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Abstract Sample quantiles are consistent estimators for the true quantile and satisfy
central limit theorems (CLTs) if the underlying distribution is continuous. If the distri-
bution is discrete, the situation ismuchmore delicate. In this case, sample quantiles are
known to be not even consistent in general for the population quantiles. In amotivating
example, we show that Efron’s bootstrap does not consistently mimic the distribution
of sample quantiles even in the discrete independent and identically distributed (i.i.d.)
data case. To overcome this bootstrap inconsistency, we provide two different and
complementing strategies. In the first part of this paper, we prove thatm-out-of-n-type
bootstraps do consistently mimic the distribution of sample quantiles in the discrete
data case. As the corresponding bootstrap confidence intervals tend to be conservative
due to the discreteness of the true distribution, we propose randomization techniques
to construct bootstrap confidence sets of asymptotically correct size. In the second
part, we consider a continuous modification of the cumulative distribution function
and make use of mid-quantiles studied in Ma et al. (Ann Inst Stat Math 63:227–243,
2011). Contrary to ordinary quantiles and due to continuity, mid-quantiles lose their
discrete nature and can be estimated consistently. Moreover, Ma et al. (Ann Inst Stat
Math 63:227–243, 2011) proved (non-)central limit theorems for i.i.d. data, which
we generalize to the time series case. However, as the mid-quantile function fails to
be differentiable, classical i.i.d. or block bootstrap methods do not lead to completely
satisfactory results andm-out-of-n variants are required here as well. The finite sample
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performances of both approaches are illustrated in a simulation study by comparing
coverage rates of bootstrap confidence intervals.

Keywords Bootstrap inconsistency · Count processes · Mid-distribution function ·
m-Out-of-n bootstrap · Integer-valued processes

1 Introduction

Since the seminal work of Efron (1979), bootstrapping has been established as a major
tool for estimating unknown finite sample distributions of general statistics. Among
others, this method has successfully been applied to construct confidence intervals
for sample quantiles of continuous distributions; see e.g. Serfling (2002, Chapter 2.6),
Sun and Lahiri (2006) and Sharipov and Wendler (2013) and references therein. In
this case, the asymptotic behavior of quantile estimators is well understood. Based
on the well-known Bahadur representation, a CLT can then be established for sample
quantiles in case of an underlying distribution exhibiting a differentiable cumulative
distribution function (cdf) and a positive density at the quantile level of interest. This
allows for the application of classical results on the bootstrap to mimic the unknown
finite sample distribution.

Quantile estimation has many practical applications for discrete-valued data, too.
For instance, Chen and Lazar (2010) use it to analyze epileptic seizure count data.
Moreover, it plays a central role in survey analysis, e.g. to report the median age at first
marriage or the median customer satisfaction, where the latter is typically categorical
data. For an overview of results on bootstrapping sample quantiles in the context of
survey data, we refer to Shao andChen (1998). However, the results obtained there rely
on certain smoothness assumptions on the underlying distribution, which do generally
not hold true for discrete data. In supply chain management, especially for sporadic
demand, quantile estimation is required to develop inventory policies that lead to a
prescribed α-service level in the sense of Tempelmeier (2000, Sect. 2.1). Confidence
intervals can then be used to determine the uncertainty of these estimates.

However, if the underlying distribution is discrete, this task is much more delicate
than in the continuous case. Sample quantiles may not even be consistent in general
for the population quantiles in this case. This issue occurs due to the fact that the cdf
is a step function. This leads to inconsistency if the level of the quantile of interest
lies in the image of the cdf and, consequently, CLTs do not hold true anymore. Before
we illustrate this inconsistency with the help of a simple, but very insightful toy
example below, first, we fix some notation that is used throughout this paper. Let Qp

for p ∈ (0, 1) be the usual population p-quantile of a probability distribution with cdf
F defined via its generalized inverse, i.e.

Qp = F−1(p) = inf
t

{t : F(t) ≥ p} . (1)

With observations X1, . . . , Xn at hand, the sample p-quantile ̂Qp is defined as the
empirical counterpart to (1), that is,

123



Bootstrapping sample quantiles of discrete data 493

̂Qp = ̂F−1
n (p) = inf

t
{t : ̂Fn(t) ≥ p}, (2)

where ̂Fn(x) = n−1∑n
i=1 1(Xi ≤ x) denotes the empirical distribution. Here and in

the sequel, �x� (�x�) denotes the smallest (largest) integer that is larger (smaller) or
equal to x .
Toy example: coin flip data Suppose a coin is flipped independently n times and we
observe a sequence X1, . . . , Xn of zeros and ones such that P(Xi = 0) = θ =
1 − P(Xi = 1) for some θ ∈ (0, 1). Let Xmed = Q0.5 and ̂Xmed = ̂Q0.5 denote the
population median and the sample median, respectively. This leads to

P(̂Xmed = 0) =
n
∑

k=� n
2 �

(

n

k

)

θk(1 − θ)n−k . (3)

If a coin is fair, i.e. θ = 1/2, we have Xmed = 0 and, by symmetry properties, we get

P(̂Xmed = 0) =
{

1
2 , n odd
1
2 + ( n

n/2

) ( 1
2

)n+1
, n even

. (4)

From Stirling’s formula (see e.g.Krantz 1991, Theorem 10.23), we get
( n
n/2

) ( 1
2

)n+1 =
O(n−1/2), which leads to

P(̂Xmed = 0) = 1 − P(̂Xmed = 1) → 1

2
(5)

as n → ∞. This is contrary to ̂Xmed
P−→ 0, i.e. the sample median is not a consistent

estimator and its limiting distribution is an equally-weighted 2-point distribution.
In this paper, as a first result, we show that one consequence of the estimation

inconsistency illustrated in (5) is that the classical bootstrap of Efron for i.i.d. data is
inconsistent for sample quantiles if they do not consistently estimate the true quantile.
More precisely, we prove that the Kolmogorov-Smirnov distance between the cdf’s
and their bootstrap analogues does not converge to zero, but to non-degenerate random
variables. These turn out to be functions of a random variable U ∼ Unif(0, 1) in the
special case of the sample median for the fair coin flip discussed in the example and
in Theorem 1 in Sect. 1. To the authors’ knowledge, such a specific phenomenon has
not been observed in the bootstrap literature so far.
Toy example: bootstrapping coin flip data Let X∗

1, . . . , X
∗
n be i.i.d. (Efron) bootstrap

replicates of X1, . . . , Xn and let ̂X∗
med denote the bootstrap sample median based on

the bootstrap observations. Then, we have analogously to (3)

P∗(̂X∗
med = 0) =

n
∑

k=� n
2 �

(

n

k

)

̂θkn (1 −̂θn)n−k, (6)

123



494 C. Jentsch, A. Leucht

where ̂θn = n−1∑n
t=1 1(Xt = 0) and P∗ denotes as usual the bootstrap distribution

(conditional on X1, . . . , Xn). In Theorem 1 below, we show that

P∗(̂X∗
med = 0) = 1 − P∗(̂X∗

med = 1)
D−→ U ∼ Unif(0, 1). (7)

By combining the result in (7) with (5), we get inconsistency of Efron’s bootstrap, see
Theorem 1 below for details.

In view of the results displayed in the toy example, it is worth noting that, more
generally, the population p-quantile Qp may be defined as any real number q that
satisfies the two inequalities

P(X ≤ q) ≥ p and P(X ≥ q) ≥ 1 − p, (8)

where X ∼ F , i.e. the definition (1) corresponds to the smallest possible value of q
in (8). In particular, it is not unusual to define the median Xmed as the center of the
smallest and the largest possible values of the median with respect to definition (8).
The sample median ̂Xmed is then defined in direct analogy. However, this choice does
not affect at all the inconsistency results above and we prefer the definitions via (1)
and (2) for two reasons. Firstly, they naturally fit into the more general notation of the
(generalized) inverse of the cdf and, secondly, the (sample) median then takes values
in the support of PX only.

Still, one would like to establish consistent bootstrap results not only for the con-
tinuous setting, but also in general for discrete distributions. In this paper, as the use
of ordinary quantiles in discrete settings can be discussed conversely, we provide two
different and complementing strategies to tackle the issue of bootstrap inconsistency
for sample quantiles in the discrete setup that is illustrated in the toy example above.

In the first part of this paper, we investigate whether the m-out-of-n bootstrap (or
low-intensity bootstrap) leads to asymptotically consistent bootstrap approximations.
In several contexts where the classical bootstrap fails, this modified bootstrap scheme
is known to be a valid alternative; see e.g. Swanepoel (1986), Angus (1993), Deheuvels
et al. (1993), Athreya and Fukuchi (1994, 1997) and Del Barrio et al. (2013) among
others. We prove that the i.i.d. m-out-of-n bootstrap is consistent for sample quantiles
without centering in the i.i.d. discrete data case, but also that inconsistency for Efron’s
bootstrap remains if the procedure is applied with centering. These differing results
seem to be odd at first sight, but they can be explained by systematically different
centering schemes. Another somewhat surprising result is that, on the one hand, boot-
strap consistency can be achieved for i.i.d. data as well as dependent time series data
for one and the same i.i.d.m-out-of-n bootstrap procedure (without centering) as long
as only single sample quantiles are considered. But on the other hand, an m-out-of-n
block bootstrap procedure à la Athreya et al. (1999) has to be used to mimic correctly
the joint limiting distribution of several sample quantiles in the time series case. To be
able to establish this theory, we had to derive the joint limiting distribution of vectors
of sample quantiles for weakly dependent time series processes. This might be of
independent interest.

The consistency results achieved for the m-out-of-n bootstrap are then applied to
construct bootstrap confidence intervals. As these tend to be conservative due to the
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discreteness of the true distribution, we propose randomization techniques similar to
the construction of randomized tests (e.g. classicalNeyman–Pearson tests) to construct
bootstrap confidence intervals of asymptotically correct size.

All afore-mentioned difficulties related to discrete distributions are mainly due to
the jumps occurring in the distribution function, which leads to many quantiles having
the same values. Another look at quantiles of discretely distributed data is to employ
the so-called mid-distribution function proposed by Parzen (1997, 2004). This con-
cept has been further studied inMa et al. (2011) and has been applied successfully e.g.
to probabilistic index models in Thas et al. (2006). The corresponding mid-quantile
function is a continuous, piecewise linear modification of the ordinary quantile func-
tion.

In the second part of this paper, we make use of mid-quantiles. Although the dis-
tributions of the mid-quantiles lose their discrete nature, they allow for a meaningful
interpretation in many relevant situations. Exemplary, compare two (small) samples
stemming from coin flip scenarios. Both their sample medians may be computed to 0.
Actually, this is not much information since the samples widely may differ. Assume
for example that in the first sample five out of nine heads (equal to 0) may be occurred
and in the second sample eight out of nine heads occurred. It would be of much more
use to regard the empirical proportion of heads and tails within each sample to describe
their underlying distributions and to reflect possible differences. Based on such con-
siderations Parzen (1997, 2004) established the concept of mid-distribution functions
to handle sample medians more likely. Contrary to ordinary quantiles, it turns out that
the mid-quantiles can be estimated consistently. Moreover, (non-)central limit theo-
rems of the sample mid-quantiles can be achieved, where the limiting distributions
crucially depend on whether the mid-distribution function is differentiable or not at
the quantile of interest.

First, we generalize the limiting results obtained in Ma et al. (2011) to the time
series case under a so-called τ -weak dependence condition introduced by Dedecker
and Prieur (2005). This extension is motivated by a growing literature on modeling
of and statistical inference for count data that appear, e.g. as transaction numbers of
financial assets or biology where the evolution of infection numbers over time is of
great interest; see for instance Fokianos et al. (2009) and Ferland et al. (2006). In
particular, the theory provided in this paper covers parameter-driven integer-valued
autoregressive (INAR) models but also observation-driven integer-valued GARCH
(INGARCH) models. By construction, the mid-quantile function is continuous, but
it fails to be differentiable. Caused by this non-smoothness, it turns out that classical
i.i.d. or block bootstrap methods do not lead to completely satisfactory results and
m-out-of-n variants are required here as well. Moreover, due to boundary effects,
randomization techniques still have to be used to construct confidence intervals of
asymptotic correct level 1 − α for α ∈ (0, 1).

The rest of the paper is organized as follows. Section 2 focuses on bootstrapping
classical quantiles. In a first Sect. 2.1 we show inconsistency of Efron’s bootstrap
in the special case of the fair coin flip. Afterwards, in Sect. 2.2 we discuss validity
of low-intensity bootstrap methods for quantiles in a much more general framework
that covers a large class of discretely distributed time series. In Sect. 2.3 randomiza-
tion techniques for the construction of confidence sets are provided before the finite
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sample behavior of our methods is illustrated in Sect. 2.4. In Sect. 3 we consider the
alternative concept of mid-quantiles. In Sect. 3.1 we generalize the asymptotic results
established in Ma et al. (2011) for the i.i.d. case to the case of weakly dependent time
series data. Bootstrap validity is discussed in Sect. 3.2 and, based on these results,
confidence intervals for mid-quantiles are provided in Sect. 3.3. Numerical experi-
ments are reported in Sect. 3.4. Finally, both concepts are discussed in a comparative
conclusion. All proofs and auxiliary results are deferred to a final section of the paper.

2 Bootstrapping sample quantiles

2.1 Inconsistency of Efron’s bootstrap

In this section, we prove for the simple example of a fair coin flip and the sample
median that Efron’s bootstrap is not capable in general to estimate consistently the
limiting distribution of sample quantiles from discretely distributed data. To check for
bootstrap consistency, we make use of the Kolmogorov–Smirnov distance and show
that neither

dK S(̂X
∗
med,

̂Xmed) = sup
x∈R

∣

∣P∗(̂X∗
med ≤ x) − P(̂Xmed ≤ x)

∣

∣ (9)

(without centering) nor

dK S(̂X
∗
med − ̂Xmed, ̂Xmed − Xmed)

= sup
x∈R

∣

∣P∗(̂X∗
med − ̂Xmed ≤ x) − P(̂Xmed − Xmed ≤ x)

∣

∣ (10)

(with centering) converges to zero for increasing sample size, but to non-degenerate
distributions, which turn out to be different in these two cases. Dealing with the non-
centered case (9) first and due to Xi ∈ {0, 1} for the coin flip example, it suffices to
consider

sup
x∈[0,1)

∣

∣P∗(̂X∗
med ≤ x) − P(̂Xmed ≤ x)

∣

∣ = ∣

∣P∗(̂X∗
med = 0) − P(̂Xmed = 0)

∣

∣ , (11)

because |P∗(̂X∗
med ≤ x) − P(̂Xmed ≤ x)| = 0 holds for all x /∈ [0, 1). Further, we

know that P(̂Xmed = 0) → 1/2 with n → ∞ by (5) such that we have to investigate

P∗(̂X∗
med = 0) =

n
∑

k=� n
2 �

(

n

k

)

̂θkn (1 −̂θn)n−k (12)

in more detail. For the case with centering (10), things become slightly different and
it suffices to consider

sup
k∈{−1,0}

∣

∣P∗(̂X∗
med − ̂Xmed ≤ k) − P(̂Xmed − Xmed ≤ k)

∣

∣ (13)
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in this case. Precisely, we get the following results.

