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Abstract Tests are proposed for the hypothesis that the underlying copula of a
continuous random pair is symmetric. The procedures are based on Cramér—von Mises
and Kolmogorov—Smirnov functionals of a rank-based empirical process whose large-
sample behaviour is obtained. The asymptotic validity of a re-sampling method to
compute P values is also established. The technical arguments supporting the use of
a Chi-squared test due to Jasson are also presented. A power study suggests that the
proposed tests are more powerful than Jasson’s procedure under many scenarios of
copula asymmetry. The methods are illustrated on a nutrient data set.
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1 Introduction

Consider a continuous random pair (X, Y) the joint distribution function of which is
defined for all x, y € R by
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812 C. Genest et al.

Hx,y)=Pr(X <x,Y <y).

The variables X and Y are said to be exchangeable if the following hypothesis holds:
HG T Yyyperz Hx,y) = H(y, x).

The problem of testing this hypothesis is of general interest. Early contributors to the
subject include Bell and Haller (1969), who addressed the issue within the bivariate
Gaussian model, and Hollander (1971), who proposed a test that is consistent against
a broad class of alternatives. Rank tests were also designed for restricted alternatives
by Sen (1967), Yanagimoto and Sibuya (1976), and Snijders (1981). Hollander’s test,
which is based on the bivariate empirical distribution function, was further considered
by Koziol (1979), Hilton and Gee (1997), and Hilton (2000).

Testing 77 amounts to checking that the variables X and Y are identically distrib-
uted and that their dependence structure is symmetric. In other words, suppose that
the marginal distribution functions of X and Y are defined for all x, y € R by

F(x)=Pr(X <x), G(y)=Pr(¥Y <y)

and let C be the unique copula corresponding to H, i.e., the joint distribution of the
pair (U, V) = (F(X), G(Y)), which has uniform margins on [0, 1]. As implied, e.g.,
by the work of Sklar (1959), the identity

H(x,y) = C{F(x), G(y)} ey

holds for all x, y € R and hence %’6* is verified if and only if

(i) F(x) =G(x) forall x € R;
(i) C(u,v) = C(v,u) forall (u, v) € [0, 1]2.

Thus J73* may be rejected either because (i) or (ii) fails, or both. While Condition
(1) could be validated through standard graphical or formal statistical procedures, it
is not immediately clear how to test for Condition (ii). Indeed, unless the marginal
distributions F and G are known, data from C cannot be observed directly.

The purpose of this paper is to propose tests of the hypothesis

% . V(M,U)E[O,]]z C(M, U) = C(U, u)
against the general alternative

% . H(M,U)E[O,l]z C(l/i, U) 75 C(U, M)
This issue is of immediate relevance for the construction of copula models, in
which H is assumed to be of the form (1) with F, G and C taken from para-
metric classes (Fy), (Gg), and (Cp), respectively. In recent years, copula mod-

elling has experienced rapid growth, e.g., in finance (Cherubini et al. 2004),
risk management (McNeil et al. 2005), and hydrology (Salvadori et al. 2007).
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Tests of symmetry for bivariate copulas 813

This approach is particularly useful when the variables X and Y have different
behaviour, i.e., when Condition (i) fails. Equation (1) yields a bivariate distribu-
tion with margins F' and G (possibly involving covariates) for any choice of copula
C.

At present, most bivariate copula families used in practice are symmetric, i.e., they
satisfy Condition (ii). Such is the case, e.g., for all meta-elliptical and Archimedean
copulas (Fang et al. 2002; Nelsen 2006). Before such dependence structures are fitted
and used for prediction purposes, it would be wise to test the validity of hypothesis
). This issue is formally addressed here for the first time; for an informal treatment
involving an adaptation of the Chi-squared test, see Jasson (2005).

Three rank-based tests of the hypothesis %) are proposed in Sect. 2, and their
large-sample properties are discussed in Sect. 3. Although the procedures are not
distribution-free under .77, it is shown in Sect. 4 that they can be implemented effec-
tively using the Multiplier Central Limit Theorem (van der Vaart and Wellner 1996,
Section 2.9). In Sect. 5, the behaviour of Jasson’s statistic is examined. A power study
comparing its merits relative to the current proposals is then reported in Sect. 6, and
a small illustration is presented in Sect. 7. Technical arguments are grouped in the
Appendix.

