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Abstract The censored linear regression model, also referred to as the accelerated
failure time model, is a useful alternative to the popular Cox model in the analysis of
censored survival data. In this paper, we combine the quantile information with cen-
sored least-squares normal equations to get estimators with smaller estimated standard
error for regression parameters.An inverse probability-weightedmethod is proposed to
construct unbiased estimating equationswith censored data and the lack of smoothness
of the objective equations is overcome by replacing themwith smooth approximations.
The proposed estimators are established based on the empirical likelihood method and
generalizedmethod ofmoments, respectively, and their asymptotic properties are stud-
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ied under some regular conditions. We also conduct some simulation experiments to
investigate the finite-sample properties of the proposed estimators. The Stanford Heart
Transplant data are used to illustrate the proposed estimating method.

Keywords AFT model · Non-smooth estimating equation · Inverse probability
weighted · Generalized moment method · Empirical likelihood

1 Introduction

The least-squares approach for fitting a linear regression model provides a statistical
technique for investigating the relationship between variables. Its simple structure and
ease of interpretation have made it an attractive method for practitioners. Another
important approach for fitting a linear model is the quantile regression method orig-
inated by Koenker and Bassett (1978). A collection of conditional quantiles can
characterize the entire conditional distribution and capture the rich underlying relation-
ship between the quantiles of response variable and covariates. But amajor difficulty of
quantile regression is that to obtain the asymptotic covariance matrix of estimators, we
need an estimation of the regressor density, which is often cumbersome to obtain. This
motivated Zhou et al. (2011) to bring together these two well-known techniques, and
develop a coherent estimation framework that can be applied to a myriad of situations.
Their simulation studies and real data analysis have shown that the least-squares esti-
mator combined with auxiliary quantile information not only leads to a more efficient
estimator, but also results in a relatively simple calculation of estimator’s standard error
that does not require any density estimation. Based on the same idea, Liu and Ishfaq
(2011) and Liu et al. (2011) considered the estimation of distribution function when
auxiliary quantile information is availablewith complete data andmissing data, respec-
tively. The aim of this paper is to extend this idea to censored linear regression model.

The censored linear regression model, also referred to as the accelerated failure
time (AFT) model, specifies that the logarithm of the failure time T is related to a
p × 1 vector of covariate Zi in the following way:

log Ti = Z τ
i β0 + εi , i = 1, . . . , n, (1)

where β0 is a p × 1 vector of unknown regression parameters and εi , i = 1, . . . , n,
are independent and identically distributed with an unspecified common distribution
function Fε , but zero mean and finite variance. This model, as an alternative to the
popular Cox model, has been studied extensively in literature, see, for instance, Buck-
ley and James (1979), Koul et al. (1981), Lai and Ying (1991), Ritov (1990) and Wei
(1992), among others. When the data are completely observed, Zhou et al. (2011)
suggested to estimate β0 in (1) based on the following estimating function:

ψ(T, Z , β) =
(

ψ(1)(T, Z , β)

ψ(2)(T, Z , β)

)
=
(

Z(log T − Z τ β)

Z( 12 − I (log T − Z τ β ≤ 0))

)
. (2)

The first part of (2) is based on the normal equation of least squares and the second
part of (2) is based on the auxiliary quantile information, using the assumption that
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Accelerated failure time model with quantile information 1003

the errors are symmetric or the median of the errors is zero. In general, if information
corresponding to the ζ -th quantile is known, then 1/2 in (2) may be replaced by ζ .
In survival analysis, the survival time T is usually right censored by another variable
C . The observed data are (Xi ,Δi , Zi ), i = 1, 2, . . . , n, where Xi = min(Ti ,Ci ),
Δi = I (Ti ≤ Ci ), and I (·) is the indicator function. Assume that Ti and Ci have
absolutely continuous survival function S(t) and K (t), respectively, and Ci is inde-
pendent of Ti and Zi . In this paper, we will extend the results of Zhou et al. (2011) to
right censored data case.

The rest of this paper is arranged as follows. A smoothing technique is intro-
duced in Sect. 2. In Sect. 3, we propose an IPW estimating equation method to
construct asymptotic unbiased estimating equations with right censored data. In
Sect. 4, we propose two estimators based on EL and GMM methods, respectively,
and we also show that the proposed two estimators are asymptotically normally
distributed. Section 5 reports some simulation results and a real data example. A
discussion is given in Sect. 6, and the proofs of the theorems are contained in the
Appendix.

2 A smoothing technique for non-smooth EEs

Note that based on (2), we can construct 2p estimating equations (EEs), but we only
have p unknown parameters. This is so-called over-determined case. Obviously, ordi-
nary estimating methods are infeasible here. The common procedures equipped to
handle the over-determined case are the generalized method of moments (GMM)
given by Hansem (1982) and empirical likelihood (EL) method developed by Qin
and Lawless (1994). However, the functions obtained from quantile information are
non-differentiable in β, since they are indicators.

The lack of smoothness of the objective equations can be handled by replacing
them with smooth approximations because smoothness of the objective function is
required for Taylor expansions, such as Chen and Hall (1993), Heller (2007) and
Song et al. (2007). Similar to the smoothing technique developed in Zhou et al.
(2011), the proposed smoothed estimating equations in this paper are also kernel
based. Without loss of generality, we illustrate the idea by assuming p = 1. Here, we
use the high-order kernel to smooth the estimating equations associated with quan-
tiles as those in existing literature, for more details please refer to Zhou and Jing
(2003). Consider a smooth kernel function l(ξ), then L(t) = ∫ t

−∞ l(u)du is also
a smooth function, and bn → 0, nbn → ∞ as n → ∞. In practice, l(ξ) can be
any smooth function, for example, l(ξ) may be an r -th order kernel function such
that

∫
u j l(u)du =

⎧⎨
⎩
1, if j = 0,
0, if 1 ≤ j ≤ r − 1,
cr �= 0, if j = r,

for some integer r ≥ 2. The smoothed version of the second part of (2) comes out to
be
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φ(2)(T, Z , β) = Z

{
1

2
−
∫

I (log T − Z τ β + bnξ ≤ 0)dL(ξ)

}

= Z

{
1

2
− L

(
Z τ β − log T

bn

)}
. (3)

From Zhou et al. (2011), we know that

Eφ(2)(T, Z , β0) = E

{
Z

[
1

2
−
∫

I (log T − Z τ β0 + bnξ ≤ 0)dL(ξ)

]}

bn→0−→ Eψ(2)(T, Z , β0) = 0. (4)

3 Inverse probability-weighted EEs with censored data

With complete data, we can get the estimators of regression parameters along lines of
Zhou et al. (2011) based on the smoothed estimating equations

n∑
i=1

φ(Xi , Zi , β) =
n∑

i=1

(
ψ(1)(Xi , Zi , β)

