
Ann Inst Stat Math (2016) 68:209–236
DOI 10.1007/s10463-014-0494-5

On confidence bands for multivariate nonparametric
regression

Katharina Proksch

Received: 6 December 2013 / Revised: 24 June 2014 / Published online: 18 November 2014
© The Institute of Statistical Mathematics, Tokyo 2014

Abstract In a multivariate nonparametric regression problem with fixed, determinis-
tic design asymptotic, uniform confidence bands for the regression function are con-
structed. The construction of the bands is based on the asymptotic distribution of the
maximal deviation between a suitable nonparametric estimator and the true regression
function which is derived by multivariate strong approximation methods and a limit
theorem for the supremum of a stationary Gaussian field over an increasing system
of sets. The results are derived for a general class of estimators which includes local
polynomial estimators as a special case. The finite sample properties of the proposed
asymptotic bands are investigated by means of a small simulation study.

Keywords Confidence bands · Rates of convergence · Multivariate regression ·
Nonparametric Regression · Uniform convergence

1 Introduction

Within the last decades, nonparametric regression has received a great deal of attention
as a powerful tool for data analysis. Various different models and methods have been
discussed and thoroughly investigated.Nonparametric curve estimation providesmany
useful applications, not only for graphical visualization but also as a basis for the
development of means of statistical inference such as goodness of fit tests or the
construction of confidence sets for the unknown regression function. While interval
estimates can be used for its point-wise analysis, simultaneous confidence bands have
to be employed to draw conclusions regarding global features of the curve under
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210 K. Proksch

consideration and thus shed more light into the connection between dependent and
independent variables.

In this paper, we develop new asymptotic uniform confidence sets in a nonparamet-
ric regression setting with a deterministic and multivariate predictor. To be precise,
we consider the multivariate regression model

Yi = f (ti) + εi, i := (i1, . . . , id) ∈ {1, . . . , n}d , (1)

where i = (i1, . . . , id) is a multi-index, the {ti := (ti1 , . . . , tid ) ∈ R
d | 1 ≤

i1, . . . , id ≤ n} are deterministic design points in R
d , {ε(i1,...,id ) | 1 ≤ i1, . . . , id ≤ n}

is a field of centered, independent identically distributed random variables with com-
mon variance σ 2 and f is an unknown, smooth regression function.

The construction of confidence sets requires a reliable estimate of the unknown
object. Often kernel smoothing techniques are applied in this context [cf., e.g., Wand
and Jones (1995)]. Alternative approaches, such as spline smoothing for instance,
often show similar asymptotic behavior in the sense that corresponding estimators
have approximately the same form, that is, linear in the observations and with a kernel
that is of convolution form and possibly variable with respect to the sample size n.

Given a suitable estimate, a well-established method to construct asymptotic uni-
form confidence bands is based on the original work of Bickel and Rosenblatt (1973b)
who extended results of Smirnov (1950) for a histogram estimate and constructed con-
fidence bands for a univariate density function of independent identically distributed
observations. Their method is based on the asymptotic distribution of the supremum
of a centered kernel density estimator and closely related to extreme value theory.
Since this seminal paper the idea has been elaborated, advanced and adopted to vari-
ous situations. For example Johnston (1982) constructed confidence bands based on
the Nadaraya–Watson and Yang estimator, Härdle (1989) derived asymptotic uniform
confidence bands for M-smoothers. Eubank and Speckman (1993) who considered
deterministic, uniform design and local constant estimation, and Xia (1998) who con-
sidered random design points under dependence and local linear estimation, employed
an explicit bias correction. Bootstrap confidence bands for nonparametric regression
were proposed by Neumann and Polzehl (1998) and Claeskens and Keilegom (2003).
Härdle and Song (2010) investigated asymptotic uniform confidence bands for a quan-
tile regression curvewith a one-dimensional predictor. In the context of density estima-
tion, Giné et al. (2004) derived asymptotic distributions of weighted suprema. Further,
confidence bandswere proposed in adaptive density estimation based on linearwavelet
and kernel density estimators (Giné and Nickl 2010), density deconvolution (Bissantz
et al. 2007) or adaptive density deconvolution (Lounici and Nickl 2011). All these
authors, if not otherwise indicated, employed undersmoothing to cope with the bias.
Also, in all the above listed references, one-dimensional models are considered and
the results are not applicable in cases where the quantity of interest depends on a mul-
tivariate predictor. On the other hand only a few results can be found in a multivariate
setting which attracted comparatively little attention so far. For instance, in the same
year, the well-known paper Bickel and Rosenblatt (1973b) was released and also a
multivariate extension was published (Bickel and Rosenblatt 1973a) which received
by far less attention. Rosenblatt (1976) studied maximal deviations of multivariate

123



On confidence bands for multivariate regression 211

density estimates, Konakov and Piterbarg (1984) investigated the convergence of the
distribution of the maximal deviation for the Nadaraya–Watson estimate in a multi-
variate, random design regression setting and Rio (1994) investigated local invariance
principles in the context of density estimation. An alternative approach was recently
proposed by Hall and Horowitz (2013) who addressed the bias-difficulty explicitly
and constructed confidence bands based on normal approximations and a bootstrap
method that is used to adjust the level α in the normal quantiles in such a way that
a coverage of a desired value of at least 1 − α0 is attained at at least a predefined
portion of values x ∈ R, where R ⊂ R

d . They discuss both nonparametric density
and regression estimation.

In this paper, we construct asymptotic uniform confidence bands for a regression
function in a multivariate setting for a general class of nonparametric estimators of
the regression function. For the sake of a transparent notation, we focus on local
polynomial estimators. However, our approach is generally applicable for several
other estimators in use (see Theorem 3 and Remark 2 below).

Notations and definitions as well as assumptions, required for the asymptotic the-
ory, can be found in Sect. 2. For a clear exposition, we examine in Sect. 3 the two-
dimensional case, briefly discuss the properties of the estimator and state the main
results. The general case of a d- dimensional predictor is discussed in Sect. 4. The
finite sample properties of the proposed asymptotic bands are investigated in Sect. 5
and detailed proofs for the two-dimensional case are given in Sect. 6 while the case
d > 2 is considered in Sect. 7. Our arguments heavily rely on results by Piterbarg
(1996) who provided a limit theorem for the supremum

sup
t∈Tn

|X (t)|

of a stationary Gaussian field {X (t) | t ∈ R
d}, where {Tn ⊂ R

d}n∈N is an increasing
system of sets such that λd(Tn) → ∞ as n → ∞ and also on multivariate strong
approximation methods provided by Rio (1993).

2 General setup and assumptions

Let Ω := (0, 1)d and suppose that for two positive constants k ∈ N and a ∈ (0, 1)
the function f : Ω → R from model (1) belongs to the Hölder class of functions
Ck,a(Ω), i.e., for all multi-indices βββ = (β1, . . . , βd) with |βββ| = β1 + · · · + βd ≤ k
the derivatives Dβββ f exists and ‖ f ‖Ck,a < ∞. Here, we use the following notation

Dβββ f (x1, . . . , xd) = ∂ |βββ| f
∂xβ1

1 . . . ∂xβd
d

(x1, . . . , xd) (2)

and

‖ f ‖Ck,a = max|βββ|≤k
sup
x∈Ω

|Dβββ f (x)| + max|βββ|=k
sup

x,y∈Ω, x �=y

| f (x) − f (y)|
‖x − y‖a < ∞, (3)
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212 K. Proksch

where ‖ · ‖ without a subscript denotes the Euclidean distance. Also, in what follows,
more of the usual multi-index notation will be used, such as

uααα := uα1
1 · . . . · uαd

d and ααα! := α1! · . . . · αd !. (4)

Further,with a slight abuse of notation,we shall denote the vector
(
t1−x1
h1

, . . . ,
td−xd
hd

)T

by ti−x
h for the sake of brevity.

