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Abstract Semiparametric partially linear varying coefficient models (SPLVCM) are
frequently used in statistical modeling. With high-dimensional covariates both in para-
metric and nonparametric part for SPLVCM, sparse modeling is often considered in
practice. In this paper, we propose a new estimation and variable selection proce-
dure based on modal regression, where the nonparametric functions are approximated
by B-spline basis. The outstanding merit of the proposed variable selection proce-
dure is that it can achieve both robustness and efficiency by introducing an additional
tuning parameter (i.e., bandwidth h). Its oracle property is also established for both
the parametric and nonparametric part. Moreover, we give the data-driven bandwidth
selection method and propose an EM-type algorithm for the proposed method. Monte
Carlo simulation study and real data example are conducted to examine the finite sam-
ple performance of the proposed method. Both the simulation results and real data
analysis confirm that the newly proposed method works very well.
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1 Introduction

Semiparametric partially linear varying coefficient model (SPLVCM) is an extension
of partially linear model and varying coefficient model (Hastie and Tibshirani 1993;
Cai et al. 2000; Fan and Zhang 1999; Fan and Zhang 2000). It allows some coefficient
functions to vary with certain covariates, such as time or age variable. If Y is a response
variable and (U, X, Z) is the associated covariates, then SPLVCM takes the form

Y = XT α(U ) + ZT β + ε, (1)

where U is the so called index variable, without loss of generality, we assume it ranges
over the unit interval [0,1]; α(·) = (α1(·), . . . , αp(·))T is a unknown p-dimensional
coefficient vector; β = (β1, . . . , βd)T is a d-dimensional vector of unknown regres-
sion coefficients; Z = (Z1, . . . , Zd)T ∈ R

d and X = (X1, . . . , X p)
T ∈ R

p are two
vector predictors; ε is random error with mean zero.

SPLVCM retains the virtues of both parametric and nonparametric modelling. It is
a very flexible model and not only the linear interactions as in parametric model are
considered but also general interactions between the index variable U and these covari-
ates are explored nonparametrically. Many papers have been focused on SPLVCM. For
example, Li et al. (2002) introduced a local least-square method with a kernel weight
function for SPLVCM; Zhang et al. (2002) studied SPLVCM based on local polynomial
method (Fan and Gijbels 1996); Lu (2008) discussed the SPLVCM in the framework
of generalized linear model based on two step estimation procedure; Xia et al. (2004)
investigated the efficient estimation problem of parametric part for SPLVCM; Fan and
Huang (2005) presented the profile likelihood inferences for SPLVCM based on profile
least-square technique. As an extension of Fan and Huang (2005), a profile likelihood
estimation procedure was developed in Lam and Fan (2008) under the generalized
linear model framework with a diverging number of covariates.

However, all the above mentioned papers were built on either least square or like-
lihood based methods, which are expected to be very sensitive to outliers and their
efficiency may be significantly reduced for many commonly used non-normal errors.
Due to the well-known advantages of quantile regression, researchers set foot on
SPLVCM in the framework of quantile regression method. For example, Wang et al.
(2009) considered quantile regression SPLVCM by B-spline and developed rank score
test; Cai and Xiao (2012) presented the model based on local polynomial smoothing.
Although the QR based method is a robust modeling tool, it has limitations in terms
of efficiency and uniqueness of estimation. Specially, since the check loss function
for QR is not strictly convex, its estimation may not necessarily be unique in general.
Moreover, the quantile method may lose some efficiency when there are no outliers
or the error distribution is normal.

Recently, Yao et al. (2012) investigated a new estimation method based on local
modal regression in a nonparametric model. A distinguishing characteristic of their
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proposed method is that it introduces an additional tuning parameter that is automati-
cally selected using the observed data in order to achieve both robustness and efficiency
of the resulting estimate. Their estimation method not only is robust when the data sets
include outliers or heavy-tail error distribution but also as asymptotically efficient as
least square based method when there are no outliers and the error distribution follows
normal distribution. In other words, their proposed estimator is almost as efficient as
an omniscient estimator. This fact motivates us to extend the modal regression method
to SPLVCM by borrowing the idea of Yao et al. (2012).

In practice, there are often many covariates in both in parametric part and nonpara-
metric part of the model (1). With high-dimensional covariates, sparse modeling is
often considered superior, owing to enhanced model predictability and interpretability.
Various powerful penalization methods have been developed for variable selection in
parametric models, such as the Lasso (Tibshirani 1996), the SCAD (Fan and Li 2001),
the elastic net (Zou and Hastie 2005), the adaptive lasso (Zou 2006), the Dantzig selec-
tor (Candes and Tao 2007), one step sparse estimation (Zou and Li 2008), more recently
the MCP (Zhang 2010), etc. Similar to linear models, variable selection for semipara-
metric regressions is equally important and even more complex because model (1)
involves both nonparametric and parametric parts.

There are only a few papers on variable selection in semiparametric regression mod-
els. Li and Liang (2008) considered the problem of variable selection for SPLVCM,
where the parametric components are identified via the smoothed clipped absolute
deviation (SCAD) procedure and the varying coefficients are selected via the general-
ized likelihood ratio test. Xie and Huang (2009) discussed SCAD-penalized regression
in partially linear models, which is a special case of SPLVCM. Zhao and Xue (2009)
investigated a selection procedure via SCAD which can select parametric components
and nonparametric components simultaneously based on B-spline for SPLVCM. In
addition, Leng (2009) proposed a simple approach of model selection for varying
coefficient models and Lin and Yuan (2012) studied the variable selection of the
generalized partially linear varying coefficient model based on basic function approx-
imation. More importantly, Kai et al. (2011) introduced a robust variable selection
method for SPLVCM based on composite quantile regression and local ploynomial
method, but they only considered variable selection for parametric part of model (1).
The main goal of this paper is to develop an effective and robust estimation and vari-
able selection procedure based on modal regression to select significant parametric
and nonparametric components in model (1), where the nonparametric components
are approximated by B-spline. The proposed procedure possesses the oracle property
in the sense of Fan and Li (2001) and the computation time is very fast. An important
contribution of this paper is to develop a newly robust and efficient variable selection
for SPLVCM.

The outline of this paper is as follows. In Sect. 2, following the idea of modal
regression method, we describe a new estimation method for SPLVCM, where the
varying coefficient functions are approximated by B-spline. Then, an efficient and
robust variable selection procedure via SACD penalty is developed, which can select
both the significant parametric components and nonparametric components in Sect. 3.
Meanwhile, we also establish its oracle property for both parametric and nonparametric
part. In Sect. 4, we give the details of bandwidth selection both in theory and in practise
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and propose an EM-type algorithm for the variable selection procedure. Moreover, we
develop the CV method to select the optimal knots of B-spline approximation and
optimal adaptive penalty parameter. In Sect. 5, we conduct simulation study and real
data example to examine the finite-sample performance of the proposed procedures.
Finally, some concluding remarks are given in Sect. 6. All the regularity conditions
and the technical proofs are contained in the Appendix.

2 Robust estimation method

2.1 Modal regression

As a measure of center, the mean, the median and the mode are three important
numerical characteristics of error distribution. Among them, median and mode have
the common advantage of robustness, which can be resistent to outliers. Moreover,
since the modal regression focuses on the relationship for majority of the data and
summaries the “most likely” conditional values, it can provide more meaningful point
prediction and larger coverage probability for prediction than others when the error
density is skewed if the same length of short intervals, centered around each estimate,
are used.

