with respect to (β, γ ), one cannot apply the classical technique based on
a Taylor expansion of 
(Fn; β, γ ) around (β0, γ0). Instead, we apply the empirical
process theory for Z-estimators that accommodate the cases of non-differentiable func-
tions (Sec. 3.3 of Van Der Vaart and Wellner 1996). The corresponding deterministic
function is 
(F; ·) : � 
→ Rp+1 in which Fn is replaced by the true distribution F .
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We impose the following conditions:

Assumption 1 There exists some constant M > 0 such that ||X||2 ≤ M with proba-
bility one, where || · ||2 is the Euclid (L2) norm.

Assumption 2 For every ε > 0, inf ||(β, γ )−(β0, γ0)||2≥ε ||
(F;β, γ )||2 > 0 =
||
(F;β0, γ0)||2.

Assumption 1 is a requirement for the function h to be bounded, which is sufficient
for the functional 
(· ;β0, γ0) to be Hadamard differentiable. The same assumption
is imposed by Lai and Ying (1991). Assumption 2 is often called “identifiability”
ensuring that the true value (β0, γ0) ∈ � is a well-separated point from (β, γ ) 
=
(β0, γ0). This is the standard assumption for guaranteeing the consistency of M- or
Z-estimator (Sec. 3.3 of Van Der Vaart and Wellner, 1996; Sec. 5.2 of Van Der Vaart
1998).

Theorem 1 Under Assumptions 1, 2, the estimators (β̂, γ̂ ) converge in probability
to the true parameter value (β0, γ0).

The proof of Theorem 1 is given in Appendix B.2.
Under Assumption 1, the functional 
(·;β0, γ0) is Hadamard differentiable and

hence the functional delta method applies (Sec. 20.2 of Van Der Vaart 1998). Then,
we obtain the expression

n1/2{
(Fn;β0, γ0) − 
(F;β0, γ0)}

= n−1/2
n∑

j=1

φF {(Tj , Y j , � j , X j ); β0, γ0} + oP (1) (5)

where

φF {(Tj , Y j , � j , X j ); β, γ }
= 2

∫

h{(t1, y1, δ1, x1), (Tj , Y j , � j , X j );β, γ }dF(t1, y1, δ1, x1)

−2
∫∫

h{(t1, y1, δ1, x1), (t2, y2, δ2, x2);β, γ }
× dF(t1, y1, δ1, x1)dF(t2, y2, δ2, x2). (6)

We will establish the asymptotic normality under the additional conditions:

Assumption 3 The derivatives ∂
(F;β, γ )/∂(β, γ ) exist and continuous. Also, the
matrix A0 ≡ ∂
(F;β, γ )/∂(β, γ )|β0,γ0

is non-singular.

Assumption 4 A class of functions

� = {φF ( · ; β, γ ) − φF ( · ; β0, γ0 ) : ||β − β0, γ − γ0||2 < δ}

is F-Donsker for some δ > 0.
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Semiparametric inference for an accelerated failure time model 1081

Assumption 3 insures the invertibility of the matrixA0 for the Z-estimator, which is
essential not only for the asymptotic normality proof, but also for variance estimation
(Sect. 3.2). In Assumption 4, whether the class of functions is Donsker depends on
the “size” of � which may reduce as δ approaches to zero [see Section 19.2 of Van
Der Vaart 1998]. As seen from Appendix B.3, Assumption 4 is a sufficient condition
to verify the stochastic condition

n1/2{
(Fn; β̂, γ̂ ) − 
(F; β̂, γ̂ )} − n1/2{
(Fn;β0, γ0) − 
(F;β0, γ0) }
= oP (1 + n1/2||β̂ − β0, γ̂ − γ0||).

Owning to the non-differentiability of 
(Fn; β, γ ) with respect to (β, γ ), the above
stochastic condition is needed to regulate the asymptotic behavior of (β̂, γ̂ ).

Theorem 2 Under Assumptions 1, 2, 3, 4,

n1/2( β̂ − β0, γ̂ − γ0 )′ = A−1
0 n−1/2

n∑

j=1

φF {(Tj , Y j , � j , X j ); β0, γ0} + oP (1),

(7)
where φF is the mean zero random vector defined in Eq. (6) and A0 is defined in
Assumption 3. Accordingly, n1/2( β̂ −β0, γ̂ −γ0 ) converges weakly to a multivariate
normal distribution with mean zero and covariance matrix A−1

0 B0A
−1
0 , where B0 ≡

E[φF {(Tj , Y j , � j , X j ); β0, γ0}φF {(Tj , Y j , � j , X j ); β0, γ0}′].