φ(2)(Xi , Zi , β)

)
= 0. (5)

While, in the presenceof censoring, (5) is no longer asymptotically unbiased estimating
equations. Hence, we consider the modified estimating equations which are called
inverse probability-weighted (IPW) estimating equations,

n∑
i=1

Δi

K (Xi )
φ(Xi , Zi , β) = 0. (6)

The above idea of weighting the complete observations by their inverse probabilities
was originated by Horvitz and Thompson (1952) in the context of sample surveys. The
adaptation of this idea to the setting of censored survival data was initially considered
by Koul et al. (1981), and later on by Robins and Rotnitzky (1992) and Lin and Ying
(1993). Zhao and Tsiatis (1997) applied this idea to the problem of quality adjusted
survival time. Recently, Bang and Tsiatis (2000), Lin (2000) and Bang and Tsiatis
(2002) used thismethod to estimatemedical costs.We find that (6) is an asymptotically
unbiased estimating equation which is a consequence of the following equality:

E

{
Δ

K (X)
φ(X, Z , β)

}
= E

{
E(Δ|T, Z)

1

K (T )
φ(T, Z , β)

}

= E{φ(T, Z , β)} ≈ 0.

In practice, the survival function K (·) is unknown. Here, we propose to estimate K (·)
by the Kaplan–Meier estimator (Kaplan and Meier 1958) with the roles of censoring
time Ci and survival time Ti reversed. That is,
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Accelerated failure time model with quantile information 1005

K̂ (t) = Πu≤t

[
1 − dNc(u)

Y (u)

]
,

where Nc(u) = ∑n
i=1 I (Xi ≤ u,Δi = 0), Y (u) = ∑n

i=1 I (Xi ≥ u). The simple
weighted complete-case EEs come out to be:

1

n

n∑
i=1

Δi

K̂ (Xi )
φ(Xi , Zi , β) = 0. (7)

In the next section, we give the estimators of regression parameters based on the IPW
estimating equations (7) by empirical likelihood and GMM methods.

4 Inference based on IPW EEs

4.1 Empirical likelihood

In this section, we construct an estimated empirical likelihood to make statistical
inference on β. For convenience, denote Δi/K̂ (Xi ) = Vni . Let p = (p1, . . . , pn),
pi ≥ 0 for all 1 ≤ i ≤ n with

∑n
i=1 pi = 1. Define Fp to be the distribution function

which assigns probability pi to the point Vniφ(Xi , Zi , β). The empirical likelihood is

L(β) = Πn
i=1 pi . (8)

We maximize (8) subject to restrictions

pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

Vniφ(Xi , Zi , β)pi = 0. (9)

For any given β, let the set Ωβ = {λ : 1 + λτVniφ(Xi , Zi , β) ≥ 1/n} be convex,
closed and also bounded if the convex hull of Vniφ(Xi , Zi , β) contains 0. By the
Lagrange multiplier method, we have

pi = 1

n

1

1 + λτVniφ(Xi , Zi , β)
,

where λ is the solution to

1

n

n∑
i=1

Vniφ(Xi , Zi , β)

1 + λτVniφ(Xi , Zi , β)
= 0. (10)

Note thatΠn
i=1 pi subject to

∑n
i=1 pi = 1 and pi ≥ 0, 1 ≤ i ≤ n, attains its maximum

value n−n at pi = n−1. Hence, we define the profile empirical likelihood ratio by

R(β) = Πn
i=1(npi ) = Πn

i=1
1

1 + λτVniφ(Xi , Zi , β)
.
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The log empirical likelihood ratio multiplied by −2 is then given by

R(β) = −2 log R(β) = 2
n∑

i=1

log{1 + λτVniφ(Xi , Zi , β)}. (11)

Let β̂e be the MELE that results from minimizing R(β), then we have:

Theorem 1 Let Assumptions 1–6 in the Appendix be satisfied. Then,

√
n(β̂e − β0)

D→ N (0, V ),

where

V = Σ1A
τ B−1ΣB−1AΣ1,

Σ1(β0) =
{
A(β0)

τ B(β0)
−1A(β0)

}−1
,

A(β0) = ∂Eψ(T, Z , β)

∂β

∣∣∣
β0

,

B(β0) = E
ψ(T, Z , β)ψ(T, Z , β)τ

K (T )

∣∣∣
β0

,

and Σ is given in Lemma 1.

To use Theorem 1 to construct confidence interval for parameter β, we have to
estimate A(β) and B(β). Based on the results of Lemma 4, A(β) and B(β) can be
estimated consistently by

An(β) = 1

n

n∑
i=1

∇βφ(Xi , Zi , β)Δi

K̂ (Xi )
and Bn(β) = 1

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K̂ (Xi )

}⊗2

,

respectively. Under some mild regular conditions, it can be shown that

R(β)=
[

1√
n

n∑
i=1

Wni (β)

]τ [
1

n

n∑
i=1

Wni (β)Wni (β)τ

]−1 [
1√
n

n∑
i=1

Wni (β)

]
+op(1),

(12)

where Wni (β) = Vniφ(Xi , Zi , β). It can be readily shown that R(β) converges in
distribution to a weighted sum of Chi-square distributions, as stated in the following
theorem.

Theorem 2 Let Assumptions 1–6 in the Appendix be satisfied. Then,

R(β0)
D→ ω1χ

2
1,1 + · · · + ωqχ

2
1,q , (13)
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Accelerated failure time model with quantile information 1007

where the weights ω j , 1 ≤ j ≤ q, are the eigenvalues of B(β0)
−1Σ(β0), and χ2

1, j
for 1 ≤ j ≤ q are independently distributed Chi-square variables with 1 degree of
freedom.

Remark 1 We can give a modification of R(β0), let

η1(β0) =
[

1√
n

n∑
i=1

Wni (β0)

]τ [
Σ̂(β0)

]−1

[
1√
n

n∑
i=1

Wni (β0)

]

η2(β0) =
[

1√
n

n∑
i=1

Wni (β0)

]τ [
B̂(β0)

]−1

[
1√
n

n∑
i=1

Wni (β0)

]

and let

R̂(β0) = ξ̂ (β0)R(β0),

where ξ̂ (β0) = η1(β0)/η2(β0) and B̂(β0) = 1
n

∑n
i=1 Wni (β0)Wni (β0)

τ . It can be
shown R̂(β0) has the limiting Chi-square distribution with q degree of freedom.