Theorem 1 (Inconsistency of Efron’s bootstrap) For independent and fair (θ =
0.5) coin flip random variables X1, . . . , Xn and i.i.d. (Efron) bootstrap replicates
X∗
1, . . . , X

∗
n , it holds

P∗(̂X∗
med = 0) =

n
∑

k=� n
2 �

(

n

k

)

̂θkn (1 −̂θn)n−k D−→ U ∼ Unif (0, 1). (14)

This leads to:

(i) For Efron’s bootstrap without centering, it holds

dK S(̂X
∗
med,

̂Xmed)
D−→

∣

∣

∣

∣

U − 1

2

∣

∣

∣

∣

∼ Unif (0, 1/2). (15)

(ii) For Efron’s bootstrap with centering, it holds

dK S(̂X
∗
med − ̂Xmed, ̂Xmed − Xmed)

D−→ 1

(

1

2
≤ U

)

U + 1

(

1

2
> U

)

− 1

2
=: S, (16)

where the cdf of S is given by

FS(x) = x1[0, 12 )(x) + 1[ 12 ,∞)(x).

2.2 The m-out-of-n bootstrap

2.2.1 Coin flip data

Of course, there are other situations discussed in the literature, where the ordinary
Efron’s bootstrap fails; see Bickel and Friedman (1981, Section 6), Mammen (1992)
and Horowitz (2001) and references therein. The most prominent example is the max-
imum of i.i.d. random variables X1, . . . , Xn , that is, Mn = max(X1, . . . , Xn). In this
case, bootstrap inconsistency of M∗

n = max(X∗
1, . . . , X

∗
n) has been investigated in

Angus (1993). To circumvent this problem and in view of the well-known limiting
result [cf. Resnick (1987), Chapter 1]

P(a−1
n (Mn − bn) ≤ x) −→

n→∞G(x) ∀x ∈ R

for suitable distributions PX1 , sequences (an)n and (bn)n and a non-degenerate cdf G,
Swanepoel (1986),Deheuvels et al. (1993) andAthreya andFukuchi (1994, 1997) used
the low-intensity m-out-of-n-bootstrap. That is, drawing with replacement m times
with m → ∞ such that m = o(n) to get X∗

1, . . . , X
∗
m and to mimic the distribution of

a−1
n (Mn − bn) by that of a−1

m (M∗
m − bm). This task has been generalized by Athreya
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Fig. 1 1000 realizations of supk
∣

∣P∗(̂X∗
med ≤ k) − P(̂Xmed ≤ k)

∣

∣ of a coin flip for sample sizes n ∈
{100, 500, 1000} (from left to right) and for θ ∈ {0.5, 0.45} (from top to bottom)

et al. (1999) to time series data, where additionally a low-intensity block bootstrap
has been proposed and investigated.

The situation addressed in this paper is somehow comparable. A closer inspection
of (3) and (6) leads to the conclusion that if we were allowed to replace ̂θn by θ for
asymptotic considerations, we would get the same limiting results. Obviously, from
(5) and (7), this is not the case. However, as

√
n(̂θn − θ)

D→ N (0, θ(1 − θ)) , (17)

inconsistency stated in Theorem 1 for the coin flip can be explained by the fact that
the convergence ̂θn − θ = OP (n−1/2) is just “too slow”. Hence, the bootstrap is not
able to mimic the underlying scenario correctly since the latter completely differs
for θ = 1/2 and θ �= 1/2. Note that the limiting distribution is a non-degenerate
2-point distribution in the first and degenerate in the second case; compare Theorem 6
below and Fig. 1. Therefore, natural questions are whether an m-out-of-n bootstrap
may be capable to “speed up” the convergence of ̂θn (relative to the convergence
of the empirical cdf on the bootstrap side) and whether this does lead to bootstrap
consistency. The following theorem summarizes our findings in this direction for the
sample median without and with centering corresponding to the results of Theorem 1.
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Theorem 2 (Consistency and inconsistency for the m-out-of-n bootstrap for the
sample median) For independent and fair (θ = 0.5) coin flip random vari-
ables X1, . . . , Xn, we draw i.i.d. bootstrap replicates X∗

1, . . . , X
∗
m. Suppose that

m/n + 1/m = o(1) as n → ∞ and denote the bootstrap sample median based
on X∗

1, . . . , X
∗
m by ̂X∗

m,med .

(i) For the m-out-of-n bootstrap without centering, it holds

dK S(̂X
∗
m,med,

̂Xmed)
P−→ 0.

(ii) For the m-out-of-n bootstrap with centering, it holds

dK S(̂X
∗
m,med − ̂Xmed, ̂Xmed − Xmed)

D−→ 1

2
1

(

U <
1

2

)

=: ˜S,

where U ∼ Unif(0, 1) such that 2˜S ∼ Bin(1, 0.5) is Bernoulli-distributed.

Remark 3 The results of Theorem 2 that state consistency for the non-centered sample
median, but inconsistency for the centered version for the m-out-of-n bootstrap, seem
to be surprising at first sight. However, by a closer inspection of part (ii) this oddity
can be explained by the fact that Xmed = 0, while ̂Xmed and ̂X∗

m,med take the values 0
and 1 with limiting probability 1/2 each. Hence, the centering differs on the bootstrap
and the non-bootstrap side of (ii). This effect is caused by the estimation inconsistency
of the sample median.

In Fig. 2, the differing asymptotic behavior of ̂X∗
med,m for m = n and m = n2/3

is illustrated via histogram plots for coin flip data. For the first case, the asymptotic
uniform distribution of P∗(̂X∗

med,n = 0) is reflected by the high variability of the
histograms, whereas the probabilities seem to be more balanced in the second case.

So far we have considered only the toy example of i.i.d. fair coin flip random
variables and the sample median. This seems to be very restrictive at first sight. In the
following, we turn to a much more general setup and show that asymptotics follow
immediately from the results established for the coin flip example. Consequently, it
turns out to be not that toyish at all.

2.2.2 General setup

We now turn to more general distributions than the Bernoulli distribution and suppose
that (Xt )t∈Z is a sequence of random variables that might inherit a certain dependence
structure. In the last decade, Poisson autoregressions [e.g. Ferland et al. (2006) and
Fokianos et al. (2009)], INAR processes [e.g. McKenzie (1988), Weiß (2008) and
Drost et al. (2009)] and various extensions of these models have attracted increasing
interest, see Fokianos (2011). We intend to derive results that hold true for a broad
range of processes including the previous one. Doukhan et al. (2012a, b) showed that
these processes are τ -dependent with geometrically decaying coefficients. Therefore,
we will use this concept in the sequel and state its definition for sake of completeness.
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Fig. 2 Histograms of ̂X∗
med,m based on i.i.d. bootstrap replicates X∗

1 , . . . , X∗
m from fair coin flip data

X1, . . . , Xn for n = 10000 and m = n (first column) and m = n2/3 (second column)
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However, it can be seen from the proofs below that any other concept of weak depen-
dence being sufficient for a CLT of the empirical distribution function can be applied
here as well.

Definition 4 Let (�,A, P) be a probability space and (Xt )t∈Z be a strictly stationary
sequence of integrable Rd -valued random variables. The process is called τ -(weakly)
dependent if

τ(h) = sup
D∈N

1

D
sup

h≤t1<···<tD

{

τ
(

σ(Xt , t ≤ 0), (Xt1 , . . . , XtD )
)} −→

h→∞ 0,

where

τ(M, X) = E

(

sup
f ∈�1(Rp)

∣

∣

∣

∣

∫

Rp
f (x)dPX |M(x) −

∫

Rp
f (x)dPX (x)

∣

∣

∣

∣

)

.

Here, M is a sub-σ -algebra of A, PX |M denotes the conditional distribution of the
R

p-valued random variable X given M, and �1(R
p) denotes the set of 1-Lipschitz

functions fromR
p toR, i.e. f ∈ �1(R

p) if | f (x)− f (y)| ≤ ‖x − y‖1 = ∑p
j=1 |x j −

y j | ∀ x, y ∈ R
p.

Remark 5 If a process (Xt )t∈Z on (�,A, P) is τ -dependent and if A is rich enough,
then there exists, for all t < t1 < · · · < tD ∈ Z, D ∈ N, a random vec-
tor (˜Xt1 , . . . ,

˜XtD )′ which is independent of (Xs)s≤t , has the same distribution as
(Xt1 , . . . , XtD )′ and satisfies

1

D

D
∑

j=1

E‖˜Xt j − Xt j ‖1 ≤ τ(t1 − t); (18)

cf. Dedecker and Prieur (2004). This L1-coupling property will be an essential device
for the proofs of our results below. Also note that in particular sequences of i.i.d. ran-
dom variables (Xt )t∈Z are τ -dependent with τ(0) ≤ 2E‖X1‖ and τ(h) = 0 for h �= 0.
Nevertheless, we state the i.i.d. case separately in all our Theorems since τ -dependent
processes are assumed to have finite first moment which is not necessary in our results
if the data are i.i.d..

Regarding the marginal distribution PX1 , we assume that it has support supp(PX1)

= V , that is, P(Xi ∈ V ) = 1, where

V = {v j | j ∈ T ⊆ Z} (19)

for some finite or countable index set T with v j < v j+1 for all j ∈ T . Further, we
assume that V has no accumulation point. As the cdf F is a step function, there is
always a p ∈ (0, 1) such that the p-quantile Qp = v j , say, as well as v j+1 satisfies
both inequalities in (8). Recall that this covers particularly the population median in
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the fair coin flip example. In the following, we consider the asymptotics for the sample
quantile ̂Qp as defined in (2) and its bootstrap analogue

̂Q∗
p,m = (̂F∗

m(p))−1 = inf
t

{t : ̂F∗
m(t) ≥ p},

where ̂F∗
m(x) = m−1∑m

i=1 1(X
∗
i ≤ x) denotes the empirical bootstrap distribution

function. Similar to (3), for all x ∈ R, we have

P(̂Qp ≤ x) = P

(

n
∑

i=1

1(Xi ≤ x) ≥ �np�
)

=
n
∑

j=�np�

(

n

j

)

F j (x)(1 − F(x))n− j .

For the bootstrap p-quantile ̂Q∗
p,m based on i.i.d. bootstrap pseudo replicates

X∗
1, . . . , X

∗
m , we get the analogue representation

P∗(̂Q∗
p,m ≤ x) = P∗

(

m
∑

i=1

1(X∗
i ≤ x) ≥ �mp�

)

=
m
∑

j=�mp�

(

m

j

)

̂F j
n (x)(1 − ̂Fn(x))

m− j .

Further, for all x ∈ R and analogue to (17), we have for the i.i.d. case

√
n(̂Fn(x) − F(x))

D→ N (0,W ) where W = cov(1(X0 ≤ x), 1(X0 ≤ x)).

As for the median in the coin flip example and analogue to (9) and (10), to check for
bootstrap consistency,we have to consider dK S(̂Q∗

p,
̂Qp) or dK S(̂Q∗

p−̂Qp, ̂Qp−Qp).
To this end, we first study the asymptotics for the empirical quantile ̂Qp. In particular,
part (iii) of the following lemma addresses the joint limiting distributions of several
empirical quantiles. To the authors knowledge, such a result has not been established
in this generality so far and may be of independent interest.

Theorem 6 (Asymptotics of empirical quantiles for discrete distributions) Let
X1, . . . , Xn be discretely distributed random variables which are either i.i.d. or obser-
vations of a strictly stationary and τ -dependent process (Xt )t∈Z with

∑∞
h=0 τ(h) < ∞

and supp(PX1) = V as described above.

(i) If F(Qp) > p,

P(̂Qp = Qp) −→
n→∞ 1.

(ii) If F(Qp) = p and Qp = v j , say, for some v j ∈ V ,

P(̂Qp = v j ) −→
n→∞ 1/2 and P(̂Qp = v j+1) −→

n→∞ 1/2.
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(iii) For p1, . . . , pd such that F(Qpi ) = pi , i = 1, . . . , k and F(Qpi ) > pi , i =
k + 1, . . . , d with Qpi = vli , say, joint convergence in distribution of ̂Q =
(̂Qp1, . . . ,

̂Qpd )
′ holds. Precisely, we have

P(̂Q = q) →
n−→∞

{

P
(

⋂k
j=1

{

(2 · 1(q j = Qpj ) − 1)Z j ≥ 0
}

)

, qi = Qpi , i = k + 1, . . . , d

0, otherwise
(20)

where q = (q1, . . . , qd)′ with qi ∈ {vli , vli+1}. Here, the probability of the empty
intersection is set to one and Z = (Z1, . . . , Zk)

′ ∼ N (0,W) with covariance
matrixW having entries

Wi, j =
{

cov(1(X0 ≤ qi ), 1(X0 ≤ q j )), i.i.d. case
∑

h∈Z cov(1(Xh ≤ qi ), 1(X0 ≤ q j )), time series case
.

Note that the asymptotics do not depend on the dependence structure of the under-
lying process as long as single quantiles are considered, compare Remark 10. This
does no longer hold true when the joint distribution of several quantiles is considered.
Part (iii) above shows that ̂Q converges to a random variable with 2-point marginal
distributions that are indeed dependent not only for the time series case, but also for
i.i.d. random variables. More precisely, the probability that the vector of empirical
quantiles ̂Q equals the vector q corresponds asymptotically to the probability that

the normally distributed random variable Z takes values in a certain orthant of Rk

depending on q . This is illustrated in the following example.

Example 7 In the situation of Theorem 6(iii) let k = 2 and suppose (Qp1, Qp2) =
(vi1 , vi2).

(i) If q = (vi1 , vi2), we have P(̂Q = q) →
n→∞ P(0 ≤ Z1, 0 ≤ Z2).

(ii) If q = (vi1 , vi2+1), we have P(̂Q = q) →
n→∞ P(0 ≤ Z1, 0 ≥ Z2).