The proof of Theorem 2 is given in Appendix B.3.
To prove the uniform consistency of the product-limit estimator Ŝε(t; β̂, γ̂ ), we

need an additional assumption. Let the interval [a, b], where a < b, be the support of
ε, where a = inf{u; Sε(u) < 1} and b = sup{u; Sε(u) > 0}. Also, let

πε( s, β, γ ) = E[ I ( T − β ′X − γ T ≤ s )

×Sε{s + (β − β0)
′X + (γ − γ0)T }SC {s + β ′X + γ T }],

where SC is the survival function for C , and E[ · ] is taken over the joint distribution
of (T, X)|T ≤ Y . It is not difficult to see that

∑
j I {εTj (β, γ ) ≤ s ≤ εYj (β, γ )}/n

converges in probability to πε(s, β, γ ). To establish the uniform consistency, it is
natural to assume that πε(s, β, γ ) is positive on s ∈ [a, b], in the neighborhood of
(β0, γ0).

Assumption 5 For some δ > 0, inf ||(β, γ )−(β0, γ0)||≤δ infs∈[a,b] πε(s, β, γ ) > 0.

Theorem 3 Under Assumptions 1, 2 and 5, the product-limit estimator Ŝε(t; β̂, γ̂ )

converges in probability to Sε(t), uniformly over t ∈ [a, b].

The proof of Theorem 3 is given in Appendix B.4.
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3.2 Variance estimation

Even for the usual AFTmodel in (1) without truncation, resampling basedmethods are
often suggested for variance estimation (Jin et al. 2003).However, based onTheorem2,
we can directly estimate A−1

0 B0A
−1
0 by Â−1

0 B̂0Â
−1
0 as defined below. We propose to

estimate B0 by

B̂0 =
n∑

j=1

φFn (Tj , Y j , � j , X j ; β̂, γ̂ )φFn (Tj , Y j , � j , X j ; β̂, γ̂ )′/n,

where

φFn (Tj , Y j , � j , X j ; β̂, γ̂ )

= −2
∫ ∫

h{(t1, y1, δ1, x1), (t2, y2, δ2, x2); β̂, γ̂ }dFn(t1, y1, δ1, x1)dFn(t2, y2, δ2, x2)

+2
∫

h{(t1, y1, δ1, x1), (Tj , Y j , � j , X j ); β̂, γ̂ }dFn(t1, y1, δ1, x1)

= n−1
n∑

i=1

[
−(Xi − X j )sgn{εYi (β̂, γ̂ ) − εYj (β̂, γ̂ )}

sgn{(εTi (β̂, γ̂ ) − εTj (β̂, γ̂ ))(εYi (β̂, γ̂ ) − εYj (β̂, γ̂ )) }

]

×I {�ε T

i j (β̂, γ̂ ) ≤ ε̃Yi j (β̂, γ̂ )}Oi j (β̂, γ̂ ).

Estimation of the (p + 1) × (p + 1) matrix A0 = ∂
(F;β, γ )/∂(β, γ )|β0,γ0
is

more challenging since 
(Fn;β, γ ) is a step function in each component of (β, γ )

and hence not differentiable. We propose to smooth out the jumps by a kernel density
function K satisfying K (u) = K (−u),

∫
K (u)du = 1 and

∫
s2K (s)ds ≡ μ2(K ) <

∞. The resulting kernel estimator is Â0 = [Â(1)
0 (β̂, γ̂ ; b1), . . . , Â(p+1)

0 (β̂, γ̂ ; bp+1)],
where

Â(k)
0 (β, γ ; bk)
=

∫

u 
=0

1

u

(Fn; β1, . . . , βk + u, . . . , βp, γ )

1

bk
K

(
u

bk

)

du, k = 1, . . . , p,

Â(p+1)
0 (β, γ ; bp+1) =

∫

u 
=0

1

u

( Fn; β, γ + u )

1

bp+1
K

(
u

bp+1

)

du,

where bk > 0 is the bandwidth. We particularly use the standard normal density for
K .