Corollary 1 Let βτ = (βτ
1 , βτ

2 ),where β1 are q1×1 vector and β2 are q2×1 vectors.
For H0 : β1 = β1,0, the profile empirical likelihood test statistic is

R2 = R(β1,0, β̃2,0) − R(β̂1, β̂2),

where β̃2,0 minimizesR(β1,0, β2) with respect to β2, β1,0 is the true value of β1, and
β̂e = (β̂1, β̂2).

Under H0,

R2 → ρ1χ
2
1,1 + · · · + ρq1χ

2
1,q1 ,

where the weights ρ j , 1 ≤ j ≤ q1, are the eigenvalues of B2(β1,0)Σ(β1,0), χ2
1, j

for 1 ≤ j ≤ q1 are independently distributed Chi-square variables with 1 degree of
freedom, and B2 is a positive definite matrix given in the Appendix.

4.2 Generalized method of moments

The GMM approach chooses parameter values such that

Mw =
[
1

n

n∑
i=1

Wni (β)

]τ

W

[
1

n

n∑
i=1

Wni (β)

]
(14)

is minimized for some positive semi-definite symmetric weight matrixW . In practice,
the unknownW is typically replaced by a consistent estimator Ŵ . The resultant GMM
estimator is then

β̂g = argminβMŵ(β).
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Theorem 3 Let Assumptions 1–6 in the Appendix be satisfied. Then,

√
n(β̂g − β0)

D−→ N (0,Σg), (15)

where Σg = Σ2AτWΣW AΣ2 and Σ2 = {A(β0)
τW A(β0)}−1.

Thechoice ofW that leads to themost asymptotically efficientGMMestimator is the
asymptotic covariance Σ−1 defined in Theorem 1, which also results in a “sandwich”
covariance Σ2. If we set W = B−1, which is defined in Sect. 4.1, it can be shown
that the asymptotic covariance of the resultant GMM estimator coincides with the
asymptotic covariance of the EL estimator.

5 Numerical studies

5.1 Simulations

In this section, we carry out simulation studies to evaluate the finite-sample perfor-
mance of the GMMand EL procedures developed in this paper. The data are generated
from the following censored linear regression model, which is similar to the model
given in Zhou et al. (2011).

T = β1Z1 + β2Z2 + ε,

where β1 = 1, β2 = 1, Z1 ∼ Bernoulli distribution with success probability 0.5,
Z2 ∼ U [1, 3], ε is generated from the symmetric distribution

√
2/4N (0, 1) + t3/2

and the censored variable C ∼ U [0, 8.3] (for heavy censoring) andU [0, 25] (for light
censoring), whereC is independent of Z1, Z2 and ε. X = min(T,C),Δ = I (T ≤ C),
the corresponding unbiased estimating functions are

ψ(X, Z , β)=

⎛
⎜⎜⎝

ψ1(X, Z , β)

ψ2(X, Z , β)

ψ3(X, Z , β)

ψ4(X, Z , β)

⎞
⎟⎟⎠= Δ

K (X)

⎛
⎜⎜⎝

Z1(X − Z1β1 − Z2β2)

Z2(X − Z1β1 − Z2β2)

Z1[1/2 − I (X − Z1β1 − Z2β2 ≤ 0)]
Z2[1/2 − I (X − Z1β1 − Z2β2 ≤ 0)]

⎞
⎟⎟⎠

(16)

with Eψ1(·) = 0 and Eψ2(·) = 0 representing conditions from least squares, and
Eψ3(·) = 0 and Eψ4(·) = 0 arising from the median regression. We use the second-
order kernel, Gaussian kernel, l(u) = exp(−u2/2)/(2π)1/2 to smoothψ3(·) andψ4(·).
Four estimators are examined, specifically, Koul et al. estimator (1981), least-squares
(LS), GMM and EL estimators.

The estimator proposed by Koul et al. (1981) is

β̂K =
(

n∑
i=1

Zi Z
τ
i

)−1 n∑
i=1

Zi Xi K̂ , (17)
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Accelerated failure time model with quantile information 1009

where Xi K̂ = Δi Xi
1−K̂ (Xi )

, i = 1, . . . , n, and 1 − K̂ (·) is the Kaplan–Meier estimator of
the censoring distribution. It generalizes ordinary least-squares estimator to censored
linear regression model. The LS estimator uses information only from ψ1(·) = 0 and
ψ2(·) = 0, while the GMM and EL estimators use information from all the four EEs.
Sincewe use the second-order kernel l(u), Assumption 1 implies b = o(n−1/4). Such a
bandwidth is of smaller order of magnitude than o(n−1/5)which is usually appropriate
for minimizing error of curve estimator. Chen and Hall (1993) suggested choices of b
in the range between n−1/2 and n−3/4 which generally provides quite good coverage
accuracy. In our simulation study, we selected b through a rule of thumb proposed by
Cui et al. (2002) (see also Fan and Yao 2003; Sepanski et al. 1994; Zhou et al. 2008;
Zhou and Liang 2009, etc.) and suggested to set b = c × σ { Δ

K̂ (X)
(X − Z τ β)}n−1/3,

whereσ {X} is the standardvarianceof X , and c is a suitable constant.We replaceβ with
its LSestimator and set c to 1.5, 2, 2.5, 3, 3.5. Tables 1 and2 report the simulation results
with light censoring (about 10 %) and heavy censoring (about 30 %), respectively.
Each experiment is based on 1000 replicated samples with sample size n = 200. The
comparisons are in terms of the magnitude of bias in the estimators (BIAS), standard
error of the estimators (SE), standard deviation (SD), coverage probability (COV) at
the nominal confident level 95 % and the length of confidence interval (LEN) with
the same confident level. The coverage probabilities of Koul et al., LS and GMM
estimators were constructed using asymptotic normal distribution, while the coverage
probability of EL estimator was constructed by the empirical likelihood method.

From Tables 1 and 2, it can be seen that all the four estimators have very small
biases, which implies they are asymptotic unbiased and consistent. Meanwhile, the
SD (standard deviation) approximates SE (standard error) of the estimator well and
coverage probability is close to the nominal confidence level 95 %. The choices of
bandwidth have little influence on the results, and the proposed GMM and EL esti-
mators perform better than Koul et al. and LS estimators with smaller SE, SD and
shorter LEN, since the prior make use of more information.

In addition, comparing GMM with EL method, it seems GMM estimator has gen-
erally less SE and SD, while EL estimator has shorter LEN, especially when censoring
rate increases. Besides, the results of Table 2with heavy censoring rate are very similar
as those in Table 1, which implies that the EL and GMM estimators still perform well
although the censoring is heavier. The most interest of this paper is reducing SD and
SE by proposed censored GMM and EL method, which indeed illustrated by Tables 1
and 2.

