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Abstract Tests are proposed for the hypothesis that the underlying copula of a
continuous random pair is symmetric. The procedures are based on Cramér–von Mises
and Kolmogorov–Smirnov functionals of a rank-based empirical process whose large-
sample behaviour is obtained. The asymptotic validity of a re-sampling method to
compute P values is also established. The technical arguments supporting the use of
a Chi-squared test due to Jasson are also presented. A power study suggests that the
proposed tests are more powerful than Jasson’s procedure under many scenarios of
copula asymmetry. The methods are illustrated on a nutrient data set.
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1 Introduction

Consider a continuous random pair (X,Y ) the joint distribution function of which is
defined for all x, y ∈ R by
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812 C. Genest et al.

H(x, y) = Pr(X � x,Y � y).

The variables X and Y are said to be exchangeable if the following hypothesis holds:

H �
0 : ∀(x,y)∈R2 H(x, y) = H(y, x).

The problem of testing this hypothesis is of general interest. Early contributors to the
subject include Bell and Haller (1969), who addressed the issue within the bivariate
Gaussian model, and Hollander (1971), who proposed a test that is consistent against
a broad class of alternatives. Rank tests were also designed for restricted alternatives
by Sen (1967), Yanagimoto and Sibuya (1976), and Snijders (1981). Hollander’s test,
which is based on the bivariate empirical distribution function, was further considered
by Koziol (1979), Hilton and Gee (1997), and Hilton (2000).

Testing H �
0 amounts to checking that the variables X and Y are identically distrib-

uted and that their dependence structure is symmetric. In other words, suppose that
the marginal distribution functions of X and Y are defined for all x, y ∈ R by

F(x) = Pr(X � x), G(y) = Pr(Y � y)

and let C be the unique copula corresponding to H , i.e., the joint distribution of the
pair (U, V ) = (F(X),G(Y )), which has uniform margins on [0, 1]. As implied, e.g.,
by the work of Sklar (1959), the identity

H(x, y) = C{F(x),G(y)} (1)

holds for all x, y ∈ R and hence H �
0 is verified if and only if

(i) F(x) = G(x) for all x ∈ R;
(ii) C(u, v) = C(v, u) for all (u, v) ∈ [0, 1]2.

Thus H �
0 may be rejected either because (i) or (ii) fails, or both. While Condition

(i) could be validated through standard graphical or formal statistical procedures, it
is not immediately clear how to test for Condition (ii). Indeed, unless the marginal
distributions F and G are known, data from C cannot be observed directly.

The purpose of this paper is to propose tests of the hypothesis

H0 : ∀(u,v)∈[0,1]2 C(u, v) = C(v, u)

against the general alternative

H1 : ∃(u,v)∈[0,1]2 C(u, v) �= C(v, u).

This issue is of immediate relevance for the construction of copula models, in
which H is assumed to be of the form (1) with F,G and C taken from para-
metric classes (Fα), (Gβ), and (Cθ ), respectively. In recent years, copula mod-
elling has experienced rapid growth, e.g., in finance (Cherubini et al. 2004),
risk management (McNeil et al. 2005), and hydrology (Salvadori et al. 2007).
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Tests of symmetry for bivariate copulas 813

This approach is particularly useful when the variables X and Y have different
behaviour, i.e., when Condition (i) fails. Equation (1) yields a bivariate distribu-
tion with margins F and G (possibly involving covariates) for any choice of copula
C .

At present, most bivariate copula families used in practice are symmetric, i.e., they
satisfy Condition (ii). Such is the case, e.g., for all meta-elliptical and Archimedean
copulas (Fang et al. 2002; Nelsen 2006). Before such dependence structures are fitted
and used for prediction purposes, it would be wise to test the validity of hypothesis
H0. This issue is formally addressed here for the first time; for an informal treatment
involving an adaptation of the Chi-squared test, see Jasson (2005).

Three rank-based tests of the hypothesis H0 are proposed in Sect. 2, and their
large-sample properties are discussed in Sect. 3. Although the procedures are not
distribution-free under H0, it is shown in Sect. 4 that they can be implemented effec-
tively using the Multiplier Central Limit Theorem (van der Vaart and Wellner 1996,
Section 2.9). In Sect. 5, the behaviour of Jasson’s statistic is examined. A power study
comparing its merits relative to the current proposals is then reported in Sect. 6, and
a small illustration is presented in Sect. 7. Technical arguments are grouped in the
Appendix.

2 Description of the test statistics

Let (X1,Y1), . . . , (Xn,Yn) be a random sample from a bivariate distribution H with
continuous margins F and G. Let C be the associated copula implicitly defined by
(1). When F and G are known, one can construct a random sample from C by setting,
for all i ∈ {1, . . . , n},

(Ui , Vi ) = (F(Xi ),G(Yi )).

A consistent estimator of C is then defined for all (u, v) ∈ [0, 1]2 by

Cn(u, v) = 1

n

n∑

i=1

I(Ui � u, Vi � v). (2)

In contrast, data from C are not directly observable when F and G are unknown.
However, a simple analogue of the pair (Ui , Vi ) is then provided by

(Ûi , V̂i ) = (Fn(Xi ),Gn(Yi )),

where Fn and Gn are the margins of the empirical analogue Hn of H . Note that n Ûi

is the rank of Xi among X1, . . . , Xn and that similarly, n V̂i is the rank of Yi among
Y1, . . . ,Yn .
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814 C. Genest et al.

As originally shown by Rüschendorf (1976) under weak regularity conditions, a
consistent estimate of C is defined for all (u, v) ∈ [0, 1]2 by

Ĉn(u, v) = 1

n

n∑

i=1

I(Ûi � u, V̂i � v). (3)

Although it is not a copula per se (as its margins are discontinuous), it makes sense
to call Ĉn the “empirical copula,” given the analogy between (2) and (3). This def-
inition differs slightly from the original one given by Deheuvels (1979), who set
Ĉ D

n (u, v) = Hn{F←n (u),G←n (v)} in terms of the generalized inverses F←n and G←n
of Fn and Gn , respectively. As |Ĉ D

n (u, v)− Ĉn(u, v)| � 2/n for all (u, v) ∈ [0, 1]2,
the two estimators are asymptotically equivalent.

In addition to being consistent, the rank-based estimator (3) shares with C an
invariance with respect to strictly increasing transformations of the variables X and
Y . Furthermore, Genest and Segers (2010) showed that the asymptotic covariance of
Ĉn is smaller than the asymptotic covariance of Cn under broad positive dependence
conditions.