For the linear regression model yi = xT
i β + εi , Yao and Li (2011) proposed to

estimate the regression parameter β by maximizing

Q(β) ≡ 1

n

n∑

i=1

φh

(
yi − xT

i β
)
, (2)

where φh(t) = h−1φ(t/h), φ(t) is a kernel density function and h is a bandwidth.
To see why (2) can be used to estimate the modal regression, taking β = β0 as the

intercept term only in linear regression, then (2) is simplified to

Q(β0) ≡ 1

n

n∑

i=1

φh(yi − β0). (3)

As a function of β0, Qh(β0) is the kernel estimate of the density function of y.
Therefore, the maximizer of (3) is the mode of the kernel density function based
on y1, . . . , yn . When n → ∞ and h → 0, the mode of kernel density function will
converge to the mode of the distribution of y.

For the univariate nonparametric regression model yi = m(xi ) + εi , Yao et al.
(2012) proposed to estimate the nonparametric function m(x) using local polynomial
by maximizing

Q(θ) ≡ 1

n

n∑

i=1

Kh̄(xi − x)φh

⎛

⎝yi −
p∑

j=0

θ j (xi − x) j

⎞

⎠, (4)
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where Kh̄(·) = K (·/h̄)/h̄ is a rescaled kernel function of K (·) with bandwidth h̄ for
estimating nonparametric functions and h is another bandwidth setting for φ(·), and
θ j = m( j)(x)/j !.

Comparing with other estimation methods, modal regression treats −φh(·) as a loss
function instead of quadratic loss function for least square and check loss function for
quantile regression. It provides the “most likely” conditional values rather than the
conditional average or quantile. However, despite the usefulness of modal regression,
it has received little attention in the literatures. Lee (1989) used the uniform kernel
and fixed h in (3) to estimate the modal regression. Scott (1992) proposed it, but little
methodology is given on how to actually implement it. Recently, Yao and Li (2011)
and Yao et al. (2012) systematically studied the modal regression for linear model and
univariate nonparametric regression model. The main goal of this paper is to extend
the modal regression to semiparametric models and discuss the variable selection for
SPLVCM to obtain robust and efficient sparse estimator.

2.2 Estimation method for SPLVCM

Suppose that {Xi , Zi , Ui , Yi }n
i=1 is an independent and identically distributed sample

from the model (1). Since α j (U )( j = 1, . . . , p) in (1) are some unknown nonpara-
metric functions, following the method of Yao et al. (2012), we can use local linear
polynomial to approximate α j (U ) for U in a neighborhood of u, i.e.,

α j (U ) ≈ α j (u) + α′
j (u)(U − u) � a j + b j (U − u), j = 1, . . . , p.

Then we can obtain α̂(u) and β̂ by maximizing of local modal function

1

n

n∑

i=1

φh

(
Yi − XT

i (a + b(Ui − u)) − ZT
i β
)

Kh̄(Ui − u) (5)

with respect to a, b and β, where a = (a1, . . . , ap)
T and b = (b1, . . . , bp)

T .
However, there are two criticisms of local polynomial estimation for semipara-

metric models. Firstly, noting that the parameter β is a global parameter, in order to
obtain its optimal

√
n-consistent estimation, we need two-step estimation and under

smoothing technique in the first-step estimation; Secondly, the computation task for
local polynomial estimation is very heavy especially for high dimensional SPLVCM.

To avoid these drawbacks of local polynomial estimation, we propose to use basis
function approximations for nonparametric functions. More specially, let B(u) =
(B1(u), . . . , Bq(u))T be B-spline basis functions with the order of h̄, where q =
K + h̄ +1, and K is the number of interior knots. Then α j (u) can be approximated by

α j (u) ≈ B(u)T γ j , j = 1, . . . , p.

Then, we obtain β̂ and γ̂ by maximizing

Q(γ ,β) =
n∑

i=1

φh

(
Yi − WT

i γ − ZT
i β
)
, (6)
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with respect to β and γ , where Wi = Ip ⊗ B(Ui ) · Xi and γ = (γ T
1 , . . . , γ T

p )T .
According to Yao et al. (2012), the choice of φ(·) is not very crucial. For ease of
computation, we use the standard normal density for φ(t) throughout this paper. The
bandwidth h in φh(·) plays the role of the bandwidth, which determines the degree of
robustness of the estimator.

3 Variable selection for SPLVCM

In this section, we develop a robust and efficient variable selection procedure for
SPLVCM and prove its oracle property via SCAD penalty.

Given a > 2 and λ > 0, the SCAD penalty at θ is

pλ(θ) =
⎧
⎨

⎩

λ|θ |, |θ | ≤ λ,

−(θ2 − 2aλ|θ | + λ2)/[2(a − 1)], λ < |θ | ≤ aλ,

(a + 1)λ2/2, |θ | > aλ.

The SCAD penalty is continuously differentiable on (−∞, 0)∪(0,∞) but singular
at 0. Its derivative vanishes outside [−aλ, aλ]. As a consequence, SCAD penalized
regression can produce sparse solutions and unbiased estimates for large coefficients.
More details of the penalty can be found in Fan and Li (2001).

We define the penalized estimation for SPLVCM based on modal regression as

L(γ ,β) = Q(γ ,β) − n
p∑

j=1

pλ1 j

(
‖B(·)T γ j‖

)
− n

d∑

k=1

pλ2k (|βk |), (7)

where λ1 j ( j = 1, . . . , p) and λ2k(k = 1, . . . , d) are penalized parameters for the j th
varying coefficient function and the kth parameter component, respectively.

Note that the regularization parameters for the penalty functions and in (7) are not
necessarily the same for γ j , j = 1, . . . , p and βk, k = 1, . . . , d, which can provide
with flexibility and adaptivity. By this adaptive strategy, the tuning parameter for zero
coefficient could be larger than that for nonzero coefficient, which can simultaneously
unbiasedly estimate large coefficients and shrink the small coefficients toward zero.
By maximizing the above objective function with proper penalty parameters, we can
get sparse estimators and hence conduct variable selection.

Let β̂ and γ̂ be the solution by maximizing (7). Therefore, the estimator of α j (u)

can be obtained by α̂ j (u) = B(u)T γ̂ j , j = 1, . . . , p. We call β̂ and α̂ j (u) as the
penalized estimator of β and α j (u) based on spline and robust modal regression (SMR)
for SPLVCM. Next, we discuss the asymptotic properties of the resulting penalized
estimators. Denote α0(·) and β0 to be the true values of α(·) and β, respectively.
Without loss of generality, we assume that α j0(·) = 0, j = s1 + 1, . . . , p, and
α j0(·), j = 1, . . . , s1 are all nonzero components of α0(·). Furthermore, we assume
that βk0 = 0, k = s2 + 1, . . . , d, and βk0, k = 1, . . . , s2 are all nonzero components
of β0. Let
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F(x, z, u, h) = E
{
φ′′

h (ε)|X = x, Z = z, U = u
}

and

G(x, z, u, h) = E
{
φ′

h(ε)2|X = x, Z = z, U = u
}

.