Finally, we compare the performance of the proposed GMM and EL estimators
with Gehan and Logrank type of rank regression estimators and Buckley–James (B–J)
type estimator, respectively. We do not need smoothed technique to use the Gehan
estimator, Logrank estimator and B–J estimator. Results are shown in Table 3 below.
Zhou (2005)mainly derived a test and a confidence interval based on the rank estimator
(Gehan andLogrank type estimators) of regression coefficient in the accelerated failure
model. Compared with proposed GMMand ELmethod from Tables 1, 2 and 3, we can
notice that bias of Gehan and Logrank estimators is obviously bigger, especially when
censoring rate increases. Again we can find that GMM and EL methods generally
perform well with less SD, SE and shorter confidence interval than Gehan, Logrank
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1010 M. Zhao et al.

Table 1 Simulation results with 10 % censoring

c Koul et al. LS GMM EL

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

BIAS 1.5 0.003 −0.005 0.002 −0.003 0.004 −0.004 0.003 −0.003

SE 0.177 0.054 0.128 0.044 0.112 0.038 0.110 0.038

SD 0.183 0.054 0.128 0.043 0.107 0.036 0.108 0.036

COV(%) 95.80 95.30 95.20 95.10 93.10 93.40 94.20 94.30

LEN 0.717 0.212 0.503 0.169 0.421 0.142 0.278 0.121

BIAS 2.0 0.003 −0.005 0.002 −0.003 0.004 −0.003 0.003 −0.003

SE 0.177 0.054 0.128 0.044 0.110 0.038 0.110 0.038

SD 0.183 0.054 0.128 0.043 0.107 0.036 0.108 0.036

COV(%) 95.80 95.30 95.20 95.10 93.60 93.80 94.20 95.10

LEN 0.717 0.212 0.503 0.169 0.420 0.141 0.274 0.114

BIAS 2.5 0.003 −0.005 0.002 −0.003 0.004 −0.003 0.002 −0.002

SE 0.177 0.054 0.128 0.044 0.109 0.038 0.112 0.038

SD 0.183 0.054 0.128 0.043 0.107 0.036 0.109 0.037

COV(%) 95.80 95.30 95.20 95.10 93.40 94.10 94.70 95.50

LEN 0.717 0.212 0.503 0.169 0.419 0.141 0.272 0.109

BIAS 3.0 0.003 −0.005 0.002 −0.003 0.004 −0.003 0.002 −0.002

SE 0.177 0.054 0.128 0.044 0.109 0.037 0.112 0.038

SD 0.183 0.054 0.128 0.043 0.107 0.036 0.109 0.037

COV(%) 95.80 95.30 95.20 95.10 93.20 94.00 94.70 95.80

LEN 0.717 0.212 0.503 0.169 0.419 0.141 0.270 0.105

BIAS 3.5 0.003 −0.005 0.002 −0.003 0.003 −0.003 0.002 −0.002

SE 0.177 0.054 0.128 0.044 0.108 0.037 0.113 0.039

SD 0.183 0.054 0.128 0.043 0.107 0.036 0.108 0.036

COV(%) 95.80 95.30 95.20 95.10 93.50 94.40 94.90 95.70

LEN 0.717 0.212 0.503 0.169 0.419 0.141 0.269 0.104

c is a given constant to choose the bandwidth; “β̂1” and “β̂2” are the estimates of “β1” and “β2”, respectively;
“BIAS”, “SE” and “SD” denote the bias, standard error, and standard deviation of the estimator, respectively;
“COV” denotes coverage probability at the nominal confident level 95 %, and “LEN” denotes the length
of confidence interval with the same confident level; “Koul et al.”, “LS”, “GMM” and “EL” denote Koul et
al., least-squares, GMM and EL estimators, respectively

and Buckley–James type estimators. As we expect that we can improve the efficiency
of estimators of the parameters in the AFT model by taking account into auxiliary
quantile information, and that implies why the proposed estimators are better than the
existed methods.

5.2 A real data example

We illustrate the proposed estimating method with the Stanford Heart Transplant data.
These data contain the survival times of 184 heart-transplanted patients with their
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Accelerated failure time model with quantile information 1011

Table 2 Simulation results with 30 % censoring

c Koul et al. LS GMM EL

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

BIAS 1.5 −0.010 −0.012 −0.006 −0.008 −0.003 −0.008 −0.006 −0.005

SE 0.303 0.081 0.145 0.048 0.127 0.042 0.132 0.043

SD 0.304 0.082 0.143 0.047 0.123 0.041 0.122 0.040

COV(%) 94.90 95.10 94.60 93.60 93.50 93.20 94.20 95.50

LEN 1.190 0.323 0.559 0.185 0.481 0.161 0.321 0.133

BIAS 2.0 −0.010 −0.012 −0.006 −0.008 −0.003 −0.007 −0.008 −0.004

SE 0.303 0.081 0.145 0.048 0.125 0.041 0.132 0.043

SD 0.304 0.082 0.143 0.047 0.123 0.041 0.122 0.041

COV(%) 94.90 95.10 94.60 93.60 94.00 94.10 94.70 95.50

LEN 1.190 0.323 0.559 0.185 0.480 0.160 0.316 0.123

BIAS 2.5 −0.010 −0.012 −0.006 −0.008 −0.003 −0.007 −0.010 −0.004

SE 0.303 0.081 0.145 0.048 0.124 0.041 0.135 0.044

SD 0.304 0.082 0.143 0.047 0.123 0.041 0.123 0.041

COV(%) 94.90 95.10 94.60 93.60 94.90 94.20 95.00 95.40

LEN 1.190 0.323 0.559 0.185 0.481 0.160 0.311 0.125

BIAS 3.0 −0.010 −0.012 −0.006 −0.008 −0.003 −0.006 −0.010 −0.004

SE 0.303 0.081 0.145 0.048 0.123 0.041 0.135 0.044

SD 0.304 0.082 0.143 0.047 0.123 0.041 0.123 0.041

COV(%) 94.90 95.10 94.60 93.60 94.90 94.60 94.50 95.60

LEN 1.190 0.323 0.559 0.185 0.483 0.161 0.307 0.122

BIAS 3.5 −0.010 −0.012 −0.006 −0.008 −0.003 −0.006 −0.010 −0.004

SE 0.303 0.081 0.145 0.048 0.123 0.041 0.136 0.044

SD 0.304 0.082 0.143 0.047 0.124 0.041 0.123 0.041

COV(%) 94.90 95.10 94.60 93.60 94.70 94.30 94.00 95.30

LEN 1.190 0.323 0.559 0.185 0.487 0.162 0.306 0.120

c is a given constant to choose the bandwidth; “β̂1” and “β̂2” are the estimates of “β1” and “β2”, respectively;
“BIAS”, “SE” and “SD” denote the bias, standard error, and standard deviation of the estimator, respectively;
“COV” denotes coverage probability at the nominal confident level 95 %, and “LEN” denotes the length
of confidence interval with the same confident level; “Koul et al.”, “LS”, “GMM” and “EL” denote Koul et
al., least-squares, GMM and EL estimators, respectively

ages at the time of first transplant and their T5 mismatch scores, and details can be
seen in Miller and Halpern (1982). Out of these 184 patients, 27 patients did not have
T5 scores. And of the remaining 157 patients, the survival times of 55 patients were
censored. The cutoff date for the data was in February 1980. It is reasonable to believe
that the censoring is dictated by administrative decisions. So, we can estimate the
survival function of C by Kaplan–Meier estimator.

