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Abstract The best linear unbiased predictor (BLUP) is called a kriging predictor and
has been widely used to interpolate a spatially correlated random process in scientific
areas such as geostatistics. However, if an underlying random field is not Gaussian, the
optimality of the BLUP in the mean squared error (MSE) sense is unclear because it is
not always identical with the conditional expectation. Moreover, in many cases, data
sets in spatial problems are often so large that a kriging predictor is impractically time-
consuming. To reduce the computational complexity, covariance tapering has been
developed for large spatial data sets. In this paper, we consider covariance tapering in
a class of transformed Gaussian models for random fields and show that the BLUP
using covariance tapering, the BLUP and the optimal predictor are asymptotically
equivalent in the MSE sense if the underlying Gaussian random field has the Matérn
covariance function.

Keywords Covariance tapering · Hermite polynomials · Kriging · Spatial statistics ·
Spectral density · Transformed random field

1 Introduction

Interpolation of a spatially correlated random process is widely used in mining, hydrol-
ogy, forestry and other fields. This method is often called kriging in geostatistical lit-
erature. It requires the solution of a linear equation based on the covariance matrix of
observations in different spatial points that is the size of the number of observations.
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The operation count for the direct computation of it is of order n3 with sample size n.
Hence as the sample size is larger, the computation becomes a more formidable one in
practice. To deal with this problem, Furrer et al. (2006) proposed covariance tapering.
The basic idea of covariance tapering is to reduce a spatial covariance function to zero
beyond some range by multiplying the true spatial covariance function by a positive
definite but compactly supported function. Then the resulting covariance matrix is
so sparse that it is much easier and faster to obtain the solution. Furrer et al. (2006)
proved the asymptotic efficiency of the BLUP using covariance tapering which we
call the tapered BLUP for the original BLUP. Furthermore, Zhu and Wu (2010) inves-
tigated properties of covariance tapering for convolution-based nonstationary models
and proved that the tapered BLUP is asymptotically efficient in specific assumptions.
An alternative approach to reduce the computational time is to calculate a spatial
prediction based on a small and manageable number of observations that are given
in points close to a prediction point. This approach often shows good performance.
However, it is not clear how we may choose samples in a neighborhood of the predic-
tion point and theoretical properties are not derived completely. On the other hand, in
covariance tapering it is shown that the MSE ratio of the tapered BLUP and the true
BLUP converges to 1 as the sample size goes to infinity regardless of the selection of
the taper range (Furrer et al. 2006).

Covariance tapering is also used for the estimation of parameters of a covariance
function. The log-likelihood function of Gaussian random fields includes the deter-
minant and the inverse of the covariance matrix between the observations in differ-
ent spatial points, which is difficult to calculate for large data sets. Kaufman et al.
(2008) applied covariance tapering to the log-likelihood function and showed that the
estimators maximizing the tapered approximation of the log-likelihood are strongly
consistent. Du et al. (2009) proved that this tapered maximum likelihood estimator has
the asymptotic normality in one-dimensional case. Recently, Wang and Loh (2011)
showed the asymptotic normality of the tapered maximum likelihood estimator in
multidimensional case by letting the taper range converge to 0 when the sample size
goes to infinity.

The BLUP is identical with the conditional expectation if an underlying random field
is Gaussian and consequently is the optimal predictor in the MSE sense. However, if
the original data take a nonnegative value or have a skewed distribution, we frequently
apply a nonlinear transformation to it to get a data which are nearer Gaussian. Typical
ones are a chi-squared process and a lognormal process (Cressie 1993). For example,
precipitation data are approximately regarded as a chi-squared process because the
standardized square root values known as anomalies are closer to a Gaussian distrib-
ution (Johns et al. 2003; Furrer et al. 2006). On the other hand, the variable such as
topsoil concentrations of cobalt and copper takes a positive value and has a right skewed
sampling distribution. This kind of spatial data is often obtained in large numbers and
modeled by the lognormal distribution (Moyeed and Papritz 2002; De Oliveira 2006).
However, the optimality of the BLUP and the tapered BLUP for the original data is not
clear because it is non-Gaussian. In this paper, we show that the tapered BLUP and the
BLUP in a class of transformed Gaussian models for random fields are asymptotically
equivalent to the conditional expectation, which is the optimal predictor in the MSE
sense. This is an extension of Furrer et al. (2006).
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Covariance tapering in transformed random fields 915

Granger and Newbold (1976) considered a class of the transformed models in a
time series context and calculated the mean, the covariance function and the mean
squared error of predictors. Our work can be also regarded as an extension of their
results to spatial processes. Moreover, since the conditional mean and the BLUP
include the inverse of the covariance matrix, covariance tapering is useful to reduce
the computational difficulty.

The subsequent sections are organized as follows. We introduce a kriging predictor
and asymptotic properties in Sect. 2. In Sect. 3, we introduce a class of transformed
Gaussian models for random fields and covariance tapering and then prove that the
tapered BLUP of transformed random fields has the asymptotic efficiency with respect
to the optimal predictor. In Sect. 4, computer experiments are conducted. A conclusion
and future studies are mentioned in Sect. 5. Supplementary materials are given in
Appendix A. We outline the technical Proofs in Appendices B–D.

2 Spatial prediction and its asymptotic properties

Let {Z(s), s ∈ R
d} be a random field with known constant mean and covariance func-

tion. Suppose we have observations from a single realization of the random field Z(s),
denoted by Z = (Z(s1), . . . , Z(sn))′, measured at sampling locations s1, . . . , sn ∈ R

d .
The goal is to predict Z(s0) at an unobserved location s0 ∈ R

d based on Z. Then the
best linear unbiased predictor (BLUP) and its mean squared error (MSE) are

ẐBLUP(s0) = μZ + c′
Z�−1

Z (Z − μZ · 1), (1)

E[ẐBLUP(s0) − Z(s0)]2 = σ 2
Z − c′

Z�−1
Z cZ , (2)

where μZ = E[Z(s)], σ 2
Z = var(Z(s0)), (cZ )i = cov(Z(s0), Z(si )), (�Z )i j =

cov(Z(si ), Z(s j )) (i, j = 1, . . . , n) and 1 = (1, . . . , 1)′. ẐBLUP(s0) and E[ẐBLUP(s0)

− Z(s0)]2 are called as the simple kriging predictor and the simple kriging variance
of Z(s0), respectively (see, e.g., Cressie 1993; Stein 1999).

Hereafter, we assume that {Z(s)} is a stationary random field and the covariance
function C(h) is defined by

C(h) = cov(Z(s), Z(s + h)), h ∈ R
d .

In what follows, we write hi = si − s0, hi j = si − s j (i, j = 1, . . . , n).
Now we will review some asymptotic properties of the kriging predictor using

an incorrect covariance function, which are used in the Proof of our main theorem.
Hereafter, we assume that sampling locations s1, . . . , sn are in D ⊂ R

d where D is
a bounded subset and a prediction point s0 ∈ D is an accumulation point of {si , i =
1, 2, . . .}, that is, s0 ∈ {si , i = 1, 2, . . .} where {si , i = 1, 2, . . .} is the closure of
{si , i = 1, 2, . . .}. This assumption is called infill asymptotics and often used as an
asymptotic framework in spatial statistics (Cressie 1993).

C0(h) and C1(h) denote the covariance functions of the true and the assumed mod-
els, respectively. Then from (1), the BLUP under Ci (h) (i = 0, 1) is ẐBLUP(s0, Ci ) =
μZ +c′

i�
−1
i (Z−μZ ·1) where (ci )k = Ci (hk) and (�i )kl = Ci (hkl) (k, l = 1, . . . , n).
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Let Z∗(s0) be a predictor of Z(s0) and let ECi [Z∗(s0)− Z(s0)]2 be the MSE of Z∗(s0)

under Ci (i = 0, 1). This MSE may depend not only on Ci but also on other distribu-
tional properties if Z∗(s0) is a nonlinear predictor. Then Z∗(s0) is called a consistent
predictor if

EC0 [Z∗(s0) − Z(s0)]2 → 0 as n → ∞.