Using the Taylor expansion under certain smoothness assumptions on
(F;β, γ ),
the asymptotic mean square error is calculated as
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MSE{Â(k)
0 (β̂, γ̂ ; bk)} = Var{Â(k)

0 (β̂, γ̂ ; bk)} + Bias[Â(k)
0 (β, γ ; bk)]2

≈ 1

nbk
E

[
∂

∂βk
φF {(Tj , Y j , δ j , X j ); β0, γ0}

]2

+ b4k
36

[
∂3

∂β3
k


( F; β0, γ0 )

]2

μ2(K )2,

The bandwidth that minimizes the preceding expression becomes

boptk

=
⎛

⎝9E

[
∂

∂βk
φF {(Tj , Y j , δ j , X j ); β0, γ0}

]2
[

∂3

∂β3
k


(F; β0, γ0 )

]−2

μ2(K )−2

⎞

⎠

1/5
1

n1/5
,

for k = 1, . . . , p. Thus, the optimal convergence rate is boptk = O(n−1/5).

Unfortunately, estimation of the unknown part of boptk is evenmore difficult than the
variance estimation. In addition, commonly used cross-validation schemes are com-
putationally prohibitive. We instead use the idea of Silverman’s reference bandwidth
under the normal kernel (Sheather 2004) and set

b̂k = 0.5min( Sk, IQRk/1.34 )n−1/5,

where S2k is the sample variance and IQRk is the sample inter-quartile range for the

jumps of SLogrankn (β, γ ) with respect to βk (Appendix C). Although this choice may
be somewhat ad hoc, we prefer this approach owning to its computational simplicity
and reasonable numerical performance. The bandwidth estimator b̂p+1 is obtained by
a similar fashion (Appendix C).

One can construct the standard error and confidence interval for (β̂, γ̂ ) using the
proposed variance estimator. For instance, the standard error se(β̂k) of β̂k is the square
root of the kth diagonal element of Â−1

0 B̂0Â
−1
0 divided by n1/2. On the basis of the

asymptotic normality (Theorem 2), a (1 − α) × 100% confidence interval becomes

[β̂k − zα/2se(β̂k), β̂k + zα/2se(β̂k)],

where zα/2 is the upper (α/2) × 100% point of N (0, 1). The standard error and
confidence interval for γ̂ are derived similarly. If the confidence interval does not
cover γ = 0, one can reject the independence assumption between T and Y ∗ givenX.

Estimation of the standard error for Ŝε(t; β̂, γ̂ ) is more challenging. Note
that the Greenwood-type variance formula produces serious under-estimation since
{(εTi (β̂, γ̂ ), εYi (β̂, γ̂ ), �i )} and {(εTj (β̂, γ̂ ), εYj (β̂, γ̂ ), � j )} are not independent
for i 
= j . A better alternative is the bootstrap. For b = 1, . . . , B, where B is usu-
ally 500 or 1000, a resample {(T (b)

i , Y (b)
i , �

(b)
i , X(b)

i ); (i = 1, . . . , n)} is taken out
with replacement from the observation. Then, for each b, we calculate the estimate
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1084 T. Emura, W. Wang

Ŝ(b)
ε (t; β̂

(b)
, γ̂ (b)) based on the resample. The sample standard deviation of the B

estimates can be used for the standard error for Ŝε(t; β̂, γ̂ ). Some simulations, not
reported here, show that the bootstrap performs reasonably well.

4 Simulations

We conduct simulations to examine the performance of the proposed method and also
to compare the proposed method with the method of Lai and Ying (1991).

4.1 Simulation design

We generate data under a bivariate normal model

[
Y ∗
T

]

∼ N

( [
β0X
−1

]

,

[
1 ρ

ρ 1

] )

. (8)

Here, the covariate X follows the uniform distribution on [0,1]. The censoring time
C follows the conditional distribution C∗|C∗ > T , where C∗ ∼ N (1, 1). Then,
left-truncated and right-censored data (Ti , Yi , �i , Xi ) subject to Ti ≤ Yi , for i =
1, . . . , n, are generated.