But in Miller and Halpern’s paper, T5 mismatch score was nonsignificant, so age
was only considered in their further analysis. Moreover, 5 of the 157 patients’ survival
times (T ) were less than 10 days, so they were deleted to make log10 T > 0. Similarly,
in this paper, we use the same datasetwith 152 patients, only consider the age covariate,
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Table 3 Simulation results for other estimators in AFT model

Censor (%) Gahan Logrank B–J

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

BIAS 10 0.028 0.030 0.037 0.044 0.001 −0.002

SE 0.114 0.101 0.135 0.115 0.132 0.044

SD 0.115 0.099 0.133 0.115 0.128 0.043

COV(%) 94.60 93.10 93.20 93.60 94.20 95.70

LEN 0.449 0.389 0.521 0.451 0.500 0.170

BIAS 30 0.109 0.114 0.153 0.163 0.001 −0.002

SE 0.136 0.120 0.164 0.138 0.141 0.046

SD 0.136 0.118 0.159 0.138 0.139 0.046

COV(%) 87.50 82.80 84.00 78.10 95.40 96.00

LEN 0.534 0.461 0.623 0.539 0.546 0.182

“β̂1” and “β̂2” are the estimates of “β1” and “β2”, respectively; “BIAS”, “SE” and “SD” denote the bias,
standard error, and standard deviation of the estimator, respectively; “COV” denotes coverage probability at
the nominal confident level 95 %, and “LEN” denotes the length of confidence interval with the same con-
fident level; “Gehan”, “Logrank”, and “B–J” denote Gehan, Logrank, and Buckley–James type estimators,
respectively

and adopt the same model as in Miller and Halpern (1982), to compare our proposed
estimator with theirs. The model is

log10 T = α + β1Age + β2Age
2 + ε.

Three different c are chosen for the bandwidth parameter, which result in three
different smoothing bandwidths. The analysis results can be seen in Table 4.

Buckley–James estimator was given in Miller and Halpern (1982) and Gehan and
Logrank type rank regression estimators were obtained by the R-codes given in Zhou
(2005). As shown in Table 4, proposed GMM and EL estimators indeed have smaller
SD than other estimators. Compared with Koul et al. and LS estimator, GMM and EL
estimators look more stable and the estimates are similar to Buckley–James estimator,
Gehan estimator and Logrank estimator. Moreover, different choices of smoothing
bandwidths have little effect on the results, especially for Age2 covariate.

6 Discussion

In this article, we proposed a method to estimate the parameters of interest in the AFT
model by combining the quantile information with censored least-squares normal
equations in the estimating equations. The proposed method is based on the EL and
GMMmethods, and estimators obtained both have smaller standard error and standard
deviation than other estimators such as Koul et al. and LS estimators, which are
illustrated in the simulation studies.And their asymptotic propertieswere studiedunder
some regular conditions. However, there are some problems which need further study.
For example, both of the referees ask whether some practical guideline can be used
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Accelerated failure time model with quantile information 1013

Table 4 Stanford Heart Transplant data

Estimator c Intercept Age Age2

α̂ SD(̂α) β̂1 SD(β̂1) β̂2 SD(β̂2)

Buckley–James 1.35 0.71 0.107 0.037 −0.0017 0.0005

Gehan – – 0.105 0.056 −0.0017 0.0007

Logrank – – 0.099 0.048 −0.0016 0.0006

Koul et al. 0.80 1.27 0.039 0.078 −0.0002 0.0011

LS 0.90 0.72 0.098 0.038 −0.0013 0.0005

GMM 0.01 1.37 0.48 0.104 0.025 −0.0017 0.0003

EL 1.73 0.47 0.077 0.024 −0.0014 0.0003

GMM 0.05 1.53 0.46 0.074 0.026 −0.0012 0.0003

EL 1.37 0.46 0.104 0.024 −0.0017 0.0003

GMM 0.10 1.47 0.63 0.069 0.035 −0.0010 0.0005

EL 1.39 0.46 0.101 0.023 −0.0017 0.0003

c is a given constant to choose the bandwidth; “α̂”, “β̂1” and “β̂2” are the estimates of intercept term
“α” and parameters “β1” and “β2”, respectively; “SD” denotes the standard deviation of the estimator;
“Buckley–James”, “Gehan”, “Logrank”, “Koul et al.”, “LS”, “GMM” and “EL” denote Buckley–James,
Gehan, Logrank, Koul et al., least-squares, GMM and EL estimators, respectively; “–” means no estimates
for this term

to choose the bandwidth in the kernel smoothing procedure. There is not a standard
method by now as we know, especially for the right censored data. In this paper, the
bandwidth is chosen according to the thumb rule, and set b = c × σ { Δ

K̂ (X)
(X −

Z τ β)}n−1/3, where σ {X} is the standard variance of X . Actually, different c in a large
range of possible choices affect little for the results, which can be seen from Tables 1
and 2 of the paper. Besides, the choice of the optimal bandwidth may vary for different
datasets, which is a difficult but interesting question, and deserves further study.

Appendix

In this section, we will present the proofs of Theorems 1–3. First, we need some
assumptions and symbols. Let ‖ · ‖ denote Euclidean norm, a⊗2 = aaτ , and Op(·)
denote bound in probability. Assume that β ∈ Θ , where Θ is a tight space.

Assumptions:

1. The selected bandwidth b satisfies the conditions: b → 0, nb → ∞ and nb2r → 0.
2. L(x) is the r -th kernel distribution function such that

∫ |x |rdL(x) < ∞.
3. τs ≤ τk , where τs = sup{x : S(x) > 0}, τk = sup{x : K (x) > 0}, and

∫ τs

0

ψ(u, z, β)⊗2

K (u)
dFz(u) < ∞.

4. Q(β) = Ezψ(T, Z , β) is r -th continuously differentiable in the neighborhood
of β0, the rank of ∂Q(β)/∂β is identical to the dimension of parameter β, ‖
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1014 M. Zhao et al.