Furthermore, a consistent predictor Z∗(s0) is called asymptotically efficient with
respect to the BLUP ẐBLUP(s0, C0) if

EC0 [Z∗(s0) − Z(s0)]2

EC0 [ẐBLUP(s0, C0) − Z(s0)]2
→ 1 as n → ∞.

Next let Ẑ(s0) be the optimal predictor of Z(s0) which minimizes the MSE under the
true model. Then if

EC0 [Z∗(s0) − Z(s0)]2

EC0 [Ẑ(s0) − Z(s0)]2
→ 1 as n → ∞,

Z∗(s0) is called asymptotically efficient with respect to the optimal predictor Ẑ(s0).
If {Z(s)} is Gaussian, the two definitions of the asymptotic efficiency are equivalent
because Ẑ(s0) = ẐBLUP(s0, C0).

Stein (1993) gave the following sufficient conditions for the asymptotic efficiency
of the incorrect kriging predictor with respect to the BLUP. Hereafter, ‖ · ‖ means the
Euclidean norm and a function is called bandlimited if it is the Fourier transform of a
function with bounded support.

Theorem 1 (Stein 1993) Let fi (λ),λ ∈ R
d be the spectral density function of

Ci (h) (i = 0, 1). Suppose that

0 < lim inf‖λ‖→∞ f0(λ)/|φ(λ)|2 ≤ lim sup
‖λ‖→∞

f0(λ)/|φ(λ)|2 < ∞, (3)

where φ(λ) is bandlimited and lim‖λ‖→∞ f1(λ)/ f0(λ) = c (> 0). Then as n → ∞

EC0 [ẐBLUP(s0, C1) − Z(s0)]2

EC0 [ẐBLUP(s0, C0) − Z(s0)]2
= C0(0)−2c0

′�1
−1c1+c1

′�1
−1�0�1

−1c1

C0(0)−c0
′�−1

0 c0
→ 1

and

EC1 [ẐBLUP(s0, C1) − Z(s0)]2

EC0 [ẐBLUP(s0, C1) − Z(s0)]2
= C1(0)−c′

1�
−1
1 c1

C0(0)−2c0
′�1

−1c1+c1
′�1

−1�0�1
−1c1

→ c.

It is known that if

0 < lim inf‖λ‖→∞ f0(λ)‖λ‖r ≤ lim sup
‖λ‖→∞

f0(λ)‖λ‖r < ∞
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Covariance tapering in transformed random fields 917

for some r > d, then (3) is satisfied (see Stein 1993, p. 402). Theorem 1 states that
the low frequency behavior of the spectral density function has little impact on the
kriging prediction.

3 Covariance tapering in transformed random fields

This section introduces a class of transformed Gaussian models for random fields and
covariance tapering and derives the asymptotic optimality of the tapered BLUP.

3.1 Transformed random fields

Assume that {Y (s), s ∈ D ⊂ R
d} is an isotropic Gaussian random field with mean

μY = E[Y (s)] and Matérn covariance function defined by

CY (‖h‖) = σ 2
Y

2ν−1�(ν)
(α‖h‖)ν Kν(α‖h‖), α > 0, ν > 0, σ 2

Y > 0,

where Kν(·) is the modified Bessel function of the second kind of order ν (see, e.g.,
Cressie 1993; Stein 1999). The spectral density function of this covariance function is

fY (‖λ‖) = Aσ 2
Y

(α2 + ‖λ‖2)ν+d/2 ,

where A = (�(ν +d/2)α2ν)/(πd/2�(ν)). For example if ν = 0.5, Matérn covariance
function is

CY (‖h‖) = σ 2
Y exp(−α‖h‖).

It is called the exponential covariance function and widely used in many applications.
For simplicity, we set μY = 0 and σ 2

Y = 1.
Now let Z(s) = T (Y (s)) be an observable random field with the underlying field

{Y (s)} where T (x) is an unknown real function, which satisfies
∫ ∞
−∞ T (x)2φ(x)dx <

∞ and φ(x) = e−x2/2/
√

2π is the density function of N (0, 1). Then Z(s) can be
expressed by an infinite sum of Hermite polynomials

Z(s) =
∞∑

j=0

α j H j (Y (s)),

where Hj (x) ( j = 0, 1, 2, . . .) is the j th order Hermite polynomial (see Appendix A
for properties of Hermite polynomials). Note that α j ’s depend on T . By (9) and (11)
of Appendix A,
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μZ = E[Z(s)] = α0, (4)

CZ (‖h‖) = Cov(Z(s), Z(s + h)) =
∑

j≥1

α2
j j !(CY (‖h‖)) j . (5)

Next we will derive the optimal predictor in transformed random fields by a similar
discussion of Granger and Newbold (1976).

Define

W (s0) = Y (s0) − c′
Y �−1

Y Y
√

1 − c′
Y �−1

Y cY

,

where Y = (Y (s1), . . . , Y (sn))′, (cY )i = CY (‖hi‖) and (�Y )i j = CY (‖hi j‖) (i, j =
1, . . . , n). Then the conditional distribution of W (s0) given Y is N (0, 1) and Y (s0) is
expressed by

Y (s0) =
√

1 − c′
Y �−1

Y cY W (s0) + c′
Y �−1

Y Y.

Then from (2.7.6) of Brockwell and Davis (1991); p. 63, (10) and (13) of Appendix
A, the optimal predictor Ẑ(s0) of Z(s0), that is, the conditional mean given Y is

Ẑ(s0) = E[Z(s0)|Y]

=
∞∑

j=0

α j E

⎡

⎣Hj

⎛

⎝
√

1 − c′
Y �−1

Y cY W (s0) +
√

c′
Y �−1

Y cY
c′

Y �−1
Y Y

√
c′

Y �−1
Y cY

⎞

⎠
∣
∣
∣
∣Y

⎤

⎦

=
∞∑

j=0

α j E

⎡

⎣
j∑

k=0

(
j
k

) (√
1 − c′

Y �−1
Y cY

)k (√
c′

Y �−1
Y cY

) j−k

Hk(W (s0))

×Hj−k

⎛

⎝ c′
Y �−1

Y Y
√

c′
Y �−1

Y cY

⎞

⎠
∣
∣
∣
∣Y

⎤

⎦

=
∞∑

j=0

α j

j∑

k=0

(
j
k

)(√
1 − c′

Y �−1
Y cY

)k (√
c′

Y �−1
Y cY

) j−k

Hj−k

⎛

⎝ c′
Y �−1

Y Y
√

c′
Y �−1

Y cY

⎞

⎠

×E[Hk(W (s0))|Y]

=
∞∑

j=0

α j

(√
c′

Y �−1
Y cY

) j

H j

⎛

⎝ c′
Y �−1

Y Y
√

c′
Y �−1

Y cY

⎞

⎠ , (6)

and from (9) of Appendix A, its mean squared error is

E[Ẑ(s0) − Z(s0)]2 = E[Z(s0)]2 − E[Ẑ(s0)]2
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Covariance tapering in transformed random fields 919

=
∞∑

j=1

α2
j j ! −

∞∑

j=1

α2
j j !(c′

Y �−1
Y cY ) j . (7)

Ẑ(s0) is infeasible because T (·) is unknown. From (1) and (2), the BLUP of Z(s0) is

ẐBLUP(s0) = μZ + c′
Z�Z

−1(Z − μZ · 1),

and its mean squared error is

E[ẐBLUP(s0) − Z(s0)]2 = CZ (0) − c′
Z�−1

Z cZ ,

where Z = (Z(s1), . . . , Z(sn))′ = (T (Y (s1)), . . . , T (Y (sn)))′, (cZ )i = CZ (‖hi‖)
and (�Z )i j = CZ (‖hi j‖) (i, j = 1, . . . , n). Hereafter we assume that μz = α0
and CZ (‖h‖) are known. If they are unknown, the BLUP and the tapered BLUP
introduced in the next section are also infeasible as the optimal predictor is. However,
the estimators of these predictors are easily constructed by the sample mean and
covariance of the observable {Z(s)}. Whereas that of the optimal predictor depends
on the unobservable {Y (s)} and requires a rather difficult procedure. A more rigorous
discussion on the BLUP and the tapered BLUP with estimated coefficients is left for
a future study. Some comments are given in Sect. 5.