To test the hypothesis of exchangeability, it is natural to compare the values taken
by Ĉn at (u, v) and (v, u) for all possible choices of u, v ∈ [0, 1]. Intuitively, Ĉn(u, v)
and Ĉ�n (u, v) = Ĉn(v, u) should be close under H0. Three global measures of the
discrepancy between Ĉn and Ĉ�n are given by

Rn =
∫ 1

0

∫ 1

0
{Ĉn(u, v)− Ĉn(v, u)}2 dv du

Sn =
∫ 1

0

∫ 1

0
{Ĉn(u, v)− Ĉn(v, u)}2 dĈn(u, v),

Tn = sup
(u,v)∈[0,1]2

|Ĉn(u, v)− Ĉn(v, u)|.

(4)

In particular, Sn is a rank-based analogue of a Cramér–von Mises type statistic due to
Hollander (1971), viz.

∫ ∞

−∞

∫ ∞

−∞
{Hn(x, y)− Hn(y, x)}2 dHn(x, y).

The following result, proved in the Appendix, gives alternative expressions for
Rn, Sn , and Tn that are convenient for computation purposes.

Proposition 1 The statistics defined in (4) may be expressed as

Rn = 1

n2 1�A1, Sn = 1

n3

n∑

k=1

1�Bk1,

Tn = max
i, j∈{1,...,n}

∣∣∣∣Ĉn

(
i

n
,

j

n

)
− Ĉn

(
j

n
,

i

n

)∣∣∣∣ ,
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Tests of symmetry for bivariate copulas 815

where 1 is an n × 1 vector of 1’s and A,B1, . . . ,Bn are n × n matrices with entry at
position (i, j) given by

Ai j = 2(1− Ûi ∨ Û j )(1− V̂i ∨ V̂ j )− 2(1− Ûi ∨ V̂ j )(1− Û j ∨ V̂i ),

Bki j = I(Ûi ∨ Û j � Ûk, V̂i ∨ V̂ j � V̂k)− I(Ûi ∨ V̂ j � Ûk, V̂i ∨ Û j � V̂k)

−I(Ûi ∨ V̂ j � V̂k, V̂i ∨ Û j � Ûk)+ I(Ûi ∨ Û j � V̂k, V̂i ∨ V̂ j � Ûk),

where for arbitrary a, b ∈ R, a ∨ b = max(a, b).

3 Asymptotic behaviour

Weak limits of the test statistics given in (4) can be derived from the asymptotic
behaviour of the empirical copula process, defined for all (u, v) ∈ [0, 1]2 by

Ĉn(u, v) = n1/2{Ĉn(u, v)− C(u, v)}.

This process may be viewed as a random element of the space �∞[0, 1]2 of bounded
functions f : [0, 1]2 → R equipped with the uniform norm. From the work of
Rüschendorf (1976) and Segers (2012), the sequence (Ĉn) admits a weak limit Ĉ,
denoted Ĉn � Ĉ, whenever C is regular in the following sense:

Definition 1 A bivariate copula C is said to be regular if

(i) the partial derivatives Ċ1(u, v) = ∂C(u, v)/∂u and Ċ2(u, v) = ∂C(u, v)/∂v
exist everywhere on [0, 1]2, where by convention, one-sided derivatives are used
at the boundary points;

(ii) Ċ1 is continuous on (0, 1)× [0, 1] and Ċ2 is continuous on [0, 1] × (0, 1).

The limit Ĉ is a centred Gaussian process defined for all (u, v) ∈ [0, 1]2 by

Ĉ(u, v) = C(u, v)− Ċ1(u, v)C(u, 1)− Ċ2(u, v)C(1, v)

in terms of a tucked C-Brownian sheet C, i.e., a centred Gaussian random field whose
covariance function is given for all u, v, s, t ∈ [0, 1] by

ΓC(u, v, s, t) = C(u ∧ s, v ∧ t)− C(u, v)C(s, t),

where for all a, b ∈ R, a ∧ b = min(a, b). For variants on Rüschendorf’s result, see
Gänßler and Stute (1987), Fermanian et al. (2004) or Tsukahara (2005).

Now consider the symmetrised empirical process D̂n = n1/2(Ĉn − Ĉ�n ), explicitly
defined for all (u, v) ∈ [0, 1]2 by

D̂n(u, v) = n1/2{Ĉn(u, v)− Ĉn(v, u)}.

Under H0, the limit of this process can be deduced easily from the asymptotic behav-
iour of Ĉn , because one then has D̂n(u, v) = Ĉn(u, v) − Ĉn(v, u) for all (u, v) ∈
[0, 1]2. The result is stated below; see the Appendix for a proof.
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816 C. Genest et al.

Proposition 2 If C is a regular symmetric copula, then D̂n converges weakly, as
n→∞, to a Gaussian random field D̂ defined for all (u, v) ∈ [0, 1]2 by

D̂(u, v) = D(u, v)− Ċ1(u, v)D(u, 1)− Ċ2(u, v)D(1, v),

in terms of a centred Gaussian random field D with covariance function given at each
u, v, s, t ∈ [0, 1] by ΓD(u, v, s, t) = 2 {ΓC(u, v, s, t)− ΓC(u, v, t, s)}.

Note that the covariance functionΓ
D̂

of D̂ can be expressed, for all u, v, s, t ∈ [0, 1],
in terms of the covariance function Γ

Ĉ
of the process Ĉ, viz.

Γ
D̂
(u, v, s, t) = 2{Γ

Ĉ
(u, v, s, t)− Γ

Ĉ
(u, v, t, s)}.

Closed form expressions forΓ
D̂

are rare and intricate. One exception is when C(u, v) =
uv for all (u, v) ∈ [0, 1]2, i.e., the independence copula. In that case,

Γ
Ĉ
(u, v, s, t) = (u ∧ s − us) (v ∧ t − vt)

for all u, v, s, t ∈ [0, 1], and hence

Γ
D̂
(u, v, s, t) = 2 (u ∧ s − us) (v ∧ t − vt)− 2 (u ∧ t − ut) (v ∧ s − vs) .

The asymptotic behaviour of the statistics Rn, Sn and Tn under H0 can be deduced
from Proposition 2, in combination with the Continuous Mapping Theorem and the
Functional Delta Method; see the Appendix for details.