After having established asymptotic theory for sample quantiles in this general
setup, it remains to consider the bootstrap analogue, i.e. P∗(̂Q∗

p,m ≤ x), in more
detail. In particular, for x = Qp we have by Theorem 8 below

P∗(̂Q∗
p,m = Qp) = P∗(̂Q∗

p,m ≤ Qp) − oP (1)

=
m
∑

k=�mp�

(

m

k

)

̂Fk
n (Qp)(1 − ̂Fn(Qp))

m−k − oP (1),

which has (asymptotically) exactly the same shape as (12), and the results of Theorems
1 and 2 transfer directly to this more general setup.

Theorem 8 (Consistency of the i.i.d. m-out-of-n bootstrap) Let X1, . . . , Xn be dis-
cretely distributed i.i.d. random variables with supp(PX1) = V as above and we draw
i.i.d. bootstrap replicates X∗

1, . . . , X
∗
m. Suppose that m/n + 1/m = o(1) as n → ∞
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and let ̂Q = (̂Qp1, . . . ,
̂Qpd ) as in Theorem 6 and ̂Q

∗
m

= (̂Q∗
p1,m, . . . , ̂Q∗

pd ,m) for
p1, . . . , pd ∈ (0, 1). Then, we have bootstrap consistency, i.e.

dK S

(

̂Q
∗
m
, ̂Q
)

:= sup
x∈Rd

∣

∣

∣P∗(̂Q∗
m

≤ x) − P(̂Q ≤ x)
∣

∣

∣

P−→ 0.

Here, the short-hand x ≤ y for x, y ∈ R
d is used to denote xi ≤ yi for all i = 1, . . . , d.

To capture the dependence structure of the process (Xt )t∈Z in the time series case,
we approach an m-out-of-n (moving) block bootstrap procedure:

Step 1. Choose a bootstrap sample size m, a block length l and let b = �m/ l� be the
smallest number of blocks required to get a bootstrap sample of length bl ≥ m.
Define blocks Bi,l = (Xi+1, . . . , Xi+l), i = 0, . . . , n − l and let i0, . . . , ib−1
be i.i.d. random variables uniformly distributed on the set {0, 1, 2, . . . , n−l}.

Step 2. Lay the blocks Bi0,l , . . . , Bib−1,l end-to-end together to get

Bi0,l , . . . , Bib−1,l = Xi0+1, . . . , Xi0+l , Xi1+1, . . . , Xi1+l , . . . , Xib−1+1, . . . , Xib−1+l

= X∗
1, . . . , X

∗
bl

and discard the last bl − m values to get a bootstrap sample X∗
1, . . . , X

∗
m .

An application of this block bootstrap is in particular necessary to obtain bootstrap
consistency if several quantiles are considered jointly. This leads to the following
theorem.

Theorem 9 (Consistency of the block-wise m-out-of-n bootstrap) Let X1, . . . , Xn

be discretely distributed random variables with supp(PX1) = V as above that
are observations of a strictly stationary and τ -dependent process (Xt )t∈Z with
∑∞

h=0 h τ(h) < ∞. We apply the block-wise m-out-of-n bootstrap to get a boot-
strap sample X∗

1, . . . , X
∗
m. Suppose that m/n + l/m + 1/ l = o(1) as n → ∞. With

the notation of Theorem 8, we have bootstrap consistency, i.e.

dK S

(

̂Q
∗
m
, ̂Q
)

P−→ 0.

Remark 10 It can be seen from Theorem 6(iii) that P(̂Qp = Qp) −→ P(Z ≥
0) = 1/2 as n → ∞ if F(Qp) = p. Here, Z is a centered normal variable whose
variance depends on the dependence structure of the underlying process. However,
for the limit behavior of the sample quantile itself the variance of Z is not relevant
and we only require symmetry around the origin. In the case of F(Qp) > p the proof
of P(̂Qp = Qp) −→ 1 is based on the WLLN which holds for i.i.d. as well as
for τ -weakly dependent data. This implies in particular that to mimic the asymptotic
behavior of a single quantile correctly we do not have to imitate the dependence
structure correctly. Hence, the i.i.d. m-out-of-n-bootstrap is also valid for sequences
of weakly dependent random variables if single quantiles are considered; for details
follow the lines of the proof of Theorem 8. A similar phenomenon occurs when m-
out-of-n bootstrap is used to mimic the distribution of Mn = max(X1, . . . , Xn); see
Theorem 4 and Section 4 in Athreya et al. (1999).
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2.3 Randomized construction of confidence sets

In discrete setups it is more appropriate to work with confidence sets rather than
confidence intervals for population quantiles. By consistency of the non-centered m-
out-of-n i.i.d. bootstrap (and them-out-of-n block bootstrap)we can apply thismethod
to derive such confidence sets. Due to the discreteness of the underlying distribution
a naive construction of confidence sets will be too conservative, that is, the effective
limiting coverage of an asymptotic (1−α)-quantile is strictly larger than 1−α; actually
equal to one if α < 1/2. If one does not want to use conservative confidence sets with
(too) large coverages, one can compensate this effect by randomization techniques.
More precisely, we proceed as follows:We calculate one confidence set for the sample
quantile with coverage larger than the prescribed size 1 − α and another one with a
coverage (asymptotically) smaller than 1 − α. Then, we choose randomly (with an
appropriate distribution) one of these sets and use this to construct a final confidence
set for the population quantile of asymptotic level 1 − α. Another difficulty that has
to be taken into account is that we have bootstrap consistency only without centering,
that is,

P∗(̂Q∗
p,m ≤ x) ≈ P(̂Qp ≤ x), but P∗(̂Q∗

p,m − ̂Qp ≤ x) �≈ P(̂Qp − Qp ≤ x),

(21)

such that the standard construction of bootstrap confidence intervals is not possible.
Let Vn denote the support of the empirical marginal distribution based on X1, . . . , Xn .
Then, we define large and small confidence sets CSL and CSS , respectively, for the
sample quantile

CSL =
[

F∗−1
̂Q∗

p,m
(α/2), F∗−1

̂Q∗
p,m

(1 − α/2)

]

∩ Vn,

CSS =
[

F∗−1
̂Q∗

p,m
(α/2), F∗−1

̂Q∗
p,m

(1 − α/2)

)

∩ Vn,

and their coverages

covL = P∗(̂Q∗
p,m ∈ CSL), covS = P∗(̂Q∗

p,m ∈ CSS).

Note that covL ≥ 1 − α while the size of covS is not clear in finite samples. It will
turn out to be less than 1 − α in the limit. Finally, we specify

p∗ = 1 − α − covS
covL − covS

and define the bootstrap approximation of the confidence set for the sample quantile

˜CS =
{

CSL if Y ≤ p∗

CSS if Y > p∗,
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where Y ∼ Unif(0, 1) is chosen independently from all observations and all bootstrap
variables. A corresponding confidence set for the population quantile is then given by

CS = ˜CS − ̂Qp + H(̂Q∗
p,m).

Due to (21) and as P(̂Qp ∈ ˜CS) → 1 − α holds, the use of a correction term
H(̂Q∗

p,m) := F∗−1
̂Q∗

p,m
(0.4) is necessary as an approximation of the true quantile Qp;

see proof of Theorem 11 below. In principle, any value in (0, 1/2] can be used instead
of 0.4.

Theorem 11 Suppose that either the assumptions of Theorem 8 or Theorem 9 hold
true. Then, for α ∈ (0, 1/2), we have

P
(

Qp ∈ CS
) −→
n→∞ 1 − α.

Remark 12 (On the use of V or Vn) The effect of using V or Vn is asymptotically
negligible. For applications it might be reasonable to assume either that V is known
in advance or that it is unknown. In the first case V should be used to construct the
confidence intervals and in the latter case Vn seems to be the more reasonable choice.

2.4 Simulations

In this section, we illustrate the bootstrap performance by means of coverage rates of
(1−α)-confidence setsCS for α = 0.05 as proposed in the previous section. To cover
both cases of i.i.d. as well as time series data, let X1, . . . , Xn be either

(a) an i.i.d. realization of a binomial distribution Xi ∼ Bin(N , θ)

or

(b) a realization of a (Poisson-)INAR(1) model Xt = β ◦ Xt−1 + εt , where εt ∼
Poi(η(1 − β)) is Poisson distributed and β ◦ k ∼ Bin(k, β) for k ∈ N0 denotes
the binomial thinning operator.

The quantity of interest is the (sample) median, where we consider different parameter
settings for both cases (a) and (b) that lead to degenerate one-point as well as non-
degenerate two-point limiting distributions, respectively. In all simulations we have
used V to construct confidence sets; compare Remark 12.

In Table 1, we show coverage rates of confidence sets for model a) for several
sample sizes n ∈ {100, 500, 1000, 5000} and parameter settings with θ = 0.5 and
N ∈ {1, 2, 19, 20, 39, 40}, where odd N leads to a non-degenerate limiting distribution
(N = 1 is the fair coin flip) and even N results in a degenerate one-point limiting
distribution. In Fig. 3, we show typical bootstrap confidence sets for the examples
Bin(19, 0.5) and Bin(39, 0.5). As our theory provided in Sect. 2.2 suggests, we use
the m-out-of-n bootstrap to mimic correctly the limiting behavior of sample quantiles
in the degenerate as well as the non-degenerate case. To illustrate how sensitive the
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Table 1 Coverage rates of (1 − α)-bootstrap confidence sets CS with α = 0.05 for the median Xmed of
Xt ∼ Bin(N , 0.5) for several choices of N , sample sizes n and bootstrap sample sizes m

i.i.d. N = 1 N = 2

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.955 0.947 0.947 0.951 0.975 0.963 0.953 0.941

n2/3 0.964 0.983 0.973 0.957 0.962 0.957 0.952 0.941

n3/4 0.980 0.973 0.978 0.982 0.954 0.946 0.955 0.95

CLT approx. 0.548 0.502 0.507 0.503 1.000 1.000 1.000 1.000

i.i.d. N = 19 N = 20

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.995 0.994 0.976 0.952 0.894 0.977 1.000 1.000

n2/3 0.993 0.986 0.973 0.957 0.880 0.993 0.984 0.945

n3/4 0.988 0.973 0.978 0.982 0.909 0.974 0.975 0.95

CLT approx. 0.547 0.502 0.507 0.503 0.916 1.000 1.000 1.000

i.i.d. N = 39 N = 40

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.996 1.000 1.000 0.980 0.980 0.942 0.980 1.000

n2/3 0.989 0.995 0.977 0.957 0.939 0.988 0.998 0.974

n3/4 0.989 0.979 0.978 0.982 0.910 0.976 0.986 0.953

CLT approx. 0.542 0.502 0.507 0.503 0.777 0.997 1.000 1.000

bootstrap reacts on the choice of the bootstrap sample size, we show results for several
(rounded) values of m ∈ {n1/2, n2/3, n3/4}. For each parameter setting, we generate
K = 1000 time series and B = 1000 bootstrap replicates are used to construct the
confidence set as described in Sect. 2.3. By the deMoivre–Laplace theorem, a binomial
probability mass function can be well approximated by a normal density around the
mean if the number of experiments N is large. As suggested by one refereewe included
also coverage rates of the corresponding asymptotic confidence intervals. To construct
these intervals, we treated the data as being normally distributed with mean Np and
variance Np(1 − p) such that a Bahadur-type CLT

√
n(̂Qp − Qp) = 1

f (Qp)

√
n(p − ̂Fn(Qp)) + oP (1)

D−→ N (0, S), (22)

would hold true with limiting variance S = var(1(X1 ≤ Qp))/ f 2(Qp) if X1, . . . , Xn

are i.i.d. and f (·) = ϕ((· − Nθ)/
√
Nθ(1 − θ))/

√
Nθ(1 − θ), where ϕ denotes the

probability density function of the standard normal distribution. Precisely, we used
the confidence intervals [̂Xmed − q1−α/2 ∗ ̂S/

√
n, ̂Xmed − qα/2 ∗ ̂S/

√
n], where ̂S

is an empirical version of S and qα denotes the α-quantile of the standard normal
distribution. Table 1 reports a good overall finite sample performance of our procedure,
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Bootstrap Confidence Sets,
 n= 100 , m= 22

6 7 8 9 10 11 12

Bootstrap Confidence Sets, 
n= 100 , m= 22

16 17 18 19 20 21 22

Bootstrap Confidence Sets,
 n= 500 , m= 63

6 7 8 9 10 11 12 16 17 18 19 20 21 22

Bootstrap Confidence Sets, 
n= 500 , m= 63

Bootstrap Confidence Sets, 
n= 1000 , m= 100

6 7 8 9 10 11 12 16 17 18 19 20 21 22

Bootstrap Confidence Sets, 
n= 1000 , m= 100

Bootstrap Confidence Sets, 
n= 5000 , m= 292

6 7 8 9 10 11 12 16 17 18 19 20 21 22

Bootstrap Confidence Sets, 
n= 5000 , m= 292

Fig. 3 Confidence sets CS for the median Xmed from five realizations of X1, . . . , Xn with Xi ∼
Bin(N , 0.5) i.i.d. for N = 19 (left panels) and N = 39 (right panels), several sample sizes n and
bootstrap sample sizes m = n2/3. The true median is marked with a red vertical line
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whereas the coverage rates of the CLT-based confidence intervals that treat the data
as being normally distributed clearly fail here. In the case of a limiting two-point
distribution, the coverage is around 50% and in the limiting one-point distribution it
converges to 100%. Observe that these confidence intervals are just ad hoc and not
asymptotically valid such that we did not expect good results here. For our procedure,
we see that an increasing binomial parameter N leads to higher variance of the data
generating process, i.e. var(Xt ) = N/4. Hence, confidence sets are larger and we
observe a slight overcoverage. Moreover, we observe that confidence sets for even
N are more conservative than for odd N which is due to the degeneracy of the limit
distribution of the sample median for even N .

Remark 13 Theorem 11 yields asymptotic validity of the procedure under the mini-
mal conditionm = o(n) on the intensity parameter. The question of its optimal choice
has been discussed in different contexts. We refer the reader to an overview on the
literature in Santana (2009, Sections 4.4 and 5.5) and Bickel and Sakov (2008). Unfor-
tunately, these findings cannot be applied directly in the present context since their
prerequisites are violated in our special case. Bickel and Sakov (2008) require the
limiting distribution of the quantity under consideration to be non-degenerate which
contradicts our Theorem 6(i). However, our simulation study shows that the bootstrap
method is robust for different choices of the intensity m. If N is large, small choices
of m lead to more conservative confidence intervals than large ones. The effect of
overcoverage can be explained by larger variability caused by small bootstrap sample
sizes m. It seems that m = n2/3 is a good compromise and might be recommended as
a rule of thumb. A detailed investigation of the optimal choice of m is left to further
research.