Assumption 1 Assume that the following three conditions hold

(i) The kernel K has compact support: supp(K ) ⊂ [−1, 1]d .
(ii) There exist constants D, K1 > 0 and K2 < ∞ such that

K1 · I[−D,D]d (u) ≤ K (u) ≤ K2 · I[−1,1]d (u).

(iii) All derivatives of K up to the order d exist and are continuous.

Assumption 2 Suppose that the design points {ti = (ti1 , . . . , tid )|i = (i1, . . . , id) ∈
{1, . . . , n}d} satisfy

i j
n + 1

=
∫ ti j

0
g j (z)dz =: G j (ti j ), j = 1, . . . , d,

for positive design densities g j , j = 1, . . . , d on [0, 1] [see also Sacks and Ylvisaker
(1970)] that are bounded away from zero and continuously differentiable on (0, 1)
with bounded derivatives up to order (d − 1) ∨ 1.

Remark 1 If for some j ∈ {1, . . . , d} g j is the uniform density, that is, g j = I[0,1],
Assumption 2 gives

i j
n + 1

=
∫ ti j

0
g j (z)dz =

∫ ti j

0
dz = ti j .

Hence, the case of equally spaced design is included in Assumption 2 as a special
case.

3 Bivariate nonparametric regression

3.1 Notation, estimation and auxiliary results

In the following, we shall adapt the notation introduced in Tsybakov (2009), Chapter
1.6, to the two-dimensional setting.We shall alsomake use of some of the results stated
therein and extend the proofs, if necessary, to the case where the design only meets
Assumption 2, i.e., can be but is not necessarily uniform. To define the estimator, we
need to fix some notation first. For j = 1, . . . , k let Uj : R2 → R

j+1 be defined as
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On confidence bands for multivariate regression 213

Uj (u) :=
(
u( j,0)

j ! ,
u( j−1,1)

( j − 1)! · 1! ,
u( j−2,2)

( j − 2)! · 2! , . . . ,
u(0, j)

j !

)

and let furtherU : R2 → R
(k+1)(k+2)/2 be defined asU (u) := (1,U1(u),U2(u), . . . ,

Uk(u))T . Moreover, for j = 1, . . . , k and h = (h1, h2) define θ(x) =
( f (x),h1 f (1)(x),h2 f (2)(x), . . . ,hk f (k)(x))T , where h j f ( j) := (h( j,0) · D( j,0) f,
h( j−1,1) · D( j−1,1) f,h( j−2,2) · D( j−2,2) f, . . . ,h(0, j) · D(0, j) f ) with the multi-index
notation hααα and D(α1,α2) as defined in (4) and (2), respectively. Let K : R2 → R

+
0

be a kernel function as specified in Assumption 1 in the previous section. Recall that,
given the above notation, the quantity

θ̂ (x) := argminθθθ∈R(k+1)(k+2)/2

n∑
i1,i2=1

[
Y(i1,i2) − θ(x)TU

( ti − x
h

)]2
K
( ti − x

h

)

is called local polynomial estimator of order k of θ(x) and that the statistic

f̂n(x) = UT (0)θ̂n(x) (5)

is called local polynomial estimator of order k of f (x) [see Tsybakov (2009)].
Introducing some more notation, we can rewrite the estimators θ̂n(x) and f̂n(x)
in a perhaps more intuitive way. For x ∈ Ω let
and Bn,x ∈ R

(k+1)(k+2)/2×(k+1)(k+2)/2 be defined as

and

Bn,x := 1

n2h1h2

n∑
i1,i2=1

U
( ti − x

h

)
UT

( ti − x
h

)
K
( ti − x

h

)
. (6)

Now we can write , which

yields the necessary condition . It is obvious that for a positive

definite matrix Bn,x the estimator θ̂n(x) is defined by the equation
and that, also for a positive definite matrix Bn,x, with the definition of the weights
Wn,i(x) by

Wn,i(x) = 1

n2h1h2
UT (0)B−1

n,xU
( ti − x

h

)
K
( ti − x

h

)
, (7)

we obtain

f̂n(x) =
n∑

i1,i2=1

Y(i1,i2)Wn,i(x), (8)

that is, the estimator f̂n(x) is linear in Yi.
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214 K. Proksch

To conclude this section, we give some useful results regarding the estimator and
its defining quantities such as the asymptotic form of the matrix Bn,x, the asymptotic
variance and a uniform estimate of the bias which will be needed for the subsequent
considerations.

Lemma 1 Let Bn,x be as defined in (6), K a kernel as specified in Assumption 1 and
define the matrices B,Bx ∈ R

(k+1)(k+2)/2×(k+1)(k+2)/2 as

B :=
∫

R2
U (u)UT (u)K (u) du, and Bx := g1(x1)g2(x2) · B, (9)

where integration is carried out component wise. Let further Assumption 2 be satisfied.
Then,

(i) for each (p, q) ∈ {1, . . . , (k + 1)(k + 2)/2} × {1, . . . , (k + 1)(k + 2)/2}, 0 <

δ < 1/2,

sup
x∈[δ,1−δ]2

∣∣(Bn,x − Bx)p,q
∣∣ = O (h1 + h2)

(ii) and the matrix Bx is positive definite.

Note that, the matrix B is independent of the variable x.

Lemma 2 (Variance of the local polynomial estimator) Let B be as defined in (9), K
a kernel as specified in Assumption 1 and define

K̃B,U (u) := UT (0)B−1U (u)K (u) and s(x) := σ‖K̃B,U‖2√
g1(x1)g2(x2)

. (10)

Then Var[ f̂n(x)] = s2(x)/(n2h1h2) + o
(
1/(n2h1h2)

)
, where the estimate o

(
1/(n2

h1h2)
)
is independent of the variable x.

Lemma 3 (Bias of the local polynomial estimator) If Assumption 1 and Assumption
2 are satisfied we find for the bias of the local polynomial estimate (5) of a function
f ∈ Ck,a([0, 1]2)

sup
x∈[δ,1−δ]2

|bias( f̂n, f, x)| = sup
x∈[δ,1−δ]2

|E[ f̂n(x)] − f (x)| = O
(
(h1 + h2)

k+a).

3.2 A limit theorem and its implications

Given the notation and the auxiliary results presented in the previous Sect. 3.1, we can
now state the main results for the two-dimensional regression model (1).

Theorem 1 Let Assumption 1 and Assumption 2 be satisfied. Assume that there exists
a constant ν ∈ (0, 1] such that E|ε(1,1)|r < ∞ for some r > 4/(2 − ν), and

123



On confidence bands for multivariate regression 215

√
log(n)(1/nνh1h2 + 1/nh21 + 1/nh22) = o(1). Further assume that there exist con-

stants 0 < l < 1 and L < ∞ such that the inequality h1 + h2 ≤ L(h1h2)1−l holds.
Then, for all 0 < δ < 1/2, κ ∈ R

lim
n→∞P

(
sup

x∈[δ,1−δ]2
(
s(x)−1n

√
h1h2| f̂n(x) − E f̂n(x)| − ln

)
ln < κ

)
= e−2e−κ

,

ln := √
2 log(C2/(h1h2)) + log(2 log(C2/(h1h2)))

2
√
2 log(C2/(h1h2))

and

C2 = (1 − 2δ)2 · (2π)−3/2

‖K̃B,U‖2
(∫

R2
K̃B,U (u)D(2,0) K̃B,U (u) du

∫

R2
K̃B,U (u)D(0,2)

× K̃B,U (u) du −
(∫

R2
K̃B,U (u)D(1,1) K̃B,U (u) du

)2) 1
2

.