Note that model (8) leads to

Y ∗ = β0X + γ0T + ε,

where ε ∼ N (γ0, 1 − γ 2
0 ) and γ0 = ρ. The corresponding survival function for ε is

Sε(t) = 1 − 


{
t − γ0

(1 − γ 2
0 )1/2

}

, (9)

and the truncation probability is

Pr(T ≤ Y ∗) =
∫ 1

0



[
1 + β0u

{2(1 − γ0)}1/2
]

du,

where 
 is the cumulative distribution function for N (0, 1). We examine six parame-
ter configurations, namely (β0, γ0) = (0,−0.3), (0, 0), (0, 0.3), (1,−0.3)(1, 0), and
(1, 0.3), which yield the truncation probability Pr(T ≤ Y ∗) = 0.73, 0.76, 0.80, 0.82,
0.85, and 0.89, respectively. The corresponding censoring probability is Pr(C <

Y ∗|T ≤ Y ∗) = 0.28, 0.27, 0.24, 0.40, 0.38, and 0.36, respectively. Two sample sizes
are considered: n =150 and 300.

For simulated data, we compute (β̂, γ̂ ) by following the Nelder–Mead algorithm
implemented in the R optim routine (Sect. 2.3). The variance estimator Â−1

0 B̂0Â
−1
0

for (β̂, γ̂ ) and the 95 % confidence intervals are then computed using the methods of
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Sect. 3.2. We have checked that the routine successfully ascertains the right solution
and that the matrix Â0 is invertible through the 500 replications (not shown).

4.2 Simulation results

Table 1 presents the results for estimating (β0, γ0). In all the cases, the proposed
estimator provides almost unbiased results. The standard deviation of the estimates
decreases as the sample size increases from n = 150 to 300.

Table 1 also compares the standard deviations with the standard errors. For n=150,
the standard error se(β̂) tends to overestimate the standard deviation of β̂. This upward
bias is due to a few outlying variance estimates in the 500 replications, and hence does
not affect the coverage probability much. The upward bias vanishes as the sample size
increases from n = 150 to n = 300. In a similar fashion, the standard error se(γ̂ ) is
sometimes biased for the standard deviation of γ̂ with n = 150, but it is nearly unbiased
with n = 300. These results imply that the kernel approach to variance estimation
works well for large samples. Accordingly the empirical coverage probabilities for
the 95 % confidence intervals are all close to the nominal level.

Table 2 compares the performance between the proposed estimator and the estimator
of Lai and Ying (1991) with the Gehan weight. The latter is obtained by solving
UG
n (β) = 0, or equivalently solving SLogrankn (β, γ ) = 0 under γ = 0 (Sect. 2.3).

As expected from our discussions in Sect. 2.2, Lai and Ying’s estimator produces
systematic bias for the cases of γ0 
= 0 (Table 2). The biases do not vanish as the
sample size increases from n = 150 to n = 300, and the direction of bias is determined
by the sign of γ0. If γ0 = 0, both the proposed method and Lai and Ying’s method are
nearly unbiased, but the standard deviations of Lai and Ying’s estimator are slightly
smaller. However, the loss of efficiency in the proposed estimator is quite modest.

Table 3 examines the performance of Ŝε(t; β̂, γ̂ ) at selected values of t satisfying
Sε(t) = 0.25, 0.50, and 0.75, which can be obtained from Eq. (9). The results show
that the estimator Ŝε(t; β̂, γ̂ ) is nearly unbiased in all the cases. The standard deviation
decreases as the sample size n increases from 150 to 300.

5 Data analysis

To illustrate the proposed methodology, we analyze the data collected from the Chan-
ning house retirement center available in Appendix 1 of Hyde (1980). The data consist
of 462 subjects (97 men and 365 women) whose lifetime is left truncated by the entry
age. Among them, 286 subjects are right censored, yielding the censoring proportion
0.62. The covariate “gender” is coded as X = 1 for male and X = 0 for female. We
also include the truncation time (entry age) as a regressor. Our aim is to study the
effects of gender and entry age jointly on the lifetime.

We fit the model Y ∗ = β0X + γ0T + ε and obtain β̂ = −0.030 (se = 0.018) and
γ̂ = 0.26 (se = 0.12).Here, the point estimates are obtainedby theproposed algorithm
(Sect. 2.3) with the initial values (β = 0, γ = 0). The same estimates are obtained
with the other initial values (β̂LY = −0.036, γ = 0). The 95 % confidence interval
for γ is ( 0.048, 0.468 ) which indicates that the entry age and lifetime are positively
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Table 2 Simulation results for comparing the proposed estimator with the estimator of Lai and Ying (1991)

(β0, γ0) n Proposed method Lai and Ying (1991)

E(β̂) Bias(β̂) SD(β̂) E(β̂) Bias(β̂) SD(β̂)

