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Abstract The majority of modelling and inference regarding Hidden Markov Models
(HMMs) assumes that the number of underlying states is known a priori. However,
this is often not the case and thus determining the appropriate number of underlying
states for a HMM is of considerable interest. This paper proposes the use of a parallel
sequential Monte Carlo samplers framework to approximate the posterior distribution
of the number of states. This requires no additional computational effort if approxi-
mating parameter posteriors conditioned on the number of states is also necessary. The
proposed strategy is evaluated on a comprehensive set of simulated data and shown
to outperform the state of the art in this area: although the approach is simple, it pro-
vides good performance by fully exploiting the particular structure of the problem.
An application to business cycle analysis is also presented.
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1 Introduction

Hidden Markov Models (HMMs) provide a rich framework to model non-linear, non-
stationary time series. Applications include modelling DNA sequences (Eddy 2004),
speech recognition (Rabiner 1989) and modelling daily epileptic seizure counts for a
patient (Albert 1991).

Much of the inference and applications for HMMs such as estimating the under-
lying state sequence (Viterbi 1967), parameter estimation (Baum et al. 1970) and
changepoint inference (Chib 1998; Aston et al. 2011; Nam et al. 2012), assume that
the number of states the underlying Markov Chain (MC) can take, H , is known a
priori. However, when real time series data is analysed, H is often not known.

Assuming a particular number of underlying states without performing any statis-
tical analysis can sometimes be advantageous if the states correspond directly to a
particular phenomena. For example in Econometric GNP analysis (Hamilton 1989),
two states are assumed a priori, “Contraction” and “Expansion”, with recessions being
defined as two consecutive contraction states in the underlying state sequence. Without
such an assumption, this definition of a recession and the conclusions we can draw
from the resulting analysis may be lost.

However, it may be necessary to assess whether such an assumption on the number
of underlying states is adequate, and typically, we are presented with time series data
for which we are uncertain about the appropriate number of states to assume. This
paper concerns model selection for HMMs when H is unknown. Throughout this
paper, we use “model” and the “number of states in a HMM” interchangeably to
denote the same statistical object.

Several methods for determining the number of states of a HMM currently exist.
In general model selection problems, techniques are often formulated in terms of
penalised likelihood or information criteria [see for example, Konishi and Kitagawa
(2008)]. However, methods such as Akaike’s and Bayesian Information Criteria are not
suitable for HMMs because we can always optimise these criteria via the introduction
of additional states (Titterington 1984). In light of this, Mackay (2002) proposes an
information theoretic approach which yields a consistent estimate of the number of
states via a penalised minimum distance method. This frequentist approach appears
to work well, although the uncertainty regarding the number of states is not explicit
and relies on asymptotic arguments to obtain consistent estimates which may not be
appropriate for short sequences of data.

Bayesian methods appear to dominate the model selection problem of interest,
and quantify more explicitly the model uncertainty by approximating the model
posterior distribution. A reversible jump Markov chain Monte Carlo [RJMCMC,
Green (1995)] approach seems natural for such a model selection problem where
the sample space varies in dimension with respect to the number of underlying states
assumed and has been applied in the HMM setting by Robert et al. (2000). This is
an example of variable-dimension Monte Carlo as discussed in Scott (2002). How-
ever, RJMCMC is often computationally intensive and care is required in designing
moves such that the sampling MC mixes well both within model spaces (same num-
ber of states, different parameters) and amongst model spaces (different number of
states).
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Chopin and Pelgrin (2004) and Chopin (2007) propose the sequential HMM
(SHMM) framework where the number of distinct states visited by the latent MC up
to that time point is considered. It is this augmented MC that is considered, sampled
via sequential Monte Carlo (SMC) and used to determine the model posterior. SMC
algorithms for dealing with (general state space) HMMs are usually termed particle
methods. In the first instance these methods focussed upon solving the optimal filter-
ing problem Gordon et al. (1993); Kitagawa (1996); later work, dating back at least
to Kitagawa (1998), has attempted to address the problem of parameter estimation—a
problem rather closer in spirit to that of model selection. By reformulating the problem
in terms of this new augmented underlying MC and constructing the corresponding
new HMM framework, Chopin (2007) essentially turns the problem into a filtering
problem and thus the use of standard particle filtering techniques becomes possible.
This setup also alleviates the problem of state identifiability as states are labelled in the
order in which they are identified in the data sequence. This approach is particularly
suited to online applications with respect to incoming observations.