It is clear that in nonparametric curve estimation one always has to deal with the effect
of bias subject to smoothing. In the context of the construction of (simultaneous)
confidence bands one of two major strategies to cope with this difficulty is usually
pursued, namely explicit bias correction, which allows for an ”optimal” choice of
smoothing parameter and slight undersmoothing, i.e., accepting a higher variability in
the estimation to suppress the bias. In this paper, we shall follow the latter strategy for
which Hall (1992) gave theoretical justification by showing that it results in minimal
coverage error as compared to explicit bias correction. The price, however, is slightly
wider asymptotic bands. As a direct consequence of Theorem 1 and the use of an
undersmoothing bandwidth, we obtain the following result.

Corollary 1 Let the assumptions of Theorem 1 be satisfied and let (h1 + h2)k+a · n ·√
h1h2 log(n) = o(1). Then the set

{[ f̂n(x) − Φn,α(x), f̂n(x) − Φn,α(x)] | x ∈ [δ, 1 − δ]2},

where Φn,α(x) := (
κα/ ln + ln

)
s(x)/(n

√
h1h2) and κα = − log(−0.5 log(1− α)),

defines an asymptotic uniform (1 − α)-confidence band for the bivariate function
f ∈ Ck,a(Ω) from regression model (1).

4 Multivariate nonparametric regression

In this section, we first introduce more notation that is needed to define the local
polynomial estimator of order k for the multivariate function f. Then, we state the d-
dimensional versions of Theorem 1 and Corollary 1 presented in the previous section
and conclude with a further generalization regarding the estimator. For j = 1, . . . , k
and N j,d := (d+ j

d

)
let

Ψ j : {1, . . . , N j,d−1
} → {

ααα ∈ {0, 1, . . . , j}d ∣∣ |ααα| ≤ j
}
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216 K. Proksch

be an enumeration of the set
{
ααα ∈ {0, 1, . . . , j}d ∣∣ |ααα| ≤ j

}
and let U : Rd → R

Nk,d

be defined as

U (u) :=
(
1,U1,Ψ1(1)(u), . . . ,U1,Ψ1(d)(u), . . . ,Uk,Ψk (1)(u), . . . ,Uk,Ψk(Nk,d−1)(u)

)
,

where Uj,Ψ j (p)(u) = uΨ j (p)

Ψ j (p)! , p = 1, . . . , N j,d−1, j = 1, . . . , k.

Moreover, for j = 1, . . . , k and h = (h1, . . . , hd) define θ(x) = ( f (x),h1 f (1)(x),
h2 f (2)(x), . . . ,hk · f (k)(x))T , where h j f ( j) := (hΨ j (1) · DΨ j (1) f, . . . ,hΨ j(N j,d−1) ·
DΨ j(N j,d−1) f ). Using the notation just introduced, we can define the d-dimensional
local polynomial estimator of order k of f (x) exactly as in (5) For x ∈ Ω let

and Bn,x,d ∈ R
Nk,d×Nk,d be the d-dimensional analogs of and

Bn,x. Again we have

f̂n(x) =
n∑

i1,...,id=1

YiWn,i,d(x), with weights Wn,i,d(x)

= 1

ndh1
UT (0)B−1

n,x,dU
( ti − x

h

)
K
( ti − x

h

)
, (11)

provided the matrix Bn,x,d is positive definite. Recall from definition (4) that h1 =
h1 · h2 · . . . · hd .
Theorem 2 Let Assumption 1 and Assumption 2 be satisfied. Assume that there exists
a constant ν ∈ (0, 1] ∩ (0, d) such that E|ε(1,1)|r < ∞ for some r > 4/(2 − ν), and√
log(n)

(
1/(nνh1)+1/(nhd1)+· · ·+1/(nhdd)

) = o(1).Further assume that there exist

constants 0 < l < 1 and L < ∞ such that the inequality
∑d

p=1 h p ≤ L(
∏d

p=1 h p)
1−l

holds. Then, for all 0 < δ < 1/2, κ ∈ R, sd(x) := σ‖K̃B,U‖/√g1(x1) · . . . · gd(xd)

lim
n→∞P

(
sup

x∈[δ,1−δ]d
(
sd(x)−1n

d
2

√
h1| f̂n(x) − E f̂n(x)| − ln

)
ln < κ

)
,= e−2e−κ

,

ln :=
√
2 log(Cd/(h1)) + (d − 1)

log(2 log(Cd/(h1))

2
√
2 log(Cd/(h1))

, Cd = (1 − 2δ)d
√
det(Λ2)

(2π)(d+1)/2

and

Λ2 :=
(

1

‖K̃B,U‖
∫

Rd
K̃B,U (u)

∂2

∂ui∂u j
K̃B,U (u) du

)d

i, j=1
.

Corollary 2 Let the assumptions of Theorem 1 be satisfied and let (h1+· · ·+h2)k+a ·
n

d
2 · √h1 log(n) = o(1). Then the set

{[ f̂n(x) − Φn,α,d(x), f̂n(x) − Φn,α,d(x)] | x ∈ [δ, 1 − δ]d},
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On confidence bands for multivariate regression 217

where Φn,α,d(x) :=
(

κα

ln
+ ln

)
sd (x)

n
d
2
√
h1·...·hd

and κα = − log(−0.5 log(1 − α)),

defines an asymptotic uniform (1 − α)-confidence band for the multivariate function
f ∈ Ck,a(Ω) from regression model (1).

The results stated above hold for general linear nonparametric kernel regression
estimates with a kernel of convolution form, or a sequence of kernels even, satisfying
Assumption 1. This is a consequence of the fact that those kernel estimates can all
be approximated by a Gaussian process, which is stationary, where the supremum
is taken with respect to a growing system of sets, which has an extreme value limit
distribution. To conclude the section, we now present a further limit theorem in which
this generalization is formalized.

Theorem 3 Assume that the conditions of Theorem 2 are satisfied and that

f̂n(x) = 1

ndh1 · . . . · hd
n∑

i1,...,id=1

YiK
(n)
( ti − x

h

)
,

with a sequence of kernels (K (n))n∈N meeting Assumption 1 and one of the following
two conditions

(i) There exists a number M ∈ N, which is independent of n, kernels K , K1, . . . , KM,
each satisfying Assumption 1, and sequences (an,1)n∈N, . . . , (an,M )n∈N such that
an,p = o(1/

√
log(n)), p = 1, . . . , M and K (n) − K = ∑M

p=1 an,pK p.

(ii) There exists a limit kernel K , meeting Assumption 1 such that ‖K (n) − K‖∞ =
o
(√

h1/
√
log(n)

)
.

Then, Theorem 2 holds when each K̃B,U is to be replaced by K in the definitions of
the quantities sd(x) and Λ2.

Remark 2 The results from Theorem 3 are relevant in several applications. For
instance, in the context of spline smoothing, Silverman (1984) showed that a one-
dimensional cubic spline estimator is asymptotically of convolution-kernel form with
a bounded, smooth kernel KS defined by KS(u) = 1/2 exp(−|u|/√2) sin(|u|/√2 +
π/4). The associated estimator satisfies the assumptions of Theorem 3 except for
Assumption 1 (i). The results of this paper also hold in this case, even for relatively
mild (polynomial) decay of the kernel function in each direction, however, the techni-
cal complexity is unproportionally greater, hence we will not include this case to our
considerations.

5 Finite sample properties

In this section, the finite sample properties of the proposed asymptotic confidence
bands are investigated. First, the simulation setup is described in Sect. 5.1 and the
results are presented and discussed in Sect. 5.2.
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218 K. Proksch

5.1 Simulation setup

All results are based on 2500 simulation runs. We simulate data from the bivariate
regression model (1) with normally distributed errors εi, j ∼ N (0, σ 2)where σ = 0.3
and (n1, n2) ∈ {1, . . . , n}2, n ∈ {75, 150, 250}. For the unknown regression function,
we consider two different versions f1 and f2 of a product of trigonometric functions
defined by

f j (x1, x2) = −sin(2 jπ(x1 − 0.5)) cos(2 jπx2), j = 1, 2

with increasing complexity (see Fig. 1, central column for a contour plot of both
functions under consideration). As kernel function K , we consider a product ker-
nel K (x1, x2) = K1(x1) · K1(x2) with a compactly supported, three times contin-
uously differentiable function K1(x) = (1 − x2)4 I[−1,1](x). In these settings, we
compare the performances of both a local linear as well as a local quadratic esti-
mator. The corresponding limit kernels K̃B,U,lin and K̃B,U,quad are then given by
K̃B,U,lin(x) = 1.514 · K (x) and K̃B,U,quad(x) = (3.482 − 10.826(x21 + x22 ))K (x). A
difference-based variance estimator is used to estimate σ 2. Concerning the smoothing
parameter h, we first determine a suitable value for each setting by a small preliminary
simulation study. These fixed smoothing parameters are then used in all runs for the
respective simulation setting.