(−1, −0.3) 150 −0.939 0.061 0.392 −0.849 0.151 0.329

300 −1.000 0.000 0.277 −0.871 0.129 0.238

(−1, 0) 150 −1.019 −0.019 0.460 −1.026 −0.026 0.443

300 −1.004 −0.004 0.324 −1.008 −0.008 0.307

(−1, 0.3) 150 −1.099 −0.099 0.469 −1.256 −0.256 0.506

300 −1.009 −0.009 0.317 −1.226 −0.226 0.358

(1, −0.3) 150 1.021 0.021 0.369 0.888 −0.112 0.336

300 0.998 −0.002 0.256 0.883 −0.117 0.236

(1, 0) 150 1.043 0.043 0.424 1.027 0.027 0.411

300 1.012 0.012 0.287 1.007 0.007 0.281

(1, 0.3) 150 0.999 −0.001 0.375 1.165 0.165 0.429

300 0.992 −0.008 0.255 1.161 0.161 0.294

The average of estimates (E(β̂)), average of biases (Bias) and standard deviation (SD) are calculated based
on 500 repetitions

Table 3 Simulation results for the proposed estimator Ŝε(t; β̂, γ̂ )

(β0, γ0) n Sε(t) = 0.25 Sε(t) = 0.5 Sε(t) = 0.75

Bias SD Bias SD Bias SD

(0, −0.3) 150 0.008 0.112 −0.003 0.151 −0.017 0.142

300 0.003 0.079 −0.001 0.104 −0.009 0.095

(0, 0) 150 0.003 0.106 −0.004 0.142 −0.016 0.133

300 0.003 0.072 0.002 0.099 −0.002 0.091

(0, 0.3) 150 −0.014 0.118 −0.038 0.160 −0.056 0.157

300 −0.001 0.081 −0.008 0.119 −0.016 0.126

(1, −0.3) 150 0.002 0.102 −0.006 0.138 −0.015 0.129

300 0.006 0.075 0.002 0.099 −0.004 0.089

(1, 0) 150 −0.004 0.102 −0.014 0.141 −0.021 0.133

300 −0.002 0.072 −0.007 0.097 −0.009 0.089

(1, 0.3) 150 0.005 0.102 −0.002 0.128 −0.006 0.119

300 0.002 0.069 −0.001 0.091 −0.003 0.084

The average of biases (Bias) and standard deviation (SD) based on 500 simulation repetitions are reported

associated (p−value = 0.016). This result agrees with Tsai’s quasi-independence test
with the estimated conditional Kendall tau equal to 0.088 (p − value = 0.076) (see
Emura and Wang 2010). The fitted value β̂ = −0.030 implies that women seemed to
live longer than men but the gender difference is not statistically significant since the
corresponding 95 % confidence interval (−0.066, 0.007) covers the zero. This obser-
vation agrees with the previously reported results from the Cox proportional hazard
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1088 T. Emura, W. Wang

regression analysis under the independent left-truncation assumption [see Example
9.4 in p.313 of Klein and Moeschberger (2003)].

6 Concluding remarks

Existing regression models and methods developed for left-truncated and right-
censored data focus on the covariate effect on lifetime under the assumption that
lifetime is independent of truncation time. However, empirical evidence has shown
that truncation may reveal useful information on the lifetime of interest (Tsai 1990;
Jones and Crowley 1992; Chen et al. 1996; Martin and Betensky 2005; Emura and
Wang2010;RodríguezGirondo anddeUña-Álvarez 2012). In this article,we explicitly
include the truncation variable, along with other covariates, in the proposed semipara-
metric AFT regression model. We implement computing routines for the proposed
method in R depend.truncation package which is freely available through the Com-
prehensive R Archive Network (CRAN) http://cran.rproject.org/”.

Jones and Crowley (1992) also included the truncation variable as a covariate based
on their models. However, their paper focused only on testing the assumption of quasi-
independence without estimating the models.

Another approach for dependent truncation is based on copula models, where the
dependence between truncation time and lifetime can be measured and estimated
(Chaieb et al. 2006; Beaudoin and Lakhal-Chaieb 2008; Emura et al. 2011; Emura
and Wang 2012; Emura and Murotani 2015). In the absence of covariates, these
papers proposed semiparametric inferencemethods assuming a parametric copulawith
unspecified marginal distributions for the truncation time and lifetime. The copula-
based models could be extended to include covariates along the line of Braekers and
Veraverbeke (2005), Chen (2010), and Emura and Chen (2014) as studied under the
competing risks setting. However, one difficulty comes from the joint estimation of the
two marginal distribution functions, which are infinite dimensional. Compared with
the copula approach, the proposed methodology is much easier to implement since the
proposed estimating functions only involve regression parameters and avoid handling
infinite dimensional parameters. This implies that there is enough information in the
estimating functions to perform regression analysis.