The approach of Chopin (2007) is probably the state of the art. It avoids including
the latent state sequence within the target posterior, but does rely upon the simula-
tion of these variables within the Gibbs sampling transitions. It consequently benefits
partially from Rao-Blackwellisation of the state sequence but the correlation between
parameters and the latent state sequence means that this kernel need not necessarily
enjoy good mixing properties: given a particular sequence of parameters, it is possible
for the conditional state distribution to be highly concentrated and vice versa. Unlike
the other methods discussed here, the sequential nature of this approach allows its use
in online applications.

Scott (2002) proposes a standard Markov chain Monte Carlo (MCMC) methodology
to approximate the model posterior. This uses a parallel Gibbs sampling scheme where
each Gibbs sampler assumes a different number of states and is used to approximate the
conditional marginal likelihood, and then combining to approximate the posterior of
number of states. The use of MCMC, similarly to RJMCMC, requires good algorithmic
design to ensure the MC is mixing well and converges.

The Bayesian methods outlined above approximate the model posterior, by jointly
sampling the parameter and the state sequence, and marginalising as necessary. How-
ever, sampling the underlying state sequence can be particularly difficult, due to its
high dimension and correlation, and is wasteful if the state sequence is not of interest.
Alternative sampling techniques may thus be more suitable and appropriate if they
can avoid having to sample the state sequence.

We take a similar approach to the parallel MCMC sampler approach of Scott (2002),
in that we approximate the model posterior via the use of parallel SMC samplers, where
each SMC sampler approximates the marginal likelihood and parameter posterior con-
ditioned on the number of states. We combine these to approximate the model posterior
of interest. A major advantage of the proposed approach is that the underlying state
sequence is not sampled and thus less complex sampling designs can be considered.
Below, we demonstrate that the SMC sampler approach can work well even with sim-
ple, generic sampling strategies. We note that we have been interested, particularly,
in settings in which simple HMMs with a small number of states and a particular
associated observation structure is featured. Such problems arise naturally in Econo-
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metrics (see Sect. 4.2) and Neuroscience [Højen-Sørensen et al. (2000); Nam et al.
(2012)]. In such settings, the benefits of simple automation would typically outweigh
those available from more sophisticated strategies with an appreciable implementation
cost and, as shown below, the simple strategies considered here can outperform more
sophisticated techniques, which might be more appropriate in more complex settings,
when considering these simple models.

If we are already required to approximate the model parameter posteriors condi-
tioned on several different numbers of states (as would be the case for sensitivity
analysis, for example), the framework requires no additional computational effort and
leads to parameter estimates with smaller standard errors than competing methods.

The structure of this paper is as follows: Sect. 2 provides background on the sta-
tistical methods used. Section 3 outlines the proposed method. Section 4 applies the
methodology to both simulated data and an Econometric GNP example. Section 5
concludes the paper.

2 Background

Let y1, . . . , yn denote a time series observed at equally spaced discrete points. One
approach for modelling such a time series is via Hidden Markov Models (HMMs)
which provide a sophisticated framework to model non-linear and non-stationary time
series in particular. A HMM can be defined as in Cappé et al. (2005); a bivariate dis-
crete time process {Xt ,Yt }t≥0 where {Xt } is a latent finite state Markov chain (MC),
Xt ∈ ΩX , such that conditional on {Xt }, observation process {Yt } is a sequence of
independent random variables where the conditional distribution of Yt is completely
determined by Xt . We consider general finite state HMMs (including Markov switch-
ing models) such that finite dependency on previous observations and states of Xt is
permitted for an observation at time t . General finite state HMMs are of the form:

yt |y1:t−1, x1:t ∼ f (yt |xt−r :t , y1:t−1, θ) (Emission)

p(xt |x1:t−1, y1:t−1, θ) = p(xt |xt−1, θ) t = 1, . . . , n (Transition).

Without loss of generality, we assumeΩX = {1, . . . , H}, H < ∞, with H , the number
of underlying states our MC can take, often being known a priori before inference
is performed. θ denotes the model parameters which are unknown and consist of
the transition probabilities and the state dependent emission parameters. We use the
standard notation of U1:n = (U1, . . . ,Un) for any generic sequence U1,U2, . . ..

The Forward–Backward algorithm (Baum et al. 1970) allows us to compute the
likelihood, l(y1:n|θ, H), of an HMM exactly without sampling the underlying state
sequence. We refer the reader to MacDonald and Zucchini (1997) and Cappé et al.
(2005) for good overviews of HMMs.