Fig. 1 Contour plots of lower confidence surfaces (left), true regression surface (middle) and upper surface
(right) based on the local linear estimator and n = 250 for f1 (upper panel) and f2 (lower panel)
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On confidence bands for multivariate regression 219

Fig. 2 Contour plots of the lower (left) and upper (right) confidence surfaces for the regression function
f2 based on the local quadratic estimator and each of 75 (upper panel), 150 (middle panel) and 250 (lower
panel) observations. The true regression surface is shown in the central column

5.2 Simulation results

We now summarize the results of the simulation study. Figure 2 illustrates the confi-
dence bands based on the local quadratic estimator for the regression function f2, top
down for growing sample sizes. In each row, the contourplots show the lower con-
fidence surface, the true object and the upper confidence surface (from left to right)
and the improvement in the performance for growing n clearly shows. Tables 1 and 2
contain the simulated coverage probabilities and the average half widths of the bands
for the local linear and the local quadratic estimator, respectively. We observe that,
even for moderate sample sizes, the simulated coverage probabilities are close to the
nominal values and that the bands are reasonably narrow. For n = 150 and n = 250,
the widths of the asymptotic bands are clearly below the noise level of 0.3 in all cases.
The bands are narrow enough to provide, for instance, lower bounds on the number
of local minima and maxima, since maximal regions are clearly distinguishable from
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220 K. Proksch

Table 1 Simulated coverage probabilities and mean half-lengths of the confidence bands for the functions
f1 and f2 and the local linear estimator

n f 90% nominal coverage 95% nominal coverage 99% nominal coverage

Cov. (%) Length Cov. (%) Length Cov. (%) Length

250 f1 85.86 0.083 93.20 0.087 99.00 0.097

f2 88.68 0.173 95.64 0.179 99.44 0.197

150 f1 88.92 0.133 95.04 0.140 99.08 0.148

f2 87.92 0.225 94.04 0.234 99.28 0.258

75 f1 87.24 0.224 94.00 0.236 99.36 0.264

f2 89.36 0.326 94.44 0.342 99.24 0.379

Table 2 Simulated coverage probabilities and mean half-lengths of the confidence bands for the functions
f1 and f2 and the local quadratic estimator

n f 90% nominal coverage 95% nominal coverage 99% nominal coverage

Cov. (%) Length Cov. (%) Length Cov. (%) Length

250 f1 88.44 0.099 94.96 0.104 99.44 0.115

f2 89.92 0.098 94.64 0.102 98.84 0.114

150 f1 90.40 0.145 95.68 0.152 99.16 0.168

f2 91.80 0.143 96.24 0.149 99.60 0.166

75 f1 92.44 0.277 97.24 0.291 99.72 0.323

f2 92.40 0.259 96.80 0.273 99.68 0.302

minimal regions by the fact that the lower bands in a neighborhood of the maxima are
much higher than the upper bands in a neighborhood of the minima.

Further, it is evident that the bands for f1 constructed with the local linear estimator
are narrower than the ones for the local quadratic estimator. This is due to the fact
that the local linear estimator produces a smaller variance because the L2-norms of
the limit kernels K̃B,U,lin and K̃B,U,quad are not equal, more precisely ‖K̃B,U,lin‖2 <

‖K̃B,U,quad‖2. Nevertheless, the results for the local quadratic estimator are slightly
better which is due to the smaller bias of this estimator as compared to its linear
counterpart which guarantees a more accurate centering of the bands and results in
higher coverage. We also find that, while there seems to be hardly any difference for
the different settings for the local quadratic estimator, the bands for f2 based on the
local linear estimator are clearly wider. The effect is shown in Fig. 2 where plots of
both cases for the local linear estimator are displayed.

6 Proofs

In this section, we present the proofs of the results presented in the previous sections.
Those that are completely analogous to the ones presented inTsybakov (2009),Chapter
1.6, are omitted, only some extensions are included in this section.
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6.1 Proofs of auxiliary results

Proof of Lemma 1 (i) Since each entry U (p0)(u)U (q0)(u) of the matrix

U (u)UT (u) = (
U (p)(u)Uq(u)

)(k+1)(k+2)/2
p,q=1

is a polynomial of degree ≤ k the smoothness properties of K transfer to the products
U (p0)(u)U (q0)(u) · K . Hence, it follows by Assumption 2 that

(Bn,x
)
(p0,q0)

= 1

n2h1h2

n∑
i1,i2=1

U (p0)
( ti − x

h

)
U (q0)

( ti − x
h

)
K
( ti − x

h

)

= 1

h1h2

∫ 1

0

∫ 1

0
U (p0)

(z − x
h

)
U (q0)

(z − x
h

)
K
(z − x

h

)
g1(z1)g2(z2) dz

+ O

(
1

n

)

=
∫ 1−x2

h2

− x2
h2

∫ 1−x1
h1

− x1
h1

U (p0)(u)U (q0)(u)K (u)g1(x1+h1u1)g2(x2+h2u2) du

+ O

(
1

n

)
.

Finally, again by Assumption 2

(Bn,x
)
(p0,q0)

= g1(x1)g2(x2)
∫ 1

−1

∫ 1

−1
U (p0)(u)U (q0)(u)K (u) du

+ O

(
1

n
+ h1 + h2

)
,

for sufficiently large n.
(ii) Let v ∈ R

(k+1)(k+2)/2\{0}. Assumption 1 implies that

vTBv =
∫ ∫ (

vTU (u)
)2
K (u) du ≥ K1

∫ D

−D

∫ D

−D

(
vTU (u)

)2 du ≥ 0.

For v �= 0 the quantity vTU (u) �= 0 is a polynomial in u of degree ≤ k and it can
only be equal to zero at a finite number of points. Since also D > 0 it follows that
vTBv > 0 and since the design densities g1 and g2 are bounded away from zero it
also follows that vTBxv = g1(x1)g2(x2)vTBv > 0,which concludes the proof of the
lemma. ��
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Proof of Lemma 2 By definition of the weights Wn,i it follows that

Var[ f̂n(x)] = σ 2
n∑

i1,i2=1

(
Wn,i(x)

)2

= σ 2

n4h21h
2
2

n∑
i1,i2=1

(
UT (0)B−1

n,xU
( ti − x

h

)
K
( ti − x

h

))2

.

Now, we apply Lemma 1 and obtain

Var[ f̂n(x)] = σ 2

g21(x1)g
2
2(x2)n

4h21h
2
2

×
( n∑
i1,i2=1

(
UT (0)B−1U

( ti − x
h

)
K
( ti − x

h

))2

+ o(1)

)
.