Denote

an = max
j,k

{
|p′

λ1 j
(‖γ j0‖H )|, |p′

λ2k
(|βk0|)| : γ j0 = 0, βk0 = 0

}

and

bn = max
j,k

{
|p′′

λ1 j
(‖γ j0‖H )|, |p′′

λ2k
(|βk0|)| : γ j0 = 0, βk0 = 0

}
,

where ‖γ j0‖H =
√

γ T
j0 Hγ j0, H = ∫ 1

0 B(u)BT (u)du, γ j0 is the best approximation

coefficient of α j (u) in the B-spline space. Then, we have the following Theorem 1
which gives the consistency of the proposed penalized estimators.

Theorem 1 Suppose that the regularity conditions (C1)–(C8) in the Appendix hold
and the numbers of knots K = O(n1/(2r+1)). If bn → 0, then we have

(i) ‖β̂ − β0‖ = Op

(
n

−r
2r+1 + an

)
,

(ii) ‖α̂ j (·) − α j0‖ = Op

(
n

−r
2r+1 + an

)
, j = 1, . . . , p,

where r is defined in the condition (C2) in the Appendix.

Let λmax = max j,k{λ1 j , λ2k} and λmin = min j,k{λ1 j , λ2k}. Under some conditions,
we can show that the consistent estimators in Theorem 1 possess the sparse property,
which is stated as follows.

Theorem 2 Suppose that the regularity conditions (C1)–(C8) in the Appendix hold
and the numbers of knots K = O(n1/(2r+1)). If λmax → 0 and n

r
2r+1 λmin → ∞ as

n → ∞, then with probability tending to 1, β̂ and α̂ j (·) satisfy

(i) β̂k = 0, k = s2 + 1, . . . , d,
(ii) α̂ j (·) = 0, j = s1 + 1, . . . , p.

Remark 1 For SCAD penalty function, we know that if λmax → 0 as n → ∞, then
an = 0. Therefore, from Theorems 1 and 2, it is clear that, by choosing proper tuning
parameters, our proposed variable selection method is consistent and the estimators
of nonparametric components achieve the optimal convergence rate as if the subset of
true zero coefficients is already known (Stone 1982).

Next, we show that the estimators for nonzero coefficients in the parametric com-
ponents have the same asymptotic distribution as that based on the oracle model.
To demonstrate this, we need more notations to present the asymptotic property of
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the resulting estimators. Let γ a = (γ T
1 , . . . , γ T

s1
)T , βa = (β1, . . . , βs2)

T , and γ a0
and βa0 be the true values of γ a and βa , respectively. Corresponding covariates are
denoted by Wa and Za . In addition, denote

� = E
(
φ′′

h (ε)WaWT
a

)
= E

(
F(X, Z, U, h)WaWT

a

)

and

	 = E
(
φ′′

h (ε)WaZT
a

)
= E

(
F(X, Z, U, h)WaZT

a

)
.

Then we have the following theorem.

Theorem 3 Under the conditions of Theorem 2, we have

√
n
(
β̂a − βa0

)
d−→ N (0, 
−1�
−1), (8)

where � = E(G(X, Z, U, h)ŽaŽT
a ), 
 = E(F(X, Z, U, h)ŽaŽT

a ), Ža = Za −
	T �−1Wa.

Let α̃ j (u) = BT (u)γ j0 for j = 1, . . . , s1, denote α̃a(u) = (α̃1(u), . . . , α̃s1(u))T

and α̂a(u) = (α̂1(u), . . . , α̂s1(u))T , then the following result holds.

Theorem 4 Under the conditions of Theorem 2, for any vector cn with dimension
q × s1 and components not all 0, then we have

{
cT

n var(α̂a(u))cn

}−1/2
cT

n

(
α̂a(u) − α̃a(u)

) d−→ N (0, 1). (9)

The proofs of Theorems 1–4 are given in the Appendix.

4 Bandwidth selection and estimation algorithm

In this section, we first discuss the selection of bandwidth both in theoretical and in
practice. Then, we develop estimation procedure for SPLVCM based on MEM algo-
rithm (Li et al. 2007) and LQA algorithm (Fan and Li 2001). Note that the bandwidth
selection discussing in this section is not the same as the bandwidth selection in local
polynomial fitting for SPLVCM (Li and Palta 2009).

4.1 Optimal bandwidth

In this subsection, we give the optimal bandwidth in theoretical. For simplicity, we
assume that the error variable independent of X, Z and U , based on (8) and the
asymptotic variance of least-square B-spline estimator (LSB) given in Zhao and Xue
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(2009), we can show that the ratio of the asymptotic variance of the SMR estimator
to that of the LPB estimator is given by

r(h) � G(h)F−2(h)

σ 2 , (10)

where σ 2 = E(ε2), F(h) = E{φ′′
h (ε)} and G(h) = E{φ′

h(ε)}2. The ratio r(h) depends
on h only, and it plays an important role in efficiency and robustness of estimators.
Therefore, the ideal choice of h is

hopt = argminhr(h) = argminhG(h)F−2(h). (11)

From (11), we can see that hopt does not depend on n and only depends on the condi-
tional error distribution of ε.

Remark 2 Based on the expression of the ratio r(h), for all h > 0, we can prove that
infh r(h) = 1 if the error follows normal distribution, and infh r(h) ≤ 1 regardless of
the error distribution. Hence, SMR is better than or at least as well as LSB. In particular,
if the error distribution has heavy tails or has large variance, the performance of SMR
is much better than LSB.

4.2 Bandwidth selection in practice

In practice, we do not know the error distribution, hence we cannot obtain F(h) and
G(h). An feasible method is to estimate F(h) and G(h) by

F̂(h) = 1

n

n∑

i=1

φ′′
h (ε̂i ) and Ĝ(h) = 1

n

n∑

i=1

{
φ′

h(ε̂i )
}2

,

respectively.
Then r(h) can be estimated by r̂(h) = Ĝ(h)F̂(h)−2/σ̂ 2, where ε̂i = Yi −

XT
i α̂(Ui ) − ZT

i β̂ and α̂(·), β̂ and σ̂ are estimated based on the pilot estimates.
Then, using the grid search method, we can easily find hopt to minimize r̂(h).
According to the advise of Yao et al. (2012), the possible grids points for h can
be h = 0.5σ̂ × 1.02 j , j = 0, 1, . . . , k, for some fixed k (such as k = 50 or 100).

4.3 Algorithm

In this subsection, we extend the modal expectation-maximization (MEM) algorithm
(Li et al. 2007) and local quadratic algorithm (LQA, Fan and Li 2001) to maximize
(7) for SPLVCM. Here, we assume φ(·) is the density function of a standard normal
distribution.

Because L(γ ,β) is irregular at the origin. Directly maximizing (7) may be difficult.
Following Fan and Li (2001), we first locally approximate the penalty function pλ(·)
by a quadratic function at every step of iteration. More specifically, in a neighborhood
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of a given nonzero ω0, an approximation of the penalized function at value ω0 can be
given by

pλ(|ω|) ≈ pλ(|ω0|) + 1

2

{
p′
λ(|ω0|)/|ω0|

} (
ω2 − ω2

0

)
, for ω ≈ ω0.

Hence, if initial estimators β
(0)
k and γ

(0)
j are very close to 0, then set β̂k = 0 and

γ̂ j = 0; otherwise, for the given initial value β
(0)
k with |β(0)

k | > 0, k = 1, . . . , d, and

γ
(0)
j with ‖γ (0)

j ‖H > 0, j = 1, . . . , p, we can obtain

pλ2k (|βk |) ≈ pλ2k

(
|β(0)

k |
)

+ 1

2

p′
λ2k

(
|β(0)

k |
)

|β(0)
k |

(
|βk |2 − |β(0)

k |2
)

and

pλ1 j (‖γ j‖H ) ≈ pλ1 j

(
‖γ (0)

j ‖H

)
+ 1

2

p′
λ1 j

(
‖γ (0)

j ‖H

)

‖γ (0)
j ‖H

(
‖γ j‖2

H − ‖γ (0)
j ‖2

H

)
.