2 Description of the test statistics

Let (X1, Y1), ..., (X,, Y,) be a random sample from a bivariate distribution H with
continuous margins F' and G. Let C be the associated copula implicitly defined by
(1). When F and G are known, one can construct a random sample from C by setting,
foralli € {1,...,n},

Wi, Vi) = (F(X)), G(Y})).

A consistent estimator of C is then defined for all (¢, v) € [0, 1]? by
1 n
Cau,v) = = D I(U; <u, V; <v). )
i

In contrast, data from C are not directly observable when F' and G are unknown.
However, a simple analogue of the pair (U;, V;) is then provided by

(Ui, Vi) = (Fu(X1), G (Y1),

where F, and G, are the margins of the empirical analogue H), of H. Note that n Ui
is the rank of X; among X1, ..., X, and that similarly, n V; is the rank of ¥; among
Yi,...,Y,.
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814 C. Genest et al.

As originally shown by Riischendorf (1976) under weak regularity conditions, a
consistent estimate of C is defined for all (u, v) € [0, 1]2 by

l e - .
=— > I(U; <u, Vi <v). ©)
n
i=1

Although it is not a copula per se (as its margins are discontinuous), it makes sense
to call C, the “empirical copula,” given the analogy between (2) and (3). This def-
inition differs slightly from the original one given by Deheuvels (1979), who set
CnD (u, v) = Hy{F,” (1), G (v)} in terms of the generalized inverses F,~ and G~
of F,, and G, respectively. As |é,?(u, v) — C (u, v)| < 2/nforall (u,v) € [0, 1]2
the two estimators are asymptotically equivalent.

In addition to being consistent, the rank-based estimator (3) shares with C an
invariance with respect to strictly increasing transformations of the variables X and
Y. Furthermore, Genest and Segers (2010) showed that the asymptotic covariance of
C,, is smaller than the asymptotic covariance of C, under broad positive dependence
conditions.

To test the hypothesis of exchangeability, it is natural to compare the values taken
by C,, at (u, v) and (v, u) for all possible choices of u, v € [0, 1]. Intuitively, C,, (u, v)
and C Tu,v) = C,,(v u) should be close under 7). Three global measures of the
discrepancy between C, and C,-lr are given by

1 1
R, =/ / (Cou, v) — Cp(v, u)}> dvdu
0o JO

1 1
sn=/ /{énm,v)—én(v,m}zdén(u, v), X
0 Jo

o= sup |Culut,v) — Cu(v,u)l.
(u,v)€[0,1]?

In particular, S, is a rank-based analogue of a Cramér—von Mises type statistic due to
Hollander (1971), viz.

//{Hn(x,w—Hn<y,x)}2dHn(x,y>.

The following result, proved in the Appendix, gives alternative expressions for
Ry, Sy, and T, that are convenient for computation purposes.

Proposition 1 The statistics defined in (4) may be expressed as

1 - l - T
R,,:n—21 Al, s,,:n—3kz_;1 B1,

A i J 0
Cn N Cn _7 -
n n n n

’
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Tests of symmetry for bivariate copulas 815

where 1is ann x 1 vector of 1’s and A, By, ..., B, are n x n matrices with entry at
position (i, j) given by
Aij =20 U vUNA=VivV) =21 =U; vV =U; vV,
Biij = WU vU; U, Vi vV < Vi) = 1(U; v V; < Ug, Vi vU; < V)
LU vV < Vi, VivU; SU)+1L0: v U < Vi, Vi vV < Op),

where for arbitrary a,b € R, a v b = max(a, b).

3 Asymptotic behaviour

Weak limits of the test statistics given in (4) can be derived from the asymptotic
behaviour of the empirical copula process, defined for all (u, v) € [0, 1]* by

@n(u, v) = nl/z{én(u, v) — C(u, v)}.