In the setup (b), displayed in Table 2, we consider again the non-degenerate case
for λ = 3.67206 . . . such that Xmed = 3 as well as the degenerate case for λ = 4
such that Xmed = 4. As discussed in Remark 10, Table 2 shows that already the
i.i.d. low-intensity bootstrap leads to valid results and the block bootstrap does not
lead to visible improvements of the performance.

3 Mid-distribution quantiles

3.1 Asymptotics for sample mid-quantiles

Suppose we observe X1, . . . , Xn from a (τ -dependent) process with discrete sup-
port supp(PX1) = V as defined in (19). Instead of considering classical quantiles
as in Sect. 2 of the present paper, Parzen (1997, 2004) and Ma et al. (2011) sug-
gested to investigate a modified quantile function of the corresponding so-called mid-
distribution function Fmid, which is given by

Fmid(x) = F(x) − 0.5p(x), x ∈ R,

where, as before, F denotes the cdf of the random variable X with probability mass
function p(x) = P(X = x). Their concept allows for a meaningful interpretation of
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Table 2 Coverage rates of (1 − α)-bootstrap confidence sets CS with α = 0.05 for the median Xmed of
the INAR(1) model Xt = β ◦ Xt−1 + εt , β = 0.5 for two choices of λ and several sample sizes n and
bootstrap sample sizes m

INAR η = 3.67206 . . ., i.i.d. η = 4, i.i.d.

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.989 0.993 0.963 0.972 0.801 0.778 0.882 0.957

n2/3 0.978 0.989 0.977 0.969 0.800 0.923 0.943 0.962

n3/4 0.985 0.980 0.984 0.988 0.820 0.901 0.940 0.939

INAR η = 3.67206 . . ., MBB, l = m1/2 η = 4, MBB, l = m1/2

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.989 0.990 0.969 0.966 0.829 0.762 0.868 0.962

n2/3 0.986 0.982 0.971 0.980 0.805 0.930 0.928 0.953

n3/4 0.981 0.979 0.986 0.986 0.818 0.895 0.942 0.955

Results for i.i.d. resampling (i.i.d, upper tables) and the moving block bootstrap (MBB, lower tables) with
block length l = m1/2 are given

quantiles in the discrete setup and appears to be beneficial in cases of tied samples.
Here, we refer to the paper of Ma et al. (2011) for details. In particular, it is argued
there that mid-quantiles, related to the mid-distribution function in the sense of (23)
below, behave more favorably than classical quantiles. That is, contrary to classical
sample quantiles in discrete setups, they showed that sample (mid-)quantiles based on
the mid-distribution function converge to non-degenerate limiting distributions when
properly centered and inflatedwith the usual

√
n-rate as long as they do not correspond

to the boundary values of the support of the underlying distribution. In the latter case
the limiting distribution is degenerate for any choice of the inflation factor. Moreover,
they show that asymptotic theory coincides for mid-quantiles and classical quantiles
if the underlying distribution is absolutely continuous. In view of this, mid-quantiles
can be interpreted as a natural generalization of classical quantiles which appears to
be robust to discreteness of the underlying distribution.

We first assume the support V to be bounded, V = {v1, . . . , vd | v1 < .. < vd},
say. However, it turns out that the case of unbounded support can be treated similarly
and the asymptotics are even easier; see Remark 15 below. According to Ma et al.
(2011) the mid-quantile function is a linear interpolation of the points (Fmid(v j ), v j ),
j = 1, . . . , d. More precisely, we define the pth population mid-quantile Qp,mid
as

Qp,mid =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

v1 if p < Fmid (v1)

vk if p = Fmid (vk), k = 1, . . . , d
λvk + (1 − λ)vk+1 if p=λFmid (vk) + (1 − λ)Fmid (vk+1), λ ∈ (0, 1),

k = 1, . . . , d − 1
vd if p > Fmid (vd )

(23)

and its empirical counterpart ̂Qp,mid as
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p

Qp,Qp,mid

1

0.5

10.50 p

Qp,Qp,mid

3

1

2

10.50

Fig. 4 Comparison of quantile function (black, dashed) and mid-quantile function (red, solid) for
Bin(1, 0.5) (left panel) and Bin(3, 0.5) (right panel)

̂Qp,mid =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

v1 if p < ̂Fmid (v1)

vk if p = ̂Fmid (vk) < ̂Fmid (vk+1), k = 1, . . . , d

λnvk + (1 − λn)vk+1 if p = λ̂Fmid (vk) + (1 − λn)̂Fmid (vk+1), λn ∈ (0, 1),

̂Fmid (vk) < ̂Fmid (vk+1), k = 1, . . . , d − 1

vd if p > ̂Fmid (vd )

(24)

where ̂Fmid(x) = n−1∑n
k=1{1(Xk ≤ x)−0.5·1(Xk = x)} is the empirical counterpart

of Fmid(x); see also Fig. 4 for illustration. There, we compare the classical and the
mid-quantile function for the Bin(1, 0.5) and the Bin(3, 0.5) distribution. For both
distributions the classical median cannot be estimated consistently which follows from
the plateau of the classical quantile function from argument 0.5 onwards. Contrary, the
mid-quantile function is strictly increasing around this argument which then results in
a

√
n-consistency of its empirical version, see also Theorem 14 below.
Our first goal is to extend the asymptotic results of Ma et al. (2011) from i.i.d. data

to strictly stationary, τ -dependent processes. Similar to Sect. 2 of the paper, any other
concept of dependence might be applied as long as the CLT for the empirical distrib-
ution function holds. For sake of definiteness, we restrict ourselves to τ -dependence
here.

Theorem 14 (Asymptotics of sample mid-quantiles for discrete distributions) Sup-
pose that X1, . . . , Xn are either i.i.d. or observations of a strictly stationary, τ -
dependent process (Xt )t∈Z with

∑∞
h=0 τ(h) < ∞. Let the support of PX1 be

V = {v1, . . . , vd} such that v1 < · · · < vd and denote the corresponding proba-
bilities by a1, . . . , ad . Further, define a0 = ad+1 = 0, v0 = v1 and vd+1 = vd . Then,
we have
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√
n(̂Qp,mid − Qp,mid)

D−→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if p < Fmid(v1) or p > Fmid(vd )

Z1 if p = λFmid(vk+1) + (1 − λ)Fmid(vk+2), λ∈(0, 1),

k = 0, . . . , d − 2

Z2 if p = Fmid(vk+1), k = 1, . . . , d − 2

Z3 if p = Fmid(v1)

Z4 if p = Fmid(vd )

(25)

where Z1, Z2, Z3, Z4 are random variables having certain non-degenerate distrib-
utions as described in the following. Z1 is centered and normally distributed with
variance

σ 2
1 = 4

(

vk+1 − vk+2

ak+2 + ak+1

)2

h′
k+2

(k+2)hk+2, (26)

where

hk+2 =
(

1, . . . , 1, 1 − Fmid(vk+2) − p

ak+1 + ak+2
,
1

2
− Fmid(vk+2) − p

ak+1 + ak+2

)′

and (k+2) = ( j1, j2) j1, j2=1,...,k+2 with  j1, j2 = ∑

h∈Z cov(1(Xh = v j1), 1(X0 =
v j2)). The density of Z2 is that of a centered normal distribution with variance

σ 2
2− = 4

(

vk+1 − vk

ak + ak+1

)2 {

(1, . . . , 1, 0.5)(k+1)(1, . . . , 1, 0.5)′
}

on the negative real line and that of a centered normal distribution with variance

σ 2
2+ = 4

(

vk+2 − vk+1

ak+1 + ak+2

)2 {

(1, . . . , 1, 0.5)(k+1)(1, . . . , 1, 0.5)′
}

on the positive real line; such distributions are termed half-Gaussian or two-piece
normal distributions. The distribution of Z3 has point mass of 1/2 in zero and admits
a density on the positive real line which is that of a centered normal distribution with
variance σ 2

2+. Similarly, Z4 has point mass of 1/2 in zero and admits a density on the
negative real line which is that of a centered normal distribution with variance σ 2

2−.

Observe that depending on the situation, the limiting results established in Theorem
14 include four different types of distributions. These are, degenerate, Gaussian, half-
Gaussian and half-Gaussian with point masses at the boundary. Also observe that we
present the limiting results for sample mid-quantiles in a different way than Ma et al.
(2011). The results displayed in (25) will turn out to be convenient for investigating
the applicability of bootstrap methods in the sequel. Nevertheless, in comparison to
the i.i.d. case, only the covariance matrix (k+2) changes.
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Remark 15 (Boundary issues)

(i) In the boundary cases p < Fmid(v1) and p > Fmid(vd) we even get ̂Qp,mid =
Qp,mid with probability tending to one; see the proof of Theorem 14. These
stronger results are used in the proofs of bootstrap consistency later on.

(ii) Note that the results of Theorem 14 carry over to countable support V as long as
it does not contain an accumulation point. Then, the cases p < Fmid(v1) and/or
p > Fmid(vd) simply disappear; see also Remark 2 in Ma et al. (2011).

Remark 16 Similar to Theorem 6, it is possible to prove joint convergence of several
sample mid-quantiles. For clarity of exposition, we do not give the exact convergence
results here, but mention that multivariate limiting distributions of several samplemid-
quantiles can be obtained essentially by combining the univariate results of Theorem
14 above.

Before considering the bootstrap for mid-quantiles in Sect. 3.2, we first illustrate
the concept of mid-quantiles with the help of a continuation of the coin flip example
discussed in the Introduction; compare also Fig. 4.
Toy example: coin flip data for mid-quantiles Suppose a fair coin is flipped inde-
pendently n times and we observe a sequence X1, . . . , Xn of zeros and ones such
that P(Xt = 0) = 1/2 = 1 − P(Xt = 1). Let Xmed,mid = Q0.5,mid and
̂Xmed,mid = ̂Q0.5,mid denote the population mid-median and the sample mid-median,
respectively. Then, (23) gives Xmed,mid = 1/2 and from Theorem 14, we get

√
n(̂Xmed,mid − Xmed,mid)

D−→ N (0, 1/4). (27)

Thus, the sample mid-median fulfils a CLT and, in particular, it is a
√
n-consistent

estimator for the mid-median.

3.2 Bootstrapping sample mid-quantiles

We showed that standard bootstrap proposals may fail in the purely discrete data case
for classical sample quantiles. A closer inspection of the bootstrap invalidity result
of Theorem 1 shows that this issue is caused by the discreteness of the distributions
which in turn leads to quantile functions having jumps. In view of this observation, the
use of mid-quantiles may circumvent this problem, because the corresponding mid-
quantile function is piecewise linear and thus, in particular, continuous by construction;
compare Fig. 4.

In a first step, we investigate to what extend m-out-of-n-type bootstraps (i.i.d. and
block) are capable tomimic correctly the limiting distributions established in Theorem
14. Here, we allow explicitly the case m = n to cover also Efron’s bootstrap and the
standard moving block bootstrap. To fix some notation, let ̂Q∗

p,mid,m denote the pth
bootstrap sample mid-quantile based on bootstrap observations X∗

1, . . . , X
∗
m . More

precisely and analogue to (24), we define
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̂Q∗
p,mid,m =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

v1 if p < ̂F∗
mid,m (v1)

vk if p = ̂F∗
mid,m (vk ) < ̂F∗

mid,m (vk+1), k = 1 . . . , d

λ∗
mvk + (1 − λ∗

m )vk+1 if p = λ∗
m ̂F

∗
mid,m (vk ) + (1 − λ∗

m )̂F∗
mid,m (vk+1), λ∗

m ∈ (0, 1),

̂F∗
mid,m (vk ) < ̂F∗

mid,m (vk+1), k = 1, . . . , d − 1

vd if p > ̂F∗
mid,m (vd )

(28)

where ̂F∗
mid,m(x) = m−1∑m

k=1{1(X∗
k ≤ x) − 0.5 · 1(X∗

k = x)} is the bootstrap
counterpart of ̂Fmid(x) based on X∗

1, . . . , X
∗
m .

Theorem 17 (Asymptotics of bootstrap sample mid-quantiles for discrete distribu-
tions) Suppose either (i) or (ii) holds, where

(i) X1, . . . , Xn are i.i.d. and we draw i.i.d. bootstrap replicates X∗
1, . . . , X

∗
m such

that m → ∞ and m = o(n) or m = n as n → ∞
(ii) X1, . . . , Xn are τ -dependent with

∑∞
h=1 hτ(h) < ∞ and we apply an m-out-of-n

block bootstrap with block length l to get X∗
1, . . . , X

∗
m such that l/m+1/ l = o(1)

and m = o(n) or m = n as n → ∞
Then, we have

√
m(̂Q∗

p,mid,m − ̂Qp,mid)
D−→

⎧

⎪

⎨

⎪

⎩

0 if p < Fmid(v1) or p > Fmid(vd )

Z1 if p = λFmid(vk+1) + (1 − λ)Fmid(vk+2), λ ∈ (0, 1),

k = 0, . . . , d − 2

(29)

and

√
m(̂Q∗

p,mid,m − Qp,mid)
D−→

⎧

⎪

⎨

⎪

⎩

Z2 if p = Fmid(vk+1), k = 1, . . . , d − 2

Z3 if p = Fmid(v1)

Z4 if p = Fmid(vd)

(30)

in probability, respectively. The distributions of Z1 to Z4 are described in Theorem 14.

At this point, it is worth noting that the results of Theorem 17 above do not require
at all the use of an m-out-of-n-type bootstrap procedure with m = o(n) to mimic
correctly the complicated limiting distributions in all cases presented in Theorem 14.
However, a comparison of (25) with (29) and (30) shows that the correct centering for
the bootstrap samplemid-quantiles depends on the true situation. That is, ̂Q∗

p,mid,m has

to be centered around the samplemid-quantile ̂Qp,mid for the first two cases and around
the population quantile Qp,mid for the latter three. However, as the true mid-quantile
function is generally unknown, the true situation is also not known. Consequently, the
results of Theorem 17 are per se useless for practical applications as it is not clear
which centering has to be used.

To overcome this issue, we require the bootstrap procedure to be valid for all
different cases when centered around one and the same quantity. To achieve this, note
that the difference of the left-hand sides of (29) and (30) computes to
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√
m(̂Q∗

p,mid,m − Qp,mid) − √
m(̂Q∗

p,mid,m − ̂Qp,mid) =
√

m

n

{√
n(̂Qp,mid − Qp,mid)

}

= OP

(√

m

n

)

(31)

and vanishes for m = o(n), but not for m = n. This leads to the following result.