Denote θ = (βT , γ T )T , Z∗
i = (ZT

i , WT
i )T and set m = 0. Let


λ(θ
(m)) = diag

⎧
⎨

⎩
p′
λ21

(
|β(m)

1 |
)

|β(m)
1 |

, . . . ,
p′
λ2d

(
|β(m)

d |
)

|β(m)
d |

,
p′
λ11

(
‖γ (m)

1 ‖H

)

‖γ (m)
1 ‖H

H, . . . ,

p′
λ1p

(
‖γ (m)

p ‖H

)

‖γ (m)
p ‖H

H

⎫
⎬

⎭.

With the aid of LQA and MEM algorithm, we can obtain the sparse estimators as
follows:

Step 1 (E-step): We first update π(i |θ (m)) by

π(i |θ (m)) =
φh

(
Yi − Z∗T

i θ (m)
)

∑n
i=1 φh

(
Yi − Z∗T

i θ (m)
) ∝ φh

(
Yi − Z∗T

i θ (m)
)

, i = 1, . . . , n,

Step 2 (M-step): Then, we update θ obtain θ̂
(m+1)

θ̂
(m+1) = argmaxθ

n∑
i=1

{
π(i |θ (m))logφh

(
Yi − Z∗T

i θ (m)
)}

+ n
2 θT 
λ(θ

(m))θ

=
(

Z∗T W Z∗ + n
λ(θ
(m))

)−1
Z∗T W Y,

where W is an n × n diagonal matrix with diagonal elements π(i |θ (m))s.
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Step 3: Iterate the E-step and M-step until converges, and denote the final estimator
of θ as θ̂ . Then β̂ = (Id×d , 0d×pq)θ̂ , and γ̂ = (0pq×d , Ipq×pq)θ̂ .

Similar to the EM algorithm, the MEM algorithm for SPLVCM within each Step
also consists of two steps: E-step and M-step. The ascending property of the proposed
MEM algorithm can be established along the lines of the study of Li et al. (2007).

Note that the converged value may depend on the starting point as the usual EM
algorithms, and there is no guarantee that the MEM algorithm will converge to the
global optimal solution. Therefore, it is prudent to run the algorithm from several
starting-points and choose the best local optima found.

4.4 Selection of tuning parameter

To implement the above estimation procedure, the number of interior knots K , and
the tuning parameters a, λ1 j ’s and λ2k’s in the penalty functions should be chosen
appropriately. According to the suggestion of Fan and Li (2001), the choice of a = 3.7
performs well in a variety situations. Hence, we also use this value throughout this
paper. We note that there are total (p + d)-dimension penalty parameters (λ1 j ’s and
λ2k’s) need to be selected. To reduce the computation task, we can use following
strategy to set

λ1 j = λ

‖γ̂ (0)
j ‖H

and λ2k = λ

|β̂(0)
k |

, (12)

where γ̂
(0)
j and β̂

(0)
j are the initial estimators of γ j and βk , respectively, using unpe-

nalized estimator. Then we can use the following two-dimensional cross-validation
score maximization problem

CV(K , λ) =
n∑

i=1

φh

(
Yi − WT

i γ̂
(−i) − ZT

i β̂
(−i))

, (13)

where β̂
(−i)

and γ̂
(−i) are the solution of (7) after deleting the i th subject. Then, the

optimal Kopt and λopt are obtained by

(Kopt, λopt) = max
K ,λ

CV(K , λ).

Note that the above strategy of selecting tuning parameters, in some sense, is the
same rationale behind the adaptive Lasso (Zou 2006), and from our simulation expe-
rience, we found that this method performs well.

5 Numerical properties

In this section, we conduct simulation study to assess the finite-sample performance of
the proposed procedures and illustrate the proposed methodology on a real-world data
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set in a health study. In all examples, we use the kernel function to be the Gaussian
kernel.

5.1 Simulation study

In this example, we generate the random samples from the model

Yi = XT
i α(Ui ) + ZT

i β + εi ,

where α(u) = (α1(u), . . . , α8(u))T , α1(u) = 2 sin(2πu), α2(u) = 8u(1 − u) and
α j (u) = 0, j = 3, . . . , 10; β = (2.5, 1.2, 0.5, 0, 0, 0, 0, 0, 0, 0)T ; The covari-
ate vector (XT

i , ZT
i )T is normally distributed with mean 0, variance 1 and cor-

relation 0.8|k− j |, 1 ≤ k, j ≤ p + d, p = d = 10; The index variable Ui is
simulated from U [0, 1] and independent of (XT

i , ZT
i )T . In our simulations, we con-

sidered the following five different error distributions: N (0, 1), t-distribution with
freedom degree 3: t (3), Laplace distribution: Lp(0, 1), Laplace mixture distribution:
0.8Lp(0, 1) + 0.2Lp(0, 5) and mixture of normals: 0.9N (0, 1) + 0.1N (0, 10) and
error εi is independent of all covariates. The sample size n is set to be 200, 400 and
600. A total of 400 simulation replications are conducted for each model setup. In all
simulations, we use cubic B-spline basis to approximate varying coefficient functions
and the optimal knots and penalty parameter obtained by CV method in Sect. 4.4.

The performance of the nonparametric estimator α̂(·) will be assessed using the
square root of average square errors (RASE)

RASE =
{

n−1
grid

ngrid∑

k=1

‖α̂(uk) − α(uk)‖2

}1/2

,

where {uk, k = 1, . . . , ngrid} are the grid points at which the functions {α̂ j (·)} are
evaluated. The generalized mean square error (GMSE) as defined in Li and Liang
(2008) is used to evaluate the performance for parametric part

GMSE = (β̂ − β)T E(ZZT )(β̂ − β).

The medians of RASE and GMSE are listed in Table 1. To examine the robustness
and efficiency of the proposed procedure (SMR), we also compare the simulation
results with least square B-spline estimator (LSB) (Zhao and Xue 2009). Column “CN”
shows the average number of zero coefficients correctly estimated to be zero for varying
coefficient functions, and Column “CP” for parametric part. In the column labeled
“IN”, we present the average number of nonzero coefficients incorrectly estimated to
be zero for varying coefficient part, and “IP” for parametric part.