Proposition 3 If C is a regular symmetric copula, then as n→∞,

n Rn =
∫ 1

0

∫ 1

0
{D̂n(u, v)}2 dv du � DR =

∫ 1

0

∫ 1

0
{D̂(u, v)}2 dv du,

nSn =
∫ 1

0

∫ 1

0
{D̂n(u, v)}2 dĈn(u, v) � DS =

∫ 1

0

∫ 1

0
{D̂(u, v)}2 dC(u, v),

n1/2 Tn = sup
(u,v)∈[0,1]2

|D̂n(u, v)| � DT = sup
(u,v)∈[0,1]2

|D̂(u, v)|.

If C is regular, it also follows from the Continuous Mapping Theorem that the
statistics Rn and Tn converge in probability to the measures of asymmetry proposed
by Nelsen (2007). With some additional effort, the limit of Sn can also be identified.
This is stated formally below and proved in the Appendix.
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Tests of symmetry for bivariate copulas 817

Proposition 4 If C is a regular copula, then as n→∞,

Rn
p→ R(C) =

∫ 1

0

∫ 1

0
{C(u, v)− C(v, u)}2 dv du,

Sn
p→ S(C) =

∫ 1

0

∫ 1

0
{C(u, v)− C(v, u)}2 dC(u, v), (5)

Tn
p→ T (C) = sup

(u,v)∈[0,1]2
|C(u, v)− C(v, u)|.

4 Procedures based on the Multiplier Central Limit Theorem

As seen in Sect. 3, the null distributions of the test statistics n Rn, nSn , and n1/2Tn

depend on the underlying form of the copula, which is generally unknown. It is thus
impossible to compute valid P values from standard Monte Carlo simulations. The
Multiplier Central Limit Theorem (van der Vaart and Wellner 1996, Section 2.9) pro-
vides a solution to this problem. The resulting bootstrap approximation of the empirical
copula process was successfully applied in other testing situations involving copulas,
e.g., by Scaillet (2005), Rémillard and Scaillet (2009), Kojadinovic and Yan (2011),
and Kojadinovic et al. (2011).

Following Bücher and Dette (2010), fix M ∈ N and for each h ∈ {1, . . . ,M}, let
ξ (h) = (ξ (h)1 , . . . , ξ

(h)
n ) be a vector of independent non-negative random variables with

unit mean and unit variance. These variables should also be completely independent
from the data. Further write

ξ̄ (h)n = 1

n

(
ξ
(h)
1 + · · · + ξ (h)n

)

and

Ξ(h)
n =

(
ξ
(h)
1

ξ̄
(h)
n

− 1, . . . ,
ξ
(h)
n

ξ̄
(h)
n

− 1

)
.

Given (u, v) ∈ [0, 1]2, let Pn(u, v) be an n × 1 vector with i th component

Pin(u, v) = I(Ûi � u, V̂i � v)− I(Ûi � v, V̂i � u). (6)

For each h ∈ {1, . . . ,M}, a weighted bootstrap version D
(h)
n of D may then be defined

by setting, for all (u, v) ∈ [0, 1]2,

D
(h)
n (u, v) = n−1/2Ξ(h)

n Pn(u, v). (7)

From the asymptotic representation of D̂ under H0 stated in Proposition 2, a bootstrap
replicate of this process is then given, for all (u, v) ∈ [0, 1]2, by
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818 C. Genest et al.

D̂
(h)
n (u, v) = D

(h)
n (u, v)− Ċ1n(u, v)D

(h)
n (u, 1)− Ċ2n(u, v)D

(h)
n (1, v)

= n−1/2Ξ(h)
n {Pn(u, v)− Ċ1n(u, v)Pn(u, 1)− Ċ2n(u, v)Pn(1, v)}.

Here, Ċ1n and Ċ2n are the estimates of the partial derivatives Ċ1 and Ċ2 defined
by Segers (2012). Specifically, let �n ∈ (0, 1/2) be a bandwidth parameter and for
arbitrary v ∈ [0, 1], set

Ċ1n(u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ĉn(2�n, v)

2�n
if u ∈ [0, �n),

Ĉn(u + �n, v)− Ĉn(u − �n, v)

2�n
if u ∈ [�n, 1− �n],

Ĉn(1, v)− Ĉn(1− 2�n, v)

2�n
if u ∈ (1− �n, 1].

Similarly, for arbitrary u ∈ [0, 1], set

Ċ2n(u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ĉn(u, 2�n)

2�n
if v ∈ [0, �n),

Ĉn(u, v + �n)− Ĉn(u, v − �n)

2�n
if v ∈ [�n, 1− �n],

Ĉn(u, 1)− Ĉn(u, 1− 2�n)

2�n
if v ∈ (1− �n, 1].

The following proposition implies that asymptotically, D̂
(1)
n , . . . , D̂

(M)
n are inde-

pendent copies of D̂ under H0:

Proposition 5 Let C be a regular symmetric copula. Suppose that

lim
n→∞ �n = 0, inf

n∈N
n1/2�n > 0.

Then for all M ∈ N, (D̂n, D̂
(1)
n , . . . , D̂

(M)
n ) � (D̂, D̂(1), . . . , D̂(M)) as n→∞, where

the processes D̂
(1), . . . , D̂(M) are independent copies of D̂.

Bootstrap replicates of the three test statistics can now be defined, for each n ∈ N

and h ∈ {1, . . . ,M}, by

n R̂(h)n =
∫ 1

0

∫ 1

0
{D̂(h)n (u, v)}2 dv du,

nŜ(h)n =
∫ 1

0

∫ 1

0
{D̂(h)n (u, v)}2 dĈn(u, v),

n1/2 T̂ (h)n = sup
(u,v)∈[0,1]2

|D̂(h)n (u, v)|.

The following result is an immediate consequence of Proposition 5:
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Tests of symmetry for bivariate copulas 819

Corollary 1 Suppose that the conditions of Proposition 5 hold. Then for all M ∈ R

and as n→∞,

(n R̂n, n R̂(1)n , . . . , n R̂(M)n ) � (DR,D
(1)
R , . . . ,D

(M)
R ),

(nŜn, nŜ(1)n , . . . , nŜ(M)n ) � (DS,D
(1)
S , . . . ,D

(M)
S ),

(n1/2 T̂n, n1/2 T̂ (1)n , . . . , n1/2 T̂ (M)n ) � (DT ,D
(1)
T , . . . ,D

(M)
T ),

where each limit consists of independent, identically distributed processes.