Corollary 18 (Consistency of m-out-of-n bootstraps for sample mid-quantiles) Sup-
pose either (i) or (ii) in Theorem 17 holds with m = o(n). Then, we have

dKS
(√

m(̂Q∗
p,mid,m − ̂Qp,mid),

√
n(̂Qp,mid − Qp,mid)

) P−→ 0.

3.3 Randomized construction of confidence intervals

We invoke the ideas of Sect. 2.3 to construct confidence intervals of level 1−α formid-
quantiles. These quantities take their values in the interval [v1, vd ] if V = {v1, . . . , vd}
such that v1 < · · · < vd in contrast to classical quantiles that take their values
only in the countable set V . In particular, if the image of the mid-quantile function
is the whole real line, the limit distribution is continuous by Theorems 14 and 17.
Therefore, no randomization techniques are required to construct asymptotic exact
(1−α) confidence sets. If this is not the case, a randomization procedure as described
in the sequel has to be applied. Note that the asymptotics in the previous section do
not rely on the (empirical) mid-quantile itself but on suitably centered and inflated
versions. Therefore, instead of CSL and CSS defined in Sect. 2.3, we consider large
and small intervals of the form

CIL ,mid =
[

F∗−1√
m(̂Q∗

p,mid,m−̂Qp,mid)
(α/2), F∗−1√

m(̂Q∗
p,mid,m−̂Qp,mid)

(1 − α/2)

]

,

CI(r)S,mid =
[

F∗−1√
m(̂Q∗

p,mid,m−̂Qp,mid)
(α/2), F∗−1√

m(̂Q∗
p,mid,m−̂Qp,mid)

(1 − α/2)

)

,

C I (l)
S,mid =

(

F∗−1√
m(̂Q∗

p,mid,m−̂Qp,mid)
(α/2), F∗−1√

m(̂Q∗
p,mid,m−̂Qp,mid)

(1 − α/2)

]

and their coverages

covL ,mid = P∗ (√m(̂Q∗
p,mid,m − ̂Qp,mid) ∈ C IL ,mid

)

,

cov(r)
S,mid = P∗ (√m(̂Q∗

p,mid,m − ̂Qp,mid) ∈ CI(r)S,mid

)

,

cov(l)
S,mid = P∗ (√m(̂Q∗

p,mid,m − ̂Qp,mid) ∈ CI(l)S,mid

)

.
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Finally, we specify the probability for choosing the large interval

p∗
mid =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1−α−cov(r)
S,mid

covL ,mid−cov(r)
S,mid

, cov(r)
S,mid ≤ 1 − α

1−α−cov(l)
S,mid

covL ,mid−cov(l)
S,mid

, otherwise

and define the bootstrap approximation of the confidence set for the p-level mid-
quantile

CI =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎣

̂Qp,mid−
F∗−1√

m(̂Q∗
p,mid,m−̂Qp,mid)

(1−α/2)

√
n

, ̂Qp,mid−
F∗−1√

m(̂Q∗
p,mid,m−̂Qp,mid)

(α/2)

√
n

⎤

⎥

⎦ if Y ≤ p∗
mid

⎡

⎢

⎣

̂Qp,mid−
F∗−1√

m(̂Q∗
p,mid,m−̂Qp,mid)

(1−α/2)

√
n

, ̂Qp,mid−
F∗−1√

m(̂Q∗
p,mid,m−̂Qp,mid)

(α/2)

√
n

⎞

⎟

⎠
if Y > p∗

mid

and cov(r)
S,mid ≤ 1 − α

⎛

⎜

⎝

̂Qp,mid−
F∗−1√

m(̂Q∗
p,mid,m−̂Qp,mid)

(1−α/2)

√
n

, ̂Qp,mid−
F∗−1√

m(̂Q∗
p,mid,m−̂Qp,mid)

(α/2)

√
n

⎤

⎥

⎦ otherwise

,

where Y ∼ Unif(0, 1) is chosen independently from all observations and all bootstrap
variables. This gives an asymptotic confidence interval of level 1 − α.

Theorem 19 Suppose that the assumptions of Corollary 18 hold true. Then, for α ∈
(0, 1/2),

P(Qp,mid ∈ CI) −→
n→∞ 1 − α.

3.4 Simulations

In this section, we illustrate the bootstrap performance by means of coverage rates of
(1 − α)-confidence intervals C I for α = 0.05 as proposed in the previous section.
To make the simulation results comparable to those obtained in Sect. 2.4, we use the
same settings here. Recall that the image ofmid-quantile functions is continuouswhich
leads to confidence intervals rather than confidence sets; compare Fig. 5. Contrary to
the results in setup (a) obtained for classical quantiles, all choices of the binomial
parameter N lead to non-degenerate distributions for the sample mid-median. In view
of Table 3, we observe that the bootstrap works equally well in both cases. As for
the classical quantiles, we included coverage rates of asymptotic confidence intervals
that treat the data as being normally distributed for the i.i.d. setup such that we can
make use of the CLT established in Theorem 1, Case 1 of Ma et al. (2011). This result
leads to the same limiting distribution as obtained in the CLT for classical quantiles
in (22) and we used the same construction of confidence intervals as in Sect. 2.4.
For the coverage rates of the CLT-based confidence intervals that treat the data as
being normally distributed, we see in Table 3 a systematic overcoverage which is
in general less pronounced for larger values of N . To explain the latter observation,
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Fig. 5 Confidence intervals CI for the mid-median Xmed,mid from five realizations of X1, . . . , Xn with
Xi ∼ Bin(N , 0.5) i.i.d. for N = 19 (left panels) and N = 39 (right panels), several sample sizes n and
bootstrap sample sizes m = n2/3. The true mid-median is marked with a red vertical line
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Table 3 Coverage rates of (1−α)-bootstrap confidence sets CIwithα = 0.05 for themid-median Xmed,mid
of Xi ∼ Bin(N , 0.5) for several choices of N , sample sizes n and bootstrap sample sizes m

iid N = 1 N = 2

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.935 0.940 0.932 0.941 0.887 0.894 0.914 0.914

n2/3 0.927 0.942 0.935 0.943 0.902 0.909 0.925 0.928

n3/4 0.949 0.941 0.942 0.944 0.896 0.919 0.929 0.933

CLT approx. 0.977 0.980 0.984 0.985 0.949 0.931 0.950 0.935

iid N = 19 N = 20

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.916 0.942 0.941 0.952 0.919 0.935 0.941 0.941

n2/3 0.918 0.944 0.946 0.950 0.920 0.928 0.930 0.945

n3/4 0.916 0.951 0.949 0.945 0.917 0.930 0.935 0.947

CLT approx. 0.956 0.965 0.971 0.966 0.962 0.965 0.973 0.961

iid N = 39 N = 40

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.906 0.943 0.941 0.949 0.922 0.932 0.943 0.956

n2/3 0.911 0.942 0.938 0.956 0.927 0.932 0.956 0.948

n3/4 0.909 0.941 0.938 0.954 0.932 0.939 0.945 0.943

CLT approx. 0.960 0.965 0.964 0.961 0.957 0.957 0.967 0.966

note that these confidence intervals are not asymptotically valid as they assume an
underlying normal distribution. Even though the concept of mid-quantiles slightly
differs from the classical ones in the discrete setup, a smooth modification of the
quantile function appears to be beneficial wrt coverage rate performance of bootstrap
confidence intervals.

In comparison to the results displayed in Table 2 for classical quantiles, Table 4
illustrates the necessity of a block-type resampling scheme that takes the dependence
structure of the INAR process in setting (b) into account.

4 Conclusion

In this paper, we investigated bootstrap validity for classical quantiles as well as
so-called mid-quantiles of discrete distributions. The classical quantile function is
piecewise constant and discontinuous which makes statistical inference challenging.
The concept of mid-distribution tries to overcome this deficiency by relying on piece-
wise linear mid-quantile functions that are continuous, but not differentiable. This
approach is partly motivated by the fact that the latter function coincides with the
classical quantile function if the underlying distribution is continuous. Indeed, in con-
trast to classical quantiles, mid-quantiles can be estimated consistently. Regarding the
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Table 4 Coverage rates of (1−α)-bootstrap confidence sets CIwithα = 0.05 for themid-median Xmed,mid
of the INAR(1) model Xt = β ◦ Xt−1 + εt , β = 0.5 for two choices of λ and several sample sizes n and
bootstrap sample sizes m

INAR η = 3.67206 . . ., i.i.d. η = 4, i.i.d.

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.739 0.761 0.777 0.803 0.739 0.779 0.742 0.754

n2/3 0.748 0.773 0.794 0.798 0.758 0.764 0.768 0.765

n3/4 0.749 0.808 0.785 0.792 0.748 0.780 0.772 0.772

INAR η = 3.67206 . . ., MBB, l = m1/2 η = 4, MBB, l = m1/2

m n 100 500 1000 5000 100 500 1000 5000

n1/2 0.825 0.887 0.925 0.931 0.827 0.903 0.899 0.924

n2/3 0.861 0.925 0.930 0.950 0.858 0.916 0.928 0.949

n3/4 0.867 0.927 0.942 0.936 0.853 0.935 0.922 0.950

Results for i.i.d. resampling (iid, upper tables) and the moving block bootstrap (MBB, lower tables) with
block length l = m1/2 are given

Table 5 Bootstrap (in-)consistency for single sample (mid-)quantiles

Data Method Centering Classical quantiles Mid-quantiles

i.i.d. i.i.d. bootstrap Yes/no X X

m-Out-of-n i.i.d. bootstrap No � X

m-Out-of-n i.i.d. bootstrap Yes X �
Weakly dependent m-Out-of-n i.i.d. bootstrap No � X

Block bootstrap Yes/no X X

m-Out-of-n-block bootstrap No � X

m-Out-of-n-block bootstrap Yes X �

validity of bootstrap methods this concept alone is not entirely successful. In both
cases, low-intensity (block) bootstrap methods are required to mimic the distribu-
tion of the (mid-)quantile estimators correctly. In particular two tuning parameters,
i.e. the intensitym and the block length l have to be chosen, irrespective of the type of
quantiles. Moreover, to overcome the issue of potentially too conservative intervals,
randomization techniques have to be invoked. An overview of the (in-)consistency of
all bootstrap methods addressed in this paper is given in Table 5.

Still, smoothness ofmid-quantile functions in comparison to ordinary quantile func-
tions turns out to be beneficial wrt the finite sample performance. Despite the appli-
cation of randomization techniques, confidence sets for classical quantiles tend to be
quite conservative. This effect is not observed for the mid-distribution counterparts
where bootstrap consistency for commonly centered quantities leads to a straight-
forward construction of confidence intervals. Therefore, the question arises whether
further smooth modifications of mid-quantiles may lead to even better results. A first
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attempt has been proposed by Wang and Hutson (2011) which is motivated by the
Harrell–Davis quantile estimator for continuous distributions. These quantile estima-
tors appear as sums ofweighted order statisticswhere theweights are smooth functions
of Beta cdfs. However, while Harrell and Davis (1982) use this method for the order
statistic of the sample itself, Wang and Hutson (2011) apply this to the support instead.
Hence, it is not clear how their definition of quantiles can be used directly for con-
tinuous data and whether there is a deep relationship between classical quantiles and
these variants as in the case of mid-quantiles. Therefore, we did not follow this line
of research in the present paper. Nevertheless, we conjecture that proving consistency
of i.i.d. and block bootstrap methods is straightforward since the proof of asymptotic
normality in Wang and Hutson (2011) relies on the CLT for the empirical cdf and
the �-method only. The construction of other smooth modifications of quantiles and
even more importantly the identification of their relationship to classical quantiles for
continuous distributions and convenience for practitioners goes far beyond the scope
of our paper and should be investigated in future research.

Appendix: Proofs and auxiliary results

Proofs of the main results

Proof of Theorem 1 We first prove (14). With the notation

Zn = √
n

̂Fn(ε) − F(ε)√
var(1(X1 ≤ ε))

and Z∗
n = √

n
̂F∗
n (ε) − ̂Fn(ε)√
var(1(X1 ≤ ε))

for any fixed ε ∈ (0, 1) and using the fact that for any distribution function G on R,
G(x) ≥ t if and only if x ≥ G−1(t), we get

P∗(̂X∗
med = 0) = P∗(̂X∗

med ≤ ε) = P∗
(

1

2
≤ ̂F∗

n (ε)

)

= 1 − P∗ (Z∗
n < −Zn

)

= 1 − �(−Zn) + (

�(−Zn) − P∗ (Z∗
n < −Zn

) )

.

In conjunction with Polya’s Theorem, we get from Lemma 21 that

∣

∣�(−Zn) − P∗ (Z∗
n < −Zn

)∣

∣ ≤ sup
x∈R

∣

∣�(x) − P∗ (Z∗
n < x

)∣

∣ = oP (1).

By Slutsky’s Theorem, it remains to show that

1 − �(−Zn)
D−→ U ∼ Unif(0, 1),

which follows from Zn
D−→ Z ∼ N (0, 1), the Simulation Lemma and from U :=

1 − ˜U ∼ Unif(0, 1) if ˜U ∼ Unif(0, 1). The result in (i) follows immediately from
(11) and
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∣

∣P∗(̂X∗
med = 0) − P(̂Xmed = 0)

∣

∣

D−→
∣

∣

∣

∣

U − 1

2

∣

∣

∣

∣

∼ Unif(0, 1/2).