By Assumption 1 and Assumption 2 we find

Var[ f̂n(x)] = σ 2

n2
∏2

j=1

(
g2j (x j )h

2
j

)
n∑

i1,i2=1

K̃ 2
B,U

( ti − x
h

) 2∏
j=1

(
g j (ti j )(ti j − ti j−1)

)

+ o
( 1

n2h1h2

)
,

since ti j − ti j−1 = G−1
j (i j/(n + 1)) − G−1

j ((i j − 1)/(n + 1)) = 1/(ng j (t j )) +
O(1/n2) by differentiation of the inverse function G−1

j and the mean value theorem.
The assertion of the lemma immediately follows. ��
Proof of Lemma 3 Lemma 1 implies that the matrix Bn,x is positive definite for suffi-
ciently large n ∈ N. Hence,we can use the linear representation of the local polynomial
estimator which is given in (8). This also implies that there exists a positive constant
λ0 and a positive number n0 ∈ N such that the smallest eigenvalue λmin(Bn,x) ≥ λ0,
for all x ∈ [0, 1]2 if n ≥ n0. Furthermore, we make use of the fact that the local poly-
nomial estimator of order k reproduces polynomials of degree ≤ k. This means that
for any polynomial Q with Q(x) = ∑

βββ∈{0,...,k}2, |βββ|≤k aβββxβββ for x ∈ R
2 the following

equality holds

n∑
i1,i2=1

Q(t(i1,i2))Wn,(i1,i2)(x) = Q(x), (12)

and hence

bias( f̂n, f, x) = E f̂n(x) − f (x) =
n∑

i1,i2=1

[ f (t(i1,i2)) − f (x)]Wn,(i1,i2)(x),
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since (12) implies the identity
∑n

i1,i2=1 Wn,(i1,i2)(x) = 1. Equation (12) further
implies that

∑n
i1,i2=1(t(i1,i2) − x)βββWn,(i1,i2)(x) = 0 for all multi-indices βββ ∈

{0, . . . , k}2, |βββ| ≤ k. By Taylor expansion and from (3) we obtain

bias( f̂n, f, x) ≤
n∑

i1,i2=1

C f,k‖t(i1,i2) − x‖a |Wn,(i1,i2)(x)|

≤ C f,k(h1 + h2)
k+a

n∑
i1,i2=1

‖t(i1,i2) − x‖a |Wn,(i1,i2)(x)|

≤ K2C f,k(h1 + h2)k+a

λminn2h1h2

n∑
i1,i2=1

∥∥∥U
( t(i1,i2) − x

h

)∥∥∥

× I[x1−h1,x1+h1](ti1)I[x2−h2,x2+h2](ti2).

Since ti j = G−1(i j/(n + 1)) and G is strictly increasing the indicator functions
I[x j−h j ,x j+h j ](ti j ) can be replaced by I[G j (x j−h j ),G j (x j+h j )](G j (ti j )) for j = 1 and
j = 2. This finally implies

bias( f̂n, f, x) = O
(
(h1 + h2)

k+a
)

,

where the last estimate O
(
(h1 + h2)k+a

)
does no longer depend on x. ��

6.2 Proofs of Theorem 1 and Corollary 1

To prove Theorem 1, we perform several steps to approximate the quantity
n
√
h1h2s(x)−1

(
f̂n(x)−E f̂n(x)

)
uniformly in x ∈ [δ, 1−δ]2 by a stationary Gaussian

field Z(x) := ∫
R2 K̃B,U (t− x) dW (t), whereW is a Wiener sheet on R2, the function

K̃B,U is defined in (10) and the supremum is then taken over the set 1
h1
I1 × 1

h2
I2.

Then, we apply Theorem 14.1 in Piterbarg (1996) to this stationary field which will
complete the proof of the theorem. Define the process

Zn,0(x) :=
√
g1(x1)g2(x2)

σ‖K̃B,U‖n√
h1h2

n∑
i1,i2=1

Wn,i(x)ε(i1,i2).

Zn,0 can be decomposed as follows (see Lemma 8 below for details)

Zn,0(x) =
√
g1(x1)g2(x2)

σ‖K̃B,U‖n√
h1h2

n∑
i1,i2=1

K̃Bx ,U
( ti − x

h

)
ε(i1,i2)

+
√
g1(x1)g2(x2)

σ‖K̃B,U‖n√
h1h2

n∑
i1,i2=1

K̃Rn,x ,U
( ti − x

h

)
ε(i1,i2)
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= 1

σ‖K̃B,U‖n√
h1h2g1(x1)g2(x2)

n∑
i1,i2=1

K̃B,U
( ti − x

h

)
ε(i1,i2)

+
√
g1(x1)g2(x2)

σ‖K̃B,U‖n√
h1h2

n∑
i1,i2=1

K̃Rn,x ,U
( ti − x

h

)
ε(i1,i2) =: Zn,1(x) + Rn,0(x),

(13)

where the processes Zn,1(x) and Rn,x(x) are defined in an obvious manner. In a first
approximation step, Zn,0 is approximated by Zn,1. In a next step, the observation
errors are replaced by their partial sums which allows to replace Zn,1 by Zn,2:

Zn,2(x) := ‖K̃B,U‖−1n−1
√∏2

j=1

(
g j (x j )h j

)

×
n∑

i1,i2=1

Δ

(
z �→ K̃B,U

(G−1(z) − x
h

)
;
[ i − 1
n + 1

,
i

n + 1

])
W (i1, i2),

(14)

where W is the Wiener sheet specified in Lemma 4,

Δ

(
z �→ K̃B,U

(G−1(z) − x
h

)
;
[ i − 1
n + 1

,
i

n + 1

])

= K̃B,U

( t(i1,i2) − x
h

)
− K̃B,U

( t(i1−1,i2) − x
h

)
− K̃B,U

( t(i1,i2−1) − x
h

)

+ K̃B,U

( t(i1−1,i2−1) − x
h

)

and G−1(z) := (
G−1

1 (z1),G
−1
2 (z2)

)
. To this end, we extend an approach introduced

by Stadtmüller (1986) or Eubank and Speckman (1993) for one-dimensional models
with deterministic (close to) uniform design. Note that, it is not immediate how to
generalize this methodology to higher dimensions as well as to a not necessarily
uniform design under general design assumptions and a broader class of estimators,
which is all done here. Next, the sum is approximated by the corresponding Wiener
integral which gives the approximation of Zn,2 by Zn,3, defined by

Zn,3(x) := 1

‖K̃B,U‖
√∏2

j=1 g j (x j )h j

∫

I
K̃B,U

(z − x
h

)
dW (G(z)), (15)

where G(z) := (
G1(z1),G2(z2)

)
. We now define

Zn,4(x) := 1

‖K̃B,U‖
√∏2

j=1 g j (x j )h j

∫

I
K̃B,U

(z − x
h

)√
g1(z1)g2(z2) dW (z).

(16)
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Note that, Zn,3 and Zn4 have the same probability structure, i.e., {Zn,3(x)} D=
{Zn,4(x)}. Hence, in a next step we replace Zn,4 by Zn,5, defined by

Zn,5(x) := 1

‖K̃B,U‖√h1h2

∫

I
K̃B,U

(z − x
h

)
dW (z). (17)

In a further step, we replace the process Zn,5 by the stationary process Zn,6

Zn,6(x) := 1

‖K̃B,U‖
∫

R2
K̃B,U

(
z − x

)
dW (z), (18)

and take the supremum with respect to x ∈ 1/h1[δ, 1− δ] × 1/h2[δ, 1− δ]. Last, we
show that the remainder process Rn,0 is negligible, that is supx∈[δ,1−δ]2 |Rn,0(x)| =
oP

(
log(n)−1/2

)
. Each approximation step corresponds to one of the Lemmas 4 to 8

listed and proven below.

Lemma 4 There exists a Wiener sheet W on a suitable probability space such that

sup
x∈I

|Zn,1(x) − Zn,2(x)| = O

(
log(n)

nν
√
h1h2

)
,

where ν ∈ (0, 1] is the constant defined in Theorem 1.