It follows from Corollary 1 that approximate P values for the tests of H0 based on
Rn, Sn , and Tn are given, respectively, by

1

M

M∑

h=1

I(R̂(h)n > Rn),
1

M

M∑

h=1

I(Ŝ(h)n > Sn),
1

M

M∑

h=1

I(T̂ (h)n > Tn).

For convenience, let D̂
(h)
n = n−1/2Ξ

(h)
n Qn for each h ∈ {1, . . . ,M}, where for all

(u, v) ∈ [0, 1]2,

Qn(u, v) = Pn(u, v)− Ċ1n(u, v)Pn(u, 1)− Ċ2n(u, v)Pn(1, v)

depends only on the pseudo-observations retrieved from the data. While

Ŝ(h)n =
1

n3

n∑

i=1

{Ξ(h)
n Qn(Ûi , V̂i )}2,

explicit expressions for the bootstrap replicates R̂(h)n and T̂ (h)n are difficult to obtain.
The following approximations can be used in practice:

R̂(h)n ≈
1

nN 2

N∑

k=1

N∑

�=1

{
D̂
(h)
n

(
k

N
,
�

N

)}2

= 1

n2 N 2

N∑

k=1

N∑

�=1

{
Ξ(h)

n Qn

(
k

N
,
�

N

)}2

,

T̂ (h)n ≈ 1

n1/2 max
k,�∈{1,...,N }

∣∣∣∣D̂
(h)
n

(
k

N
,
�

N

)∣∣∣∣

= 1

n
max

k,�∈{1,...,N }

∣∣∣∣Ξ
(h)
n Qn

(
k

N
,
�

N

)∣∣∣∣ .

(8)

5 Jasson’s test

To test whether a copula is symmetric, Jasson (2005) suggested that the set [0, 1]2 be
partitioned into squares of width 1/L for some integer L > 2 and that a contingency
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820 C. Genest et al.

table be derived from the pseudo-observations (Û1, V̂1), . . . , (Ûn, V̂n) by counting
how many of them fall in each of these squares. If H0 is true, the counts in cells (i, j)
and ( j, i) should be roughly the same. The traditional Chi-square statistic could thus
be used to check whether the observed differences are within sampling error or not.

To be more specific, consider a general mapping f : [0, 1]2 → R and for arbitrary
k, � ∈ {1, . . . , L}, introduce the notation

pL
k�( f ) = f

(
k

L
,
�

L

)
− f

(
k − 1

L
,
�

L

)
− f

(
k

L
,
�− 1

L

)
+ f

(
k − 1

L
,
�− 1

L

)
.

If a random pair (U, V ) is distributed according to copula C , then

pL
k�(C) = Pr

{
(U, V ) ∈

(
k − 1

L
,

k

L

]
×

(
�− 1

L
,
�

L

]}
,

and hence pL
k�(C) = pL

�k(C) for all k, � ∈ {1, . . . , L} whenever C is symmetric.
Following Jasson (2005), a “local” test of H0 could be based on

W L
n,(k,�) = pL

k�(Ĉn)− pL
�k(Ĉn),

i.e., the difference in the proportion of counts observed in cells (k, �) and (�, k) for
fixed k, � ∈ {1, . . . , L}. Clearly, one has W L

n,(k,�) = −W L
n,(�,k) and hence in particular

W L
n,(k,k) ≡ 0 for all k, � ∈ {1, . . . , L}. Therefore, it suffices to restrict attention to the

pairs (k, �) with 1 � k < � � L . In his paper, Jasson considers the ratio

Zn,(k,�) = n1/2
W L

n,(k,�)

{pL
k�(Ĉn)+ pL

�k(Ĉn)}1/2
,

and suggests as a “global” test statistic

Zn =
∑

k<�

Z2
n,(k,�).

A basic problem with this approach, however, is that the asymptotic distribution
of Zn is not necessarily Chi-square with ν = (L − 1)(L − 2)/2 degrees of freedom
under H0, as claimed by Jasson (2005). To see why, first observe that n1/2 W L

n,(k,�) =
pL

k�(D̂n), i.e.,
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Tests of symmetry for bivariate copulas 821

n1/2 W L
n,(k,�) = D̂n

(
k

L
,
�

L

)
− D̂n

(
k − 1

L
,
�

L

)

−D̂n

(
k

L
,
�− 1

L

)
+ D̂n

(
k − 1

L
,
�− 1

L

)

for all k, � ∈ {1, . . . , L}. Thus if H0 is true, one finds that as n→∞,

n1/2 WL
n = n1/2 (W L

n,(1,2), . . . ,W L
n,(L−1,L))

� � WL ,

where WL is a centred Gaussian vector. Observe, however, that its covariance matrix
�L depends on the unknown value of the underlying copula C at points (k/L , �/L) for
k, � ∈ {1, . . . , L}. Clearly, therefore, the limiting distributions of the random variables
Zn,(k,�) depend on C and are not necessarily independent of one another. As a result,
it is far from obvious that the limiting behaviour of Zn could be distribution-free.

To circumvent this problem, one can again call on the bootstrap replicates of D̂. For
all h ∈ {1, . . . ,M} and k, � ∈ {1, . . . , L} with k < �, set n1/2 W L(h)

n,(k,�) = pL
k�(D̂

(h)
n ),

i.e.,

n1/2 W L(h)
n,(k,�) = D̂

(h)
n

(
k

L
,
�

L

)
− D̂

(h)
n

(
k − 1

L
,
�

L

)

−D̂
(h)
n

(
k

L
,
�− 1

L

)
+ D̂

(h)
n

(
k − 1

L
,
�− 1

L

)

and for each h ∈ {1, . . . ,M}, write

n1/2 WL(h)
n = (n1/2 W L(h)

n,(1,2), . . . , n1/2 W L(h)
n,(L−1,L))

�.

It then follows from Proposition 5 and the Continuous Mapping Theorem that under
H0, the vectors n1/2 WL(1)

n , . . . , n1/2 WL(M)
n are asymptotically independent copies

of WL . Accordingly, the empirical covariance matrix based on WL(1)
n , . . . ,WL(M)

n
provides a consistent estimate �̂L of �L . The proposed test statistic is then

J L
n = (WL

n )
��̂−1

L WL
n , (9)

and its asymptotic distribution is χ2
(ν) with ν = rank(�L) degrees of freedom. From

numerical experimentation it seems that �L is of full rank for many classical copula
models. It may thus be conjectured that ν = (L − 1)(L − 2)/2.