Now, we show the result in (ii). As ̂Xmed, ̂X∗
med ∈ {0, 1}, Xmed = 0 and due to (5) and

(13), we have to derive the asymptotics of the bivariate random variables

(

P∗(̂X∗
med − ̂Xmed ≤ −1) − P(̂Xmed − Xmed ≤ −1)

P∗(̂X∗
med − ̂Xmed ≤ 0) − P(̂Xmed − Xmed ≤ 0)

)

=
(

P∗(̂X∗
med − ̂Xmed ≤ −1)

P∗(̂X∗
med − ̂Xmed ≤ 0) − 1

2

)

+ oP (1)

to compute the supremum of both components. By straightforward calculations and
due to P∗(̂X∗

med ≤ 0) = 1 − �(−Zn) + oP (1) as obtained in the first part of this
proof, the last expression becomes

(

1(̂Xmed = 0)P∗(̂X∗
med ≤ −1) + 1(̂Xmed = 1)P∗(̂X∗

med ≤ 0)

1(̂Xmed = 0)P∗(̂X∗
med ≤ 0) + 1(̂Xmed = 1)P∗(̂X∗

med ≤ 1) − 1
2

)

+ oP (1)

=
(

1( 12 < �(−Zn))P∗(̂X∗
med ≤ 0)

1( 12 ≥ �(−Zn))P∗(̂X∗
med ≤ 0) + 1( 12 < �(−Zn)) − 1

2

)

+ oP (1)

=
(

1( 12 < �(−Zn))(1 − �(−Zn))

1( 12 ≥ �(−Zn))(1 − �(−Zn)) + 1( 12 < �(−Zn)) − 1
2

)

+ oP (1),

which converges in probability by the continuous mapping theorem [see e.g. Pollard
(1984, III.6)] towards

(

1( 12 < �(−Z))(1 − �(−Z))

1( 12 ≥ �(−Z))(1 − �(−Z)) + 1( 12 < �(−Z)) − 1
2

)

=
(

1( 12 < ˜U )(1 − ˜U )

1( 12 ≥ ˜U )(1 − ˜U ) + 1( 12 < ˜U ) − 1
2

)

. (32)

Further, it holds

1

(

1

2
< ˜U

)

(1 − ˜U ) =
{

1 − ˜U , 1
2 < ˜U

0, 1
2 ≥ ˜U

≤
{

1
2 ,

1
2 < ˜U

1 − ˜U − 1
2 ,

1
2 ≥ ˜U

= 1

(

1

2
≥ ˜U

)

(1 − ˜U ) + 1

(

1

2
< ˜U

)

− 1

2

123



522 C. Jentsch, A. Leucht

such that the second component of (32) is always the maximum of both. To derive the
cdf, let x ∈ R and, with U = 1 − ˜U , we get

P

(

1

(

1

2
≥ ˜U

)

(1 − ˜U ) + 1

(

1

2
< ˜U

)

− 1

2
≤ x

)

= P

(

1

(

1

2
≤ U

)

U + 1

(

1

2
> U

)

− 1

2
≤ x

)

= P

(

1

(

1

2
≤ U

)

U + 1

(

1

2
> U

)

− 1

2
≤ x,U ≥ 1

2

)

+P

(

1

(

1

2
≤ U

)

U + 1

(

1

2
> U

)

− 1

2
≤ x,U <

1

2

)

= P

(

1

2
≤ U ≤ x + 1

2

)

+ P

(

1

2
≤ x,U <

1

2

)

=

⎧

⎪

⎨

⎪

⎩

0, x < 0

x, x ∈ [0, 1/2)
1/2, x ≥ 1/2

+

⎧

⎪

⎨

⎪

⎩

0, x < 0

0, x ∈ [0, 1/2)
1/2, x ≥ 1/2

= x1[0, 12 )(x) + 1[ 12 ,∞)(x).

��
Proof of Theorem 2 (i) This part is a special case of Theorem 8.
(ii) The second statement follows similarly to the proof of Theorem 1 using part (i),

the results from above and from

(

P∗(̂X∗
m,med − ̂Xmed ≤ −1) − P(̂Xmed − Xmed ≤ −1)

P∗(̂X∗
m,med − ̂Xmed ≤ 0) − P(̂Xmed − Xmed ≤ 0)

)

=
(

1( 12 < �(−Zn))P∗(̂X∗
m,med ≤ 0)

1( 12 ≥ �(−Zn))P∗(̂X∗
m,med ≤ 0) + 1( 12 < �(−Zn)) − 1

2

)

+ oP (1)

=
(

1( 12 < ˜U ) 12

1( 12 ≥ ˜U ) 12 + 1( 12 < ˜U ) − 1
2

)

+ oP (1)

=
(

1(U < 1
2 )

1
2

1(U ≥ 1
2 )

1
2 + 1(U < 1

2 ) − 1
2

)

+ oP (1)

as 1(U < 1/2)1/2 = 1(U ≥ 1/2)1/2+1(U < 1/2)−1/2 and1(U < 1/2) = 2˜S
is Bernoulli-distributed. ��

Proof of Theorem 6 (i) Note that ̂Qp and Qp take their values in V only. Under our
assumptions on V there exists an ε > 0 such that for each p ∈ (0, 1)

P(̂Qp = Qp) = P(̂Qp ∈ (Qp − ε, Qp + ε]).
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This implies

P(̂Qp = Qp) = P(p ≤ ̂Fn(Qp + ε)) − P(p ≤ ̂Fn(Qp − ε)) (33)

due to the monotonicity of ̂Fn . The first term on the rhs tends to one by the
WLLN, which is a consequence of Theorem 20, and the second term vanishes
asymptotically with the same reasoning.

(ii) This follows frompart (iii) with d = k = 1 and symmetry of a univariate, centered
normal random variable.

(iii) As we proved consistency of the sample quantiles if F(Qpi ) > pi in (i), we can
restrict the computations to the case where F(Qpi ) = pi and i = 1, . . . , k in the
following. Similarly to (33), we get

P(̂Q = q)

= P

(

0 ∈ ×k
j=1

(√
n(̂Fn(q j − ε) − F(Qpj + ε)),

√
n(̂Fn(q j + ε)

−F(Qpj + ε))
]

)

→
n→∞ P

(

0 ∈ ×k
j=1

(− ∞1(q j = Qpj )

+Z j1(q j = vl j+1),∞1(q j = vl j+1) + Z j1(q j = Qpj )
))

= P

⎛

⎝

k
⋂

j=1

{

(2 · 1(q j = Qpj ) − 1)Z j ≥ 0
}

⎞

⎠ , (34)

where the multivariate CLT

√
n

⎛

⎜

⎝

̂Fn(Qp1) − F(Qp1)
...
̂Fn(Qpk ) − F(Qpk )

⎞

⎟

⎠

D→ Z ∼ N (0,W)

has been used; see Theorem 20. ��

Proof of Theorem 8 It suffices to verify

sup
x∈Rd

∣

∣

∣P∗(̂Q∗
m

≤ x) − P(̂Q ≤ x)
∣

∣

∣ = sup
k∈V d

∣

∣

∣P∗(̂Q∗
m

≤ k) − P(̂Q ≤ k)
∣

∣

∣ = oP (1)

due to the discrete nature of the underlying process. First we get from Theorem 6(i)
above with Qpj = vl j that

lim
n→∞ P(̂Qpj < Qpj ) = lim

n→∞ P(̂Qpj > vl j+1) = 0.
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Similarly, deducing a bootstrap WLLN from Lemma 21, we get

P∗(̂Q∗
p j ,m < Qpj ) + P∗(̂Q∗

p j ,m > vl j+1) = oP (1)

as well. Using the notation of Theorem 6(iii), it remains to show that

P∗(̂Q∗
m

= q)
P−→ P

⎛

⎝

k
⋂

j=1

{

(2 · 1(q j = Qpj ) − 1)Z j ≥ 0
}

⎞

⎠ .

Actually, we get

P∗(̂Q∗
m = q)

= P∗ (0 ∈ ×k
j=1

(√
m(̂F∗

m(q j − ε) − F(Qpj + ε)),
√
m(̂F∗

m(q j + ε) − F(Qpj + ε))
))

= P∗ (0 ∈ ×k
j=1

(√
m(̂F∗

m(q j − ε) − ̂Fn(Qpj + ε)) + OP ((m/n)1/2),

√
m(̂F∗

m(q j + ε) − ̂Fn(Qpj + ε)) + OP ((m/n)1/2)
))

.

Further, asm = o(n) and from Lemma 21 the last right-hand side converges in proba-

bility to P
(

⋂k
j=1

{

(2 · 1(q j = Qpj ) − 1)Z j ≥ 0
}

)

, which proves bootstrap consis-
tency. ��
Proof of Theorem 9 The proof follows in analogy to the proof of Theorem 8 from
Theorem 22. ��
Proof of Theorem 11 For a specific j ∈ Z we have Qp = v j . From bootstrap consis-

tency we obtain P∗(̂Q∗
p,m ∈ [Qp, v j+1]) P−→ 1 and P∗(̂Q∗

p,m = v j+1)
P−→ 1/2 or

0 if F(Qp) = p and F(Qp) > p, respectively. Hence, covL
P−→ 1.

Concerning the coverage of the small set we obtain

covS
P−→

{

1/2 if F(Qp) = p
0 if F(Qp) > p

.

In particular, this implies that

p∗ P−→
{

1 − 2α if F(Qp) = p
1 − α if F(Qp) > p

.

From Theorems 6, 8 and 9, we get H(̂Q∗
p,m) = Qp with probability tending to one.

Noting that the difference between both coverages is larger than 1/4 with probability
tending to one, we obtain

P(Qp ∈ CS) = P(̂Qp ∈ CSL 1(Y ≤ p∗) + CSS 1(Y > p∗), covL − covS ≥ 1/4)

+ o(1)
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= E

(

p∗1(̂Qp ∈ CSL , covL − covS ≥ 1/4)

+ (1 − p∗)1(̂Qp ∈ CSS, covL − covS ≥ 1/4)

)

+ o(1)

= (1 − α)E

(

1

covL − covS
1(̂Qp ∈ CSL\CSS, covL − covS ≥ 1/4)

)

− E

(

covS
covL − covS

1(̂Qp ∈ CSL , covL − covS ≥ 1/4)

)

+ o(1)

+ E

(

covL
covL − covS

1(̂Qp ∈ CSS, covL − covS ≥ 1/4)

)

+ o(1)

=: P1 + P2 + P3 + o(1).

Moreover, it holds

P
(

̂Qp ∈ CSL
) = P

(

̂Qp ∈
[

F∗−1
̂Q∗

p,m
(α/2), F∗−1

̂Q∗
p,m

(1 − α/2)

])

−→
n→∞ 1,

and

P
(

̂Qp ∈ CSS
) = P

(

̂Qp ∈
[

F∗−1
̂Q∗

p,m
(α/2), F∗−1

̂Q∗
p,m

(1 − α/2)

))

−→
n→∞

{

1/2 if F(Qp) = p

0 if F(Qp) > p
,

and therefore

P
(

̂Qp ∈ CSL\CSS
) −→
n→∞

{

1/2 if F(Qp) = p

1 if F(Qp) > p
.

Bringing all together, we get from Theorem 25.11 in Billingsley (1995)

P1 −→
n→∞ 1 − α, P2 −→

n→∞

{

−1 if F(Qp) = p

0 if F(Qp) > p
, and P3 −→

n→∞

{

1 if F(Qp) = p

0 if F(Qp) > p

since the randomvariableswhose expectationswe calculate in P1, . . . , P3 are bounded
by 4. This finally implies that CS has asymptotically exact level 1 − α. ��
Proof of Theorem 14 The proofs of the first two cases p < Fmid(v1) and p >

Fmid(vd) follow the same lines. They can be carried out in complete analogy to the
proofs of Theorem 2, Case 1 and Case 2 in Ma et al. (2011) if we can show that

1

n

n
∑

t=1

1(Xt = vk)
P−→ P(X1 = vk), k = 1, . . . , d. (35)
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This in turn follows from the WLLN that can be deduced from Theorem 20 noting
that 1(Xt = vk) = 1(Xt ≤ vk) − 1(Xt ≤ vk−1) for k = 2, . . . , d and 1(Xt = v1) =
1(Xt ≤ v1).

If p = λFmid(vk+1) + (1 − λ)Fmid(vk+2) such that λ ∈ (0, 1), we can pursue the
steps of the proof of Theorem 2, Case 3 in Ma et al. (2011) to get

√
n
(

̂Qp,mid − Qp,mid
)

= √
n (vk+1 − vk+2)

[

̂Fmid(vk+2) − p
̂Fmid(vk+2) − ̂Fmid(vk+1)

− Fmid(vk+2) − p

Fmid(vk+2) − Fmid(vk+1)

]

.

(36)

Now, asymptotics of (36) can be deduced easily using the �-method, if we can show
that

1√
n

n
∑

t=1

(Y1 + · · · + Yn)
d−→ N (0d , ), (37)

where Yt = (1(Xt = v1) − P(Xt = v1), . . . , 1(Xt = vd) − P(Xt = vd))
′,

t = 1, . . . , n and  = ( j1, j2) j1,..., j2=1,...,d . Now using the same representation
of the indicator functions as in the first part of the proof, (37) follows from The-
orem 20 and the continuous mapping theorem. To this end, note that ̂Fmid(vk) =
n−1∑n

t=1{
∑k

i=1 1(Xt = vi )− 0.5 1(Xt = vk)} and similarly Fmid(vk) = ∑k
i=1 ai −

0.5 ak .
The assertion for the case p = Fmid(vk+1), k = 1, . . . , d − 2 can be deduced from

Theorem 20 in the same manner as in the proof of Theorem 2, Case 4 in Ma et al.
(2011).

The proofs of the last two boundary cases p = Fmid(v1) and p = Fmid(vd) follow
the same lines and we show only the first one. As

√
n(̂Fmid(v1)− Fmid(v1)) = OP (1)

by Theorem 20, for sufficiently large n, there is a λn such that 0 < λn < 1 and
p = λn̂Fmid(v2) + (1 − λn)̂Fmid(v1) if ̂Fmid(v1) < p. Then, from the definition of
̂Qp,mid, we get

√
n(̂Qp,mid − Qp,mid) = ˜Zn

v2 − v1

̂Fmid(v2) − ̂Fmid(v1)
1(0 < ˜Zn), (38)

where ˜Zn = √
n(p − ̂Fmid(v1)) = √

n(Fmid(v1) − ̂Fmid(v1)). From (38), we get

P
(√

n(̂Qp,mid − Qp,mid) ≤ x
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x < 0

P(˜Zn ≥ 0), x = 0

P(˜Zn ≥ 0) + P
(

˜Zn
v2−v1

̂Fmid(v2)−̂Fmid(v1)
∈ (0, x]

)

, x > 0

and the cases on the last right-hand side converge corresponding to the claimed limiting
distribution again using Theorem 20. ��
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Proof of Theorem 17 To prove the first case of (29), let â∗
j = m−1∑m

t=1 1(X
∗
t = j),

â j = n−1∑n
t=1 1(Xt = j), j = 1, . . . , d, and â0 = âd+1 = â∗

0 = â∗
d+1 = 0. For

sufficiently large n, with probability tending to 1 and because of
√
n(̂a j−a j ) = OP (1)

and
√
m (̂a∗

j − â j ) = OP∗(1) due to Lemma 21 and Theorem 22, we can find a λ∗
m

with 0 < λ∗
m < 1 such that p = λ∗

mâ
∗
0 + (1−λ∗

m )̂a∗
1 . Consequently from (28), we get

̂Q∗
p,mid,m = λ∗

mv0 + (1 − λ∗
m)v1 = v1 = Qp,mid

with probability tending to one as v0 = v1. By analogue arguments, we get also
̂Q∗

p,mid,m = vd = Qp,mid with probability tending to one if p > Fmid(vd).
Similarly, for the second case of (29), with probability tending to one, we can find

a λ∗
m with 0 < λ∗

m < 1 such that p = λ∗
m
̂F∗
mid,m(vk+1) + (1 − λ∗

m)F∗
mid,m(vk+2).