In dealing with unknown θ , we take a Bayesian approach and consider the model
parameter posterior conditioned on there being H states, p(θ |y1:n, H). This is typi-
cally a complex distribution which cannot be sampled from directly, with numerical
approximations such as Monte Carlo methods being required. We turn to SMC sam-
plers to approximate this quantity (Del Moral et al. 2006). The SMC sampler is a
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sampling algorithm used to sample from a sequence of distributions, {πb}B
b=1, defined

over an arbitrary state sequence via importance sampling and resampling mechanisms.
In addition, SMC samplers can be used to approximate the normalising constants,
{Zb}B

b=1, for the sequence of distributions {πb}B
b=1 in a very natural way.

3 Methodology

We seek to approximate p(H |y1:n), the posterior over the number of underlying states
for a given realisation of data y1:n (the model posterior). Similar to the approaches
of Robert et al. (2000); Scott (2002); Chopin and Pelgrin (2004); Chopin (2007), we
assume a finite number of states, H ∈ {1, . . . , Hmax}. Scott (2002) remark that this
is a mild restriction; it is difficult to envisage using a model such as this without
assuming H � n. Some methods, for example that of Beal et al. (2002), place no
restriction on Hmax via the use of a Dirichlet process based methodology. However,
this also requires sampling the underlying state sequence via Gibbs samplers and
requires approximating the likelihood via particle filters, neither of which is necessary
under the proposed approach.

Via Bayes’ Theorem,

p(H |y1:n) ∝ p(y1:n|H)p(H)

where p(y1:n|H) denotes the marginal likelihood under model H , and p(H) denotes
the model prior. We are thus able to approximate the model posterior if we obtain the
marginal likelihood associated with each model.

SMC samplers can be used to approximate the conditional parameter posterior,
p(θ |y1:n, H), and the associated marginal likelihood p(y1:n|H). We can define the
sequence of distributions {πb}B

b=1 as follows:

πb(θ |H) = l(y1:n|θ, H)γb p(θ |H)/Zb, b = 1, . . . , B

Zb =
∫

l(y1:n|θ, H)γb p(θ |H)dθ

where conditioned on a specific model H, p(θ |H) is the prior of the model parameters
and γb is a non-decreasing temperature schedule with γ1 = 0 and γB = 1. We thus
sample initially from π1(θ |H) = p(θ |H) either directly or via importance sampling,
and introduce the effect of the likelihood gradually. We in turn sample and approximate
the target distribution, the parameter posterior p(θ |y1:n, H). As the evaluation of the
likelihood does not require sampling the underlying state sequence, the distributions
defined in the above equation including the parameter posterior, do not require the
sampling of this quantity either. Monte Carlo error is consequently only introduced
through the sampling of the parameters, leading to more accurate estimates (a Rao-
Blackwellised estimate). This is one of many advantages compared to other approaches
such as MCMC, where the underlying state sequence needs to be sampled.

Note that this setup is different to that proposed in Chopin and Pelgrin (2004)
and Chopin (2007), where distributions are defined as πb = p(θ |y1:b) with respect
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to incoming observations. In addition to the use of a different tempering schedule,
the approach of this paper has employed different proposal kernels within the SMC
algorithm. The data tempering approach of Chopin (2007) facilitates online estimation;
such a schedule could also be employed here but the nature of the computations
involved are such that it would not lead to such substantial efficiency gains in our
setting and we have preferred the geometric tempering approach which leads to a
more regular sequence of distributions.

Z B , the normalising constant for the parameter posterior p(θ |y1:n, H) =
p(θ, y1:n|H)/Z B , is more specifically of the following form,

Z B =
∫

l(y1:n|θ, H)p(θ |H)dθ =
∫

p(y1:n, θ |H)dθ = p(y1:n|H).

That is, the normalising constant for the parameter posterior conditioned on model H ,
is the conditional marginal likelihood of interest. We note that here and elsewhere we
have suppressed the dependence upon H from the notation as essentially every quantity
in what follows is dependent upon H ; of course, Z B as described here is independent
of B but the notation is consistent with that used in the algorithmic description and
emphasises that it is the final value in the sequence of normalising constants computed
within the algorithm. Given that we can approximate the marginal likelihood, we can
thus approximate the model posterior as follows:

Algorithm outline:

1. For h = 1, . . . , Hmax,
(a) Approximate p(y1:n|H = h) and p(θ |y1:n, H = h), the marginal likelihood

(see Sect. 3.1) and parameter posterior [see Nam et al. (2012)] conditioned on
h states, via SMC samplers.

2. Approximate p(H = h|y1:n), the model posterior, via the approximation of
p(y1:n|H = h) and model prior p(H).

3.1 Approximating p(y1:n|H)

SMC samplers can also be used to approximate normalising constants, Zb, for the
sequence of distributions, πb, b = 1, . . . , B. SMC samplers work on the principle of
providing weighted particle approximations of distributions through importance sam-
pling and resampling techniques. For a comprehensive exposition of SMC samplers,
we refer the reader to Del Moral et al. (2006). The use of SMC to approximate normal-
ising constants and to conduct model comparison using these approximations is well
known; see Zhou et al. (2013) and references therein. The approach considered here
is essentially the “SMC2” strategy described in Zhou et al. (2013) with the refinement
of analytically integrating out the state sequence.