3.2 Covariance tapering

The computational complexity of ẐBLUP(s0) is challenging for large spatial data sets
because it includes the inverse of the covariance matrix with the same size as the
number of observations. To reduce the computational burden, covariance tapering
has been developed by Furrer et al. (2006). They show the asymptotic optimality of
covariance tapering in the Gaussian random field with Matérn covariance function,
which corresponds to the case of T (x) = x in the framework of the transformed
random field.

We will review the result of Furrer et al. (2006). Let T (x) = x and hence Z(s) =
Y (s) in this subsection. From (1) and (2), the BLUP of Y (s0) and its MSE are defined
by

Ŷ BLUP(s0) = c′
Y �−1

Y Y,

E[Ŷ BLUP(s0) − Y (s0)]2 = 1 − c′
Y �−1

Y cY .

Let Cθ (x) be a compactly supported correlation function with Cθ (0) = 1 and Cθ (x) =
0 for x ≥ θ . Cθ (x) is called the taper function with the taper range θ . Then consider
the product of the original covariance function and the taper function, that is

CY
tap(‖h‖) = CY (‖h‖)Cθ (‖h‖).
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Now we replace CY (‖h‖) in Ŷ BLUP(s0) with CY
tap(‖h‖) and obtain the tapered BLUP

Ŷ tapBLUP(s0) = ctap
Y

′
�

tap
Y

−1
Y,

where (ctap
Y )i = CY

tap(‖hi‖) and (�
tap
Y )i j = CY

tap(‖hi j‖) (i, j = 1, . . . , n). The result-

ing covariance matrix �
tap
Y has many zero elements and is called a sparse matrix,

so that it is much faster to calculate �
tap
Y

−1
Y than �−1

Y Y . Next let fθ (‖λ‖) be the
spectral density function of Cθ (‖h‖). Then Furrer et al. (2006) imposed the following
condition.

Taper condition: for some ε > 0 and Mθ < ∞

0 < fθ (‖λ‖) ≤ Mθ

(1 + ‖λ‖2)ν+d/2+ε
.

Although Ŷ tapBLUP(s0) is not the BLUP under the true covariance function CY (·),
Furrer et al. (2006) showed that this predictor is asymptotically efficient with respect
to the BLUP.

Theorem 2 (Furrer et al. 2006) If fθ satisfies the taper condition, Theorem 1 holds
with C0 = CY CC1 = CY Cθ , that is

ECY [Ŷ tapBLUP(s0) − Y (s0)]2

ECY [Ŷ BLUP(s0) − Y (s0)]2
= 1 − 2cY

′�tap
Y

−1
ctap

Y + ctap
Y

′
�

tap
Y

−1
�Y �

tap
Y

−1
ctap

Y

1 − c′
Y �−1

Y cY

→ 1 as n → ∞.

Theorem 2 also means the asymptotic efficiency of the tapered BLUP with respect
to the optimal predictor because Ŷ BLUP is the optimal predictor in the Gaussian random
field {Y (s)}.

In this paper, we shall show that for any transformation T (x) the tapered BLUP
of Z(s0) is asymptotically efficient not only with respect to ẐBLUP(s0) but also with
respect to Ẑ(s0).

3.3 Main result

As in Furrer et al. (2006), the tapered BLUP of Z(s0) is defined by

Ẑ tapBLUP(s0) = μZ + ctap
Z

′
�

tap
Z

−1
(Z − μZ · 1),

where (ctap
Z )i = C Z

tap(‖hi‖), (�
tap
Z )i j = C Z

tap(‖hi j‖) and C Z
tap(‖h‖) = CZ (‖h‖)Cθ

(‖h‖) (i, j = 1, . . . , n). Hereafter it is assumed that 0 <
∑∞

j=1 α2
j j ! j otherwise

α j = 0 for any j ≥ 1 and Z(s) = T (Y (s)) = c where c is a constant. E[Ẑ(s0) −
Z(s0)]2 of (7) and E[Ẑ tapBLUP(s0) − Z(s0)]2 are denoted by ECZ [Ẑ(s0) − Z(s0)]2
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and ECZ [Ẑ tapBLUP(s0) − Z(s0)]2 to highlight the expectation under the true model
for the observable process {Z(s)} though Z(s) and CZ are functions of the underlying
Y (s) and CY , respectively.

The following theorem is our main result.

Theorem 3 Suppose that
∑∞

j=1 α2
j j ! j2ν+d+max{1,2ε} < ∞ where ε is given in the

taper condition. If fθ satisfies the taper condition, the tapered BLUP, the BLUP and
the optimal predictor are asymptotically equivalent in the MSE sense, that is

ECZ [Ẑ tapBLUP(s0) − Z(s0)]2

ECZ [Ẑ(s0) − Z(s0)]2
= CZ (0)−2cZ

′�tap
Z

−1
ctap

Z +ctap
Z

′
�

tap
Z

−1
�Z�

tap
Z

−1
ctap

Z∑∞
j=1 α2

j j ! − ∑∞
j=1 α2

j j !(c′
Y �−1

Y cY ) j

→ 1,

ECZ [Ẑ tapBLUP(s0) − Z(s0)]2

ECZ [ẐBLUP(s0) − Z(s0)]2
→ 1

and

ECZ [ẐBLUP(s0) − Z(s0)]2

ECZ [Ẑ(s0) − Z(s0)]2
→ 1

as n → ∞.

Theorem 3 states an extension of Theorem 2 by Furrer et al. (2006) in terms of
the asymptotic efficiency of the tapered BLUP not only with respect to the BLUP
but also with respect to the optimal nonlinear predictor. Moreover, it is also shown
that the BLUP is asymptotically efficient with respect to the optimal one. One may
evaluate the presumed mean squared error EC Z

tap
[Ẑ tapBLUP(s0)− Z(s0)]2 = C Z

tap(0)−
ctap

Z
′
�

tap
Z

−1
ctap

Z to assess a prediction uncertainty. The following corollary shows that
in the transformed model it is asymptotically equivalent to the MSE of the optimal
predictor.

Corollary 1 Under the conditions of Theorem 3,

EC Z
tap

[Ẑ tapBLUP(s0) − Z(s0)]2

ECZ [Ẑ(s0) − Z(s0)]2
→ 1 as n → ∞.

The tapered BLUP can be calculated by using the only observable data {Z(s)} when
the transformation T (·) is unknown. However, to justify the practical use of the tapered
BLUP, the property of the plug-in predictor must be investigated. It is a future work.

We give two examples, which are often applied to an empirical analysis.

Example 1 (The squared transformation). If Z(s) = (σY (s)+μ)2, σ > 0 and Y (s) ∼
N (0, 1), Z(s) has the following expression using Hermite polynomials
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922 T. Hirano, Y. Yajima

Z(s) = σ 2 H2(Y (s)) + 2μσ H1(Y (s)) + (μ2 + σ 2)H0(Y (s)).

Since α0 = μ2 +σ 2, α1 = 2μσ, α2 = σ 2 and α j = 0, j ≥ 3, clearly the assumption
of Theorem 3 is satisfied. Then from (4)–(7),

μZ = μ2 + σ 2,

CZ (‖h‖) = 4μ2σ 2CY (‖h‖) + 2σ 4(CY (‖h‖))2,

Ẑ(s0) = (σcY
′�−1

Y Y + μ)2 + σ 2(1 − cY
′�−1

Y cY )

and

E[Ẑ(s0) − Z(s0)]2 = 4μ2σ 2(1 − cY
′�−1

Y cY ) + 2σ 4{1 − (cY
′�−1

Y cY )2}.