Similar to (36), this leads to

√
m(̂Q∗

p,mid,m − ̂Qp,mid)

= (vk+1 − vk+2)

[

̂F∗
mid,m(vk+2) − p

̂F∗
mid,m(vk+2)−̂F∗

mid,m(vk+1)
− ̂Fmid,m(vk+2) − p
̂Fmid,m(vk+2) − ̂Fmid,m(vk+1)

]

which converges conditionally to the claimed normal distribution by Lemma 21 and
Theorem 22 and by the �-method similar to the proof of Theorem 14.

To prove (30), as
√
m(̂F∗

mid,m(vk+1) − ̂Fmid(vk+1)) = OP∗(1) by Lemma 21 and
Theorem 22, we get similar to the proof of Case 4 of Theorem 2 in Ma et al. (2011)
that

̂Fmid(vk+1) = ̂F∗
mid,m(vk+1) + 1(̂F∗

mid,m(vk+1)

≥ ̂Fmid(vk+1))λ
∗
m1(

̂F∗
mid,m(vk) − ̂F∗

mid,m(vk+1))

+1(̂F∗
mid,m(vk+1) < ̂Fmid(vk+1))λ

∗
m2(

̂F∗
mid,m(vk+2) − ̂F∗

mid,m(vk+1))

holds for some 0 ≤ λ∗
m1, λ

∗
m2 < 1. With ˜Z∗

m = √
m(̂Fmid(vk+1) − ̂F∗

mid,m(vk+1)) and
(28), this leads to

̂Q∗
p,mid,m = 1(0 ≥ ˜Z∗

m)
{

λ∗
m1vk + (1 − λ∗

m1)vk+1
}

+1(0 < ˜Z∗
m)
{

λ∗
m2vk+2 + (1 − λ∗

m2)vk+1
}

= vk+1 +
(

1(0 ≥ ˜Z∗
m)

vk+1 − vk

̂F∗
mid,m(vk+1) − ̂F∗

mid,m(vk)

+1(0 < ˜Z∗
m)

vk+2 − vk+1

̂F∗
mid,m(vk+2) − ̂F∗

mid,m(vk+1)

)

˜Z∗
m√
m
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and

√
m(̂Q∗

p,mid,m − Qp,mid) =
(

1(0 ≥ ˜Z∗
m)

vk+1 − vk

̂F∗
mid,m(vk+1) − ̂F∗

mid,m(vk)

+1(0 < ˜Z∗
m)

vk+2 − vk+1

̂F∗
mid,m(vk+2) − ̂F∗

mid,m(vk+1)

)

˜Z∗
m .

Finally, we can show for all x ∈ R that

P∗ (√m(̂Q∗
p,mid,m − Qp,mid) ≤ x

)

→
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, x < 0, k = 0

P
(

˜Z ≤ x Fmid(vk+1)−Fmid(vk )
vk+1−vk

)

, x < 0, k > 0
1
2 , x = 0, k ∈ {0, 1, . . . , d − 2}
1
2 + P

(

˜Z ∈ (0, x Fmid(vk+2)−Fmid(vk+1)
vk+2−vk+1

]
)

, x > 0, k < d − 1

1, x ≥ 0, k = d − 1

in probability, where ˜Z ∼ N (0, σ 2
˜Z
) and

σ 2
˜Z

=
∑

h∈Z
cov

⎛

⎝

k+1
∑

j=1

1(Xh ≤ v j ) − 0.5 · 1(Xh = vk+1),

k+1
∑

j=1

1(X0 ≤ vk+1) − 0.5 · 1(X0 = vk+1)

⎞

⎠

can be obtained from Lemma 21 and Theorem 22, respectively. This concludes this
proof. ��
Proof of Corollary 18 First it follows from Theorem 17 and (31) that the distribution
of

√
m(̂Q∗

p,mid,m−̂Qp,mid) converges in probability to the same limit as the distribution

of
√
n(̂Q∗

p,mid − Qp,mid), i.e. either to zero or to one of the distributions of Z1 to Z4.
To prove convergence of the corresponding distribution functions in the Kolmogorov-
Smirnov metric we treat the different cases separately. First, let p < Fmid(v1) (or
p > Fmid(vd) which can be considered in the same manner and hence, the proof is
omitted). From Remark 15(i) we obtain

sup
x∈R

∣

∣

∣P∗(
√
m(̂Q∗

p,mid,m − ̂Qp,mid) ≤ x) − P(
√
n(̂Qp,mid − Qp,mid) ≤ x)

∣

∣

∣

≤ sup
x<0

∣

∣

∣P∗(
√
m(̂Q∗

p,mid,m − ̂Qp,mid) ≤ x) − P(
√
n(̂Qp,mid − Qp,mid) ≤ x)

∣

∣

∣

+ 1 − P∗(
√
m(̂Q∗

p,mid,m − ̂Qp,mid) ≤ 0) + 1 − P(
√
n(̂Qp,mid − Qp,mid) ≤ 0)

≤ lim
x↑0 P

∗(
√
m(̂Q∗

p,mid,m − ̂Qp,mid) ≤ x) + lim
x↑0 P(

√
n(̂Qp,mid − Qp,mid) ≤ x) + oP (1)
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≤ P∗(̂Q∗
p,mid,m < ̂Qp,mid) + P(̂Qp,mid < Qp,mid) + oP (1)

= oP (1).

In the second and third case, i.e. when the limiting distribution is Z1 or Z2, Polya’s
theorem can be applied do deduce convergence in the Kolmogorov–Smirnov metric
from distributional convergence since the limiting distribution function is continuous.
It remains to consider the p = Fmid(v1) and p = Fmid(vd). Since they are similar
again, we focus on the first setup. With the same arguments as in the proof of Polya’s
theorem we get

sup
x∈R

∣

∣

∣P∗(
√
m(̂Q∗

p,mid,m − ̂Qp,mid) ≤ x) − P(
√
n(̂Qp,mid − Qp,mid) ≤ x)

∣

∣

∣

≤ sup
x≤0

∣

∣

∣P∗(
√
m(̂Q∗

p,mid,m − ̂Qp,mid) ≤ x) − P(
√
n(̂Qp,mid − Qp,mid) ≤ x)

∣

∣

∣

+ oP (1).

Now, we proceed similarly to the first case and, finally, we get

sup
x≤0

∣

∣

∣P∗(
√
m(̂Q∗

p,mid,m − ̂Qp,mid) ≤ x) − P(
√
n(̂Qp,mid − Qp,mid) ≤ x)

∣

∣

∣

≤
∣

∣

∣P∗(̂Q∗
p,mid,m < ̂Qp,mid) − P(̂Qp,mid < Qp,mid)

∣

∣

∣

+ 1

2
−P∗(

√
m(̂Q∗

p,mid,m−̂Qp,mid) ≤ 0)+ 1

2
− P(

√
n(̂Qp,mid − Qp,mid) ≤ 0)

= oP (1).

��
Proof of Theorem 19 First, note that

P(Qp,mid ∈ CI) = P
(√

n(̂Qp,mid − Qp,mid) ∈ CI(r)S,mid ∩ CI(l)S,mid

+ CIL ,mid\(CI(r)S,mid ∩ CI(l)S,mid) 1(Y ≤ p∗
mid)

+ CIL ,mid\CI(l)S,mid 1(Y > p∗
mid, cov(r)

S,mid ≤ 1 − α)

+ CIL ,mid\CI(r)S,mid 1(Y > p∗
mid, cov(r)

S,mid > 1 − α)
)

,

where + above indicates the disjoint union. We consider the rhs in a case-by-case
manner.

The cases p < Fmid(v1) and p > Fmid(vd) can be treated similarly and we only

give the calculations for the first setup. Here, covL ,mid
P−→ 1 and cov(r)

S,mid
P−→ 0

which then implies that p∗
mid

P−→ 1−α. Now the proof can be carried out in complete
analogy to the proof of Theorem 11 (case of F(Qp) > p).
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Also the cases where Z1 and Z2 are the limiting variables have a similar structure
which results from continuity of the corresponding limiting cdf’s. Here, we get

P(Qp,mid ∈ CI) = P
(√

n(̂Qp,mid − Qp,mid) ∈ CI(r)S,mid ∩ CI(l)S,mid

)

+ oP (1)

where the latter probability tends to 1 − α as n → ∞.
Next we consider the case p = Fmid(v1). Since α is assumed to be less than 1/2 and

the limiting distribution has a normal density on the positive half line, cov(r)
S,mid

P−→
1 − α/2 which in turn implies

P(Qp,mid ∈ CI) = P
(√

n(̂Qp,mid − Qp,mid) ∈ CI(r)S,mid ∩ CI(l)S,mid

)

+ C IL ,mid\(CI(r)S,mid ∩ CI(l)S,mid) 1(Y ≤ p∗
mid)

+ CIL ,mid\CI(r)S,mid 1(Y > p∗
mid, cov(r)

S,mid > 1 − α) + o(1).

Since p∗
mid

P−→ 1 − α, it can be shown in analogy to the proof of Theorem 11
that P(Qp,mid ∈ CI) −→

n→∞ 1 − α. It remains to investigate the case p = Fmid(vd).

Here, covL ,mid
P−→ 1 − α/2 and cov(r)

S,mid
P−→ 1/2 − α/2 which then implies that

p∗
mid

P−→ 1 − α. The desired result follows with the same arguments as before. ��

Auxiliary results

Theorem 20 (CLT under τ -dependence) Suppose that (Xt )t∈Z is a τ -dependent
process with

∑∞
h=0 τ(h) < ∞. Then for all x1, . . . , xD ∈ R, D ∈ N,

1√
n

n
∑

t=1

(1(Xt ≤ x1) − F(x1), . . . , 1(Xt ≤ xD) − F(xD))′ D−→ N (0,W)

with

W =
(

∑

h∈Z
cov(1(Xh ≤ x j1), 1(X0 ≤ x j2))

)

j1, j2=1,...D

.

Proof We apply the multivariate central limit theorem for weakly dependent data of
Leucht and Neumann (2013, Theorem 6.1). To this end, we check its prerequisites
with Zt := (1(Xt ≤ x1) − F(x1), . . . , 1(Xt ≤ xD) − F(xD))′/

√
n. Obviously, these

variables are centered and
∑n

t=1 E‖Zt‖22 < ∞. Also the Lindeberg condition clearly
holds true by stationarity and boundedness of the underlying process (Xt )t∈Z. Next
we have to show that
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[

cov

(

n
∑

t=1

Zt

)]

j1, j2

−→
n→∞ Wj1, j2 .

We consider the component-wise absolute difference between both terms

∣

∣

∣

∣

∣

∣

1

n

n
∑

s,t=1

cov(1(Xs ≤ x j1), 1(Xt ≤ x j2)) −
∑

h∈Z
cov(1(Xh ≤ x j1), 1(X0 ≤ x j2))

∣

∣

∣

∣

∣

∣

≤
∑

h∈Z
min

{ |h|
n

, 1

}

|cov(1(Xh ≤ x j1), 1(X0 ≤ x j2))|

which converges to zero by dominated convergence theorem if
∑

h∈Z |cov(1(Xh ≤
x j1), 1(X0 ≤ x j2))| < ∞. This in turn can be deduced from the presumed summability
of the τ -coefficients if |cov(1(Xh ≤ x j1), 1(X0 ≤ x j2))| ≤ const. τ (h). To see this,
first note that for any ν < mink{vk+1 − vk}, and for vk ≤ x < vk+1

1(X1 ≤ x) = 1(X1 ≤ vk) = 1(X1 ≤ vk + ν) − X1 − vk

ν
1(vk ≤ X1 ≤ vk + ν) a.s.

where the rhs is aLipschitz continuous function in X1.Nowweuse coupling arguments
to obtain an upper bound for the absolute values of the covariances under consideration
when h > 0. The case h < 0 can be treated similarly and is therefore omitted. Let
˜Xh denote a copy of Xh that is independent of X0 and such that E |˜Xh − Xh | ≤ τ(h).
With x j1 ∈ [vk, vk+1) for a suitable k, we obtain

|cov(1(Xh ≤ x j1), 1(X0 ≤ x j2))|
≤ E

∣

∣1(Xh ≤ x j1) − 1(˜Xh ≤ x j1)
∣

∣

≤ E

∣

∣

∣

∣

1(Xh ≤ vk + ν) − Xh − vk

ν
1(vk ≤ Xh ≤ vk + ν) − 1(˜Xh ≤ vk + ν)

+˜Xh − vk

ν
1(vk ≤ ˜Xh ≤ vk + ν)

∣

∣

∣

∣

≤ 1

ν
E |˜Xh − Xh |

≤ τ(h)

ν
. (39)

Finally we have to check two conditions of weak dependence. Let g : Rdu → R be a
measurable function with ‖g‖∞ ≤ 1 and 1 ≤ s1 < s2 < · · · < su < su + h = t1 ≤
t2 ∈ N. Again, in analogy to (39), we obtain

cov(g(Zs1, . . . , Zsu )Zsu , j1 , Zt1, j2) ≤ 1

ν n
τ(t1 − su),
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which implies condition (6.27) with θh = τ(h)/ν in Leucht and Neumann (2013).
Validity of their condition (6.28) follows from

cov(g(Zs1, . . . , Zsu ), Zt1, j1 Zt2, j2) ≤ 4

ν n
τ(t1 − su),

which completes the proof of the multivariate CLT. ��
Lemma 21 (Bootstrap analogue to Theorem 20 for i.i.d. data) Suppose that (Xt )t∈Z
is a sequence of i.i.d. random variables. Let X∗

1, . . . , X
∗
m be drawn independently

from ̂Fn. Suppose that m → ∞ and m = o(n) or m = n. Then, for all x1, . . . , xD ∈
R, D ∈ N,

1√
m

m
∑

t=1

(1(X∗
t ≤ x1) − ̂Fn(x1), . . . , 1(X

∗
t ≤ xD) − ̂Fn(xD))′ D−→ N (0,W)

in probability, where

W = (

cov(1(X0 ≤ x j1), 1(X0 ≤ x j2))
)

j1, j2=1,...D.