Using the SMC sampler for HMMs used within Nam et al. (2012) for parameter
estimation and reproduced here as Algorithm 1, the main output of the SMC samplers
algorithm is a series of weighted sample approximations ofπb, namely {θ i

b,W i
b|H}N

i=1,
where N is the number of samples used in the SMC approximation. The approximation
of the ratio between consecutive normalising constants can then be found as:
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Algorithm 1 SMC algorithm for sampling from p(θ |y1:n, H).
Initialisation: Sample from prior, p(θ |H), b = 1

For each i = 1, . . . , N : Sample θ i
1 ∼ p(θ |H) and set W i

1 = 1/N .
for b = 2, . . . , B do

Reweighting: For each i compute:

W i
b = W i

b−1w̃b(θ
i
b−1)∑N

j=1 W j
b−1w̃b(θ

j
b−1)

where w̃b(θ
i
b−1) = πb(θ

i
b−1)

πb−1(θ
i
b−1)

= l(y1:n |θ i
b−1, H)γb

l(y1:n |θ i
b−1, H)γb−1

.

The likelihood, l(y1:n |θ i
b−1, H) can be computed exactly via the Forward–Backward equations (Baum

et al. 1970).
Selection: if E SS < T then Resample.
Mutation:
for each i = 1, . . . , N : Sample θ i

b ∼ Kb(θ
i
b−1, ·) where Kb is a πb invariant Markov kernel.

end for
Output: Clouds of N weighted particles, {θ i

b,W i
b|H}N

i=1, approximating distribution
πb ∝ l(y1:n |θ, H)γb p(θ |H) for b = 1, . . . , B.

Zb

Zb−1
≈ ̂Zb

Zb−1
=

N∑
i=1

W i
b−1w̃b(θ

i
b−1) := W̄b.

This ratio corresponds to the normalising constant for weights at iteration b. Z B ,
can thus be approximated as:

Ẑ B = Ẑ1

B∏
b=2

W̄b

which, remarkably, is an unbiased estimator of the true normalising constant (Del
Moral 2004).

Note that the normalising constant, Zb, corresponds to the the following quantity

πb(θ) = ϕb(θ)

Zb

whereϕb is the unnormalised density. We can thus approximate the marginal likelihood
by simply recording the normalising constants for the weights, W̄b, at each iteration
of Algorithm 1.

There is a great deal of flexibility with the SMC implementation and some design
decisions are necessarily dependent upon the model considered. We have found that a
reasonably straightforward strategy works well for the class of HMMs which we con-
sider. An example implementation, similar to that discussed in Nam et al. (2012), is as
follows: we set γb = b−1

B−1 . As transition probabilities matrices are a fundamental com-
ponent in HMMs, we initialise as follows: consider the transition probability vectors,
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ph = (ph1, . . . , ph H ), h = 1, . . . , H such that P = {p1, . . . , pH }, and sample from

the prior ph
iid∼ Dir(αh), h = 1, . . . , H where αh is a H -long hyperparameter vector.

As HMMs are associated with persistent behaviour, we choose αh which reflects this
type of behaviour. Relatively flat priors are generally implemented for the emission
parameters. Random Walk Metropolis (RWM) proposal kernels are used in this paper
for the mutation step of the algorithm. Details of specific implementation choices are
given for representative examples in the following section.

It is appropriate to note that the choice of proposal distribution will influence,
possibly very substantially, the variance of estimates obtained with the algorithm.
Here we focus on dealing with simple HMMs which arise in a variety of application
areas for which the inherent robustness of the SMC approach allows the use of a
simple random walk proposal with scale fixed a priori (which could be set using a
small pilot run). In more complicated settings it may be necessary to employ more
sophisticated kernels. We have favoured this simple strategy as it requires minimal
implementation effort and mixes well for problems of the type in which we are
interested; in more complex settings this certainly will not be the case. First, we
note that other choices, including the Gibbs sampling strategy of Chopin (2007),
can be readily employed within the tempering algorithm used here. Second, it is
worthwhile noting that adaptive strategies can be readily employed within SMC
algorithms—see Zhou et al. (2013) for an illustration of such a technique within a
Bayesian Model Selection context, including a mixture model example in which the
posterior exhibits many of the same characteristics as that found here and Beskos
et al. (2013) for a recent theoretical analysis demonstrating consistency (although
not necessarily unbiasedness) of the evidence estimates obtained by such adaptive
algorithms.