Several observations can be made from the Table 1. Firstly, for the given sample size,
penalized SMR estimator performs obviously better than penalized LSB estimator
method especially for non-normal error distribution. Secondly, for the given error
distribution, the performances of SMR estimator become better and better when the

123



Partially linear varying coefficient modal regression model 177

Table 1 Simulation results with different error distributions

n Method RASE GMSE CN IN CP IP

N (0, 1)

200 LSB 0.1861 (0.0579) 0.0158 (0.0160) 8.0000 0.0025 6.2850 0

SMR 0.2286 (0.1080) 0.0312 (0.0660) 7.9925 0 6.8000 0.0025

400 LSB 0.1238 (0.0400) 0.0070 (0.0069) 8.0000 0 6.4150 0

SMR 0.1257 (0.0423) 0.0073 (0.0072) 7.9975 0 6.8775 0

600 LSB 0.1001 (0.0318) 0.0041 (0.0050) 8.0000 0 6.5375 0

SMR 0.1012 (0.0322) 0.0043 (0.0054) 8.0000 0 6.8900 0

t (3)

200 LSB 0.3026 (0.1224) 0.0451 (0.0632) 7.9400 0.0175 6.2350 0

SMR 0.2879 (0.1234) 0.0425 (0.0686) 7.9400 0.0100 6.7550 0

400 LSB 0.2015 (0.0829) 0.0216 (0.0308) 7.9375 0 6.4050 0

SMR 0.1631 (0.0547) 0.0128 (0.0147) 7.9825 0 6.7950 0

600 LSB 0.1770 (0.0684) 0.0131 (0.0153) 7.9775 0 6.5025 0

SMR 0.1296 (0.0440) 0.0079 (0.0084) 7.9900 0 6.8575 0

Laplace Lp(0, 1)

200 LSB 0.2550 (0.0881) 0.0303 (0.0336) 7.9975 0.0125 6.1925 0

SMR 0.2545 (0.0906) 0.0292 (0.0363) 7.9825 0.0050 6.7175 0

400 LSB 0.1741 (0.0552) 0.0150 (0.0155) 8.0000 0 6.2700 0

SMR 0.1490 (0.0574) 0.0111 (0.0127) 7.9850 0 6.8475 0

600 LSB 0.1467 (0.0456) 0.0085 (0.0084) 8.0000 0 6.5300 0

SMR 0.1198 (0.0428) 0.0063 (0.0068) 7.9850 0 6.8500 0

Laplace mixture 0.8Lp(0, 1) + 0.2Lp(0, 5)

200 LSB 0.7083 (0.3371) 0.2032 (0.2891) 6.2050 0.1950 6.2175 0.0325

SMR 0.3030 (0.1423) 0.0471 (0.0697) 7.8475 0.0050 6.7325 0.0075

400 LSB 0.4714 (0.2103) 0.0865 (0.1394) 6.3675 0.0225 6.3925 0

SMR 0.1802 (0.0607) 0.0159 (0.0167) 7.9775 0 6.8175 0

600 LSB 0.3568 (0.1485) 0.0531 (0.0667) 6.5850 0 6.4950 0

SMR 0.1457 (0.0462) 0.0088 (0.0090) 7.9825 0 6.8075 0

Normal mixture 0.9N (0, 1) + 0.1N (0, 10)

200 LSB 0.6290 (0.3246) 0.1900 (0.2867) 6.3875 0.2275 6.5325 0.0025

SMR 0.2156 (0.0764) 0.0272 (0.0270) 7.9875 0 6.8025 0

400 LSB 0.4364 (0.1950) 0.0751 (0.0869) 6.4925 0.0150 6.6525 0

SMR 0.1446 (0.0409) 0.0083 (0.0098) 7.9975 0 6.8325 0

600 LSB 0.3532 (0.1502) 0.0498 (0.0599) 6.6025 0 6.6800 0

SMR 0.1171 (0.0364) 0.0057 (0.0057) 7.9975 0 6.8450 0

The estimated standard deviations for RASE and GMSE based on 400 replications are given in the paren-
theses

sample size increases. Thirdly, even for the normal error case, the SMR seems to
perform no worse than the LSB. Especially, when sample size n = 600, there is
almost no efficiency lost of RASE and GMSE compared with LSB or even slightly
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better in term of variable selection. Moreover, it is very interesting to see that the
superiority of SMR become more and more obvious when the error follows mixture
distribution and sample size is large. The main reason for this is that the larger of
the sample size, the more likely the data contain outliers, and when there are some
very large outliers in the data, the modal regression will put more weight to the “most
likely” data around the true value, which lead to robust and efficient estimator.

To conclude, the penalized SMR estimator is better than or at least as well as LSB
estimator.

5.2 Real data analysis

As an illustration, we apply the proposed procedures to analyze the plasma beta-
carotene level data set collected by a cross-sectional study (Nierenberg et al. 1989).
Research has shown that there is a direct relationship between beta-carotene and
cancers such as lung, colon, breast, and prostate cancer (Fairfield and Fletcher 2002).
This data set consists of 315 observations. The data can be downloaded from the StatLib
database via the link “lib.stat.cmu.edu/datasets/Plasma_Retinol”. Brief description of
the variable is shown in Table 2.

Of interest is the relationships between the plasma beta-carotene level and the fol-
lowing covariates: sex, smoking status, quetelet index (BMI), vitamin use, number
of calories, grams of fat, grams of fiber, number of alcoholic drinks, cholesterol and
age. We fit the data using SPLVCM with U being “Age”. The covariates “smoking
status” and “vitamin use” are categorical variables and are thus replaced with dummy
variables. We take these two dummy variables and other two discrete variables “sex”
and “alcohol” as covariates of parametric part. All of the other covariates are stan-
dardized as the covariates of varying coefficient part. The index variable U is rescaled

Table 2 Plasma beta-carotene level data

Number Variable Description

1 AGE Age (years)

2 SEX Sex (1 = male, 2 = female)

3 SMOKSTAT Smoking status (1 = never, 2 = former, 3 = current smoker)

4 QUETELET Quetelet (weight/(height2))

5 VITUSE Vitamin use (1 = yes, fairly often, 2 = yes, not often, 3 = no)

6 CALORIES Number of calories consumed per day

7 FAT Grams of fat consumed per day

8 FIBER Grams of fiber consumed per day

9 ALCOHOL Number of alcoholic drinks consumed per week

10 CHOLESTEROL Cholesterol consumed (mg/day)

11 BETADIET Dietary beta-carotene consumed (mcg/day)

12 RETDIET Dietary retinol consumed (mcg/day)

13 BETAPLASMA Plasma beta-carotene (ng/ml)

14 RETPLASMA Plasma retinol (ng/ml)
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into interval [0,1]. We applied the SMR and LSB estimators to fit the SPLVCM. We
randomly split the data into two parts, where 2/3 observations used as a training data
set to fit the model and select significant variables, and the remaining 1/3 observations
as test data set to evaluate the predictive ability of the selected model. The prediction
performance is measured by the median absolute prediction error (MAPE), which is
the median of {|Y test

i − Ŷ test
i |, i = 1, . . . , 105}.

Beside the SCAD penalty, to see the effect of variable selection result for SMR,
we also consider other two penalty functions, i.e. LASSO and MCP. We found that
both SMR and LSB estimators select all the variables in varying coefficient part for
three different penalty. The estimations of varying coefficient functions for SMR with
SCAD penalty are depicted in Fig. 1. The resulting estimations for parametric part
and MAPE together with the optimal bandwidth and penalized parameter are given
in Table 3 (the estimated standard deviance for parametric component is given in the
brackets).

As we can see from Table 3, the performances of the three different penalty are
very similar and SMR estimator is sparser than LSB method. Meanwhile, for all three
penalties, the MAPE of SMR is smaller than LSB, which indicate that SMR model
has better prediction performance than LSB model for the plasma beta-carotene level
data. Because, for this data, the response Y is left-skewed, which can be seen in
Fig. 1h. In addition, to confirm whether the selected variables in nonparametric part
are truly relevant, we found that none of their 95 % pointwise confidence intervals
(the dot-dashed lines) can completely well cover 0, which can see from the Fig. 1a–g.