Appendix A: Properties of the estimating functions

Appendix A1: Proof of Equation (2)

Without loss of generality, we assume that eYi (β) 
= eYi (β), i 
= j , holds true. By
straightforward calculations,

UG
n (β) =

n∑

i=1

n∑

j=1

�i (Xi − X j )I {eTj (β) ≤ eYi (β) ≤ eYj (β)}

=
n∑

i=1

∑

j :eYi (β)<eYj (β)

�i (Xi − X j )I {eTj (β) ≤ eYi (β)}.
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If a pair (i, j) satisfies eYi (β) < eYj (β), it holds eYi (β) = ẽYi j (β) = eYi (β) ∧ eYj (β).
Thus,

UG
n (β) =

n∑

i=1

∑

j :eYi (β)<eYj (β)

�i (Xi − X j )I {eTj (β) ≤ ẽYi j (β)}.

Since {eTj (β) ≤ ẽYi j (β)} holds if and only if {�e T

i j (β) ≤ ẽYi j (β)},

UG
n (β) =

n∑

i=1

∑

j :eYi (β)<eYj (β)

�i (Xi − X j )I {�e
T

i j (β) ≤ ẽYi j (β)}.

As long as a pair (i, j) satisfies eYi (β) < eYj (β), we obtain the identity

�i = �i� j + �i (1 − � j )I {ei (β) < e j (β)} + (1 − �i )� j I {ei (β) > e j (β)}
= Qi j (β).

This leads to

UG
n (β) =

n∑

i=1

∑

j :eYi (β)<eYj (β)

(Xi − X j )I {�e
T

i j (β) ≤ ẽYi j (β)}Qi j (β)

= −
∑

i< j

(Xi − X j )sgn{eYi (β) − eYj (β)}I {�e T

i j (β) ≤ ẽYi j (β)}Qi j (β).

��

Appendix A2: The functional behavior of SLogrankn (β, γ )

We consider the case that X = X is one dimensional, and hence β = β. For a given
γ , SLogrankn (β, γ ) is the sum of

Li j (β) = (Xi − X j )sgn{εYi (β, γ ) − εYj (β, γ )}I {�ε T

i j (β, γ ) ≤ ε̃Yi j (β, γ )}Oi j (β, γ ),

for i < j . Suppose Oi j (β) = 1. Otherwise Li j (β) = 0 has no contribution to

SLogrankn (β, γ ). Note that the range of β that satisfies the condition
�
ε
T

i j (β, γ ) ≤
ε̃Yi j (β, γ ) is always a closed interval. The function sgn{εYi (β, γ ) − εYj (β, γ )} is a step
function that crosses with zero at β = {Yi − Y j − γ (Ti − Tj )}/(Xi − X j ). There-
fore, Li j (β) is non-monotonic step function which has at most three different jump
points.
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Appendix B: Proofs for asymptotic analysis

Appendix B.1: Proof of Equation (4)

By definition,

2n−2SLogrankn (β, γ )

= −n−2
∑

i, j

(Xi − X j )sgn{(εYi (β, γ ) − εYj (β, γ )}I {�ε T

i j (β, γ ) ≤ ε̃Yi j (β, γ )}Oi j (β, γ )

= −
∫∫

[
(x1 − x2)sgn{y1 − β′x1 − γ t1 − (y2 − β′x2 − γ t2)}

× I {(t1 − β′x1 − γ t1) ∨ (t2 − β′x2 − γ t2) ≤ (y1 − β′x1 − γ t1) ∧ (y2 − β′x2 − γ t2)}
× {δ1δ2 + δ1(1 − δ2)I (y1 − β′x1 − γ t1 < y2 − β ′x2 − γ t2)

+ (1 − δ1)δ2 I (y1 − β′x1 − γ t1 > y2 − β′x2 − γ t2)}
]

× dFn(t1, y1, δ1, x1)dFn(t2, y2, δ2, x2).

Also, using similar calculations for 2n−2SKendall
n (β, γ ), we obtain Equation (4).