4 Results

This section applies the methodology to a variety of simulated and real data. All results
have been obtained using the approach of Sect. 3 with the following settings. N = 500
samples and B = 100 iterations have been used to approximate the sequence of
distributions. Additional sensitivity analysis has been performed with respect to larger
values of N and B which we found reduced the Monte Carlo variability of estimates,
as would be expected, but for practical purposes samples of size 500 were sufficient
to obtain good results. αh is a H -long hyperparameter vector full of ones, except in
the h-th position where a 10 is present. This encourages the aforementioned persistent
behaviour in the underlying MC associated with HMMs. The linear tempering schedule
and proposal variances used have not been optimised to ensure optimal acceptance
rates. Promising results are obtained with these simple default settings.

For the model selection results, a uniform prior has been assumed over the model
space in approximating the model posterior. We consider selecting the maximum a
posterior (MAP) model, that is arg maxh=1,...,Hmax p(H = h|y1:n), as this indicates
the strongest evidence for the model favoured by the observed data.

The R language (R Core Team 2013) source code used to produce these numerical
results is available as supplementary material.
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4.1 Simulated data

We consider simulated data generated by two different models; Gaussian Markov
Mixture (GMM) and Hamilton’s Markov Switching Autoregressive model of order r
[HMS-AR(r ), Hamilton (1989)]. These are mathematically defined as follows:

Yt |Xt ∼ N(μXt , σ
2
Xt
) (GMM),

Yt |Xt−r :t ∼ N
(
μXt +

r∑
j=1

φ j (Yt− j − μXt− j ), σ
2
)

(HMS-AR(r )).

The first model has been chosen due to its relative simplicity and connection to mixture
distributions, and the latter is a more sophisticated model which can be used to model
Econometric GNP data (Hamilton 1989) and brain imaging signals (Peng et al. 2011).
HMS-AR models can be seen as an extension of GMM models such that only the
underlying mean switches, the variance is state invariant, and dependency on previous
observations is induced in an autoregressive nature into the mean. For various scenarios
under these two models, we present an example realisation of the data from the same
seed (left column) and the model selection results from 50 data realisations (right
column). Changes in state in the underlying state sequence occur at times 151, 301
and 451. We consider a maximum of five states, Hmax = 5, as we believe that no
more than five states are required to model the business cycle data example we will
consider later, and the simulations are designed to reflect this.

The following priors have been used for the state-dependent mean and precision

(inverse of variance) parameters:μh
iid∼ N(0, 100), 1

σ 2
h

iid∼ Gamma(shape = 1, scale =
1), h = 1, . . . , H . For the HMS-AR model, we consider the partial autocorrela-
tion coefficients (PAC, ψ1) in place of AR parameter, φ1, with the following prior,
ψ1 ∼ Unif(−1, 1). The use of PAC allows us to maintain stationarity amongst the AR
coefficients more efficiently, particularly in higher AR order settings.

Algorithmically, RWM transitions were used with a baseline proposal variances of
10 have been used for each parameter’s mutation step which decrease linearly as a

function of sampler iteration. For example, the proposal variance
σ 2
μ

b = 10/b is used
for μh mutations during iteration b.

4.1.1 Gaussian Markov mixture

Figure 1 displays results obtained for a GMM model under the proposed parallel SMC
methodology. In addition, we compare our model selection results to the sequential
Hidden Markov Model (SHMM) approach as proposed in Chopin (2007)1, and a
generic Reversible Jump Markov Chain Monte Carlo (RJMCMC) method via the
R package RJaCGH (Rueda and Diaz-Uriarte 2011). The model posterior approx-

1 Computer code for which was made available at: http://www.blackwellpublishing.com/rss/Volumes/
Bv69p2.htm.
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imations from both approaches are displayed alongside the parallel SMC posterior
approximations.

The following settings have been used for the SHMM implementation; N =
5000 samples have been used to approximate the sequence of distributions, π ′

b =
p(θ, x1:b|y1:b), Hmax = 5 as the maximum number of states possible and one SMC
replicate per dataset. The same prior settings under the proposed parallel SMC sam-
plers have been implemented. Other default settings in the SHMM code such as model
averaging being performed have been utilised.

The following settings have been utilised for the RJMCMC method which samples
directly from the target distribution p(θ, x1:n, H |y1:n): a 1000 burn-in with 25,000
sampler iterations thereafter. Equivalent or similar prior settings have been utilised;
that is μh ∼ N(0, 102), σh ∼ Unif(0, 5), for h = 1, . . . , Hmax = 5. Other default
settings in the RJMCMC package have been utilised, for example regarding jump
parameter settings.