∂Q(β)/∂β ‖ and ‖ ψ(u, z, β) ‖3 /K 2(u) is bounded by some integrable function
G(u) in some neighborhood of β0.

5. Matrix B(β0) is positive definite.
6. Q(β) satisfies the Lipschitz condition in some neighborhood of β0, that is

‖ Ez{ψ(T, Z , β) − ψ(T, Z , β0)}⊗2 ‖= O(‖ β − β0 ‖) in some neighborhood of
β0.

Assumptions 1 and 2 are common assumptions used in nonparametric studies, while
Assumption 3 is often seen in studies of censored survival data and Assumptions 4–5
are used in empirical likelihood (Qin and Lawless 1994). Assumption 6 can be easily
satisfied in many occasions. Note that we only need to smooth the second part of (2).
So, in the proof of Lemmas 3, 4, φ = φ(2), ψ = ψ(2).

Lemma 1 Suppose that the Assumption 3 is satisfied. Then,

1√
n

n∑
i=1

Δi

K̂ (Xi )
ψ(Xi , Zi , β0)

D→ N (0,Σ(β0)), (18)

where Σ(β0) = (σlk(β0))l,k=1,...,q is the covariance matrix with

σlk(β0)) = E[ψl(T, Z , β0)ψk(T, Z , β0)]

+E

[∫ τ∗

0
Hl(T, Z , β0, u)Hk(T, Z , β0, u)I (T ≥ u)

λc(u)

K (u)
du

]
, (19)

where

Hk(T, Z , β0, u) = ψk(T, Z , β0) − Gk(β0, u),

Gk(β0, u) = 1

S(u)
E[ψk(T, Z , β0)I (T ≥ u)],

ψk(T, Z , β) is the kth element of ψ(T, Z , β).

Proof The proof may be constructed along the lines of Bang and Tsiatis (2000). ��
Lemma 2 Suppose that Assumptions 1–3 and 6 are satisfied. Then,

1√
n

n∑
i=1

Δi

K̂ (Xi )
φ(Xi , Zi , β0)

D−→ N (0,Σ(β0)),

where Σ(β0) is given in Lemma 1.

Proof We only need to show that

1√
n

n∑
i=1

Δi

K̂ (Xi )
φ(Xi , Zi , β0) = 1√

n

n∑
i=1

Δi

K̂ (Xi )
ψ(Xi , Zi , β0) + op(1).

123



Accelerated failure time model with quantile information 1015

In fact,

1√
n

n∑
i=1

φ(Xi , Zi , β0)Δi

K̂ (Xi )
= 1√

n

n∑
i=1

ψ(Xi , Zi , β0)Δi

K̂ (Xi )

+ 1√
n

n∑
i=1

[φ(Xi , Zi , β0) − ψ(Xi , Zi , β0)]Δi

K̂ (Xi )

� 1√
n

n∑
i=1

ψ(Xi , Zi , β0)Δi

K̂ (Xi )
+ J1.

Next, we will proof J1 = op(1). Similar to the argument of Bang and Tsiatis (2000),

J1 = 1√
n

n∑
i=1

[φ(Ti , Zi , β0) − ψ(Ti , Zi , β0)]

− 1√
n

n∑
i=1

∫ τ∗

0
[φ̃(Ti , Zi , β0) − G̃(β0, u)]dM

c
i (u)

K (u)
+ op(1)

� I1 + I2,

where φ̃(Ti , Zi , β0) = φ(Xi , Zi , β0) − ψ(Xi , Zi , β0), the definition of G̃(β0, u)

similar to the Gk(β0, u) in Theorem 1, Mc
i (u) is a martingale (More details can be

seen in Bang and Tsiatis 2000, p 332). It can be shown that

E I1 = 1√
n

n∑
i=1

E [φ(Ti , Zi , β0) − ψ(Ti , Zi , β0)]

= √
nE [φ(T, Z , β0) − ψ(T, Z , β0)]

= Op

(
(nb2r )

1
2

)
= op(1). (20)

In addition, note that for any constant vector α,

Var[ατ I1] ≤ E
{
ατ [φ(T, Z , β0) − ψ(T, Z , β0)]

}2
= E

{∫
[ατψ(T, Z τ β0 − bξ) − ατψ(T, Z , β0)]dL(ξ)

}2

≤
∫

E
{
ατψ(T, Z τ β0 − bξ) − ατψ(T, Z , β0)

}2 dL(ξ).

From assumption of Fz(·) and assumption of L(·), we have

Var[ατ I1] = Op(b). (21)

By (20) and (21) we can get I1 = op(1). Now, we consider I2.
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By the property of martingale, we have E I2 = 0 and the kth diagonal element of
variance of I2 is given by

E(I2)
2
kk = E

∫ τ

0
[φ̃k(T, Z , β0) − G̃k(β0, u)]2 I (T ≥ u)

λc(u)

K (u)
du

≤
∫ τ

0
[E φ̃2

k (T, Z , β0) + G̃2
k(β0, u)S(u)]λ

c(u)

K (u)
du.

By the results established for I1, we know that

E φ̃2
k (T, Z , β0) = op(1),

G̃2
k(β0, u)S(u) = 1/S(u)

{
E φ̃k(T, Z , β0)I (T ≥ u)

}2

≤ 1/S(u)E
{
φ̃k(T, Z , β0)I (T ≥ u)

}2
.

(22)

Using (22), we have

G̃2
k(β0, u)S(u) = op(1). (23)

By (22) and (23) we have that I2 = op(1). Combining this with I1 = op(1), we
complete the proof of Lemma 2. ��

Lemma 3 Suppose that Assumptions 1–3 and 6 are satisfied. Then,

E

{
φ(T, Z , β)⊗2

K (T )

}
= E

{
ψ(T, Z , β)⊗2

K (T )

}
+ o(1).

Proof

E

{
ψ(T, Z , β)⊗2

K (T )

}
= E

{
Z( 12 − I (log T − Z τ β ≤ 0)

}⊗2

K (T )
= 1

4
E

Z⊗2

K (T )
,

E

{
φ(T, Z , β)⊗2

K (T )

}
= E

{
1

K (T )

{∫ +∞

−∞
ψ(T, Z , β − bw)dL(w)

}⊗2
}

=
∫ ∫

E
Z⊗2

K (T )

(
1

2
− I (log T − Z τ β + bu ≤ 0)

)

×
(
1

2
− I (log T − Z τ β + bv ≤ 0)

)
dL(u)dL(v)

= 1

4
E

Z⊗2

K (T )
+ o(1).