In general, for any finite order polynomial Z(s) = ∑m
j=0 a j (σY (s) + μ) j with

a j ∈ R and m < ∞, the corresponding coefficients α j of the Hermite polynomials
satisfy the assumption of Theorem 3 because α j = 0 ( j > m).

Example 2 (The exponential transformation). Consider the following transformation

Z(s) = exp(σY (s) + μ),

where Y (s) ∼ N (0, 1). This kind of random fields Z(s) is called a log-Gaussian
random field. Then by (12) of Appendix A,

Z(s) = exp

(

μ + σ 2

2

) ∞∑

j=0

σ j

j ! Hj (Y (s)).

Since α j = exp(μ+σ 2/2)σ j/j !, the assumption of Theorem 3 is satisfied. It follows
from (4)–(7) and (12) of Appendix A that

μZ = exp

(

μ + σ 2

2

)

,

CZ (‖h‖) = μ2
Z {exp(σ 2CY (‖h‖)) − 1},

Ẑ(s0) = exp

(

μ + σ 2

2

) ∞∑

j=0

σ j

j !
(√

c′
Y �−1

Y cY

) j

H j

⎛

⎝ c′
Y �−1

Y Y
√

c′
Y �−1

Y cY

⎞

⎠

= exp

(

σc′
Y �−1

Y Y + μ + σ 2 − σ 2c′
Y �−1

Y cY

2

)

(8)

and

E[Ẑ(s0) − Z(s0)]2 = μ2
Z {exp(σ 2) − exp(σ 2c′

Y �−1
Y cY )}.
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Covariance tapering in transformed random fields 923

The approach to calculate this nonlinear optimal predictor (8) is known as the lognor-
mal simple kriging (Wackernagel 2003). It is known that the lognormal simple kriging
predictor is superior to the BLUP in log-Gaussian random field in the MSE sense (e.g.,
Cressie 1993; Wackernagel 2003). However, they are asymptotically equivalent under
infill asymptotics when the underlying Gaussian random field has the Matérn covari-
ance function.

Remark 1 The assumption
∑∞

j=1 α2
j j ! j2ν+d+max{1,2ε} < ∞ is relaxed for some ν. If

ν = 0.5, fZ (‖λ‖) has the analytical form,

fZ (‖λ‖) =
∑

j≥1

α2
j j !

(2π)d

∫

Rd
(CY (‖h‖)) j exp(−iλ′h)dh

=
∞∑

j=1

α2
j j !

(2π)d

∫

Rd
exp(−α j‖h‖) exp(−iλ′h)dh

= �((d + 1)/2)α

π(d+1)/2

∞∑

j=1

α2
j j ! j

((α j)2 + ‖λ‖2)(d+1)/2
.

Consequently a weaker condition
∑∞

j=1 α2
j j ! j <∞ than

∑∞
j=1 α2

j j ! j2ν+d+max{1,2ε} <
∞ is sufficient for Theorem 3.

Remark 2 The tapered BLUP is based on the observed data {Z(s)}. If T (·) is known,
we can apply a tapering technique to the underlying Gaussian random field and have

Ẑ tap(s0)=
∞∑

j=0

α j

(√

ctap
Y

′
�

tap
Y

−1
�Y �

tap
Y

−1
ctap

Y

) j

H j

⎛

⎝ ctap
Y

′
�

tap
Y

−1
Y

√
ctap

Y
′
�

tap
Y

−1
�Y �

tap
Y

−1
ctap

Y

⎞

⎠ ,

where {Y (s)} is a Gaussian random field with zero-mean and unit variance. If Ẑ tap(s0)

converges in mean square, by (9) and (11) of Appendix A, Ẑ tap(s0) is an unbiased
predictor and

ECZ [Ẑ tap(s0) − Z(s0)]2 =
∞∑

j=0

α2
j j ! − 2

∞∑

j=0

α2
j j !(ctap

Y
′
�

tap
Y

−1
cY ) j

+
∞∑

j=0

α2
j j !(ctap

Y
′
�

tap
Y

−1
�Y �

tap
Y

−1
ctap

Y ) j .

Ẑ tap(s0) is well defined and has the consistency in the previous two examples.
However, the MSE of Ẑ tap(s0) seems to be more erratic than that of Ẑ tapBLUP(s0)

in some simulations. Whether the asymptotic efficiency of Ẑ tap(s0) with respect to the
optimal predictor holds is a future study.
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4 Computational experiments

We conduct Monte Carlo simulation by using MATLAB. First, we see the convergence
and the finite sample accuracy of Theorem 3 for different sample sizes, taper ranges
and smoothness of covariance functions. Since

ECZ [Ẑ(s0) − Z(s0)]2 ≤ ECZ [ẐBLUP(s0) − Z(s0)]2 ≤ ECZ [Ẑ tapBLUP(s0) − Z(s0)]2,

we see the ratios of the MSE of the tapered BLUP and that of the optimal predictor.
Next, the time required for one calculation of predictors is measured. Finally, we
compare the tapered BLUP with the BLUP obtained by an iterative method, which
is more time saving than the direct method. The examples of Sect. 3 are used for the
transformation T (·).

Let D = [−1, 1]2 be the sampling domain. The data locations {si }i≥1 are sampled
from a uniform distribution over D. The spatial prediction is for the center location s0 =
(0, 0). This sampling scheme satisfies infill asymptotics (see Lemma 7 in Appendix D).

For a fixed configuration of sampling locations {si , i = 1, 2, . . . , n}, each expec-
tation in the ratio of the MSE of the tapered BLUP and that of the optimal predictor
is approximated by sample mean of 1,000 simulations. We iterate this procedure 100
times and calculate mean, standard deviation and 95 % interval of the approximated
ratios to see the variability of the MSE ratio. σ 2 and α are determined so that CZ (0) = 1
and CZ decreases to 0.05 over the distance 0.8 to examine the influence of different
transformations, taper ranges and the smoothness parameter ν of the covariance func-
tion. Therefore, σ 2 and α depend on each transformation and ν. We use Wendland2
taper function

Cθ (‖h‖) =
(

1 − ‖h‖
θ

)6

+

(

1 + 6
‖h‖
θ

+ 35‖h‖2

3θ2

)

,

which was introduced by Wendland (1995) and satisfies the taper condition if d = 2
and ν < 2.5 (Furrer et al. 2006).

The first experiment examines the convergence and the accuracy of the ratio between
the MSE of the tapered BLUP and that of the optimal predictor for different ν. The
smoothness parameter is ν = 0.5, 1.0 and 1.5 and the taper range is θ = 0.8. The
sample size is 100, 300 and 500. Table 1 shows that as ν is larger, the MSE ratio and
fluctuations increase because the discrepancy between the true covariance function
and the tapered one is larger in the small distance in this simulation.

The second one examines the convergence and the accuracy of the MSE ratio with
different taper ranges. The sample size is 100, 300 and 500 for θ = 0.6 and 0.75,
wider ranges and is 300, 1,000, 2,000 and 3,000 for θ = 0.15 and 0.3, narrower
ranges, respectively. The smoothness parameter is ν = 0.5 and 1.5.