Figure 1a and b concerns a simple two-state scenario with changing mean and
variance simultaneously. From the data realisation, it is evident that two or more
states are appropriate in modelling such a time series. This is reflected in the model
selection results with a two-state model being significantly the most probable under
the model posterior from all simulations, and always correctly selected under MAP.
However, uncertainty in the number of appropriate states is reflected with probability
assigned to a three-state model amongst the simulations. These results indicate that
the methodology works well on a simple, well-defined toy example. Results concur
with the SHMM and RJMCMC framework; a two-state model is most probable for
all simulations.

Figure 1c and d displays results from a similar three-state model, where different
means correspond to the different states with subtle changes in mean present, for
example around the 151 time point. Such subtle changes are of interest due to the
subtle changes in mean associated in the GNP data considered later. The correct
number of states is significantly the most probable under all simulations, and always
correctly identified under MAP selection. Under the SHMM approach, more variability
is present amongst the simulations which can lead to differing MAP estimates. A three-
state model is largely the most probable, although some approximations display a four-
or two-state model also being the most probable. A two-state model is identified as
the most probable in most simulations under the RJMCMC approach which evidently
does not concur with the truth.

Figure 1e and f displays results from a challenging scenario of changes in both subtle
mean and variance, independently of each other, with four states being present. The
SMC methodology is unable to correctly identify the number of states, with three states
being the most probable and most selected model from the majority of the simulations.
However, given the example data realisation it seems likely that the data does not
strongly support a four-state model. This underestimation of the number of states is
likely to be a consequence of the final two states being adequately explained using
a single state (owing in part to the shortness of the associated observation intervals).
Some probability has been associated with four- and two-state models, however. In
addition the variability in the approximation of the model posterior is more pronounced
for this simulation scenario, a result of the challenging scenario presented. The SHMM
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and RJMCMC also perform similarly, with probability being assigned to two-state and
three-state models and failing to identify the correct model.

Figure 1g and h presents results from a one-state GMM model, a stationary Gaussian
process. Of interest here is whether our methodology is able to avoid overfitting even
though a true HMM is not present. The model selection results highlight that overfitting
is successfully avoided with a one-state model being most probable under the model
posterior for all simulations and always the most selected under MAP. The RJMCMC
method also performs well in this setting. The SHMM method, however, attaches
substantially great probability to a two-state model than to a one-state model.

We also consider comparing the samples approximating the true emission para-
meters under the three methods. We consider the presented data scenarios of Fig. 1a
and c where the proposed SMC and SHMM both concur with respect to the number
of underlying states identified via MAP and the truth. For the RJMCMC method, the
same reasoning applies for the first data scenario (Fig. 1a), although for the second
data scenario (Fig. 1c) we assume the true number of states and SMC and SHMM
MAP estimates for a valid comparison. To perform inference regarding the emission
parameters, an identifiability constraint is enforced to allow for valid comparisons.
This is achieved by re-ordering the states with respect to ascending means post SMC
samplers, that is: μ(i)1 < μ

(i)
2 < .... < μ

(i)
H for each SMC particle [the extent to

which these means are separated relative to the posterior uncertainty will determine
the degree of bias introduced by such an ordering constraint and it is appropriate to
select such constraints ex post to minimise this bias; see Sect. 4.1, Celeux et al. (2000)].

Table 1 displays the averaged posterior means and standard error for each emis-
sion parameter over the 50 simulations. The SMC methodology is more accurate in
estimating the true value, and the standard error is smaller compared to the estimates
provided by SHMM, and on a par with the RJMCMC approach. Note that the RJM-
CMC’s on par performance with the SMC methodology requires 25,000 sampling
iterations, compared to the 2,500 samples across the five SMC samplers under the

Table 1 Averaged posterior means and standard error for each emission parameter over the 50 simulations
for the two data scenarios considered

μ1 μ2 μ3 σ1 σ2 σ3

Truth 0 1 – 1 2 –

SMC 0.00 (0.06) 0.99 (0.14) – 1.00 (0.04) 2.03 (0.10) –

SHMM 0.05 (0.18) 0.94 (0.23) – 1.06 (0.19) 1.97 (0.21) –

RJMCMC 0.00 (0.06) 0.99 (0.15) – 1.01 (0.04) 2.02 (0.09) –

Truth 0 1 5 1 1 1

SMC 0.00 (0.09) 1.00 (0.08) 5.00 (0.08) 1.00 (0.06) 1.01 (0.05) 1.01 (0.06)