��
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Accelerated failure time model with quantile information 1017

Lemma 4 Suppose that Assumptions 1–3 and 6 are satisfied. Then,

1

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K̂ (Xi )

}⊗2

= E

{
ψ(T, Z , β)⊗2

K (T )

}
+ op(1),

1

n

n∑
i=1

∇βφ(Xi , Zi , β)Δi

K̂ (Xi )
= ∇βEψ(T, Z , β) + op(1). (24)

Proof First, we will prove that

1

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K̂ (Xi )

}⊗2

= Op(1). (25)

Note that

1

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K̂ (Xi )

}⊗2

≤ 2

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K (Xi )

}⊗2

+2

n

n∑
i=1

{
K (Xi ) − K̂ (Xi )

K̂ (Xi )K (Xi )

}2

φ(Xi , Zi , β)⊗2Δ2
i

� J1 + J2. (26)

By the law of large number, we have

J1 = 2E

{
φ(T, Z , β)⊗2

K (T )

}
+ op(1). (27)

In addition,

J2 ≤ sup
0≤x≤X(n)

∣∣∣∣K (x) − K̂ (x)

K̂ (x)

∣∣∣∣
2 2

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K (Xi )

}⊗2

.

Using the fact of Zhou (1991)

sup
0≤x≤X(n)

∣∣∣∣K (x) − K̂ (x)

K̂ (x)

∣∣∣∣ = Op(1),

we have

J2 = Op(J1). (28)

By (26), (27), (28) and Lemma 3, we get (25).
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Similarly to (27), we can get

1

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K̂ (Xi )

}⊗2

= 1

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K (Xi )

}⊗2

+1

n

n∑
i=1

{
K (Xi ) − K̂ (Xi )

K̂ (Xi )K (Xi )

}2

φ(Xi , Zi , β)⊗2Δ2
i

+2

n

n∑
i=1

K (Xi ) − K̂ (Xi )

K 2(Xi )K̂ (Xi )
φ(Xi , Zi , β)⊗2Δ2

i

� I1 + I2 + I3. (29)

By the law of large number and Lemma 3, we have

I1 = E

{
ψ(T, Z , β)⊗2

K (T )

}
+ op(1). (30)

As for I2, notice that

I2 ≤ sup
0≤x≤X(n)

∣∣∣∣K (x) − K̂ (x)

K (x)

∣∣∣∣
2 2

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K̂ (Xi )

}⊗2

.

Using the fact of Gill (1980, p 37)

sup
0≤x≤X(n)

∣∣∣∣K (x) − K̂ (x)

K (x)

∣∣∣∣ = op(1),

and (25) we get I2 = op(1).
Now, we consider the third part I3

I3 ≤ sup
0≤x≤X(n)

∣∣∣∣K (x) − K̂ (x)

K (x)

∣∣∣∣2n
n∑

i=1

{φ(Xi , Zi , β)Δi }⊗2

K̂ (Xi )K (Xi )
,

and

2

n

n∑
i=1

{φ(Xi , Zi , β)Δi }⊗2

K̂ (Xi )K (Xi )

= 2

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K (Xi )

}⊗2

+ 2

n

n∑
i=1

{K (Xi ) − K̂ (Xi )}φ(Xi , Zi , β)⊗2Δ2
i

K̂ (Xi )K 2(Xi−)

≤ 2

n

n∑
i=1

{
φ(Xi , Zi , β)Δi

K (Xi )

}⊗2

+ sup
0≤x≤X(n)

∣∣∣∣K (x) − K̂ (x)

K̂ (x)

∣∣∣∣ 2n
n∑

i=1

{
φ(Xi , Zi , β)Δi

K (Xi )

}⊗2

.
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Accelerated failure time model with quantile information 1019

Using (21), similarly to the proof of J2, we have that I3 = op(1). So, we complete the
proof the first result of Lemma 4.

Now, we will consider the second result of Lemma 4, note that

1

n

n∑
i=1

{
∇βφ(Xi , Zi , β)

Δi

K̂ (Xi )

}
= 1

n

n∑
i=1

{∇βφ(Xi , Zi , β)Δi

K (Xi )

}

+1

n

n∑
i=1

{
K (Xi ) − K̂ (Xi )

K̂ (Xi )K (Xi )

}
∇βφ(Xi , Zi , β)Δi � K1 + K2, (31)

we have

E

{∇βφ(Xi , Zi , β)Δi

K (Xi )

}
= E[∇βφ(T, Z , β)]

= ∂

∂β

∫ +∞

−∞
ρ(Z τ β − bw)dL(w) = ∇βρ(β) + o(1),

where ρ(β) ≡ Eψ(T, Z τ β). So, by the law of large number,

K1 = ∇βρ(β) + op(1). (32)

Using the fact of Gill (1980, p 37) again

|K2| ≤ sup
0≤x≤X(n)

∣∣∣∣K (x) − K̂ (x)

K (x)

∣∣∣∣1n
n∑

i=1

∣∣∣∣∇βφ(Xi , Zi , β)Δi

K̂ (Xi )

∣∣∣∣ = op(1). (33)

Combining (32) and (33), we complete the proof of the second result of Lemma 4. ��
Lemma 5 Suppose that Assumptions 1–3 and 6 are satisfied, then for any β on {β :
||β − β0|| ≤ cn−�} where 1/3 < � < 1/2, c is some constant, we have

1

n

n∑
i=1

Vniφ(Xi , Zi , β) = 1

n

n∑
i=1

Vniφ(Xi , Zi , β0) + Op(n
−ρ). (34)

Proof We can get the result only by a Taylor expansion. ��
Lemma 6 Suppose that Assumptions 1–6 are satisfied, then λ(β) = Op(n−�) uni-
formly on {β : ||β − β0|| ≤ cn−�} where 1/3 < � < 1/2, c is some constant,
and

λ(β) =
[
1

n

n∑
i=1

Wni (β)Wni (β)τ

]−1 [
1

n

n∑
i=1

Wni (β)

]
+ op(n

−�), (35)

uniformly on {β : ||β − β0|| ≤ cn−�}, where λ(β) satisfies (10).
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Proof By assumptions and the proof of Lemma 3 in Owen (1990), max1≤i≤n |V (0)
ni φ

(Ti , Zi , β)| = op(n1/3), where V
(0)
ni = Δi/K (Xi ), so we have:

max
1≤i≤n

|Wni (β)| ≤ max
1≤i≤n

|V (0)
ni φ(Ti , Zi , β)|+ max

1≤i≤n

∣∣∣∣Δi (K̂ (Ti )−K (Ti ))φ(Ti , Zi , β)

K̂ (Ti )K (Ti )

∣∣∣∣
≤ op(n

1/3) + sup
0≤x≤X(n)

∣∣∣∣ K̂ (x) − K (x)

K̂ (x)

∣∣∣∣ max
1≤i≤n

|V (0)
ni φ(Ti , Zi , β)|,

where X(n) is the largest order statistic. Using the following equality (Zhou 1991),

sup
0≤x≤X(n)

∣∣∣∣K (x) − K̂ (x)

K̂ (x)

∣∣∣∣ = Op(1),

we have

max
1≤i≤n

|Wni (β)| = op(n
1/3). (36)

Using Lemma 5, similar to the proof of Lemma 3 in Owen (1990), we have λ(β) =
Op(n−�). Using Eq. (10),

0 = 1

n

n∑
i=1

Wni (β)

(
1 − Yi + Y 2

i

1 + Yi

)
,

where Yi = λ(β)τWni (β), and

max
1≤i≤n

|Yi | ≤ ‖λ(β)‖ max
1≤i≤n

|Wni (β)| = op(1).