Tables 2 and 3 summarize the results. The number in the parentheses is the average
of the number of locations falling within the taper range in 100 sets of the data locations
sampled from a uniform distribution over D. As θ decreases, the MSE ratio increases
because the discrepancy between the true covariance function and the tapered one is
larger and the sample size within the taper range is smaller when θ is smaller. If we
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Table 1 Summary of simulation results in the first experiment for θ = 0.8

ν n Squared case Exponential case

Mean Standard
deviation

95 % interval Mean Standard
deviation

95 % interval

0.5 100 1.250 0.059 (1.140, 1.349) 1.152 0.031 (1.085, 1.212)

300 1.057 0.022 (1.015, 1.097) 1.037 0.029 (0.981, 1.093)

500 1.039 0.013 (1.013, 1.065) 1.024 0.021 (0.981, 1.056)

1.0 100 1.567 0.103 (1.357, 1.767) 1.287 0.060 (1.165, 1.395)

300 1.098 0.023 (1.057, 1.147) 1.075 0.036 (0.982, 1.113)

500 1.051 0.015 (1.019, 1.083) 1.045 0.032 (0.971, 1.106)

1.5 100 2.064 0.178 (1.724, 2.421) 1.448 0.099 (1.258, 1.651)

300 1.168 0.035 (1.095, 1.238) 1.123 0.065 (0.962, 1.236)

500 1.074 0.019 (1.032, 1.109) 1.070 0.040 (0.996, 1.159)

choose the taper range such that the number of the samples within it is greater than 70
in the case of ν = 0.5, the percentage increase of the MSE of the tapered BLUP over
that of the optimal predictor seems to be within about 7 %. In the case of ν = 1.5, it
seems that the taper range such that the number of the samples within it is greater than
140 is a safe choice. Except the small n, the exponential transformation has slightly
larger variability than the squared one although the mean of the exponential one is
closer to one than that of the squared one. This suggests that the convergence rate
of Theorem 3 may depend on the transformation. Since the MSE ratio converges to
one as n is larger regardless of the taper range, Tables 2 and 3 support the result of
Theorem 3.

Next we consider the computational times of the true optimal predictor, the BLUP
and the tapered BLUP for one fixed realization. The computational time of the optimal
predictor is measured as the benchmark, though it is infeasible in practice. We put
ν = 0.5 and θ = 0.15, 0.3 and 0.6 for the squared transformation. All computations
are carried out by using the MATLAB function sparse on Linux powered 3.33 GHz
Xeon processor with 8 Gb RAM. For the calculation of the sparse matrix, there is
also the R package spam (Furrer and Sain 2010). The sample size n is from 1,000 to
9,000 with the increment 1,000. Figure 1 shows that covariance tapering reduces the
computational time substantially for θ = 0.15 and 0.3. However, it does not work well
for θ = 0.6. It seems that as θ increases the calculation of some algorithm specific
to solve a linear equation of a sparse matrix takes much more time and offsets the
computational efficiency. For n = 6, 000, the percentages of non-zero entries in the
tapered covariance matrix, that is the sparsity of the matrices, are 1.6, 6.3 and 21.6 %
for θ = 0.15, 0.3 and 0.6, respectively.

Finally, we consider an iterative method to solve the linear equation of the BLUP. It
is known that iterative methods have a lower operation count than direct methods. Here,
we focus on the conjugate gradient method without preconditioning a linear system
(Golub and Van Loan 1996) and apply to ẐBLUP. We put n = 1000, 3000, ν = 0.5 and
θ = 0.15, 0.3. The count of iterations is 40 and 80. The exponential transformation is
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Table 2 Summary of simulation results in the second experiment for ν = 0.5

θ n Squared case Exponential case

Mean Standard
deviation

95 % interval Mean Standard
deviation

95 % interval

0.6 100 1.411 0.082 (1.243, 1.553) 1.282 0.055 (1.184, 1.403)

300 (84) 1.075 0.027 (1.023, 1.126) 1.050 0.034 (0.979, 1.125)

500 (143) 1.046 0.016 (1.013, 1.077) 1.034 0.028 (0.979, 1.089)

0.75 100 1.283 0.064 (1.160, 1.390) 1.175 0.040 (1.102, 1.266)

300 (132) 1.060 0.023 (1.016, 1.101) 1.039 0.029 (0.990, 1.10)

500 (222) 1.040 0.014 (1.013, 1.067) 1.026 0.020 (0.988, 1.067)

0.15 300 (5) 1.897 0.153 (1.641, 2.232) 1.736 0.143 (1.475, 2.203)

1,000 (18) 1.313 0.076 (1.175, 1.464) 1.283 0.081 (1.125, 1.422)

2,000 (35) 1.096 0.031 (1.035, 1.149) 1.079 0.047 (0.973, 1.181)

3,000 (52) 1.033 0.018 (0.995, 1.068) 1.031 0.032 (0.971, 1.080)

0.3 300 (21) 1.233 0.066 (1.103, 1.347) 1.191 0.066 (1.032, 1.30)

1,000 (71) 1.069 0.024 (1.027, 1.119) 1.055 0.037 (0.983, 1.118)

2,000 (141) 1.021 0.013 (0.994, 1.043) 1.018 0.022 (0.978, 1.066)

3,000 (213) 1.011 0.008 (0.997, 1.026) 1.006 0.016 (0.962, 1.033)

Table 3 Summary of simulation results in the second experiment for ν = 1.5

θ n Squared case Exponential case

Mean Standard
deviation

95 % interval Mean Standard
deviation

95 % interval

0.6 100 2.986 0.276 (2.503, 3.605) 1.864 0.121 (1.645, 2.107)

300 (84) 1.201 0.045 (1.112, 1.288) 1.131 0.060 (1.025, 1.244)

500 (143) 1.091 0.026 (1.034, 1.141) 1.085 0.044 (0.986, 1.169)

0.75 100 2.258 0.205 (1.950, 2.736) 1.535 0.10 (1.321, 1.724)

300 (132) 1.184 0.038 (1.104, 1.264) 1.121 0.060 (1.032, 1.236)

500 (222) 1.077 0.019 (1.040, 1.119) 1.079 0.039 (1.012, 1.161)

0.15 300 (5) 28.739 3.123 (23.402, 35.521) 13.566 1.884 (10.228, 18.068)

1,000 (18) 15.488 1.978 (11.871, 19.496) 7.339 1.003 (5.348, 9.221)

2,000 (35) 1.178 0.050 (1.086, 1.275) 1.163 0.066 (1.033, 1.283)

3,000 (52) 1.051 0.025 (1.006, 1.095) 1.046 0.035 (0.972, 1.098)

0.3 300 (21) 4.559 0.467 (3.734, 5.436) 2.746 0.370 (2.116, 3.511)

1,000 (71) 1.152 0.034 (1.078, 1.213) 1.140 0.059 (1.018, 1.261)

2,000 (141) 1.10 0.036 (1.037, 1.176) 1.076 0.048 (0.994, 1.181)

3,000 (213) 1.030 0.016 (1.0, 1.058) 1.021 0.021 (0.979, 1.052)

used and the number of replications is 1,000. From Tables 4 and 5, the tapered BLUP
by using the direct method is much more time saving than the BLUP with the iterative
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Fig. 1 The time required for the calculation of each predictor for various taper ranges

Table 4 The time required for
the calculation of the BLUP by
using the conjugate gradient
method

n Iteration MSE ratio T ime(s)

1,000 40 1.045 0.573

80 1.019 1.139

3,000 40 1.044 5.362

80 1.004 10.827

Table 5 The time required for
the calculation of the tapered
BLUP by using the direct
method

n Taper range MSE ratio Time (s)

1,000 0.15 1.244 0.015

0.3 1.072 0.021

3,000 0.15 1.036 0.131

0.3 1.004 0.422

method. Furthermore, its MSE ratio to the optimal predictor is almost equal to that of
the BLUP for sufficiently large n. It is a future work to find an efficient preconditioner
and compare ẐBLUP to Ẑ tapBLUP by using the conjugate gradient method.

5 Conclusion and future studies

This paper studies covariance tapering for prediction of large spatial data sets in
transformed random fields and shows the asymptotic efficiency of the tapered BLUP
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not only with respect to the BLUP but also with respect to the optimal predictor. Monte
Carlo simulations support theoretical results. This result provides a contribution to the
analysis of non-Gaussian large spatial data sets and the nonlinear prediction, especially
when the transformation is unknown and the optimal predictor is infeasible.