6 Finite-sample performance

A Monte Carlo experiment was designed to study the finite-sample performance of the
tests of H0 based on the statistics Rn, Sn, Tn defined in (4). For comparison purposes,
the statistic J L

n given in (9) was also included; values of L ∈ {3, 4, 5, 6} serve to show
the effect of increasingly finer partitions of [0, 1]2. All tests were carried out at the
5% nominal level.
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Table 1 Level of the tests of H0 based on Rn , Sn , Tn , and J L
n with L ∈ {3, 4, 5, 6}, as estimated from 1,000

replicates from four symmetric copulas using M = 250 bootstrap replicates and N = 50 in approximation
(8): independence (IN), Clayton (CL), Gaussian (GA), and Gumbel–Hougaard (GH)

Copula τ Rn Sn Tn J 3
n J 4

n J 5
n J 6

n

n = 100

IN 0 2.4 3.0 3.0 4.3 5.7 4.6 9.6

1/4 2.0 3.2 4.5 5.8 4.9 6.3 9.3

CL 1/2 1.5 2.0 6.1 3.7 3.5 4.9 6.1

3/4 0.5 2.0 5.7 0.0 5.5 9.9 9.4

1/4 2.0 3.1 3.9 3.6 4.6 5.7 7.3

GA 1/2 1.9 1.7 5.1 3.4 3.7 3.9 4.9

3/4 0.1 1.7 4.9 0.0 3.9 8.1 10.8

1/4 1.9 3.1 4.2 4.8 4.9 5.1 8.2

GH 1/2 1.2 1.9 4.6 4.3 3.5 4.1 5.5

3/4 0.7 2.4 5.1 0.0 5.3 3.4 5.8

n = 250

IN 0 3.9 3.7 2.7 3.8 4.9 4.6 6.8

1/4 3.4 3.7 3.3 4.5 4.8 4.7 6.0

CL 1/2 2.1 3.4 4.0 5.1 2.7 3.3 4.1

3/4 1.0 2.7 4.4 0.1 4.2 7.0 9.9

1/4 4.1 4.2 4.0 4.0 3.1 4.0 6.1

GA 1/2 2.0 3.5 4.5 3.8 2.8 3.3 3.7

3/4 0.9 2.2 4.8 0.0 1.5 4.7 6.4

1/4 2.7 3.2 3.5 4.0 4.5 5.3 6.3

GH 1/2 3.2 3.3 4.7 4.6 3.7 2.7 4.7

3/4 0.6 2.3 3.9 0.2 0.3 3.0 3.1

P values were computed on the basis of M = 250 bootstrap replicates and N = n/5
was used in approximations (8). The variables ξ (h)1 , . . . , ξ

(h)
n were taken to be indepen-

dent exponential random variables with unit mean. The resulting scheme is sometimes
referred to as the Bayesian bootstrap (van der Vaart and Wellner 1996, Example 3.6.9).
Other choices of distribution did not affect the conclusions presented below.

Table 1 shows the empirical level of the tests based on 1,000 random samples of
size n = 100 and 250 from the following copula models:

(i) the Clayton (CL) copula is given for all (u, v) ∈ (0, 1]2 by

CCL
θ (u, v) = (u−θ + v−θ − 1)−1/θ , θ ∈ (0,∞);

(ii) the Gaussian (GA) copula is given for all (u, v) ∈ (0, 1]2 by

CGA
r (u, v)=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
1

2π(1− r2)1/2
exp

{
− s2 + t2 − 2rst

2(1− r2)

}
dt ds,
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Fig. 1 Value of 3× T (C) as a function of δ for copulas arising from Khoudraji’s device. Continuous line
τ = 0.1; dashed line τ = 0.3; dotted line τ = 0.5; dashed dotted line τ = 0.7; stared line τ = 0.9

where r ∈ (−1, 1) andΦ denotes the distribution function of a Gaussian random
variable with zero mean and unit variance;

(iii) the Gumbel–Hougaard (GH) copula is given for all (u, v) ∈ (0, 1]2 by

CGH
θ (u, v) = exp

{− (| ln u|θ + | ln v|θ )1/θ}, θ ∈ (1,∞).

To assess the effect of the degree of dependence, three values of Kendall’s tau were
used: 1/4, 1/2, and 3/4. All tests except those based on Tn and J 4

n appear to be either
too liberal or conservative when n = 100. There are general signs of improvement
when n = 250, although important discrepancies remain for some tests, especially
when τ = 3/4. This is likely due to the fact that pairs of normalized ranks are sparse
in the vicinity of (0, 1) and (1, 0), resulting in many cells with low counts, among
others.

To study the power of the tests, the three copula models given above were made
asymmetric by Khoudraji’s device (Khoudraji 1995; Genest et al. 1998; Liebscher
2008). Specifically, an asymmetric version of a copula C was defined at all (u, v) ∈
[0, 1]2 by

Kδ(u, v) = uδC(u1−δ, v) (10)
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for various choices of δ ∈ (0, 1). The symbols K CL
δ , K GA

δ , and K GH
δ denote the

resulting asymmetric versions of the Clayton, Gaussian, and Gumbel–Hougaard cop-
ulas, respectively. Further, the asymmetric versions K CA

δ of the Cuadras–Augé (CA)
copulas CCA

θ were considered, where for all θ, u, v ∈ [0, 1],

CCA
θ (u, v) = min(u1−θ v, vu1−θ ).

Note that each K CA
δ belongs to the Marshall–Olkin copula family.

Figure 1 shows how Nelsen’s asymmetry index T (C) defined in (5) varies as a
function of δ for various choices of Kendall’s τ in families K CA

δ , K CL
δ , K GA

δ , and
K GH
δ . As can be seen, Khoudraji’s device (10) provides little asymmetry for small and

moderate values of τ (say τ � 1/2). In all cases, maximum asymmetry occurs at (or
near) δ = 1/2. Nevertheless, Table 2 shows that the tests generally achieve reasonable
power against these various alternatives, even when n = 100. The results for n = 250,
presented in Table 3, are more encouraging still, although not uniformly good. More
specifically

(i) the test based on the Cramér–von Mises statistic Sn is almost systematically more
powerful than its competitors;

(ii) in accordance with Fig. 1, the power of the tests tends to increase with τ and is
generally highest at δ = 1/2 (the only exception occurs for the test based on J 3

n
when δ = 1/4);

(iii) also in accordance with Fig. 1, asymmetry is particularly difficult to detect for
K CL
δ when τ = 1/2, even for δ = 1/2 and n = 250;

(iv) the test based on J L
n generally gains in power with increasing L .