This process may be viewed as a random element of the space £°°[0, 1] of bounded
functions f : [0,1]> — R equipped with the uniform norm. From the work of
Riischendorf (1976) and Segers (2012), the sequence ((C ) admits a weak limit C,
denoted C, ~ C, whenever C is regular in the following sense:

Definition 1 A bivariate copula C is said to be regular if

(i) the partial derivatives Ci(u, v) = 9C(u, v)/du and Ca(u,v) = dC(u, v)/dv
exist everywhere on [0, 1]%, where by convention, one-sided derivatives are used
at the boundary points;

(i) C'l is continuous on (0, 1) x [0, 1] and C2 is continuous on [0, 1] x (0, 1).

The limit C is a centred Gaussian process defined for all (u, v) € [0, 1]2 by
C(u, v) = C(u, v) — C1(u, v)C(u, 1) — Co(u, V)C(1, v)

in terms of a tucked C-Brownian sheet C, i.e., a centred Gaussian random field whose
covariance function is given for all u, v, s, ¢ € [0, 1] by

Ic(u,v,s,t) =Cuns,vAat)—Cu,v)C(s,t),
where for all a, b € R, a A b = min(a, b). For variants on Riischendorf’s result, see
GénBler and Stute (1987), Fermanian et al. (2004) or Tsukahara (2005).
Now consider the symmetrised empirical process Dn =nl2(C, — CT) explicitly
defined for all (u, v) € [0, 1]* by
Dn(u, v) = nl/z{én(u, v) — én(v, u)}.
Under .75, the limit of this process can be deduced easily from the asymptotic behav-

iour of (Cn, because one then has Dn(u v) = (Cn(u v) — (C (v, u) for all (u,v) €
[0, 1]°. The result is stated below; see the Appendix for a proof.
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816 C. Genest et al.

Proposition 2 [f C is a regular symmetric copula, then @n converges weakly, as
n — 00, to a Gaussian random field D defined for all (u, v) € [0, 11> by

D(u, v) = D(u, v) — C1(u, v) D(u, 1) — Co(u, v) D(1, v),

in terms of a centred Gaussian random field D with covariance function given at each
u,v,s,t €[0,11by Ip(u,v,s,t) =2{Ic,v,s,t)— Ic(u,v,t,s)}

Note that the covariance function FD of D canbe expressed, forallu, v, s, ¢ € [0, 1],

in terms of the covariance function I ¢ of the process (@ viz.
F]ﬁ)(ua va S, t) == Z{FC(L{, va S, t) - F@(u9 va t9 S)}

Closed form expressions for /7 are rare and intricate. One exceptionis when C (u, v) =
uv for all (u, v) € [0, 1]2, i.e., the independence copula. In that case,

F@(u,v,s,t)=(uAs—us)(v/\t—vt)
forall u, v, s, t € [0, 1], and hence
FD(u,v,s,t)=2(u/\s—us)(v/\t—vt)—2(u/\t—ut)(v/\s—vs).

The asymptotic behaviour of the statistics R,, S, and T,, under .74 can be deduced
from Proposition 2, in combination with the Continuous Mapping Theorem and the
Functional Delta Method; see the Appendix for details.

Proposition 3 If C is a regular symmetric copula, then as n — 00,

1,1 1l
nR, =/ / (D, (u, v)}? dv du ~ Dg :/ / {(D(u, v)}* dv du,
0 Jo 0 Jo

1 1 1 1
nSn=/ / {an(u,v)}zdén(u,v)wms:/ / (B, v)2dCu, v),
0 0 0 0

2T, = sup |]]3)n(u, v)| ~Dr = sup |]]5)(u, v)|.
(u,v)€l0,1]2 (u,v)€[0,1]2

If C is regular, it also follows from the Continuous Mapping Theorem that the
statistics R, and T, converge in probability to the measures of asymmetry proposed
by Nelsen (2007). With some additional effort, the limit of S, can also be identified.
This is stated formally below and proved in the Appendix.
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Tests of symmetry for bivariate copulas 817