However, the case of unknown parameters must be considered in future. First for
{Z(s)}, μZ and ν are crucial ones by the following reason. Assume that μZ and ν are
correctly specified and consider the spectral density function

fM (‖λ‖) = σ̃ 2

(α̃2 + ‖λ‖2)ν+d/2 ,

for any α̃ > 0 and σ̃ 2 > 0. Then similar to Theorem 3, the tapered BLUP based on μZ

and the covariance function of fM (‖λ‖) is also asymptotically efficient with respect
to the optimal predictor. The mean μZ may be estimated by the sample mean of the
observations Z = (Z(s1), . . . , Z(sn))′ or a more efficient estimator. Since ν determines
the high frequency behavior of fM (‖λ‖), it may be estimated nonparametrically at
high frequency bands by using Fourier transforms of Z = (Z(s1), . . . , Z(sn))′ (see
e.g., Fuentes and Reich 2010).

Next, the estimation of T (x) should be considered. If T (x) is correctly specified, it
can be helpful to check the condition in Theorem 3 and determine an appropriate range
parameter θ . One candidate for T −1(x) (not T (x)) may be the Box–Cox transformation
(Box and Cox 1964). Then we have to take account of the instability of its identification
which can have a serious effect on the estimation of the parameters (Bickel and Doksum
1981).

Finally how does the tapered BLUP with estimated parameters work well? Putter
and Young (2001) considered a related topic. However, it seems to need another
consideration in our setting as Stein (2010) points out.

Appendix A: Properties of hermite polynomials

In this appendix, we state some relevant results on properties of Hermite
polynomials (Granger and Newbold 1976; Gradshteyn and Ryzhik 2007; Olver
et al. 2010). The system of Hermite polynomials Hn(x) is defined by Hn(x) =
exp(x2/2)(−d/dx)n exp(−x2/2). For example, H0(x) = 1, H1(x) = x, H2(x) =
x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x and
so on. The Hermite polynomials are a complete orthogonal system with respect to the
standard normal probability density function. Therefore, if X ∼ N (0, 1),

E{Hn(X)Hk(X)} =
{

0, n = k,

n!, n = k,
(9)

and since H0(x) = 1,

E{Hn(X)} = 0, n > 0. (10)
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If X and Y are distributed as bivariate normal random vector with zero means, unit
variances and correlation coefficient ρ (−1 < ρ < 1),

E{Hn(X)Hk(Y )} =
{

0, n = k,

ρnn!, n = k.
(11)

Finally we have

exp

(

t x − t2

2

)

=
∞∑

n=0

Hn(x)tn

n! (12)

and

Hn(Ax + By) =
n∑

k=0

(
n
k

)

Ak Bn−k Hk(x)Hn−k(y) for A2 + B2 = 1. (13)

Appendix B: Properties of fY and fZ

To prove the asymptotic optimality of Ẑ tapBLUP(s0), we shall derive some lemmas.
Let fZ denote the spectral density function of CZ , given by (5).

Lemma 1

fZ (‖λ‖) =
∑

j≥1

α2
j j ! f ( j−1)

Y (‖λ‖),

where

f (0)
Y (‖λ‖) = fY (‖λ‖) = A

(α2 + ‖λ‖2)ν+d/2 ,

and f ( j−1)
Y (‖λ‖) ( j ≥ 2) is the ( j − 1) times convolution of fY (‖λ‖), that is

f ( j−1)
Y (‖λ‖) = A

∫

Rd
· · ·

∫

Rd

fY (‖ω j−1‖) · · · fY (‖ω1‖)
(α2 + ‖λ − ω1 − · · · − ω j−1‖2)ν+d/2

j−1∏

l=1

dωl

= fY ∗ · · · ∗ fY (‖λ‖) (say).

Proof Note that CZ (‖h‖) = ∑
j≥1 α2

j j !(CY (‖h‖)) j ≤ ∑
j≥1 α2

j j !CY (‖h‖) because
0 ≤ CY (‖h‖) ≤ 1. Moreover, from 16 of Grandshtyne (Gradshteyn and Ryzhik 2007;
p. 676),

∫ ∞

0
CY (r)rd−1dr = αν

2ν−1�(ν)

∫ ∞

0
rν+d−1 Kν(αr)dr

= αν

2ν−1�(ν)
2ν+d−2α−ν−d�

(
d + 2ν

2

)

�

(
d

2

)

< ∞.

123



930 T. Hirano, Y. Yajima

Therefore, by using polar coordinates,

∫

Rd
CZ (‖h‖)dh =

∫

∂ Bd

∫ ∞

0
CZ (r)rd−1drdU (u)

≤
∑

j≥1

α2
j j !

∫

∂ Bd

∫ ∞

0
CY (r)rd−1drdU (u) < ∞,

where ∂ Bd is the surface of the unit sphere in R
d and U is the uniform probability

measure on ∂ Bd . We have

∫

Rd

∣
∣
∣
∣
∣
∣

∑

j≥1

α2
j j !(CY (‖h‖)) j exp(−iλ′h)

∣
∣
∣
∣
∣
∣
dh ≤

∫

Rd

∑

j≥1

α2
j j !(CY (‖h‖)) j dh

=
∫

Rd
CZ (‖h‖)dh < ∞,

because 0 ≤ CY (‖h‖). Then it follows from Bochner’s theorem, the dominated con-
vergence theorem and the inversion formula that

fZ (‖λ‖) = 1

(2π)d

∫

Rd
CZ (‖h‖) exp(−iλ′h)dh

=
∑

j≥1

α2
j j !

(2π)d

∫

Rd
(CY (‖h‖)) j exp(−iλ′h)dh

=
∑

j≥1

α2
j j !

(2π)d

∫

Rd

(∫

Rd
f ( j−1)
Y (‖ω‖) exp(iω′h)dω

)

exp(−iλ′h)dh

=
∑

j≥1

α2
j j ! f ( j−1)

Y (‖λ‖),

where the third equality is derived by the property that the multiplication of the Fourier
transforms of some functions respectively is the Fourier transform of the convolution
of these functions. ��

Lemma 2 Suppose that
∑∞

j=1 α2
j j !( j − 1)2ν+d+1 < ∞. Then

0 < lim inf‖λ‖→∞ fZ (‖λ‖)‖λ‖d+2ν ≤ lim sup
‖λ‖→∞

fZ (‖λ‖)‖λ‖d+2ν < ∞.
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Proof From Lemma 1,

fZ (‖λ‖) = A

(
α2

1

(α2 + ‖λ‖2)ν+d/2

+
∑

j≥2

α2
j j !

∫

Rd
· · ·

∫

Rd

fY (‖ω j−1‖) · · · fY (‖ω1‖)
(α2 + ‖λ − ω1 − · · · − ω j−1‖2)ν+d/2

j−1∏

l=1

dωl

⎞

⎠

= A(I + I I ) (say). (14)

Then, it suffices to consider the second term I I . First consider the lower bound of
fZ (‖λ‖)‖λ‖d+2ν . We have

‖λ‖d+2ν I I ≥
∑

j≥2

α2
j j !

∫

Rd
· · ·

∫

Rd

‖λ‖d+2ν fY (‖ω j−1‖) · · · fY (‖ω1‖)
(α2 + 2‖λ‖2 + 2‖ω1 + · · · + ω j−1‖2)ν+d/2

j−1∏

l=1

dωl .

Since

‖λ‖d+2ν fY (‖ω j−1‖) · · · fY (‖ω1‖)
(α2 + 2‖λ‖2 + 2‖ω1 + · · · + ω j−1‖2)ν+d/2 ≤ fY (‖ω j−1‖) · · · fY (‖ω1‖)

and

∑

j≥2

α2
j j !

∫

Rd
· · ·

∫

Rd
fY (‖ω j−1‖) · · · fY (‖ω1‖)

j−1∏

l=1

dωl < ∞,

by the dominated convergence theorem,

lim inf‖λ‖→∞ ‖λ‖d+2ν fZ (‖λ‖) ≥ lim inf‖λ‖→∞ A

⎛

⎝‖λ‖d+2ν I

+
∑

j≥2

α2
j j !