Additional evidence is provided by Fig. 2, which shows the power of the various
tests for mixture alternatives defined for all δ, u, v ∈ [0, 1] by

K I
δ,CCL

(u, v) = (1− δ)CCL
2 (u, v)+ δ CNE(u, v), (11)

in terms of Clayton’s copula CCL
2 with τ = 1/2, and the copula CNE defined at all

(u, v) ∈ [0, 1]2 by

CNE(u, v) = min{u, v, (u − 2/3)+ + (v − 1/3)+},

where for arbitrary a ∈ R, a+ = a ∨ 0. The latter is one of two copulas identified by
Nelsen (2007) as maximizing the asymmetry measure T (C) defined in (5). For the
K I
δ,CCL

alternatives, the best power is achieved by the two Cramér–von Mises statistics

Rn and Sn . The power of the test based on J L
n also seems to be increasing in L , the

power of J 6
n being of the same order as that of the Kolmogorov–Smirnov statistic Tn .

7 Data application

As a simple illustration of the procedures described herein, the hypothesis H0 was
tested for data from a survey of nutritional habits commissioned in 1985 by the United
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Table 2 Power of the tests of H0 based on Rn , Sn , Tn , and J L
n with L ∈ {3, 4, 5, 6}, as estimated from

1,000 samples of size n = 100 from four asymmetric copulas using M = 250 bootstrap replicates and
N = 20 in approximation (8)

Model δ τ Rn Sn Tn J 3
n J 4

n J 5
n J 6

n

n = 100

0.5 21.0 55.8 17.3 2.8 4.1 12.8 30.3

1/4 0.7 41.0 89.6 30.7 2.2 5.4 21.1 48.8

0.9 73.0 99.9 61.5 0.6 4.4 30.0 68.0

0.5 47.5 71.4 35.7 21.4 35.4 47.8 54.1

K CA
δ 1/2 0.7 77.0 96.2 61.8 31.3 60.7 73.6 83.1

0.9 97.7 100.0 82.0 39.6 81.2 93.7 94.5

0.5 32.0 39.0 20.1 17.7 19.5 22.0 27.2

3/4 0.7 54.8 67.2 31.0 27.1 33.6 39.0 45.0

0.9 75.3 85.2 46.2 38.6 47.3 55.3 61.6

0.5 6.6 7.7 6.1 6.9 6.6 6.5 11.1

1/4 0.7 40.7 54.3 23.7 9.3 12.0 16.8 20.1

0.9 92.8 99.9 70.0 0.6 7.7 47.8 76.0

0.5 11.4 10.9 8.5 7.6 7.6 9.3 12.8

K CL
δ 1/2 0.7 57.3 61.0 38.0 27.6 27.4 29.9 30.6

0.9 99.8 100.0 83.8 56.7 84.9 88.4 89.8

0.5 6.4 5.7 6.4 6.4 6.0 6.4 9.4

3/4 0.7 23.4 24.1 14.1 15.8 15.1 14.4 17.9

0.9 69.5 73.0 42.9 38.2 44.3 43.8 49.7

0.5 7.3 7.0 7.0 6.4 6.1 5.2 8.8

1/4 0.7 35.9 41.4 22.9 14.2 11.9 11.3 15.7

0.9 92.1 99.2 66.5 0.5 9.6 49.7 72.4

0.5 13.8 15.4 9.5 9.0 8.5 11.9 14.9

K GA
δ 1/2 0.7 72.9 74.4 43.5 36.2 31.1 32.7 34.5

0.9 99.8 100.0 85.5 51.9 81.0 90.9 93.7

0.5 11.8 13.1 12.3 9.9 9.4 11.5 14.2

3/4 0.7 49.2 49.8 25.9 24.9 25.8 25.5 24.5

0.9 80.9 83.3 47.8 42.8 51.9 55.8 60.3

0.5 8.4 8.4 8.1 9.4 6.8 7.1 9.3

1/4 0.7 40.3 46.0 22.7 13.0 13.4 12.8 17.3

0.9 93.3 99.6 67.8 0.7 9.8 48.2 72.1

0.5 23.8 26.4 16.4 12.0 13.2 11.4 16.7

K GH
δ 1/2 0.7 78.4 85.3 47.0 37.8 39.5 41.0 46.8

0.9 99.9 100.0 86.9 53.9 84.8 91.9 92.7

0.5 23.9 23.1 13.2 13.6 13.6 14.2 18.0

3/4 0.7 60.1 59.7 34.3 27.2 30.3 33.4 37.9

0.9 81.7 86.1 47.3 43.0 55.3 57.5 59.7
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Table 3 Power of the tests of H0 based on Rn , Sn , Tn , and J L
n with L ∈ {3, 4, 5, 6}, as estimated from

1,000 samples of size n = 250 from four asymmetric copulas using M = 250 bootstrap replicates and
N = 50 in approximation (8)