Proposition 4 If C is a regular copula, then as n — 00,

1 rl
Ry L R(C) :/ / {C(u, v) — C(v,u)}* dvdu,
0 Jo

1ol
Sy 5> S(C) = / / {Cu,v) = Cv, W)} dCu, v), )
0 Jo

T, 5 TC)= sup [Cu,v)—C@,u)l
(u,v)E[O,l]2

4 Procedures based on the Multiplier Central Limit Theorem

As seen in Sect. 3, the null distributions of the test statistics nR,, nS,, and n'/?T,
depend on the underlying form of the copula, which is generally unknown. It is thus
impossible to compute valid P values from standard Monte Carlo simulations. The
Multiplier Central Limit Theorem (van der Vaart and Wellner 1996, Section 2.9) pro-
vides a solution to this problem. The resulting bootstrap approximation of the empirical
copula process was successfully applied in other testing situations involving copulas,
e.g., by Scaillet (2005), Rémillard and Scaillet (2009), Kojadinovic and Yan (2011),
and Kojadinovic et al. (2011).

Following Biicher and Dette (2010), fix M € N and for each i € {1, ..., M}, let
gM = (& fh) ey 5,5’”) be a vector of independent non-negative random variables with
unit mean and unit variance. These variables should also be completely independent
from the data. Further write

. 1/ o
§0 = (6" )

) (h)
g ={21__1 L
n E W :
n n

Given (u, v) € [0, 112, let P,(u, v) be an n x 1 vector with ith component

and

Pin(u,v) = 1(0; <u, Vi <v) = L0; < v, Vi <u). (6)
Foreachh € {1, ..., M}, aweighted bootstrap version ID)f,h) of D may then be defined

by setting, for all (u, v) € [0, 1]%,
DY (u,v) =n"12EM P, (u, v). @)

From the asymptotic representation of D under 9 stated in Proposition 2, a bootstrap
replicate of this process is then given, for all (u, v) € [0, 1]2, by
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818 C. Genest et al.

DI (u, v) =D, v) — Cro (e, YD (1, 1) = Con (e, YD (1, v)
=n"PEWP, . v) — Cra(u, v) Py, 1) — Con(u, v) Py (1, ).
Here, C 1n and Cz,, are the estimates of the partial derivatives C 1 and C"z defined

by Segers (2012). Specifically, let £, € (0, 1/2) be a bandwidth parameter and for
arbitrary v € [0, 1], set

Cr (28, V) .
AnT; A ifue [O,En),
. C L, v) — Cp(u— £y, .
Crutt,v) = 1 CrF ) = Culu = b v) oy
R 20,
C,(1,v) — Cp(1 —2¢,, ,
n(1,v) = m V) ifued—e, 1]
20,

Similarly, for arbitrary u € [0, 1], set

Cult, 20,) .
A”T” A if v e [0, £,),
. C,(u, £y) — Cr(u,v—1~4,) .
Contu, vy = § Enl 0 b) = Cnlt v = 6) ey gy,
A 24,
Co(u, 1) —Cp(u,1-2¢ .
nlt, 1) = Calu W e e (- b 10,
24,
The following proposition implies that asymptotically, HAD;]), ceey lﬁ),(,M) are inde-

pendent copies of I under Ho:

Proposition 5 Let C be a regular symmetric copula. Suppose that

lim ¢, =0, inf n'/?¢, > 0.
n—0oo HEN

Then for all MAG N, (]IA)nA]IADf,I), e, ]IA))f,M)) ~ (]ﬁ), ]ﬁ)(l), e ®(M)) asn — oo, where
the processes DV, ... . DM) are independent copies of ID.

Bootstrap replicates of the three test statistics can now be defined, for each n € N
and h e {1,..., M}, by

1 1
nR,gh>=/0 /O{ng(u,v)}zdvdu,

1 1
nS — /0 /0 BD w, v)} dC,(u, v),

n2TW = sup DY (u, v)|.
(u,v)€[0,1]?

The following result is an immediate consequence of Proposition 5:
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Tests of symmetry for bivariate copulas 819

Corollary 1 Suppose that the conditions of Proposition 5 hold. Then for all M € R
and as n — oo,

(R, nRD, . nRMD) > (D, DY, ..., D),

18y, n8M, .. n8M) ~ (g, DY, ..., DY),
A - A 1 M
n'? T, n'? Tn(l), ...,n'? Tn(M)) ~ (Dr, ]D)(T), e, ]D)(T )),
where each limit consists of independent, identically distributed processes.