Proof This is an immediate consequence of Theorem 2.2 in Bickel and Friedman
(1981). ��
Theorem 22 (Block bootstrap analogue toTheorem20) Suppose that the assumptions
of Theorem 20 hold true and that

∑∞
h=1 h τ(h) < ∞. Let X∗

1, . . . , X
∗
m be an m-out-

of-n block bootstrap sample. Suppose that l/m + 1/ l = o(1) as well as m = o(n) or
m = n as n → ∞. Then, for all x1, . . . , xD ∈ R, D ∈ N,

1√
m

m
∑

k=1

(1(X∗
k ≤ x1) − ̂Fn(x1), . . . , 1(X

∗
k ≤ xD) − ̂Fn(xD))′ D−→ N (0,W)

in probability, where

W =
(

∑

h∈Z
cov

(

1(Xh ≤ x j1), 1(X0 ≤ x j2)
)

)

j1, j2=1,...,D

.

Proof For notational convenience, we suppose m = lb and let us introduce the nota-
tion

Z∗
k = 1√

m

(

1(X∗
k ≤ x1) − ̂Fn(x1), . . . , 1(X

∗
k ≤ xD) − ̂Fn(xD)

)′
,

˜Z∗
k = 1√

m

(

1(X∗
k ≤ x1) − E∗(1(X∗

k ≤ x1)), . . . , 1(X
∗
k ≤ xD)−E∗(1(X∗

k ≤ xD))
)′

,
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such that it suffices to show
∑m

k=1(Z
∗
k − ˜Z∗

k ) = oP∗(1) and
∑m

k=1
˜Z∗
k

D−→ N (0,W)

in probability. Considering the first part component-wise, for all j , we get

m
∑

k=1

(Z∗
k − ˜Z∗

k ) j = 1√
m

m
∑

k=1

(

E∗(1(X∗
k ≤ x j )) − ̂Fn(x j )

)

= √
m

(

1

n − l + 1

n
∑

t=1

1(Xt ≤ x j ) − 1

n

n
∑

t=1

1(Xt ≤ x j )

)

+
√
m

n − l + 1

l−1
∑

t=1

t − l

l
1(Xt ≤ x j )

+
√
m

n − l + 1

n
∑

t=n−l+2

n − l + 1 − t

l
1(Xt ≤ x j )

= A1 + A2 + A3.

Taking unconditional expectation of the last right-hand side gives a zero such that it
suffices to show Ai − E(Ai ) = oP (1) for i = 1, 2, 3. For the first term, we get from
Theorem 20 that

A1 − E(A1) =
√
m√
n

l − 1

n − l + 1

(

1√
n

n
∑

t=1

(

1(Xt ≤ x j ) − E(1(Xt ≤ x j ))
)

)

= OP

(√
m√
n

l

n

)

vanishes as l = o(m) by assumption. For the second term, we obtain

var(A2) = m

(n − l + 1)2

l−1
∑

t1,t2=1

(t1 − l)(t2 − l)

l2
cov(1(Xt1 ≤ x j ), 1(Xt2 ≤ x j ))

≤ ml

(n − l + 1)2

l−2
∑

h=−(l−2)

1

l

min(l−1,l−1−h)
∑

t=max(1,1−h)

∣

∣

∣

∣

(h + t − l)(t − l)

l2

∣

∣

∣

∣

·|cov(1(Xh+t ≤ x j ), 1(Xt ≤ x j ))|
= O

(

ml

n2

)

since the covariances are summable by
∑∞

h=1 τ(h) < ∞; see also (39) for details.
Hence A2 vanishes under the same conditions for l and m as for term A1 above.
The arguments for A3 are completely analogue and we omit the details. To prove the
(conditional) CLT along the lines of Section 4.2.2 in Wieczorek (2014) for
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m
∑

k=1

˜Z∗
k =

b
∑

r=1

⎛

⎝

rl
∑

s=(r−1)l+1

˜Z∗
s

⎞

⎠ =:
b
∑

r=1

˜Y ∗
r ,

observe that {˜Y ∗
r , r = 1, . . . , b} forms a triangular array of (conditionally) i.i.d. ran-

dom variables with E∗(˜Y ∗
r ) = 0 by construction. Further, for [the ( j1, j2)-component

of] the conditional covariance, we have

[

cov∗
(

b
∑

r=1

˜Y ∗
r

)]

j1, j2

=
b
∑

r=1

rl
∑

s1,s2=(r−1)l+1

cov∗ (
˜Z∗
s1, j1 ,

˜Z∗
s2, j2

)

= 1

l

l
∑

s1,s2=1

cov∗(1(X∗
s1 ≤ x j1), 1(X

∗
s2 ≤ x j2))

= 1

l

l
∑

s1,s2=1

(

1

n − l + 1

n−l
∑

t=0

1(Xt+s1 ≤ x j1)1(Xt+s2 ≤ x j2)

)

−1

l

⎛

⎝

1

n − l + 1

n−l
∑

t1=0

l
∑

s1=1

1(Xt1+s1 ≤ x j1)

⎞

⎠

×
⎛

⎝

1

n − l + 1

n−l
∑

t2=0

l
∑

s2=1

1(Xt2+s2 ≤ x j2)

⎞

⎠ .

= 1

l

l
∑

s1,s2=1

(

1

n − l + 1

n−l
∑

t=0

Tt+s1, j1Tt+s2, j2

)

−
⎛

⎝

1√
l(n − l + 1)

n−l
∑

t1=0

l
∑

s1=1

Tt1+s1, j1

⎞

⎠

×
⎛

⎝

1√
l(n − l + 1)

n−l
∑

t2=0

l
∑

s2=1

Tt2+s2, j2

⎞

⎠

=: I1 − I2 ∗ I3,

where we have set Tt, j = 1(Xt ≤ x j ) − P(Xt ≤ x j ). The terms I2 and I3 behave
similarly and we only consider I2. Since E I2 = 0, we show I2 = oP (1) by proving
that its variance vanishes asymptotically. We get

var(I2) ≤ 1

n − l + 1

n−l
∑

h1=−(n−l)

l−1
∑

h2=−(l−1)

(

n − l + 1 − |h1|
n − l + 1

)(

l − |h2|
l

)

× ∣∣cov(1(Xh1+h2 ≤ j1), 1(X0 ≤ j1))
∣

∣

which is of order O(l/n) by (39).
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By taking unconditional expectation of the first term I1, we obtain

E(I1) =
l−1
∑

h=−(l−1)

l − |h|
l

cov(1(Xh ≤ x j1), 1(X0 ≤ x j2))

and, by dominated convergence, the latter tends toWj1, j2 as desired. Hence, it remains
to show that var(I1) = o(1) holds. By rewriting the arising covariances in terms of
cumulants, we get

var(I1)

= 1

l2(n − l + 1)2

l
∑

s1,s2,s3,s4=1

n−l
∑

t1,t2=0

cov
(

Tt1+s1, j1Tt1+s2, j2 , Tt2+s3, j1Tt2+s4, j2

)

= 1

l2(n − l + 1)2

l
∑

s1,s2,s3,s4=1

n−l
∑

t1,t2=0

{

E
(

Tt1+s1, j1Tt2+s3, j1

)

E
(

Tt1+s2, j2Tt2+s4, j2

)

+E
(

Tt1+s1, j1Tt2+s4, j2

)

E
(

Tt1+s2, j2Tt2+s3, j1

)

+cum (Tt1+s1, j1 , Tt1+s2, j2 , Tt2+s3, j1 , Tt2+s4, j2
)

}

,

where we have used that cum(A, B,C, D) = E(ABCD) − E(AB)E(CD) −
E(AC)E(BD)−E(AD)E(BC) for centered random variables A, B,C, D holds. As
E
(

Tt1+s1, j1Tt2+s3, j1

) = cov(1(Xt1+s1≤x j1
), 1(Xt2+s3≤x j1

)) ≤ Cτ(|t1 + s1 − t2 − s3|),
by invoking the covariance inequality (39), the first and second summands on the rhs
above can shown to be of order O(l/n).

Next, we establish an upper bound bound for |cum(Tt1, j1 , Tt2, j2 , Tt3, j3 , Tt4, j4)|,
where we assume w.l.o.g. that t1 ≤ · · · ≤ t4. Let R = max{t4 − t3, t3 − t2, t2 − t1}.
We consider each of the three possible values of R separately. First, suppose that
R = t4 − t3. Then using the same coupling techniques as in the proof of Theorem 20,
we get similarly to (39)

|cum(Tt1, j1 , Tt2, j2 , Tt3, j3 , Tt4, j4)| ≤ Cτ(R) [1 + |ETt1, j1Tt2, j2 | + |ETt1, j1Tt3, j3 |
+ |ETt2, j2Tt3, j3 |]

≤ 4C τ(R) (40)

with some finite constant C since ‖Ttl , jl‖∞ ≤ 1. If R = t3 − t2, we obtain

|cum(Tt1, j1 , Tt2, j2 , Tt3, j3 , Tt4, j4)| ≤ cov(Tt1, j1Tt2, j2 , Tt3, j3Tt4, j4)

+ C τ(R) [|ETt2, j2Tt4, j4 | + |ETt1, j1Tt4, j4 |]
≤ 4C τ(R). (41)
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Finally, in case of R = t2 − t1 the cumulant can be bounded as follows

|cum(Tt1, j1 , Tt2, j2 , Tt3, j3 , Tt4, j4)| ≤ 3Cτ(R) + Cτ(R) [|ETt3, j3Tt4, j4 |]
+ |ETt2, j2Tt4, j4 | + |ETt2, j2Tt3, j3 |]

≤ 6C τ(R). (42)

To sum up, we obtain

var(I1) ≤ 1

l2(n − l + 1)2

l
∑

s1,s2,s3,s4=1

n−l
∑

t1,t2=0

|cum (Tt1+s1, j1 , Tt1+s2, j2 , Tt2+s3, j1 , Tt2+s4, j2

) | + o(1)

≤ 6C l

n

n−l
∑

h=1

h τ(h) + o(1),

which vanishes asymptotically since we assumed
∑∞

h=1 h τ(h) < ∞.
To complete the proof of the bootstrap CLT, it remains to show the Lindeberg

condition to be able to apply (a multivariate version of) Lindeberg-Feller’s CLT for
independent triangular arrays. That is, as cov∗(

∑b
r=1

˜Y ∗
r ) = OP (1) holds by the

calculations above, for all ε > 0, it remains to show

b
∑

r=1

E∗ (‖˜Y ∗
r ‖221(‖˜Y ∗

r ‖2 ≥ ε)
)

= b E∗ (‖˜Y ∗
1 ‖221(‖˜Y ∗

1 ‖2 ≥ ε)
)

= oP (1)

as {˜Y ∗
r , r = 1, . . . , b} forms a triangular array of (conditionally) i.i.d. random vari-

ables. Computing the conditional expectation leads to

b E∗ (‖˜Y ∗
1 ‖221(‖˜Y ∗

1 ‖2 ≥ ε)
)

= b

n − l + 1

n−l
∑

t=0

∥

∥

∥

∥

∥

l
∑

s=1

˜Zs+t

∥

∥

∥

∥

∥

2

2

1

(

‖
l
∑

s=1

˜Zs+t‖ ≥ ε

)

,

(43)

where

˜Zt+s = 1√
m

(

1(Xt+s ≤ x1) − E∗(1(X∗
s ≤ x1)), . . . , 1(Xt+s ≤ xD)

−E∗(1(X∗
s ≤ xD))

)′

with E∗(1(X∗
s ≤ x1)) = 1

n−l+1

∑n−l
t1=0 1(Xt1+s ≤ xi ). Now, we want to replace

‖∑l
s=1

˜Zs+t‖22 by ‖∑l
s=1 Zs+t‖22, where

Zt+s = 1√
m

(

1(Xt+s ≤ x1) − F(x1), . . . , 1(Xt+s ≤ xD) − F(xD)
)′
,

which leads to the upper bound
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2b

n − l + 1

n−l
∑

t=0

∥

∥

∥

∥

∥

l
∑

s=1

Zs+t

∥

∥

∥

∥

∥

2

2

1

(

‖
l
∑

s=1

˜Zs+t‖ ≥ ε

)

+ 2b

n − l + 1

n−l
∑

t=0

∥

∥

∥

∥

∥

l
∑

s=1

(˜Zs+t − Zs+t )

∥

∥

∥

∥

∥

2

2

1

(

‖
l
∑

s=1

˜Zs+t‖ ≥ ε

)

=: I I1 + I I2

for (43). Considering the second summand above component-wise, it is straightfor-
ward to show that for all j , it holds

l
∑

s=1

(Zs+t − ˜Zs+t ) = 1√
m(n − l + 1)

l
∑

s=1

n−l
∑

t1=0

(Tt1+s,1, . . . , Tt1+s,D)′

which is independent of t , such that with Tt = (Tt,1, . . . , Tt,D)′

I I2 ≤ 2b

m

∥

∥

∥

∥

∥

∥

1

n − l + 1

l
∑

s=1

n−l
∑

t1=0

Tt1+s

∥

∥

∥

∥

∥

∥

2

2

= OP

(

l

n

)

by the same arguments as used before to treat I2. Concerning I I1, as all summands
are non-negative, it suffices to show E |I I1| = E(I I1) = o(1). From stationarity and
by application of Cauchy–Schwarz inequality, we get

E(I I 21 ) = E

⎛

⎝2b

∥

∥

∥

∥

∥

l
∑

s=1

Zs

∥

∥

∥

∥

∥

2

2

1

(

‖
l
∑

s=1

˜Zs‖2 ≥ ε

)

⎞

⎠

2

≤ 4b2E

⎛

⎝

∥

∥

∥

∥

∥

l
∑

s=1

Zs

∥

∥

∥

∥

∥

4

2

⎞

⎠ P

(∥

∥

∥

∥

∥

l
∑

s=1

˜Zs

∥

∥

∥

∥

∥

2

≥ ε

)

.

As the second factor above is vanishing by Markov inequality and since E(‖∑l
s=1

˜Zs‖22) = O(l/m), it remains to show that b2E(‖∑l
s=1 Zs, j‖44) = O(1) for all j .

Rewriting things in terms of cumulants, we get

b2E

(

‖
l
∑

s=1

˜Zs, j‖44
)

= b2
l
∑

s1,s2,s3,s4=1

E(Zs1, j Zs2, j Zs3, j Zs4, j )

= 3

⎛

⎝

1

l

l
∑

s1,s2=1

cov(1(Xs1 ≤ x j ), 1(Xs2 ≤ x j ))

⎞

⎠

2

+ 1

l2

l
∑

s1,s2,s3,s4=1

cum
(

Ts1, j , Ts2, j , Ts3, j , Ts4, j
)
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as higher-order cumulants are invariant to shifts. The first summand on the last rhs is
uniformly bounded. The second summand is also of order O(1) by (40) to (42) and
∑∞

h=1 h τ(h) < ∞. ��
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