Remark 3 Based on the result of Theorem 4, we can construct pointwise confidence
intervals for each varying coefficient function if we know var(α̂ j (u)) or its estimate
v̂ar(α̂ j (u)). In practice, because var(α̂ j (u)) is unknown, one can use sandwich formula
to obtain v̂ar(α̂ j (u)). However, the sandwich formula for v̂ar(α̂ j (u)) is very compli-
cated and it includes many approximations, sometimes the results of the confidence
intervals are not very well. Here, we obtain the 95 % pointwise confidence intervals
for each nonzero varying coefficient function using Bootstrap resampling method.
With B independent bootstrap samples, we can obtain the B bootstrap estimators of
α̃ j (u), then the sample standard error σ̂ j,B(u) of α̃ j (u) can be computed, and a 1 − α

confidence intervals for α̃ j (u) based on a normal approximation is

α̂ j (u) ± z1−α/2σ̂ j,B(u), for j = 1, . . . , s1,

where z p is the 100pth percentile of the standard normal distribution. If the bias
α̃ j (u)−α j0(u) is asymptotically negligible relative to the variance of α̂ j (u) by choos-
ing a large K , then α̂ j (u)±z1−α/2σ̂ j,B(u) is also a 1−α asymptotic confidence intervals
for α j0(u). More details see Huang et al. (2002) and Wang et al. (2008).

6 Concluding remarks

Variable selection for SPLVCM has been an interesting topic. However, most existing
methods were built on either least square or likelihood based methods, which are very
sensitive to outliers and their efficiency may be significantly reduced for heavy tail
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Fig. 1 Plots of estimated varying coefficient functions with SCAD penalty, the solid line is the estimated
curve and the dot-dashed lines are 95 % pointwise confidence intervals: a intercept, b quetelet, c calories,
d fat, e fiber, f cholesterol, g dietary beta-carotene. The histogram for Y is shown in h
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error distribution. In this paper, we developed an efficient and robust variable selection
procedure for SPLVCM based on modal regression method, where the nonparametric
functions are approximated by B-spline. The proposed procedure can simultaneously
estimate and select important variables for both the nonparametric and the parametric
part at their best convergence rates. We also established the oracle property for the
proposed method. The distinguishing characteristic of newly proposed method is that it
introduces an additional tuning parameter h to achieve both robustness and efficiency,
which can automatically selected using the observed data. Simulation study and the
plasma beta-carotene level data example confirm that the performances of our proposed
method outperform than least-square based method.

There is room to improve our method. One limitation is that our proposed variable
selection method for SPLVCM is established under the assumption that the varying
and constant coefficients can be separated in advance. In fact, we do not know about
this prior information when one using SPLVCM to analysis real data, i,e., whether a
coefficient is important or not and whether it should be treated as fixed or varying.
So, how to simultaneously identify whose predictors are important variables, whose
predictors are really varying and whose predictors are only constant effect has been
practical interest for researchers, more details see Cheng et al. (2009), Li and Zhang
(2011) and Tang et al. (2012). We have embarked some research about it. In addition,
one can apply our method to other semiparametric models, such as single-index model,
partially linear single-index model and varying coefficient single-index model, to
obtain robust and efficient estimation and achieve variable selection. Research in these
aspects is ongoing.

Acknowledgments We sincerely thank two referees and associate editor for their valuable comments that
has led to great improved presentation of our work.

7 Appendix

To establish the asymptotic properties of the proposed estimators, the following regu-
larity conditions are needed in this paper. For convenience and simplicity, let C denote
a positive constant that may be different at different place throughout this paper.

(C1) The index variable U has a bounded support � and its density function fU (·)
is positive and has a continuous second derivative. Without loss of generality, we
assume � be the unit interval [0,1].
(C2) The varying coefficient functions α1(u), . . . , αp(u) are r th continuously dif-
ferentiable on [0,1], where r >2.
(C3) Let 
1(u) = E{XXT |U = u}, 
2(u) = E{ZZT |U = u} be continuous with
respect to u. Furthermore, for given u, 
1(u) and 
2(u) are positive definite matrix,
and their eigenvalues are bounded. In addition, we assume maxi ‖Xi‖/√n = op(1)

and maxi ‖Zi‖/√n = op(1).
(C4) Let t1, . . . , tK be the interior knots of [0,1]. Moreover, let t0 = 0, tK+1 = 1,
ξi = ti − ti−1 and ξ = max{ξi }. Then, there exists a constant C0 such that
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ξ

min{ξi } ≤ C0, max{|ξi+1 − ξi |} = o(K −1).

(C5) F(x, z, u, h) and G(x, z, u, h) are continuous with respect to (x, z, u).
(C6) F(x, z, u, h) < 0 for any h > 0.
(C7) E(φ′

h(ε)|x, z, u) = 0 and E(φ′′
h (ε)2|x, z, u), E(φ′

h(ε)3|x, z, u) and E(φ′′′
h (ε)

|x, z, u) are continuous with respect to x .
(C8) liminfn→∞liminf‖γ j ‖H →0+λ1 j

−1 p′
λ1 j

(‖γ j‖H ) > 0, j = s1, . . . , p, and

liminfn→∞liminfβk→0+λ2k
−1 p′

λ2k
(|βk |) > 0, k = s2, . . . , d.

Remark 4 The conditions (C1)–(C3) are similar adopted for the SPLVCM, such as
in Fan and Huang (2005), Li and Liang (2008) and Zhao and Xue (2009). Condi-
tion (C4) implies that c0, . . . , cK+1 is a C0-quasi-uniform sequence of partitions of
[0,1]. (C5)–(C7) are used in modal nonparametric regression in Yao et al. (2012).
The condition E(φ′

h(ε)|x, z, u) = 0 ensures that the proposed estimate is consis-
tent and it is satisfied if the error density is symmetric about zero. However, we
do not require the error distribution to be symmetric about zero. If the assumption
E(φ′

h(ε)|x, z, u) = 0 does not hold, the proposed estimate is actually estimating the
function m̃(x, z, u) = argminmE(φh(Y − m)|x, z, u). Condition (C8) is the assump-
tion about the penalty function, which is similarly to that used in Fan and Li (2001),
Li and Liang (2008) and Zhao and Xue (2009).

Proof of Theorem 1

Proof Let δ = n−r/(2r+1)+an and v = (vT
1 , vT

2 )T be a vector, where v1 is d-dimension
vector and v2 is p × q-dimension vector, q = K + h̄ + 1. Define β = β0 + δv1 and
γ = γ 0 + δv2, where γ 0 is the best approximation of α(u) in the B-spline space. We
first show that, for and any given � > 0, there exists a large C such that

P

{
sup

‖v‖=C
L(γ ,β) < L(γ 0,β0)

}
≤ 1 − �, (14)

where L(γ ,β) is defined in (7). Let �(γ ,β) = 1
K {L(γ ,β) − L(γ 0,β0)}, then by

Taylor expansion, we have that

�(γ ,β) = − δ

K

n∑

i=1

φ′
h

(
εi +XT

i R(Ui )
) (

ZT
i v1+WT

i v2

)

+δ2

K

n∑

i=1

φ′′
h

(
εi +XT

i R(Ui )
) (

ZT
i v1+WT

i v2

)2

+δ3

K

n∑

i=1

φ′′′
h (ζi )

(
ZT

i v1+WT
i v2

)3
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+ n

K

p∑

j=1

{
pλ1 j (‖γ j‖H )− pλ1 j (‖γ j0‖H )

}

+ n

K

d∑

k=1

{
pλ2k (|βk |)− pλ2k (|βk0|)

}

� I1+ I2+ I3+ I4+ I5,

where ζi is between εi + XT
i R(Ui ) and εi + XT

i R(Ui ) − δ(ZT
i v1 + WT

i v2),

R(u) = (R1(u), . . . , Rp(u))T and R j (u) = α j (u) − B(u)T γ j0, j = 1, . . . , p.