It follows from Corollary 1 that approximate P values for the tests of .73 based on
R,, Sy, and T, are given, respectively, by

1 < 1 & 1 &
MZE(R,@ > R,), MZ]I(S,Y‘) >S50+ S HTLP > T,).
h=1 h=1 h=1
For convenience, let ]f))f,h) = n_l/zE,Eh) Q, foreach h € {1,..., M}, where for all
(u,v) € [0, 112,
Qn(ut, v) = Py(u, v) = Crn(ut, v) Py (u, 1) = Con(ut, v) Py(1, v)
depends only on the pseudo-observations retrieved from the data. While
1 n
S == 248 0u (U, VP,
i=1

explicit expressions for the bootstrap replicates I%,(lh) and f’n(h) are difficult to obtain.

The following approximations can be used in practice:

1 LY kK ¢\)>
p(h) ~ NON RS
x> >0 (v

®)

“ 1 A k ¢
700 A o (=
" nl/2 k,eelﬁ?..x.,/v} " \N'N
1 k /£
. gz -
1 ke |7 QO (N’ N)‘

5 Jasson’s test

To test whether a copula is symmetric, Jasson (2005) suggested that the set [0, 1]* be
partitioned into squares of width 1/L for some integer L > 2 and that a contingency
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820 C. Genest et al.

table be derived from the pseudo-observations (01, \71), ce, (Un, \7") by counting
how many of them fall in each of these squares. If .73 is true, the counts in cells (i, j)
and (J, i) should be roughly the same. The traditional Chi-square statistic could thus
be used to check whether the observed differences are within sampling error or not.

To be more specific, consider a general mapping f : [0, 11> — R and for arbitrary
k,¢ € {l1,..., L}, introduce the notation

k ¢ k—1 ¢ k ¢—1 k—1 ¢—-1
”’f’f(f)zf(f’z)_f(T’Z)_f(Z’T)“Lf(T’T)'

If a random pair (U, V) is distributed according to copula C, then

L(C)—P[(uv)e(uﬁ]x<u f”
Plet™) = FE105 L 'L L Ll

and hence pf,(C) = p}i (C) forallk, £ € {1,..., L} whenever C is symmetric.
Following Jasson (2005), a “local” test of .7 could be based on

Wﬁ(kw) = ph(Cw) — PE(Co).

i.e., the difference in the proportion of counts observed in cells (k, £) and (¢, k) for

fixedk, £ € {1, ..., L}. Clearly, one has WnL(k o= _WnL(e 1, and hence in particular
WnL k) = Oforallk, ¢ € {1, ..., L}. Therefore, it suffices to restrict attention to the

pairs (k, £) with 1 < k < £ < L. In his paper, Jasson considers the ratio

L
1/2 Wn,(k,()

{ph(Co) + pL (G2

Zy (ko) =1

and suggests as a “global” test statistic

2
Zn =2 Zy oy

k<t

A basic problem with this approach, however, is that the asymptotic distribution
of Z, is not necessarily Chi-square with v = (L — 1)(L — 2)/2 degrees of freedom
under 779, as claimed by Jasson (2005). To see why, first observe that nl/2 WnL o) =

Pl Dy, ie.,
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Tests of symmetry for bivariate copulas 821
N k ¢ ~ (k=1 ¢
n! /2 wL e
o =0 (27) =5 ()

A~ [k £—1 ~ (k=1 £—1
D (= —= D (—— — ~—

forall k, ¢ € {1, ..., L}. Thus if 77 is true, one finds that as n — oo,

n,(Lfl,L))T ~ WL’
where WZ is a centred Gaussian vector. Observe, however, that its covariance matrix
Y7, depends on the unknown value of the underlying copula C at points (k/L, £/L) for
k, € € {l,..., L}.Clearly, therefore, the limiting distributions of the random variables
Zy,(k,¢) depend on C and are not necessarily independent of one another. As a result,
it is far from obvious that the limiting behaviour of Z, could be distribution-free.