Proof Here and in what follows let I denote the unit cube, i.e., I := [0, 1]d .Define the
partial sums S(i1,i2), indexed by double-indices (i1, i2) ∈ {0, 1, . . . , n}2 by S(i1,i2) :=∑i1

p=1

∑i2
q=1 ε(p,q) and set S(i1,0) ≡ S(0,i2) ≡ 0 for all (i1, i2) ∈ {0, . . . , n}2. Note

that, the following identity holds:

ε(i1,i2) = S(i1,i2) − S(i1−1,i2) + S(i1−1,i2−1) − S(i1,i2−1),

i.e., the errors can be replaced by the respective ”increments” on [i − 1, i] =: [i1 −
1, i1] × [i2 − 1, i2] of the partial sum process on the grid {0, . . . , n} × {0, . . . , n}. We
thus obtain

Zn,1(x) = 1

σ‖K̃B,U‖n
√∏2

j=1 g j (x j )h j

n∑
i, j=1

K̃B,U

( t(i1,i2) − x
h

)[
S(i1,i2)

− S(i1−1,i2) + S(i1−1,i2−1) − S(i1,i2−1)
]
.

We can now re-sort the sum and obtain a sum that contains the increments of the
function z �→ K̃B,U

(
G−1(z)−x

h

)
instead of the increments of the partial sum process

and obtain
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Zn,1(x) = 1

σ‖K̃B,U‖n
√∏2

j=1 g j (x j )h j

{ n−1∑
i1,i2=1

Δ
(
z �→ K̃B,U

(G−1(z) − x
h

)
;

[ i − 1
n + 1

,
i

n + 1

])
S(i1,i2)

−
n−1∑
i1=1

K̃B,U

( t(i1+1,n) − x
h

)
S(i1,n) +

n−1∑
i1=1

K̃B,U

( t(i1,n) − x
h

)
S(i1,n)

−
n−1∑
i2=1

K̃B,U

( t(n,i2+1) − x
h

)
S(n,i2) +

n−1∑
i2=1

K̃B,U

( t(n,i2) − x
h

)
S(n,i2)

+ Δ
(
z �→ K̃B,U

(G−1(z) − x
h

)
S(z1,z2); [0, n] × [0, n]

)}
.

Observe that x ∈ [δ, 1 − δ]2, t(i1,n) = (G−1
1 (i1/n), 1), x(n,i2) = (1,G−1

2 (i2/n)) and
for large enough n, δ/h1∧δ/h2 > 1. FromAssumption 1 and from S(i1,0) ≡ S(0,i2) ≡
0 for all (i1, i2) ∈ {0, . . . , n}2. It now follows that all terms except the first one in the
latter representation of Zn,1(x) are equal to zero for sufficiently large n,which implies

Zn,1(x) = 1

σ‖K̃B,U‖n
√∏2

j=1 g j (x j )h j

n−1∑
i1,i2=1

Δ

(
z �→ K̃B,U

(G−1(z) − x
h

)
;

[ i − 1
n + 1

,
i

n + 1

])
S(i1,i2),

for all n ≥ n0, for some n0 ∈ N. This yields

|Zn,1(x) − Zn,2(x)|

= 1

‖K̃B,U‖n
√∏2

j=1 g j (x j )h j

∣∣∣∣
n−1∑

i1,i2=1

Δ

(
z �→ K̃B,U

(G−1(z) − x
h

)
;

[ i − 1
n + 1

,
i

n + 1

])(
S(i1,i2)

σ
− W (i1, i2)

)∣∣∣∣

≤ sup1≤i1,i2≤n |S(i1,i2)/σ − W (i1, i2)|
‖K̃B,U‖n

√∏2
j=1 g j (x j )h j

n−1∑
i1,i2=1

∣∣∣∣Δ
(
z �→ K̃B,U

(
G−1(z) − x

h

)
;

[ i − 1
n + 1

,
i

n + 1

])∣∣∣∣

≤ sup1≤(i1,i2)≤n |S(i1,i2)/σ − W (i1, i2)|
‖K̃B,U‖n

√∏2
j=1 g j (x j )h j

∫

R2
|D(1,1) K̃B,U (z)| dz.

The assertion of the lemma now follows from Theorem 1 in Rio (1993), which gives
the estimate

123



On confidence bands for multivariate regression 227

sup
1≤i1,i2≤n

|S(i1,i2)/σ − W (i1, i2)| = O
(
n

2−ν
2
√
log(n)

)
a.s.,

since, under the assumptions of Theorem 1, E|ε(1,1)|r < ∞ for r > 4/(2 − ν).

It follows that

sup
x∈[δ,1−δ]2

|Zn,1(x) − Zn,2(x)| = O

(√
log(n)

h1h2nν

)
= o

(
(log(n))−

1
2

)
.

��
For the next approximation step we need that 1/(nh1h2) = o(1/ log(n)2) which is

implied by the conditions of Theorem 1.

Lemma 5 Under the assumptions of Theorem 1 the process Zn,2(x) can be approxi-
mated by Zn,3(x) uniformly with respect to x ∈ [δ, 1 − δ]2, i.e.,

sup
x∈[δ,1−δ]2

|Zn,2(x) − Zn,3(x)| = o
(
log(n)−1/2).

Proof There exists a number n0 ∈ N such that we obtain by integration by parts

∫

I
K̃B,U

(z − x
h

)
dW (G(z)) =

∫

I
D(1,1) K̃B,U

(z − x
h

)
W (G(z)) dz

for all n ≥ n0. Here, all terms obtained by integration by parts except the one on the
right-hand side vanish for sufficiently large n since W (z1, 0) ≡ W (0, z2) ≡ 0 and all
edge points lie outside the support of the kernel K̃B,U . The increment of K̃B,U in the
definition of the process Zn,2 can be expressed in terms of an integral as follows

Δ
(
z �→ K̃B,U

(G−1(z) − x
h

);
[ i − 1
n + 1

,
i

n + 1

])

=
∫
[
i−1
n+1 , i

n+1

] D(1,1)
(
K̃B,U

(G−1(z) − x
h

))
dz,

see, e.g., Owen (2005), Section 9, where we used the notation

D(1,1)
(
K̃B,U

(G−1(z) − x
h

))
= D(1,1)(K̃B,U

)(G−1(z) − x
h

)
· G

−1′
1 (z1)G

−1′
2 (z2)

h1h2
.

This gives

Zn,2(x) = 1

‖K̃B,U‖n
√∏2

j=1 g j (x j )h j

n−1∑
i1,i2=0

∫
[
i−1
n+1 , i

n+1

] D(1,1)

×
(
K̃B,U

(G−1(z) − x
h

))
dzW (i1, i2)
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D= 1

‖K̃B,U‖
√∏2

j=1 g j (x j )h j

n−1∑
i1,i2=0

∫
[
i−1
n+1 , i

n+1

] D(1,1)

×
(
K̃B,U

(G−1(z) − x
h

))
dzW

(
i1
n

,
i2
n

)
.

By a change of variables, we further obtain

Zn,2(x) = 1

‖K̃B,U‖
√∏2

j=1 g j (x j )h j

n−1∑
i1,i2=0

∫
[
t(i1−1,i2−1),t(i1,i2)

] D(1,1)

×
(
K̃B,U

(u − x
h

))
duW

(
i1
n

,
i2
n

)

= 1

‖K̃B,U‖
√∏2

j=1 g j (x j )h j

n−1∑
i1,i2=0

∫
[
t(i1−1,i2−1),t(i1,i2)

] D(1,1)

×
(
K̃B,U

(u − x
h

))
duW (G1(ti1),G2(ti2)),

by definition of the design points. Moreover,

Zn,3(x) = 1

‖K̃B,U‖
√∏2

j=1 g j (x j )h j

∫

I
D(1,1)

(
K̃B,U

(u − x
h

))
W (G(u)) du

= 1

‖K̃B,U‖
√∏2

j=1 g j (x j )h j

n−1∑
i, j=1

∫
[
t(i1−1,i2−1),t(i1,i2)

] D(1,1)

×
(
K̃B,U

(u − x
h

))
W (G(u)) du,

and hence

∣∣Zn,2(x)−Zn,3(x)
∣∣

= 1

‖K̃B,U‖√h1h2

∣∣∣∣
n−1∑
i, j=1

∫
[
ti−1,ti

] D(1,1)
(
K̃B,U

(u−x
h

))(
W (G(ti))−W (G(u))

)
du

∣∣∣∣.