Model δ τ Rn Sn Tn J 3
n J 4

n J 5
n J 6

n

n = 250

0.5 54.5 94.5 65.0 5.8 8.4 14.2 26.6

1/4 0.7 84.2 99.7 91.3 6.9 9.6 19.1 40.1

0.9 99.5 100.0 99.9 7.4 22.9 38.7 65.2

0.5 92.2 99.9 93.0 44.7 77.2 91.3 91.8

K CA
δ 1/2 0.7 99.9 100.0 100.0 67.3 93.5 99.5 99.8

0.9 100.0 100.0 100.0 90.5 99.5 100.0 100.0

0.5 76.8 84.4 69.0 34.6 40.6 56.0 57.6

3/4 0.7 97.0 98.7 91.1 57.5 70.6 81.6 86.5

0.9 99.6 99.9 97.6 71.7 93.6 96.4 98.1

0.5 22.8 25.5 24.3 10.4 10.0 12.3 13.2

1/4 0.7 95.3 97.1 87.0 38.0 42.5 49.3 56.9

0.9 100.0 100.0 100.0 8.8 48.9 83.2 96.8

0.5 31.4 32.3 28.9 13.3 14.5 16.5 15.7

K CL
δ 1/2 0.7 98.7 98.8 93.4 62.9 70.4 74.9 75.1

0.9 100.0 100.0 100.0 97.4 100.0 100.0 100.0

0.5 14.4 14.9 16.1 8.4 8.6 8.6 10.2

3/4 0.7 67.6 68.5 57.4 33.7 34.3 34.5 31.3

0.9 99.7 99.9 95.5 77.5 92.7 92.6 93.8

0.5 23.7 25.1 24.9 11.4 8.6 8.2 9.5

1/4 0.7 91.0 91.2 78.1 53.5 48.5 45.5 39.9

0.9 100.0 100.0 100.0 15.9 61.4 90.7 97.4

0.5 50.1 50.4 40.1 23.3 21.8 22.5 19.6

K GA
δ 1/2 0.7 99.8 99.8 96.6 75.3 84.7 84.3 83.1

0.9 100.0 100.0 100.0 97.7 99.9 100.0 100.0

0.5 41.4 40.9 34.0 17.3 18.4 19.7 17.4

3/4 0.7 94.1 93.5 80.4 54.5 62.9 66.4 63.3

0.9 100.0 100.0 98.3 81.3 95.1 97.8 98.8

0.5 28.4 29.3 28.5 15.8 14.2 13.6 13.0

1/4 0.7 94.5 95.5 82.7 47.2 46.8 46.2 41.8

0.9 100.0 100.0 100.0 19.1 53.9 83.9 94.0

0.5 70.7 72.5 58.4 32.3 37.3 38.2 30.5

K GH
δ 1/2 0.7 99.9 100.0 99.2 84.8 90.9 94.0 91.6

0.9 100.0 100.0 100.0 96.5 100.0 100.0 100.0

0.5 67.8 68.0 54.4 28.6 33.5 35.3 34.0

3/4 0.7 98.2 98.4 90.5 61.8 75.2 81.2 80.2

0.9 99.8 99.9 99.0 76.7 95.8 97.9 98.5
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Fig. 2 Graphical representation of the data from Table 2 showing the power of the tests of H0 based on
Rn , Sn , Tn , and J L

n with L ∈ {3, 4, 5, 6}, as estimated from 1,000 samples of size n = 100 from the mixture
copula (11)

States Department of Agriculture. Five variables were measured on a sample of 747
women aged between 25 and 50 years, namely daily calcium intake (in mg); daily iron
intake (in mg); daily protein intake (in g); daily vitamin A intake (in µg), and daily
vitamin C intake (in mg).

McNeil and Nešlehová (2010) used this data set to illustrate the so-called Liou-
ville copulas, which constitute an asymmetric extension of the Archimedean class of
dependence models. These authors found that the subsample of the daily intake of
calcium, iron, and protein was best described by the Clayton–Liouville copula with
parameter (1, 3, 4), which is an asymmetric generalization of the Clayton model. This
result suggests a strongly asymmetric dependence structure between the intakes of
calcium and iron, and between the intakes of calcium and protein; the copula of the
intakes of iron and protein appears only mildly asymmetric.

Here, the hypothesis H0 of symmetry was tested for every pair using the Cramér–
von Mises statistic Sn . The latter emerged as the most powerful test statistic from the
simulations discussed in Sect. 6. The resulting P values, computed on the basis of
M = 1,000 bootstrap replicates, are reported in Table 4. Rank plots of pairs that were

Table 4 P values (in percentage) of the test based on Sn for the nutrient data

Variable Calcium Iron Protein Vitamin A Vitamin C

Calcium 0.3 0.0 0.0 18.1

Iron 40.2 0.2 0.4

Protein 0.4 13.6

Vitamin A 62.0

Values that lead to rejection of the symmetry hypothesis H0 at the 5% level are highlighted in bold
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Fig. 3 Rank plots for the pairs identified as asymmetric (P < 5%) in the nutrient data set

identified as asymmetric (P < 5%) are displayed in Fig. 3, whereas Fig. 4 shows pairs
for which the dependence appears to be symmetric.

These findings confirm the observations of McNeil and Nešlehová (2010) concern-
ing the asymmetric dependence in the pairs (calcium, iron) and (calcium, protein). In
contrast, the hypothesis of a symmetric dependence between the intakes of iron and
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Fig. 4 Rank plots for the pairs identified as symmetric (P > 5%) in the nutrient data set

protein was rejected neither by the test based on Sn nor by the tests based on Rn, Tn ,
and J L

n ; the corresponding P values ranged from 23.1 to 97.0%.

Appendix: Technical arguments

Proof of Proposition 1 For arbitrary (u, v) ∈ [0, 1]2, let

D̂n(u, v) = n−1/2 1�Pn(u, v) and D̂
2
n(u, v) =

1

n
1�Pn(u, v)Pn(u, v)

�1,

where 1 is an n × 1 vector of 1’s and Pn(u, v) is the n × 1 vector with i th element
Pin(u, v) defined in Equation (6). Further introduce the n × n matrix

A =
∫ 1

0

∫ 1

0
Pn(u, v)Pn(u, v)

� dv du;

its element in position (i, j) can be expressed in the form

Ai j = 2(1− Ûi ∨ Û j )(1− V̂i ∨ V̂ j )− 2(1− Ûi ∨ V̂ j )(1− Û j ∨ V̂i ).
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One then has

Rn = 1

n

∫ 1

0

∫ 1

0
{D̂n(u, v)}2 dv du = 1

n2 1�A1.

The expression for Sn follows upon noting that the measure Ĉn assigns a weight of
1/n to each pair of pseudo-observations (Û1, V̂1), . . . , (Ûn, V̂n). One gets

Sn = 1

n

∫ 1

0

∫ 1

0
{D̂n(u, v)}2 dĈn(u, v) = 1

n2

n∑

k=1

{D̂n(Ûk, V̂k)}2

= 1

n3

n∑

k=1

{1�Pn(Ûk, V̂k)}2.

Finally, let Ii j = [i/n, (i + 1)/n)× [ j/n, ( j + 1)/n) for all i, j ∈ {1, . . . , n}. Note
that

(u, v) ∈ Ii j ⇒ (v, u) ∈ I ji ⇒
{

Ĉn(u, v) = Ĉn(i/n, j/n),
Ĉn(v, u) = Ĉn( j/n, i/n).