To circumvent this problem, one can again call on the bootstrap replicates of . For

. h A(h
allh € (1,..., M) and k. £ € (1,.... L} with k < ¢, setn'/? W'y = phOM),
ie.,

1/2WL(h))_]D)(h)(k Z)—Dﬁﬁ)(k—l f)
L L L 'L

k ¢—1 A k—1 ¢—1
]D)(h) i D ,
L L + L L

and foreach h € {1, ..., M}, write

L(h L(h
1/2WL(h) _ (nl/z iy 21)2)’ nl/2 Wn EL) 1 L))

It then follows from Proposition 5 and the Continuous Mapping Theorem that under
5, the vectors n'/? WL(I) ...,nl/? WL(M) are asymptotically independent copies

of WL, Accordingly, the emplrlcal covariance matrix based on WL(I) c Wﬁ(M)
provides a consistent estimate 3 of £7. The proposed test statistic is then
&1
C= W TR W ©)

and its asymptotic distribution is X(2,, with v = rank(X ) degrees of freedom. From
numerical experimentation it seems that X7 is of full rank for many classical copula
models. It may thus be conjectured that v = (L — 1)(L — 2)/2.

6 Finite-sample performance

A Monte Carlo experiment was designed to study the finite-sample performance of the
tests of .77 based on the statistics R,,, S;,, T, defined in (4). For comparison purposes,
the statistic JnL given in (9) was also included; values of L € {3, 4, 5, 6} serve to show
the effect of increasingly finer partitions of [0, 1]°. All tests were carried out at the
5% nominal level.
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822 C. Genest et al.

Table1 Level of the tests of .7g based on Ry, Sy, T);, and JnL with L € {3, 4, 5, 6}, as estimated from 1,000
replicates from four symmetric copulas using M = 250 bootstrap replicates and N = 50 in approximation
(8): independence (IN), Clayton (CL), Gaussian (GA), and Gumbel-Hougaard (GH)

Copula T Ry Sn Ty J3 Iy g A
n =100
IN 0 2.4 3.0 3.0 43 5.7 4.6 9.6
1/4 2.0 3.2 45 5.8 4.9 6.3 9.3
CL 1/2 1.5 2.0 6.1 3.7 35 4.9 6.1
3/4 0.5 2.0 5.7 0.0 5.5 9.9 9.4
1/4 2.0 3.1 3.9 3.6 4.6 5.7 7.3
GA 1/2 1.9 1.7 5.1 3.4 3.7 3.9 4.9
3/4 0.1 1.7 4.9 0.0 3.9 8.1 10.8
1/4 1.9 3.1 4.2 4.8 4.9 5.1 8.2
GH 1/2 1.2 1.9 4.6 43 35 4.1 55
3/4 0.7 2.4 5.1 0.0 53 3.4 5.8
n =250
IN 0 3.9 37 2.7 3.8 4.9 4.6 6.8
1/4 3.4 37 33 4.5 4.8 4.7 6.0
CL 1/2 2.1 3.4 4.0 5.1 2.7 33 4.1
3/4 1.0 2.7 4.4 0.1 4.2 7.0 9.9
1/4 4.1 4.2 4.0 4.0 3.1 4.0 6.1
GA 1/2 2.0 35 45 3.8 2.8 33 3.7
3/4 0.9 2.2 4.8 0.0 L5 4.7 6.4
1/4 2.7 3.2 35 4.0 45 53 6.3
GH 1/2 3.2 33 4.7 4.6 3.7 2.7 4.7
3/4 0.6 2.3 3.9 0.2 0.3 3.0 3.1

P values were computed on the basis of M = 250 bootstrap replicates and N = n/5
was used in approximations (8). The variables & l(h), el ,Eh) were taken to be indepen-
dent exponential random variables with unit mean. The resulting scheme is sometimes
referred to as the Bayesian bootstrap (van der Vaart and Wellner 1996, Example 3.6.9).
Other choices of distribution did not affect the conclusions presented below.