By the condition (C1), (C2) and Corollary 6.21 in Schumaker (1981), we have

‖R j (u)‖ = O(K −r ).

Then, by Taylor expansion, we have

n∑

i=1

φ′
h

(
εi + XT

i R(Ui )
) (

ZT
i v1 + WT

i v2

)

=
n∑

i=1

[
φ′

h(εi ) + φ′′
h (εi )XT

i R(Ui ) + φ′′′
h

(
ε∗

i

) (
XT

i R(Ui )
)2
] (

ZT
i v1 + WT

i v2

)
,

where ε∗
i is between εi and εi + XT

i R(Ui ).
Invoking condition (C4) and (C7), after some direct calculations, we get

n∑

i=1

φ′
h

(
εi + XT

i R(Ui )
) (

ZT
i v1 + WT

i v2

)
= Op(nK −r‖v‖). (15)

Hence, we have I1 = Op(nδK −(r+1)‖v‖) = Op(nδ2 K −1‖v‖).
For I2, we can prove

I2 = E(F(X, Z, U, h))Op(nK −1δ2‖v‖2).

Therefore, by choosing a sufficiently large C , I2 dominates I1 uniformly ‖v‖ = C .
Similarly, we can prove that

I3 = Op(nK −1δ3‖v‖3).

By the condition an → 0, hence δ → 0. It follows that δ‖v‖ → 0 with ‖v‖ = C ,
which lead to I3 = op(J2). Therefore, I3 is also dominated by I2 in ‖v‖ = C .
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Moreover, invoking pλ(0) = 0, and by the standard argument of the Taylor expan-
sion, we get that

I5 ≤
s2∑

k=1

{
K −1nδp′

λ2k
(|βk0|)sgn(βk0)|v1l |

+K −1nδ2 p′
λ2k

(|βk0|)sgn(βk0)|v1l |2(1 + op(1))
}

≤ √
s2

(
K −1nδan‖v‖ + K −1nδbn‖v‖2

)
.

Then, by the condition bn → 0, it is easy to show that I5 is dominated by I2
uniformly in ‖v‖ = C . With the same argument, we can prove that I4 is also dominated
by I2 uniformly in ‖v‖ = C .

By the condition (C6), we know that F(x, z, u, h) < 0, hence by choosing a
sufficiently large C , we have �(γ ,β) < 0, which implies that with the probability at
least 1 − �, (14) holds. Hence, there exists a local maximizer such that

‖β̂ − β0‖ = Op (δ) and ‖γ̂ − γ 0‖ = Op (δ) , (16)

which completes the proof of part (i).
Now, we prove part (ii). Note that

‖α̂ j (·) − α j0(·)‖2 =
∫ 1

0
|α̂ j (u) − α j0(u)|2du

=
∫ 1

0

{
BT (u)γ̂ k − BT (u)γ k + Rk(u)

}2
du

≤ 2
∫ 1

0

{
BT (u)γ̂ k − BT (u)γ k

}2
du + 2

∫ 1

0
Rk(u)2du

= 2(γ̂ k − γ k)
T H(γ̂ k − γ k) + 2

∫ 1

0
Rk(u)2du,

where H = ∫ 1
0 B(u)BT (u)du. Invoking ‖H‖ = O(1) and (16), we have

(γ̂ k − γ k)
T H(γ̂ k − γ k) = Op

(
n− 2r

2r+1 + a2
n

)
.

In addition, it is easy to show that

∫ 1

0
Rk(u)2du = Op

(
n− 2r

2r+1

)
.

Consequently, ‖α̂ j (·) − α j0‖ = Op

(
n

−r
2r+1 + an

)
, j = 1, . . . , p, which complete

the proof of part (ii). ��

123



186 W. Zhao et al.

Proof of Theorem 2

Proof By the property of SCAD penalty function, an = 0 as λmax → 0. Then by
Theorem 1, it is sufficient to show that, when n → ∞, for any γ that satisfies ‖γ −
γ 0‖ = Op(n−r/(2r+1)), βk that satisfies ‖βk −βk0‖ = Op(n−r/(2r+1)), k = 1, . . . , s2,
and some given small ν = Cn−r/(2r+1), with probability tending to 1 we have

∂L(γ ,β)

∂βk
< 0, for 0 < βk < ν, k = s2 + 1, . . . , d (17)

and

∂L(γ ,β)

∂βk
> 0, for − ν < βk < 0, k = s2 + 1, . . . , d. (18)

Consequently, (17) and (18) imply the maximizer of L(γ ,β) attains at βk = 0, k =
s2 + 1, . . . , d.

By a similar proof of Theorem 1, we can show that

∂L(γ ,β)

∂βk
= ∂ Q(γ ,β)

∂βk
− np′

λ2k
(|βk |)sgn(βk)

=
n∑

i=1

Zikφ
′
h

(
Yi − WT

i γ − ZT
i β
)

− np′
λ2k

(|βk |)sgn(βk)

=
n∑

i=1

{
Zikφ

′
h

(
εi + XT

i R(Ui )
)

− φ′′
h

(
εi + XT

i R(Ui )
)

Zik

[
WT

i (γ − γ 0) + ZT
i (β − β0)

]

+φ′′′(ηi )Zik[WT
i (γ − γ 0) + ZT

i (β − β0)]2 − np′
λ2k

(|βk |)sgn(βk)
}

= nλ2k

{
λ−1

2k p′
λ2k

(|βk |)sgn(βk) + Op(λ
−1
2k n− r

2r+1 )
}

,

where ηi is between Yi − WT
i γ − ZT

i β and εi + XT
i R(Ui ).

By the condition (C8), liminfn→∞liminfβk→0+λ2k
−1 p′

λ2k
(|βk |)>0, andλ2kn

r
2r+1 >

λminn
r

2r+1 → ∞, the sign of the derivation is completely determined by that of βk ,
then (17) and (18) hold. This completes the proof of part (i).

For part (ii), apply the similar techniques as in part (i), we have, with probability
tending to 1, that α̂ j (·) = 0, j = s1 + 1, . . . , p. Invoking supu ‖B(u)‖ = O(1), the
result is achieved from α̂ j (u) = B(u)T γ̂ j . ��

Proof of Theorem 3

Proof From Theorems 1 and 2, we know that, as n → ∞, with probability tending

to 1, L(γ ,β) attains the maximal value at (β̂
T
a , 0)T and (γ̂

T
a , 0)T . Let L1(γ ,β) =
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∂L(γ ,β)/∂βa and L2(γ ,β) = ∂L(γ ,β)/∂γ a , then (β̂
T
a , 0)T and (γ̂

T
a , 0)T must

satisfy following two equations

1

n
L1

((
γ̂

T
a , 0

)T
,
(
β̂

T
a , 0

)T
)

= 1

n

n∑

i=1

Ziaφ′
h

{
Yi − WT

ia γ̂ a − ZT
ia β̂a

}
− p′

λ2
(|β̂a |) ◦ sgn(β̂a) = 0 (19)

and

1

n
L2

((
γ̂

T
a , 0

)T
,
(
β̂

T
a , 0

)T
)

= 1

n

n∑

i=1

Wiaφ′
h

{
Yi − WT

ia γ̂ a − ZT
ia β̂a

}
− κ = 0,

(20)

where “◦” denotes the Hadamard (componentwise) product and the kth component of
p′
λ2

(|β̂a |) is p′
λ2k

(|β̂k |), 1 ≤ k ≤ s1; κ is a q ×s1-dimensional vector with its j th block

subvector being H
γ̂ j

‖γ̂ j ‖H
p′
λ1

(‖γ̂ j‖H ). Applying the Taylor expansion to p′
λ2k

(|β̂k |),
we get that

p′
λ2k

(|β̂k |) = p′
λ2k

(|β̂k0|) + {p′′
λ2k

(|β̂k0|) + op(1)}(β̂k − βk0), k = 1, . . . , s2.