SHMM 0.70 (0.19) 1.50 (0.38) 3.51 (33.86) 1.01 (0.06) 1.01 (0.06) 1.07 (0.35)

RJMCMC −0.24 (1.14) 2.34 (0.66) 4.75 (0.44) 1.32 (0.26) 1.29 (0.24) 1.31 (0.19)

We compare the proposed parallel SMC, SHMM and RJMCMC method. Averaged standard errors are
denoted in the parentheses. Results indicate that the SMC outperforms the SHMM and RJMCMC method
with greater accuracy in approximating the true values and smaller standard errors
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proposed approach. In addition, the poor performance of RJMCMC in the second sce-
nario is due to its MAP estimate not coinciding with the true: it experiences relatively
few visits to the three-state model and produces relatively few parameter samples from
this model.

Figure 2 displays box plots of the posterior means (2a and c) and standard error
(2b and d) of the emission parameter estimates for all 50 simulations. The posterior
mean box plots indicate further that the proposed parallel SMC approach is generally
more accurate and centred around the true emission parameter values (horizontal red
dotted lines) for all simulations. The SHMM estimates are generally less precise with
a greater range of values present. Similarly, the standard error box plots indicate
that the standard error is less for the proposed SMC methodology compared to the
SHMM method. These plots also indicate further, on par performance between the
proposed SMC and RJMCMC approach in the first scenario (Fig. 2a and b), and poor
performance by the RJMCMC method in the second scenario (Fig. 2c and d) due to
the aforementioned reason.

The results indicates that in addition to identifying the correct model more often,
more accurate estimates are obtained under the proposed SMC approach, compared to
the existing SHMM and RJMCMC methods. This is presumably a result of the Rao-
Blackwellised estimator provided by the SMC samplers framework, despite more
samples being used under the SHMM approach. As fewer samples are required to
achieve good, accurate estimates, the proposed parallel SMC method would appear
to be more computationally efficient. In addition, while not directly comparable, the
runtime for the SMC samplers approach for one time series was approximately 15 min
to consider the five possible model orders using N = 500 particles [implemented in the
R language (R Core Team 2013)], while it was approximately 90 min for the SHMM
approach with the default N=5000 particles [implemented in MATLAB (MATLAB
2012)]. The RJMCMC methodology takes approximately 30 min to run under the
1000 burn-in and 25,000 sampling iterations setup.

4.1.2 Hamilton’s Markov switching autoregressive model of order r , HMS-AR(r)

Figure 3 shows results from a HMS-AR model with autoregressive order one; we
assume that this autoregressive order is known a priori although the SMC methodology
could easily be extended to consider model selection with respect to higher AR orders.
The following results were obtained using data generated using a two-state model, with
varying autoregressive parameter, φ1, and the same means and variance used for each
scenario (μ1 = 0, μ2 = 2, σ 2 = 1). Interest lies in how sensitive the model selection
results are with respect to φ1. For small values of φ1 (for example φ1 = 0.1, 0.5)
indicating small dependency on previous observations, our methodology works well
with the correct number of true states being highly probable and always the most
selected according to MAP. Relatively little variability exists in the approximation of
the model posterior. However, as φ1 begins to increase and tend towards the unit root,
for example φ1 = 0.9, we observe that more uncertainty is introduced into the model
selection results, with greater variability in the model posterior approximations and
alternative models being selected according to MAP. However, as the data realisation
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in Fig. 3g suggests, the original two-state model is hard to identify and these estimates
simply reflect the associated model uncertainty. These results indicate that the proposed
model selection method works for sophisticated models such as HMS-AR models,
although the magnitude of the autoregressive coefficient may affect results.

4.2 Hamilton’s GNP data

Hamilton’s GNP data (Hamilton 1989) consist of differenced quarterly logarithmic US
GNP between the time periods 1951:II to 1984:IV. Hamilton (1989) and Aston et al.
(2011) model yt , the aforementioned transformed data consisting of 135 observations,
by a two-state HMS-AR(4) model, before performing analysis regarding identification
of starts and ends of recessions. The two underlying states denote “Contraction” and
“Expansion” states to correspond directly with the definition of a recession; two con-
secutive quarters of contraction. Whilst such a model works in practice for recession
inference, we investigate whether a two-state HMS-AR(4) model is indeed appropri-
ate. We assume the autoregressive order of four, is known a priori relating to annual
dependence, and is adequate in modelling the data. We assume a maximum of five
possible states in the HMM framework (Hmax = 5) as we believe that the data arises
from at most five possible states for the particular time period considered.