∫

Rd
· · ·

∫

Rd

‖λ‖d+2ν fY (‖ω j−1‖) · · · fY (‖ω1‖)
(α2 + 2‖λ‖2 + 2‖ω1 + · · · + ω j−1‖2)ν+d/2

j−1∏

l=1

dωl

⎞

⎠

= A

⎛

⎝α2
1 + 1

2ν+d/2

∑

j≥2

α2
j j !

⎞

⎠ > 0.

Next we consider the upper bound of fZ (‖λ‖)‖λ‖d+2ν . We set λ = ρv, ω1 =
r1u1, . . . ,ω j−1 = r j−1u j−1 with ‖v‖ = ‖u1‖ = · · · = ‖u j−1‖ = 1. Then for
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j ≥ 2, the integral part of (14) multiplied by ‖λ‖d+2ν reduces to

∫

∂ Bd

· · ·
∫

∂ Bd

∫ ∞

0
· · ·

∫ ∞

0

Aρd+2ν

(α2 + ‖ρv − r1u1 − · · · − r j−1u j−1‖2)ν+d/2

× A

(α2 + r2
1 )ν+d/2

· · · A

(α2 + r2
j−1)

ν+d/2

j−1∏

l=1

rd−1
l

j−1∏

m=1

drm

j−1∏

n=1

dU (un)

=
∫

{r1,··· ,r j−1,u1,··· ,u j−1|‖r1u1+···+r j−1u j−1‖≤ρ/2}
·

j−1∏

m=1

drm

j−1∏

n=1

dU (un)

+
∫

{r1,··· ,r j−1,u1,··· ,u j−1|‖r1u1+···+r j−1u j−1‖>ρ/2}
·

j−1∏

m=1

drm

j−1∏

n=1

dU (un)

= I I1 + I I2 (say).

Since in {‖r1u1 + · · · + r j−1u j−1‖ ≤ ρ/2},

1

(α2 + ‖ρv − r1u1 − · · · − r j−1u j−1‖2)ν+d/2 ≤ 1

(α2 + ρ2/4)ν+d/2 ,

and for 1 ≤ k ≤ j − 1,

∫

∂ Bd

∫ ∞

0

A

(α2 + r2
k )ν+d/2

rd−1
k drkdU (uk) = 1,

I I1 ≤ Aρd+2ν

(α2 + ρ2/4)ν+d/2

∫

∂ Bd

· · ·
∫

∂ Bd

∫ ∞

0
· · ·

∫ ∞

0

× A

(α2 + r2
1 )ν+d/2

· · · A

(α2 + r2
j−1)

ν+d/2

×
j−1∏

l=1

rd−1
l

j−1∏

m=1

drm

j−1∏

n=1

dU (un)

≤ A22ν+d .

On the other hand, {‖r1u1 + · · · + r j−1u j−1‖ > ρ/2} implies that ri > ρ/(2( j − 1))

for some i (1 ≤ i ≤ j − 1). Therefore

I I2 ≤
j−1∑

i=1

Aρd+2ν

(
α2 + ρ2

4( j−1)2

)ν+d/2

∫

∂ Bd

· · ·
∫

∂ Bd

∫ ∞

0
· · ·

∫ ∞

0

× A

(α2 + ‖ρv − r1u1 − · · · − r j−1u j−1‖2)ν+d/2
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× A

(α2 + r2
1 )ν+d/2

· · · A

(α2 + r2
i−1)

ν+d/2

× A

(α2 + r2
i+1)

ν+d/2
· · · A

(α2 + r2
j−1)

ν+d/2

j−1∏

l=1

rd−1
l

j−1∏

m=1

drm

j−1∏

n=1

dU (un)

=
j−1∑

i=1

Aρd+2ν

(
α2 + ρ2

4( j−1)2

)ν+d/2

∫

Rd
fY ∗ · · · ∗ fY (‖λ − ωi‖)dωi

≤ A22ν+d( j − 1)2ν+d+1,

because
∫

Rd
f (i)
Y (‖ω‖)dω = (CY (0))i+1 = 1. (15)

Finally we have

lim sup
‖λ‖→∞

‖λ‖d+2ν fZ (‖λ‖)

≤ lim sup
‖λ‖→∞

A

⎛

⎝‖λ‖d+2ν I +
∑

j≥2

α2
j j !22ν+d

(
1 + ( j − 1)2ν+d+1

)
⎞

⎠

≤ A22ν+d
∑

j≥1

α2
j j !

(
1 + ( j − 1)2ν+d+1

)
< ∞.

��
Lemma 3

lim‖λ‖→∞
f ( j)
Y (‖λ‖)
fY (‖λ‖) = j + 1 ( j ≥ 0), (16)

and if fθ (‖λ‖) satisfies the taper condition,

lim‖λ‖→∞
f ( j)
Y ∗ fθ (‖λ‖)

fY (‖λ‖) = j + 1 ( j ≥ 0). (17)

Proof First consider (16). We shall show the assertion by mathematical induction. For
j = 0, the result holds clearly. Assume that it holds for j = K . Consider j = K + 1.
We shall show the assertion in the same way as Proposition 1 of Furrer et al. (2006).
Note that f (K+1)

Y = fY ∗ f (K )
Y . Then

f (K+1)
Y (‖λ‖)

fY (‖λ‖) =
∫
Rd fY (‖x‖) f (K )

Y (‖x − λ‖)dx

fY (‖λ‖) .
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934 T. Hirano, Y. Yajima

We divide the numerator into the following five parts

∫

0≤‖x‖<
′ +

∫


′≤‖x‖<ρ/2

+
∫

ρ/2≤‖x‖<ρ−

+
∫

ρ−≤‖x‖<ρ+

+
∫

ρ+≤‖x‖
,

where λ = ρv, ‖v‖ = 1, ,
′ → ∞, /ρ → 0 and 

′
/ρ → 0 as ρ → ∞. Define

 = O(ρδ) for some (2ν + d)/(2ν + d + 2ε) < δ < 1 as in Proposition 1 of Furrer
et al. (2006).

Case 1: 0 ≤ ‖x‖ < 
′

Note that ‖λ − x‖ ≥ ρ − 
′
. Since the result holds for j = K ,

f (K )
Y (‖x − λ‖)

fY (‖λ‖) → K + 1

as ρ → ∞. It follows that

lim
ρ→∞

∫
0≤‖x‖<

′ fY (‖x‖) f (K )
Y (‖x − λ‖)dx

fY (‖λ‖) = (K + 1) lim
ρ→∞

∫

0≤‖x‖<
′ fY (‖x‖)dx

= K + 1.

Case 2: 
′ ≤ ‖x‖ < ρ/2

∫


′≤‖x‖<ρ/2 fY (‖x‖) f (K )
Y (‖x − λ‖)dx

fY (‖λ‖) → 0

as ρ → ∞.

Case 3: ρ/2 ≤ ‖x‖ < ρ − 

∫
ρ/2≤‖x‖<ρ−

fY (‖x‖) f (K )
Y (‖x − λ‖)dx

fY (‖λ‖) ≤ fY (ρ/2)

fY (ρ)

∫

≤‖x‖
f (K )
Y (‖x‖)dx → 0

as ρ → ∞.

Case 4: ρ −  ≤ ‖x‖ < ρ + 

∫
ρ−≤‖x‖<ρ+

fY (‖x‖) f (K )
Y (‖x − λ‖)dx

fY (‖λ‖) → 1

as ρ → ∞.

Case 5: ρ +  ≤ ‖x‖
∫
ρ+≤‖x‖ fY (‖x‖) f (K )

Y (‖x − λ‖)dx

fY (‖λ‖) → 0
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as ρ → ∞. The result (16) holds for j = K + 1. See Hirano and Yajima (2012) for
details of these Proofs.

Next we consider (17). If j = 0, the result holds from Proposition 1 of Furrer et al.
(2006). Then for any j > 0, the assertion is shown in the same way as (16). ��

Appendix C: Proofs of Theorem 3 and Corollary 1

We first prepare three lemmas.