Next, we apply Theorem 3.2.1 in Khoshnevisan (2002) which gives a modulus of
continuity for the Wiener sheet
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∣∣W (G(ti)) − W (G(z))
∣∣ ≤

√
log(n)

n
sup
k≥n

sup
y,z∈I

‖y−z‖∞≤1/k

|W (z) − W (y)|√
log(n)

n

= O
(√

log(n)n−1
)

almost surely. We also observe that

n−1∑
i, j=1

∫
[
t(i1−1,i2−1),t(i1,i2)

]
∣∣∣D(1,1)

(
K̃B,U

(u − x
h

))∣∣∣ du≤
∫

R2
|D(1,1) K̃B,U

(
z
)| dz<∞,

which conclude the proof of this lemma. ��

Lemma 6

|Zn,3(x) − Zn,5(x)| = OP
(
log(n) (h1 + h2)

3
2 h−1/2

1 h−1/2
2

)
.

Proof Since Zn,3 and Zn,4 have the same probability structure, we show that

supx∈[δ,1−δ]2 |Zn,4(x)− Zn,5(x)| = O

(
log(n)

(h1+h2)
3
2√

h1h2

)
almost surely which proves

the assertion of the lemma. Again, by integration by parts for sufficiently large n, since
K̃B,U is of bounded support,

Zn,4(x) − Zn,5(x)

= 1

‖K̃B,U‖
∫

I
D(1,1)

[
K̃B,U

(z − x
h

)√
g1(z1)g2(z2) − √

g1(x1)g2(x2)√
h1h2g1(x1)g2(x2)

]
W (z) dz.

By change of variables, under Assumption 2 with the modulus of continuity of the
Brownian sheet (here, |u| ≤ 1, since K has support contained in the cube [−1, 1] ×
[−1, 1])

‖K̃B,U‖(Zn,4(x) − Zn,5(x)
)

=
∫
[−x

h , 1−x
h

] D(1,1)
[
K̃B,U (u)

√
g1(x1 + u1h1)g2(x2 + u2h2) − √

g1(x1)g2(x2)√
h1h2g1(x1)g2(x2)

]

× W (x + hu) du

= W (x)
∫
[−x

h , 1−x
h

] D(1,1)
[
K̃B,U (u)

√
g1(x1+u1h1)g2(x2+u2h2)−√

g1(x1)g2(x2)√
h1h2g1(x1)g2(x2)

]
du

+ O

(
log(n)(h1 + h2)

3
2√

h1h2

)
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almost surely. Furthermore,

∫
[−x

h , 1−x
h

] D(1,1)
[
K̃B,U (u)

√
g1(x1 + u1h1)g2(x2 + u2h2) − √

g1(x1)g2(x2)
]
du

= Δ

(
u �→ K̃B,U (u)

√
g1(x1+u1h1)g2(x2+u2h2) − √

g1(x1)g2(x2) ;
[−x
h

,
1−x
h

])
,

which implies

Zn,4(x) − Zn,5(x) =
[
K̃B,U

(−x1
h1

,
−x2
h2

)(√
g1(0)g2(0) − √

g1(x1)g2(x2)
)

− K̃B,U

(−x1
h1

,
1 − x2
h2

)(√
g1(0)g2(1) − √

g1(x1)g2(x2)
)

− K̃B,U

(1 − x1
h1

,
−x2
h2

)(√
g1(1)g2(0) − √

g1(x1)g2(x2)
)

+ K̃B,U

(1 − x1
h1

,
1 − x2
h2

)(√
g1(1)g2(1) − √

g1(x1)g2(x2)
)]

× W (x)

‖K̃B,U‖
√∏2

j=1 g j (x j )h j

+ O

(
log(n)

(h1 + h2)
3
2√

h1h2

)
.

For sufficiently large n ∈ N, the first four summands vanish completely and thus

|Zn,4(x) − Zn,5(x)| = O
(
log(n) (h1 + h2)

3
2 /
√
h1h2

)
,

which completes the proof of this lemma. ��

Lemma 7 Under the assumptions of Theorem 1 the following result holds

sup
x∈[δ,1−δ]2

|Zn,5(x)| D= sup
x∈ 1

h1
[δ,1−δ]× 1

h2
[δ,1−δ]

|Zn,6(x)| + o
(
log(n)−1/2).

Proof A combination of integration by parts, change of variables and the scaling
property of the Brownian sheet yield

Zn,5(x)
D= 1

‖K̃B,U‖√h1h2

∫

[0,1/h1]×[0,1/h2]
D(1,1) K̃B,U

(
z − x

h

)
W (z) dz.
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With the definition of the sets D<0 := {(z1, z2) ∈ R
2 | z1 < 0 ∨ z2 < 0} and

D> 1
h

:= {(z1, z2) ∈ R
2 | z1 > 1/h1 ∨ z2 > 1/h2} we obtain

Zn,6

(x
h

)
− Zn,5(x) = 1

‖K̃B,U‖
∫

D<0

K̃B,U

(
z − x

h

)
dW (z)

+ 1

‖K̃B,U‖
∫

D
> 1
h

K̃B,U

(
z − x

h

)
dW (z).

For z ∈ D> 1
h
, x ∈ [δ, 1−δ]2 we further have z j−x j/h j > δ/h j for j = 1∨ j = 2

and for z ∈ D<0, x ∈ [δ, 1 − δ]2 we obtain z j − x j/h j < −δ/h j for j =
1 ∨ j = 2. Since δ is a fixed positive constant, there exists a number n0 ∈ N such

that K̃B,U
(
z − x/h

)
≡ 0 for all z ∈ D<0 ∪ D> 1

h
, x ∈ [δ, 1 − δ]2. Hence, for n ≥

n0 Zn,6(x/h)
D= Zn,5(x) and supx∈[δ,1−δ]2 |Zn,6(x/h)| D= supx∈[δ,1−δ]2 |Zn,5(x)| D=

supx∈ 1
h1

[δ,1−δ]× 1
h2

[δ,1−δ] |Zn,6(x)|, which completes the proof of the lemma. ��

Proof of Theorem 1 Given the assumptions ofTheorem1 regarding the relative growth

of the bandwidths h1 and h2, the system of sets
{

1
h1

[δ, 1− δ] × 1
h2

[δ, 1− δ] ∣∣ n ∈ N

}

with volumes (1−2δ)2/(h1h2) is a blowing up system of sets according to Definition
14.1 in Piterbarg (1996). An application of Theorem 14.3 therein thus yields

lim
n→∞P

⎛
⎝ sup

x∈ 1
h1

[δ,1−δ]× 1
h2

[δ,1−δ]

(|Zn,6(x)| − ln
)
ln < κ

⎞
⎠ = e−2e−κ

.

The following lemma provides the lastmissing piece, the negligibility of the remainder
Rn,0. ��
Lemma 8 Let Assumption 1 and 2 be satisfied. Then,

sup
x∈[δ,1−δ]

|Rn,0(x)| = OP

(√
log(n)(h1 + h2)

)
.