The following priors have been used: for the means,μh
iid∼ N(0, 10), h = 1, . . . , H ,

precision (inverse variance) 1
σ 2 ∼ Gamma(shape = 1, scale = 1), PAC coefficients

ψ j
iid∼ Unif(−1, 1), j = 1, . . . , 4. A uniform prior has been used over the number of

states H .
Again, Random Walk Metropolis proposals were employed. In all cases, these

univariate proposals employed a baseline proposal variance of 10, and this was allowed
to fall linearly with the tempering parameter.

Figure 4 displays the corresponding dataset and model selection results from 100
different SMC replicates. The model selection results, Fig. 4b, demonstrate that there
is uncertainty in the appropriate number of underlying states with non-negligible prob-
ability assigned to each model considered and variability amongst the SMC replication
results. Some of the alternative models seem plausible, for example a one-state model
given the plot of the data and the additional underlying states modelling the subtle
nuances and features in the data. However, a two-state model is the most frequently
selected under a MAP criterion. In addition, the distribution appears to tail off as
we consider more states, thus indicating that value of Hmax used is appropriate. In
conclusion, the two-state HMS-AR(4) model assumed by Hamilton (1989) does seem
adequate in modelling the data although this is not immediately evident and uncertainty
is associated with the number of underlying states.

Note that the variability in the model selected using MAP between repeated runs
is due to the small but non-negligible sampling variability in the posterior model
probabilities. Additional simulations (not shown) verify that moderate increases in
the SMC sample size (a factor of ten suffices), N , are sufficient to eliminate this
variability.
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(a)

(b)

Fig. 4 Model selection results for Hamilton’s GNP data under the proposed model selection methodology.
a displays the analysed transformed GNP data. b displays the model posterior approximations from 100
SMC replications, and percentage selected under maximum a posterior (MAP)

5 Conclusion and discussion

This paper has proposed a methodology in which the number of underlying states, H ,
in a HMM framework can be determined by the use of parallel sequential Monte Carlo
samplers. Through a combination of well-known individual steps, the method outper-
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forms state-of-the-art competing methods in the restricted setting of HMM model
selection. Conditioned on the number of states, the conditional marginal likelihood
can be approximated in addition to the parameter posterior via SMC samplers. By con-
ditioning on a different number of states, we can obtain marginal likelihoods under
each model. These marginal likelihoods can then be combined with an appropriate
prior to approximate the model posterior, p(H |y1:n), of interest. The use of SMC
samplers within a HMM framework results in an computationally efficient and flex-
ible framework such that the underlying state sequence does not need to be sampled
unnecessarily compared to other methods which reduces Monte Carlo error of para-
meter estimates, and complex design algorithms are not required.

The SMC methodology has been demonstrated on a variety of simulated data and
GNP data and shows good results, even in challenging scenarios where subtle changes
in emission parameters are present. The results on the GNP data have further con-
firmed that a two-state HMS-AR model assumed in previous studies and analysis is
appropriate, although the uncertainty associated with the number of underlying states
has now been captured.

In the settings considered, the method performs at least as well as, and often rather
better than, other state-of-the-art approaches in the literature such as the SHMM
approach proposed in Chopin (2007) and a generic RJMCMC method (Rueda and
Diaz-Uriarte 2011). It is interesting to note that, often when dealing with estimation
in a time series setting an online approach leads to better performance even when the
analysis is being performed in an offline setting. The marginalisation possible with
the proposed method allows for better results to be obtained using a simple direct
approach.

While our methodology can be applied in general situations, we have concentrated
in the simulations and real data analysis on the situation here where H is small. This
is often the case in many applied analyses, and we have shown that the approach
performs well with considerable savings in computational efficiency and Monte Carlo
error.

From a modelling perspective, the model selection results presented in this paper
have assumed a uniform prior over the collection models considered but there would be
no difficulty associated with the use of more complex priors. Perhaps more important
in the context of model selection is the specification of appropriate priors over model
parameters, which can have a significant influence on model selection results: some
sensitivity analysis should always be conducted to assess the impact of parameter
priors on model selection results obtained by any method. From the perspective of
computational efficiency it is desirable to identify a value of Hmax which is sufficiently
large to allow for good modelling of the data but not so large that the computational
cost of evaluating all possible models becomes unmanageable (noting that the cost of
dealing with any given model is, with the proposed method as well as most others, an
increasing function of the complexity of that model).

Finally, we note that, although this paper has focused predominantly on a retro-
spective, offline context, in an online context it would be possible to consider the
sequence of distributions defined by π ′

b(θ |H) ∝ l(y1:b|θ, H)p(θ |H), rather than
πb(θ |H) ∝ l(y1:n|θ, H)γb p(θ |H) in a similar spirit to the SHMM approach but with-
out the simulation of the latent state sequence even as auxiliary variables.
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