Table 1 shows the empirical level of the tests based on 1,000 random samples of

size n = 100 and 250 from the following copula models:

(1) the Clayton (CL) copula is given for all (u, v) € (0, 11 by
Ce vy =@ +v? = 1) 6 € (0, 00);

(ii) the Gaussian (GA) copula is given for all (u, v) € (0, 112 by

o tw) ro () 1 2442 gt
CrGA(u, v):/ / 573 &XP [_s—i——zrs} dr ds,
—o0 —oo 2n(1 —r2)l/ 2(1 —r?)
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Clayton Gumbel-Hougaard
0.25 0.25
0.2 0.2
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Fig. 1 Value of 3 x T'(C) as a function of § for copulas arising from Khoudraji’s device. Continuous line
T = 0.1; dashed line t = 0.3; dotted line T = 0.5; dashed dotted line t = 0.7; stared line T = 0.9

where r € (—1, 1) and @ denotes the distribution function of a Gaussian random
variable with zero mean and unit variance;
(iii) the Gumbel-Hougaard (GH) copula is given for all (u, v) € (0, 11 by

CMu,v) =exp{ - (IInul’ + v}, 6 €1, c0).

To assess the effect of the degree of dependence, three values of Kendall’s tau were
used: 1/4, 1/2, and 3/4. All tests except those based on 7,, and J,f appear to be either
too liberal or conservative when n = 100. There are general signs of improvement
when n = 250, although important discrepancies remain for some tests, especially
when t = 3/4. This is likely due to the fact that pairs of normalized ranks are sparse
in the vicinity of (0, 1) and (1, 0), resulting in many cells with low counts, among
others.

To study the power of the tests, the three copula models given above were made
asymmetric by Khoudraji’s device (Khoudraji 1995; Genest et al. 1998; Liebscher
2008)2. Specifically, an asymmetric version of a copula C was defined at all (u, v) €
[0, 1]- by

Ks(u,v) =u’Cw'?,v) (10)
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for various choices of § € (0, 1). The symbols K{SCL, K(SGA, and K{SGH denote the
resulting asymmetric versions of the Clayton, Gaussian, and Gumbel-Hougaard cop-
ulas, respectively. Further, the asymmetric versions KSCA of the Cuadras—Augé (CA)
copulas CaCA were considered, where for all 6, u, v € [0, 1],

CgA(u, v) = min(ulfgv, vulfe).

Note that each K§A belongs to the Marshall-Olkin copula family.

Figure 1 shows how Nelsen’s asymmetry index 7 (C) defined in (5) varies as a
function of § for various choices of Kendall’s 7 in families K{*, K&, K94, and
K SGH. As can be seen, Khoudraji’s device (10) provides little asymmetry for small and
moderate values of 7 (say ¢ < 1/2). In all cases, maximum asymmetry occurs at (or
near) § = 1/2. Nevertheless, Table 2 shows that the tests generally achieve reasonable
power against these various alternatives, even when n = 100. The results for n = 250,
presented in Table 3, are more encouraging still, although not uniformly good. More
specifically

(i) the test based on the Cramér—von Mises statistic S, is almost systematically more
powerful than its competitors;

(i1) in accordance with Fig. 1, the power of the tests tends to increase with 7 and is
generally highest at § = 1/2 (the only exception occurs for the test based on Jn3
when 6 = 1/4);

(iii) also in accordance with Fig. 1, asymmetry is particularly difficult to detect for
KSCL when T = 1/2, even for § = 1/2 and n = 250;

(iv) the test based on J generally gains in power with increasing L.

Additional evidence is provided by Fig. 2, which shows the power of the various
tests for mixture alternatives defined for all §, u, v € [0, 1] by

Kf o ) =(1—8)CS"u,v) + 8 CNE(u, v), (11)

in terms of Clayton’s copula CEL with 7 = 1/2, and the copula CNE defined at all
(u, v) € [0, 1] by

CNE(u, v) = min{u, v, (u — 2/3)4 + (v — 1/3)4},
where for arbitrary a € R, a; = a v 0. The latter is one of two copulas identified by

Nelsen (2007) as maximizing the asymmetry measure 7 (C) defined in (5). For the
K 51 CaL alternatives, the best power is achieved by the two Cramér—von Mises statistics

R, and S,,. The power of the test based on J also seems to be increasing in L, the
power of Jn6 being of the same order as that of the Kolmogorov—Smirnov statistic 7,.