Consequently,

Tn = sup
(u,v)∈[0,1]2

|Ĉn(u, v)− Ĉn(v, u)| = max
i, j∈{1,...,n} sup

(u,v)∈Ii j

|Ĉn(u, v)− Ĉn(v, u)|

= max
1�i< j�n

∣∣∣∣Ĉn

(
i

n
,

j

n

)
− Ĉn

(
j

n
,

i

n

)∣∣∣∣ ,

as claimed. ��

Proof of Proposition 2 It follows from the Continuous Mapping Theorem that as n→
∞, one has D̂n � D̂, where D̂(u, v) = Ĉ(u, v)−Ĉ(v, u) for all (u, v) ∈ [0, 1]2. Note
that under H0, one has Ċ1(u, v) = Ċ2(v, u) for all (u, v) ∈ (0, 1)2. Accordingly, the
limiting process D̂ can be expressed in the alternative form

D̂(u, v) = D(u, v)− Ċ1(u, v)D(u, 1)− Ċ2(u, v)D(1, v),

where D(u, v) = C(u, v)−C(v, u) for all (u, v) ∈ [0, 1]2. The process D is a centred
Gaussian random field whose covariance function at any u, v, s, t ∈ [0, 1] is given by

cov{D(u, v),D(s, t)} = cov{C(u, v)− C(v, u),C(s, t)− C(t, s)}
=ΓC(u, v, s, t)−ΓC(v, u, s, t)−ΓC(u, v, t, s)+ΓC(v, u, t, s).

Now under H0, one hasΓC(u, v, s, t) = ΓC(v, u, t, s) for all u, v, s, t ∈ [0, 1]. Hence

ΓD(u, v, s, t) = cov{D(u, v),D(s, t)} = 2ΓC(u, v, s, t)− 2ΓC(u, v, t, s)

for all u, v, s, t ∈ [0, 1], as claimed. ��
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Proof of Proposition 3 Let C be a regular symmetric copula. Given that Rn and Tn

are continuous functionals of D̂n , their weak limits can easily be deduced from Prop-
osition 2, as a direct application of the Continuous Mapping Theorem. The argument
for Sn is more subtle.

First introduce some notation. Let C [0, 1]2 be the space of functions f : [0, 1]2 →
R that are continuous, and write D[0, 1]2 for the space of functions f that are con-
tinuous from the upper right quadrant and have limits from the other quadrants; here,
both spaces are equipped with the uniform norm. Furthermore, denote by BV1[0, 1]2
the subspace of D[0, 1]2 consisting of functions with total variation bounded by 1.

A direct application of the Continuous Mapping Theorem implies that as n →
∞, (D̂2

n, Ĉn) � (D̂2, Ĉ) on �∞[0, 1]2 × �∞[0, 1]2. Write

(D̂2
n, Ĉn) = n1/2{(An, Ĉn)− (A,C)},

where A ≡ 0 and An = n1/2(Ĉn − Ĉ�n )2. Now consider the map Φ : �∞[0, 1]2 ×
BV1[0, 1]2 → R defined by

Φ(α, β) =
∫

(0,1]2
α dβ.

One then has

nSn = n1/2{Φ(An, Ĉn)−Φ(A,C)}.

In view of Lemma 4.3 of Carabarin-Aguirre and Ivanoff (2010), the map Φ is
Hadamard differentiable tangentially to C [0, 1]2 × D[0, 1]2 at each (α, β) in
�∞[0, 1]2 × BV1[0, 1]2 such that

∫ | dα| < ∞. An application of the Functional
Delta Method (van der Vaart and Wellner 1996, Theorem 3.9.4) implies that nSn �
Φ ′(A,C)(D̂2, Ĉ) as n→∞, where

Φ ′(A,C)(D̂
2, Ĉ) =

∫

(0,1]2
A dĈ+

∫

(0,1]2
D̂

2 dC =
∫

(0,1]2
D̂

2 dC.

This is the desired conclusion. ��

Proof of Proposition 4 Let C be a regular copula, which may or may not be symmet-
ric. As stated in Sect. 3, it follows from the Continuous Mapping Theorem that the
statistics Rn and Tn converge in probability to the measures of asymmetry R(C) and
T (C), respectively. To determine the limit of Sn , write

|Sn − S(C)| � |γn| + |ζn|,
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where

γn =
∫ 1

0

∫ 1

0
{Ĉn(u, v)− Ĉn(v, u)}2 dĈn(u, v)

−
∫ 1

0

∫ 1

0
{C(u, v)− C(v, u)}2 dĈn(u, v)

and

ζn=
∫ 1

0

∫ 1

0
{C(u, v)−C(v, u)}2 dĈn(u, v)−

∫ 1

0

∫ 1

0
{C(u, v)− C(v, u)}2 dC(u, v).

Because

|{Ĉn(u, v)− Ĉn(v, u)}2 − {C(u, v)− C(v, u)}2|
= |Ĉn(u, v)− C(u, v)− Ĉn(v, u)+ C(v, u)|
×|Ĉn(u, v)+ C(u, v)− Ĉn(v, u)− C(v, u)|

� 8 sup
(u,v)∈[0,1]2

|Ĉn(u, v)− C(u, v)|,

one gets

|γn| � 8 sup
(u,v)∈[0,1]2

|Ĉn(u, v)− C(u, v)| p→ 0.

Turning to ζn , set ψ = (C − C�)2 and observe that

∫ 1

0

∫ 1

0
{C(u, v)− C(v, u)}2 dĈn(u, v) = 1

n

n∑

i=1

ψ

(
Ri

n
,

Si

n

)
.

The formula on the right-hand side is a bivariate linear rank statistics, which converges
to

∫ 1
0

∫ 1
0 ψ(u, v) dC(u, v) almost surely by Proposition A.1 (i) in Genest et al. (1995).

This means that ζn → 0 almost surely, and hence |ζn| p→ 0 as n→∞. ��
Proof of Proposition 5 For (u, v) ∈ [0, 1]2, let

C
(h)
n (u, v) = n−1/2

n∑

i=1

(
ξ
(h)
i

ξ̄
(h)
n

− 1

)
I(Ûi � u, V̂i � v)

and observe that in view of formula (7), one has

D̂
(h)
n (u, v) = {C(h)n (u, v)− Ċ1n(u, v)C

(h)
n (u, 1)− Ċ2n(u, v)C

(h)
n (1, v)}

−{C(h)n (v, u)− Ċ1n(u, v)C
(h)
n (1, u)− Ċ2n(u, v)C

(h)
n (v, 1)}.
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If H0 holds, then for all (u, v) ∈ (0, 1)2, one has

Ċ1(u, v) = Ċ2(v, u) and Ċ2(u, v) = Ċ1(v, u).

Invoking Proposition 4.2 of Segers (2012) and the fact that as n → ∞, ξ̄ (h)n → 1
almost surely by the Law of Large Numbers, one can conclude that

(D̂n, D̂
(1)
n , . . . , D̂(M)n ) � (D̂, D̂(1), . . . , D̂(M)),

where D̂
(1), . . . , D̂(M) are independent copies of D̂, as claimed. ��
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