Lemma 4 Suppose that
∑∞

j=1 α2
j j ! j < ∞. Then

lim
n→∞

ECY [Ŷ BLUP(s0) − Y (s0)]2

ECZ [Ẑ(s0) − Z(s0)]2
= 1

∑
j≥1 α2

j j ! j
.

Proof A stationary random field is mean square continuous if and only if the covari-
ance function is continuous at the origin (see Stein 1999; p. 20). Hence from Yakowitz
and Szidarovszky (1985), ECY [Ŷ BLUP(s0) − Y (s0)]2 = 1 − c′

Y �−1
Y cY ≥ 0 and

c′
Y �−1

Y cY → 1 as n → ∞. Put an = c′
Y �−1

Y cY (≤ 1). From (2) and (7),

ECY [Ŷ BLUP(s0) − Y (s0)]2

ECZ [Ẑ(s0) − Z(s0)]2
= 1 − an

∑∞
j=1 α2

j j ! − ∑∞
j=1 α2

j j !(an) j

= 1
∑∞

j=1 α2
j j !

(∑ j−1
i=0 ai

n

) .

Since α2
j j !

(∑ j−1
i=0 ai

n

)
≤ α2

j j ! j , by the dominated convergence theorem, the assertion

is obtained. ��
Lemma 5 Suppose that

∑∞
j=1 α2

j j ! j2ν+d+1 < ∞. Then

lim
n→∞

ECZ [ẐBLUP(s0) − Z(s0)]2

ECY [Ŷ BLUP(s0) − Y (s0)]2
=

∑

j≥1

α2
j j ! j.

Proof As in the Proof of Lemma 2 for any j ≥ 1,

f ( j−1)
Y (‖λ‖)
fY (‖λ‖) ≤ 22ν+d(1 + ( j − 1)2ν+d+1).

Then by the dominated convergence theorem, Lemmas 1 and 3,

lim‖λ‖→∞
fZ (‖λ‖)
fY (‖λ‖) = lim‖λ‖→∞

∑

j≥1

α2
j j ! f ( j−1)

Y (‖λ‖)
fY (‖λ‖) =

∑

j≥1

α2
j j ! j. (18)
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936 T. Hirano, Y. Yajima

By applying Theorem 1 with C0 = CY and C1 = CZ , we have as n → ∞

1 − 2cY
′�Z

−1cZ + cZ
′�Z

−1�Y �Z
−1cZ

1 − c′
Y �−1

Y cY
→ 1

and

CZ (0) − c′
Z�−1

Z cZ

1 − 2cY
′�Z

−1cZ + cZ
′�Z

−1�Y �Z
−1cZ

→ ∑
j≥1 α2

j j ! j.

Therefore as n → ∞

ECZ [ẐBLUP(s0) − Z(s0)]2

ECY [Ŷ BLUP(s0) − Y (s0)]2
= CZ (0) − c′

Z�−1
Z cZ

1 − c′
Y �−1

Y cY
→

∑

j≥1

α2
j j ! j.

��
Let ftap denote the spectral density function of the tapered covariance function

C Z
tap(‖h‖) = CZ (‖h‖)Cθ (‖h‖). Therefore

ftap(‖λ‖) = fZ ∗ fθ (‖λ‖) =
∫

Rd
fz(‖x‖) fθ (‖x − λ‖)dx.

Lemma 6 Suppose that
∑∞

j=1 α2
j j ! j2ν+d+max{1,2ε} < ∞ where ε is given in the taper

condition. If fθ satisfies the taper condition,

lim‖λ‖→∞
ftap(‖λ‖)
fZ (‖λ‖) = 1.

Proof From Lemma 1, we have

ftap(‖λ‖)
fZ (‖λ‖) =

∫
Rd fz(‖x‖) fθ (‖x − λ‖)dx

fZ (‖λ‖)

=
∑

j≥1 α2
j j ! ∫

Rd f ( j−1)
Y (‖x‖) fθ (‖x − λ‖)dx

fZ (‖λ‖)

= fY (‖λ‖)
fZ (‖λ‖)

∑

j≥1

α2
j j ! f ( j−1)

Y ∗ fθ (‖λ‖)
fY (‖λ‖) .

As in the Proof of Lemma 2, we have

f ( j−1)
Y ∗ fθ (‖λ‖)

fY (‖λ‖) ≤ A1 j2ν+d+max{1,2ε},
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where A1 is a constant being independent of ‖λ‖. See Hirano and Yajima (2012) for
details. Then, by (17), (18) and the dominated convergence theorem, we have the
assertion. ��

Noting that Lemmas 2 and 6 are the verifications of the conditions of Theorem 1,
we have the following proposition.

Proposition 1 Under the conditions of Theorem 3,

ECZ [Ẑ tapBLUP(s0) − Z(s0)]2

ECZ [ẐBLUP(s0) − Z(s0)]2
→ 1

and

EC Z
tap

[Ẑ tapBLUP(s0) − Z(s0)]2

ECZ [Ẑ(s0) − Z(s0)]2
→ 1

as n → ∞.

Proof of Theorem 3 We decompose the ratio of the MSE into the three terms

ECZ [Ẑ tapBLUP(s0) − Z(s0)]2

ECZ [Ẑ(s0) − Z(s0)]2
= ECY [Ŷ BLUP(s0)−Y (s0)]2

ECZ [Ẑ(s0)−Z(s0)]2

ECZ [ẐBLUP(s0)−Z(s0)]2

ECY [Ŷ BLUP(s0)−Y (s0)]2

× ECZ [Ẑ tapBLUP(s0) − Z(s0)]2

ECZ [ẐBLUP(s0) − Z(s0)]2
.

Then by Lemmas 4 and 5, the first term and the second term converge to 1/
∑

j≥1 α2
j j ! j

and
∑

j≥1 α2
j j ! j , respectively as n → ∞. From Proposition 1, the third term converges

to 1 as n → ∞. The Proof is completed. ��
Proof of Corollary 1 We decompose the ratio of the MSE into the two terms

EC Z
tap

[Ẑ tapBLUP(s0) − Z(s0)]2

ECZ [Ẑ(s0) − Z(s0)]2
= ECZ [ẐBLUP(s0)−Z(s0)]2

ECZ [Ẑ(s0)−Z(s0)]2

E
C Z

tap
[Ẑ tapBLUP(s0)−Z(s0)]2

ECZ [ẐBLUP(s0)−Z(s0)]2 .

Then by the Proof of Theorem 3, the first term converges to 1 as n → ∞. Finally by
Proposition 1, the second term converges to 1 as n → ∞. The Proof is completed. ��

Appendix D: Property of the sampling scheme in Sect. 4

Lemma 7 Let {Si }i≥1 be i.i.d. sequence in D. Suppose also that P({ω|‖Si − s0‖ ≤
ε}) > 0 for any ε > 0, P(Si = s0) = 0 and s0 ∈ D. Then

s0 ∈ {Si , i = 1, 2, . . .} a.s.
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938 T. Hirano, Y. Yajima

Proof Define Ai j = {ω|‖Si − s0‖ ≤ 1/j} for i, j ∈ N. By the assumption, P(Ai j ) >

0. Then

P

( ∞⋂

i=1

Ac
i j

)

= lim
k→∞(P(Ac

i j ))
k = 0,

because P(Ac
i j ) = 1− P(Ai j ) < 1. Thus, P

(⋃∞
i=1 Ai j

) = 1. Define B j = ⋃∞
i=1 Ai j .

Then

P

⎛

⎝
∞⋂

j=1

B j

⎞

⎠ = 1 − P

⎛

⎝
∞⋃

j=1

Bc
j

⎞

⎠ ≥ 1 −
∞∑

j=1

P(Bc
j ) = 1.

Therefore

P({ω|s0 ∈ {Si , i = 1, 2, . . .}}) = P

⎛

⎝
∞⋂

j=1

∞⋃

i=1

Ai j

⎞

⎠ = 1.

��
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