Appendix B.2: Proof for Theorem 1

The consistency proof follows from the general theory of Z-estimators. For Theorem
5.9 of VanDer Vaart (1998) to be applied, one needs to verify the following conditions:

(i) sup(β, γ )∈� ||
(Fn;β, γ ) − 
(F;β, γ )|| converges in probability to zero,
(ii) For every ε > 0, inf ||(β, γ )−(β0, γ0)||2≥ε ||
(F;β, γ )||2 > 0 = ||
(F;β0, γ0)||2.

To prove (i), let D{(−∞, ∞)p+3} be a collection of all right-continuous,
bounded functions on (−∞, ∞)p+3 whose left limit exists such that F, Fn ∈
D{(−∞, ∞)p+3}.Define thenormsupx∈(−∞,∞)p+3 | f (x)| for f ∈D{(−∞, ∞)p+3}.
Also, let l∞(�) be a collection of all bounded functions on � whose norm is defined
by supθ∈� ||H(θ)|| for H ∈ l∞(�). It is well-known from the Glivenko–Cantelli
theorem that Fn converges in probability to F in the normed space D{(−∞, ∞)p+3}.
Also, it can be shown that a mapD{(−∞, ∞)p+3} 
→ l∞(�), defined as

F 
→ 
(F; β, γ )

=
∫∫

h{(t1, y1, δ1, x1), (t2, y2, δ2, x2);β, γ }dF(t1, y1, δ1, x1)dF(t2, y2, δ2, x2),

is continuous. By the continuous mapping theorem,

sup
�∈(β, γ )

∣
∣
∣
∣
∣

∫∫

h{(t1, y1, δ1, x1), (t2, y2, δ2, x2); β, γ }dFn(t1, y1, δ1, x1)dFn(t2, y2, δ2, x2)

−
∫∫

h{(t1, y1, δ1, x1), (t2, y2, δ2, x2); β, γ }dF(t1, y1, δ1, x1)dF(t2, y2, δ2, x2)

∣
∣
∣
∣
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converges in probability to zero,which implies (i). The validity of (ii) is due toAssump-
tion 2. ��

Appendix B.3: Proof for asymptotic normality

Note that the random vector φF {(Tj , Y j , � j , X j ); β, γ } in Eq. (6) is bounded since
h is bounded under Assumption 1. Hence, under Assumption 1, the dominated con-
vergence theorem shows

E[φF {(T, Y, �, X); β, γ } − φF {(T, Y, �, X); β0, γ0}]2 → 0,

as (β, γ ) → (β0, γ0). By Lemma 3.3.5 of Van Der Vaart andWellner 1996 and under
Assumption 4, we have

n1/2{
(Fn; β̂, γ̂ ) − 
(F; β̂, γ̂ )} − n1/2{
(Fn;β0, γ0) − 
(F;β0, γ0)}
= oP (1 + n1/2||β − β0, γ − γ0||).

Since 
(Fn; β̂, γ̂ ) = 
(F;β0, γ0) = 0, under Assumptions 3 and 4,

0 = n1/2
(Fn; β̂, γ̂ ) − n1/2
(F;β0, γ0)

= n1/2{
(Fn; β̂, γ̂ ) − 
(F; β̂, γ̂ )}
+ n1/2{
(F; β̂, γ̂ ) − 
(F;β0, γ0)}

= n1/2{
(Fn; β̂, γ̂ ) − 
(F; β̂, γ̂ )} − n1/2{
(Fn;β0, γ0) − 
(F;β0, γ0)}
+ n1/2{
(Fn;β0, γ0) − 
(F;β0, γ0)}
+ n1/2{
(F; β̂, γ̂ ) − 
(F;β0, γ0)}

= oP (1 + n1/2||β − β0, γ − γ0||)

+ n−1/2
n∑

j=1

φF {(Tj , Y j , � j , X j ); β0, γ0}

+A0n
1/2(β̂ − β0, γ̂ − γ0)

′,

where the last equation uses Eq. (5) and the differentiability of
(F;β, γ ) at (β0, γ0).
The preceding formula implies that (β̂, γ̂ ) is