Proof Lemma 1 implies the decomposition B−1
n,x = B−1

x + R−
n,x with a (k + 1)(k +

2)/2 × (k + 1)(k + 2)/2-matrixR−
n,x that has the property

sup
x∈[δ,1−δ]2

|(R−
n,x)p,q |=O(h1 + h2), (p, q) ∈ {1, . . . , (k + 1)(k + 2)/2}2. (19)

Rn,0(x)=
√
g1(x1)g2(x2)

σn
√
h1h2

n∑
i1,i2=1

UT (0)R−
n,x

=
√
g1(x1)g2(x2)

σn
√
h1h2

n∑
i1,i2=1

UT (0)R−
n,xU

( ti−x
h

)
K
( ti−x

h

)
ε(i1,i2).
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The quantity UT (0)R−
n,x = (

(r−
n,x)1,1, . . . , (r

−
n,x)1,(k+1)(k+2)/2

) ∈ R
1×(k+1)(k+2)/2 is

the first row of the matrix R−
n,x and U

(
ti−x
h

)
=

(
U (1)

(
ti−x
h

)
, . . . ,U ((k+1)(k+2)/2)

(
ti−x
h

))
∈ R

(k+1)(k+2)/2, hence we can write

Rn,0(x)=
(k+1)(k+2)/2∑

p=1

(r−
n,x)1,p

√
g1(x1)g2(x2)

σn
√
h1h2

n∑
i1,i2=1

U (p)
( ti−x

h

)
K
( ti−x

h

)
ε(i1,i2).

For each fixed number p0 ∈ {1, . . . , (k + 1)(k + 2)/2} we find

sup
x∈[δ,1−δ]2

∣∣∣∣
(r−

n,x)1,p0
√
g1(x1)g2(x2)

σn
√
h1h2

n∑
i1,i2=1

U (p0)
( ti − x

h

)
K
( ti − x

h

)
ε(i1,i2)

∣∣∣∣

≤ sup
x∈[δ,1−δ]2

∣∣∣∣(r−
n,x)1,p0

√
g1(x1)g2(x2)

∣∣∣∣ sup
x∈[δ,1−δ]2

∣∣∣∣
1

σn
√
h1h2

n∑
i1,i2=1

U (p0)
( ti − x

h

)

× K
( ti − x

h

)
ε(i1,i2)

∣∣∣∣

= sup
x∈[δ,1−δ]2

∣∣∣∣(r−
n,x)1,p0

√
g1(x1)g2(x2)

∣∣∣∣ OP

(√
log(n)

)
= OP

(
(h1 + h2)

√
log(n)

)

(20)

with the same arguments as used before to prove the convergence of supx∈[δ,1−δ]2
|Zn,1(x)|, property (19) and the boundedness of the design densities g1 and g2. ��

An application of Lemmas 4–8 finally completes the proof of Theorem 1.

Proof of Corollary 1 Under the assumptions of Corollary 1, Lemma 3 implies that
supx∈[δ,1−δ]2 |bias( f̂n, f, x)| = O

(
(h1 + h2)k+a

)
Hence,

sup
x∈[δ,1−δ]2

(
s(x)−1n

√
h1h2| f̂n(x) − f (x)|) = sup

x∈[δ,1−δ]2
(
s(x)−1n

√
h1h2|E[ f̂n(x)]

− f̂n(x)|
) + o

(
1/
√
log(n)

)
,

that is, the bias is asymptotically negligible. ��

7 Proofs of Theorem 2 and Corollary 2

In this section, we sketch the extension of the proofs of the results of Sect. 6.2 to
the case of general dimension d. Here, we need a multivariate generalization of the
concept of functions of bounded variation for which we make use of the elementary,
intuitive approach in terms of suitable generalizations of increments such as it is given
in Owen (2005). The generalization of the concept of increments Δd of a function f
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over d-dimensional intervals [a,b] that is relevant for us in this context is given by
the definition

Δd
(
f ; [a,b]) :=

∑

ααα∈{0,1}d
(−1)|ααα| f (b + ααα � (a − b)),

where ααα � (a − b) = (α1 · (a1 − b1), . . . , αd · (ad − bd))T denotes the vector
of component-wise products of the multi-index ααα and the vector b − a. The above
defined increments Δd of a function f over d-dimensional intervals [a,b] have the
following property

Δd
(
f ; [a,b]) =

∫

[a,b]
D(1,...,1) f (x) dx. (21)

Lemma 9 There exists a Wiener sheet W on a suitable probability space such that

sup
x∈[δ,1−δ]d

|Zn,1,d(x) − Zn,2,d(x)| = O

(
log(n)

nν
√
h1h2

)
,

where Zn,1,d and Zn,2,d are the d-dimensional analogs of Zn,1 and Zn,2 (see (13) and
(14), respectively).

Proof For general dimension d define the partial sum S(i1,...,id ) := ∑i1
p1 . . .

∑id
pd=1

ε(p1,...,pd ) and set Si ≡ 0 if i j = 0 for at least one j ∈ {1, . . . , d}. Again, we can
replace the errors by suitable increments of the partial sum S(·) over [i − 1, i] :

ε(i1,...,id ) = Δd(S(·), [i − 1, i]) =
∑

ααα∈{0,1}d
(−1)|ααα|S(i−ααα)

=
∑

ααα∈{0,1}d
(−1)|ααα|S(i1−α1,...,id−αd ).

With the same arguments as in the two-dimensional case, the replacement of the
errors by the increments of the partial sums yields for sufficiently large n (such that
all boundary terms vanish)

Zn,1,d(x) = 1

σ‖K̃B,U‖n d
2
∏d

j=1
√
hi j gi j (x1)

n−1∑
i1,...,id=1

Δd
(
z �→ K̃B,U

(G−1(z) − x
h

);

×
[ i − 1
n + 1

,
i

n + 1

])
Si1,...,id .
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Another application of Theorem 1 in Rio (1993) yields the estimate

sup
x∈[δ,1−δ]d

|Zn,1,d(x) − Zn,2,d(x)| = O

(( nν−d log(n)

ndh1 · . . . · hd
) 1

2
)

= O

(( log(n)

nνh1 · . . . · hd
) 1

2
)

.

��
Lemma 10 Under the assumptions of Theorem 2, the process Zn,2(x) can be approx-
imated by Zn,3(x) uniformly with respect to x ∈ [δ, 1 − δ]d , i.e.,

sup
x∈[δ,1−δ]d

|Zn,2,d(x) − Zn,3,d(x)| = o

(
1√

log(n)

)
,

where Zn,3,d is the d-dimensional analog of Zn,3, defined in (15).

Proof Also for the d-dimensional case there exists a number n0 ∈ N such that we
obtain by integration by parts for all n ≥ n0

∫

I
K̃B,U

(z − x
h

)
dW (G(z)) =

∫

I
D(1,1) K̃B,U

(z − x
h

)
W (z) dz,

i.e., all boundary terms vanish for sufficiently large n. To prove the assertion of the
lemma, we can now use Eq. (21) and follow the lines of the proof of Lemma 5 and
obtain the estimate

sup
x∈[δ,1−δ]d

|Zn,2,d(x) − Zn,3,d(x)| = OP
(√

log(n)/
√
nh1 · . . . · hd

)
.

��
Lemma 11 Assume that the assumptions of Theorem 2 hold. Then,

|Zn,3(x) − Zn,5(x)| = OP
(
log(n) (h1 + . . . + hd)

(2d−1)∨3
2 /

√
h1 · . . . · hd

)
,

where Zn,5,d is the d-dimensional analog of (17).

Proof Again, we make an intermediate step by introducing a further process, Zn,4,d ,

that has the same probability structure as Zn,3,d and which is defined as the d-
dimensional analog of Zn,4 [see (16)]. By assumption, the design densities g j are
continuously differentiable up to order (d − 1) ∨ 1, j = 1, . . . , d. By higher order

Taylor expansion of the difference
√∏d

j=1 g j (x j + u j h j ) −
√∏d

j=1 g j (x j ) with the
same arguments applied in the proof of Lemma 6, we obtain the estimate
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|Zn,3,d(x) − Zn,5,d(x)| = (
log(n) (h1 + . . . + hd)

(2d−1)∨3
2 /

√
h1 · . . . · hd

)
,

which holds almost surely and uniformly in x ∈ [δ, 1 − δ]d . ��
The generalization of Lemma 7 and Lemma 8 and both proofs, as well as the further

steps in the proofs of Theorem 1 andCorollary 2 are straightforward and are, therefore,
omitted.
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