So we have

λ(β) =
[
1

n

n∑
i=1

Wni (β)Wni (β)τ

]−1 [
1

n

n∑
i=1

Wni (β)

]
+ βn,

where

‖βn‖ ≤ 1

n

n∑
i=1

‖ Wni (β) ‖3‖ λ(β) ‖2| 1 + Yi |−1= op(n
−�).

Thus, we complete the proof of Lemma 6. ��
Lemma 7 Suppose that Assumptions 1–6 are hold, then, as n → ∞,with probability
1R(β) attains its minimum value at some point β̂e in the interior of the ball ‖β−β0‖ ≤
cn−�, with β̂e and λ̂ = λ(β̂e) satisfying

Q1n(β̂e, λ̂) = 0, Q2n(β̂e, λ̂) = 0,
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where

Q1n(β, λ) = 1

n

n∑
i=1

Vniφ(Ti , Zi , β)

1 + λτVniφ(Ti , Zi , β)
,

Q2n(β, λ) = 1

n

n∑
i=1

λτ∇βVniφ(Yi , Xi , β)

1 + λτVniφ(Ti , Zi , β)
.

Proof Similar to the proof of Lemma 1 in Qin and Lawless (1994). ��
Proof of Theorem 1 Given Lemmas 1–7, the proof of Theorem 1 can be constructed
along lines of Theorem 1 of Qin and Lawless (1994). Here, we only give a sketch of
the proof. It is easy to show that

(
λ̃

β̃e − β0

)
= S−1

n

(−Q1n(β0, 0) + op(δn)
op(δn)

)
, (37)

where δn = ‖β̂e − β0‖ + ‖̂λ‖ and

Sn =
(∇λQ1n ∇βQ1n

∇λQ2n 0

)
(β0,0)

→
(−B A

Aτ 0

)
.

From Lemma 2, we have Q1n(β0, 0) = 1
n

∑n
i=1 Vniφ(Ti , Zi , β0) = Op(n−1/2). So,

we know that δn = Op(n−1/2). Easily we have

√
n(β̂e − β0) = S−1

22.1A
τ B−1√nQ1n(θ0, 0) + op(1)

D−→ N (0, V ). (38)

��
Proof of Theorem 2 The log empirical likelihood ratio multiplied by −2 is given by

R(β) = 2
n∑

i=1

log{1 + λ(β)τWni (β)}

= 2
n∑

i=1

{
λ(β)τWni (β) − 1

2
(λ(β)τWni (β))2

}
+ γn

=
[

1√
n

n∑
i=1

Wni (β)

]τ [
1

n

n∑
i=1

Wni (β)Wni (β)τ

]−1 [
1√
n

n∑
i=1

Wni (β)

]
+ γn,

(39)

where

|γn| ≤ ‖λ(β)‖3
n∑

i=1

‖Wni (β)‖3 = op(1).
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From Lemma 2, we have

1√
n

n∑
i=1

Wni (β0)
D→ N (0,Σ(β0)). (40)

In addition, by the virtue of Lemma 4,

1

n

n∑
i=1

Wni (β0)Wni (β0)
τ p→ B. (41)

So using (39), (40), (41), we complete the proof of Theorem 2. ��

Proof of Corollary 1

R2 = R(β1,0, β̃2,0) − R(β̂1, β̂2)

=
[
Σ(β0)

−1/2√nQ1n(β0, 0)
]τ

Σ(β0)
1/2B−1/2

×
{(

E
∂Wni

∂β

)[(
E

∂Wni

∂β

)τ

(EWniW
τ
ni )

−1
(
E

∂Wni

∂β

)]−1 (
E

∂Wni

∂β

)τ

−
(
E

∂Wni

∂β2

)[(
E

∂Wni

∂β2

)τ

(EWniW
τ
ni )

−1
(
E

∂Wni

∂β2

)]−1 (
E

∂Wni

∂β2

)τ
}

×B−1/2Σ(β0)
1/2

[
Σ(β0)

−1/2√nQ1n(β0, 0)
]

+ op(1). (42)

Denote

B2 = B−1/2

{(
E

∂Wni

∂β

)[(
E

∂Wni

∂β

)τ

(EWniW
τ
ni )

−1
(
E

∂Wni

∂β

)]−1 (
E

∂Wni

∂β

)τ

−
(
E

∂Wni

∂β2

)[(
E

∂Wni

∂β2

)τ

(EWniW
τ
ni )

−1
(
E

∂Wni

∂β2

)]−1 (
E

∂Wni

∂β2

)τ
}
B−1/2.

Similar as Corollary 5 in Qin and Lawless (1994), B2 is non-negative definite matrix,
and then Corollary 1 can be proved easily by Lemma 3 in Qin and Jing (2001). ��

Proof of Theorem 3 It is easy to show that β̂g is a consistent estimator of β0 (see, for
example, Newey and McFadden 1994, chapter 36, p 2132). By the assumptions, the
first-order condition

2An(β̂g)
τ Ŵ

1

n

n∑
i=1

Wni (β̂g) = 0,
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is satisfied with probability approaching one. ExpandingWni (β̂g) around β0 and mul-
tiplying through by

√
n, we have

√
n(β̂ − β0) = − [

An(β̂g)
τ Ŵ An(β̄)

]−1
An(β̂g)

τ Ŵ
√
n
1

n

n∑
i=1

Wni (β0),

where β̄ lies between β̂g and β0. By Assumption 4 and Lemma 4,

An(β̂g) →p A, An(β̄) →p A.

Thus,wehave, in probability,
[
An(β̂g)

τ Ŵ An(β̄)
]−1

An(β̂g)
τ Ŵ →p (AτW A)−1AτW .

The conclusion then follows by the Slutsky theorem. ��
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