√
n-consistent for (β0, γ0) and, there-

fore, Eq. (7) holds [see p.311 of Van Der Vaart and Wellner (1996)]. ��

Appendix B.4: Consistency of the product-limit estimator

We show that supt∈[a,b] |Ŝε(t; β̂, γ̂ )−Sε(t)| converges in probability to zero. It is use-
ful to write Sε(t) = ∏

s≤t {1 − d�ε(s)}, where�ε(t) = − log Sε(t) is the cumulative

hazard function. Similarly, Ŝε(t; β, γ ) = ∏
s≤t {1 − d�̂(s;β, γ )}, where

d�̂(s;β, γ ) = R(s;β, γ )−1
∑

j
I (εYj (β, γ ) = s, � j = 1)

123
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and R(s;β, γ ) = ∑
j I {εTj (β, γ ) ≤ s ≤ εYj (β, γ )}. Since the product integration is

a continuousmap, it suffices to show that supt∈[a,b] |�̂ε(t; β̂, γ̂ )−�ε(t)| converges in
probability to zero. Let �∗

ε(t) = ∫ t
−∞ J (s)d�ε(s), where J (s) = I {R(s;β0, γ0) >

0}, and
�ε(t, β, γ )

=
t∫

−∞

E[I (T − β′X − γ T ) fε{s + (β − β0)
′X + (γ − γ0)T }SC (s + β′X + γ T )]

E[I (T − β′X − γ T )Sε{s + (β − β0)
′X + (γ − γ0)T }SC (s + β′X + γ T )]ds.

It is easy to see that

�ε(t,β0, γ0) =
∫ t

−∞
fε(s)Sε(s)

−1ds = �ε(t).

Also, let �∗
ε(t,β, γ ) = ∫ t

−∞ J (s)d�ε(s,β, γ ). Now, for δ from Assumption 5, we
have

|�̂ε(t; β̂, γ̂ ) − �ε(t)|
≤ sup

||(β, γ )−(β0, γ0)||≤δ

|�̂ε(t; β, γ ) − �∗
ε(t; β, γ )| + |�∗

ε(t; β̂, γ̂ ) − �∗
ε(t)|

+ |�∗
ε(t) − �ε(t)|.

Under Assumption 5, and by the Glivenko–Cantelli theorem, it follows that

sup
t∈[a,b]

sup
||(β, γ )−(β0, γ0)||≤δ

|�̂ε(t; β, γ ) − �∗
ε(t; β, γ )|

converges in probability to zero. Since �ε(t,β, γ ) is continuous at (β0, γ0), the con-
tinuousmapping is applied to Theorem 1 to show that supt∈[a,b] |�∗

ε(t; β̂, γ̂ )−�∗
ε(t)|

converges in probability to zero. Note that R(s;β0, γ0) converges in probability to
πε(t,β0, γ0) > 0, uniformly over t ∈ [a, b]. Hence, I {R(s;β0, γ0) = 0} converges
in probability to zero as well. Finally,

|�∗
ε(t) − �ε(t)| =

∣
∣
∣
∣

∫ t

−∞
I {R(s;β0, γ0) = 0}d�ε(s)

∣
∣
∣
∣ ,

converges in probability to zero, uniformly over t ∈ [a, b]. ��

Appendix C: Bandwidth calculation

The jumps of SLogrankn (β, γ ) with respect to βk given the other components satisfy

Yi − β̂
′
(−k)Xi(−k) − βk Xi,k − γ̂ Ti = Y j − β̂

′
(−k)X j (−k) − βk X j,k − γ̂ Tj ,

123
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where Xi,k is kth component of Xi , and X j (−k) is the k−1 remaining vector. Accord-
ingly, the jumps are identified at

Yi − Y j − β̂
′
(−k)(Xi(−k) − X j (−k)) − γ̂ (Ti − Tj )

Xi,k − X j,k
≈ εYi (β̂, γ̂ ) − εYj (β̂, γ̂ )

Xi,k − X j,k
≡β#

(i, j),k .

Hence, we define S2k as the sample variance of all β#
(i, j),k , with i < j , satisfying

I {�ε T

i j (β̂, γ̂ ) ≤ ε̃Yi j (β̂, γ̂ )}Oi j (β̂, γ̂ ) = 1 and Xi,k 
= X j,k . The IQRk is defined
similarly.

The bandwidth bp+1 = 0.5min( Sp+1, IQRp+1/1.34 )n−1/5 is also obtained,

where S2p+1 and IQRp+1 are calculated with γ #
(i, j) ≡ {εYi (β̂, γ̂ ) − εYj (β̂, γ̂ )}/( Ti −

Tj ).
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