By the condition bn → 0 and note that p′
λ2k

(|β̂k0|) = 0 as λmax → 0, some simple
calculations yields

1

n

n∑

i=1

Zia

{
φ′

h(εi )+φ′′
h (εi )

{
XT

i R∗(Ui )−
[
ZT

ia(β̂a −βa0)+WT
ia(γ̂ a −γ a0)

]}

+ φ′′′
h (ζi )

{
XT

i R∗(Ui )−
[
ZT

ia(β̂a −βa0)+WT
ia(γ̂ a −γ a0)

]}2
}

+op(β̂a −βa0)=0,

(21)

where ζi is between εi and Yi − WT
ia γ̂ a − ZT

ia β̂a , R∗(u) = (R1(u), . . . , Rs1(u))T .
Invoking (20), and using the similar arguments to (21), we have

1

n

n∑

i=1

Wia

{
φ′

h(εi )+φ′′
h (εi )

{
XT

i R∗(Ui )−
[
ZT

ia(β̂a −βa0)+WT
ia(γ̂ a −γ a0)

]}

+ φ′′′
h (ζ̄i )

{
XT

ia R∗(Ui )−
[
ZT

ia(β̂a −βa0)+WT
ia(γ̂ a −γ a0)

]}2
}

+op(γ̂ a −γ a0)=0,

(22)

where ζ̄i is also between εi and Yi − WT
ia γ̂ a − ZT

iaβ̂a .
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Let �n = 1
n

∑n
i=1 φ′′(εi )WiaWT

ia and 	n = 1
n

∑n
i=1 φ′′(εi )WiaZT

ia , then, by the
result of Theorem 2 and regularity conditions (C3) and (C7), after some calculations
based on (22), it follows that

γ̂ a − γ a0 = (�n + op(1))−1
{
−	n(β̂a − βa0) + �n

}
, (23)

where �n = 1
n

∑n
i=1 Wia

[
φ′

h(εi ) + φ′′
h (εi )XT

ia R∗(Ui )
]
. Furthermore, we can prove

�n
P−→ �=E

(
F(X, Z, U, h)WaWT

a

)
and 	n

P−→ 	 =E
(

F(X, Z, U, h)WaZT
a

)
.

Therefore, we can write

γ̂ a − γ a0 = −(� + op(1))−1	(β̂a − βa0) + (� + op(1))−1�n . (24)

Substituting (24) into (21), we obtain

1

n

n∑

i=1

φ′′
h (εi )Zia

[
Zia − 	T �−1Wia

]T
(β̂a − βa0) + op(β̂a − βa0)

= 1

n

n∑

i=1

Zia

⎡

⎣φ′
h(εi ) + φ′′

h (εi )XT
ia R∗(Ui ) − φ′′

h (εi )WT
ia

1

n

n∑

j=1

�−1W jaφ′
h(ε j )

⎤

⎦

−1

n

n∑

i=1

Ziaφ′′
h (εi )WT

ia
1

n

n∑

j=1

XT
ja R∗(U j ). (25)

Note that

E

(
1

n

n∑

i=1

φ′′
h (εi )	

T �−1Wia

[
ZT

ia − WT
ia�−1	

])
= 0

and

Var

(
1

n

n∑

i=1

φ′′
h (εi )	

T �−1Wia

[
ZT

ia − WT
ia�−1	

])
= op(1/n).

Hence, it is easy to show that

{
1

n

n∑

i=1

φ′′
h (εi )ŽiaŽT

ia + op(1)

}√
n(β̂a − βa0)

= 1√
n

n∑

i=1

Žiaφ′
h(εi ) + 1√

n

n∑

i=1

Žiaφ′′
h (εi )XT

ia R∗(Ui ) � J1 + J2. (26)
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By the definition of R∗(Ui ), we can prove J2 = op(1). Moreover, we have

1

n

n∑

i=1

φ′′
h (εi )ŽiaŽT

ia
P−→ 
.

It remains to show that

J1
d−→ N (0,�), (27)

where � = E(G(X, Z, U, h)ŽaŽT
a ).

Then, combine (26) and (27) and use the Slutsky’s theorem, it follows that

√
n(β̂a − βa0)

d−→ N (0, 
−1�
−1).

Next, we prove (27). Note that for any vector ς whose components are not all zero,

ςT J1 =
n∑

i=1

1√
n
ςT Žiaφ′

h(εi ) =
n∑

i=1

aiξi ,

where a2
i = 1

n G(Xi , Zi , Ui , h)ςT ŽiaŽT
iaς and, conditioning on {Xi , Zi , Ui }, ξi are

independent with mean zero and variance one. It follows easily by checking Lindeberg
condition that if

maxi a2
i∑

i=1 a2
i

P−→ 0, (28)

then
∑n

i=1 aiξi/

√∑n
i=1 a2

i
d−→ N (0, 1). Thus, we can conclude that (27) holds.

Now, we only need to show (28) holds. Noting that (ςT Žia)2 ≤ ‖ς‖2‖Žia‖2, hence
a2

i ≤ 1
n G(Xi , Zi , Ui , h)‖ς‖2‖Žia‖2. Since

‖Žia‖ = ‖Zia − 	T �−1Wia‖ ≤ ‖Zia‖ + ‖	T �−1Wia‖,

and by the conditions maxi ‖Xi‖/√n = op(1) and maxi ‖Zi‖/√n = op(1) in (C3),
using the property of spline basis (Schumaker 1981) and the definition Wia = Ip ⊗
B(Ui ) · Xia together with the conditions (C5) and (C7), we can prove

max
i

‖Ži‖/√n = op(1).

Applying the Slutsky’s theorem, (28) holds obviously, which complete the proof
of Theorem 3. ��
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Proof of Theorem 4

Proof According to the Eq. (24) and the asymptotic normality of β̂a − βa0 in The-
orem 3, for any vector dn with dimension q × s1 and components not all 0, by the
conditions (C1)–(C5) and (C7) and use the Slutsky’s theorem and the property of
multivariate normal distribution, it follows that

{
dT

n var(γ̂ a)dn

}−1/2
dT

n (γ̂ a − γ a0)
d−→ N (0, 1),

where

var(γ̂ a) = �−1	

−1�
−1

n
	T �−1.

For any q × s1-vector cn whose components are not all 0, by the definition of α̂a

and α̃a , choosing dn = WT
a cn yields

{
cT

n var(α̂a(u))cn

}−1/2
cT

n (α̂a(u) − α̃a(u))
d−→ N (0, 1).

��
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