7 Data application

As a simple illustration of the procedures described herein, the hypothesis .74 was
tested for data from a survey of nutritional habits commissioned in 1985 by the United
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Table 2 Power of the tests of %) based on Ry, Sy, Ty, and JnL with L € {3, 4,5, 6}, as estimated from
1,000 samples of size n = 100 from four asymmetric copulas using M = 250 bootstrap replicates and
N = 20 in approximation (8)

Model 8 T Ry Sn T J3 JE 5 JO
n =100
0.5 21.0 55.8 17.3 2.8 4.1 12.8 30.3
1/4 0.7 41.0 89.6 30.7 22 5.4 21.1 48.8
0.9 73.0 99.9 61.5 0.6 4.4 30.0 68.0
0.5 475 71.4 35.7 21.4 35.4 478 54.1
KSA 172 0.7 77.0 96.2 61.8 31.3 60.7 73.6 83.1
0.9 97.7 100.0 82.0 39.6 81.2 93.7 25
0.5 32.0 39.0 20.1 17.7 19.5 22.0 272
3/4 0.7 54.8 67.2 31.0 27.1 33.6 39.0 45.0
0.9 75.3 85.2 46.2 38.6 473 55.3 61.6
0.5 6.6 7.7 6.1 6.9 6.6 6.5 11.1
1/4 0.7 40.7 543 23.7 9.3 12.0 16.8 20.1
0.9 928 99.9 70.0 0.6 7.7 478 76.0
0.5 11.4 10.9 8.5 7.6 7.6 9.3 12.8
K 172 0.7 573 61.0 38.0 27.6 27.4 29.9 30.6
0.9 99.8 100.0 83.8 56.7 84.9 88.4 89.8
0.5 6.4 5.7 6.4 6.4 6.0 6.4 9.4
3/4 0.7 23.4 24.1 14.1 15.8 15.1 14.4 17.9
0.9 69.5 73.0 429 38.2 443 438 497
0.5 73 7.0 7.0 6.4 6.1 52 8.8
1/4 0.7 35.9 41.4 229 142 11.9 113 15.7
0.9 92.1 99.2 66.5 0.5 9.6 49.7 724
0.5 13.8 15.4 9.5 9.0 8.5 11.9 149
KSA 1/2 0.7 72.9 74.4 435 36.2 31.1 32.7 34.5
0.9 99.8 100.0 85.5 51.9 81.0 90.9 93.7
0.5 11.8 13.1 123 9.9 9.4 115 14.2
3/4 0.7 49.2 49.8 25.9 24.9 25.8 25.5 245
0.9 80.9 83.3 47.8 42.8 51.9 55.8 60.3
0.5 8.4 8.4 8.1 9.4 6.8 7.1 9.3
1/4 0.7 40.3 46.0 227 13.0 13.4 12.8 17.3
0.9 933 99.6 67.8 0.7 9.8 48.2 72.1
0.5 238 26.4 16.4 12.0 13.2 11.4 16.7
Kk$H 172 0.7 78.4 85.3 47.0 37.8 39.5 41.0 46.8
0.9 99.9 100.0 86.9 53.9 84.8 91.9 927
0.5 23.9 23.1 132 13.6 13.6 142 18.0
3/4 0.7 60.1 59.7 343 272 30.3 33.4 37.9
0.9 81.7 86.1 473 43.0 55.3 57.5 59.7
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Table 3 Power of the tests of %) based on Ry, Sy, Ty, and JnL with L € {3, 4,5, 6}, as estimated from
1,000 samples of size n = 250 from four asymmetric copulas using M = 250 bootstrap replicates and
N = 50 in approximation (8)

Model s T Ry Su Ty J3 I3 J3 JO
n =250

0.5 54.5 94.5 65.0 5.8 8.4 14.2 26.6

/4 07 84.2 99.7 91.3 6.9 9.6 19.1 40.1

0.9 99.5 100.0 99.9 7.4 229 38.7 65.2

0.5 92.2 99.9 93.0 447 77.2 91.3 91.8

K$A 12 07 99.9 100.0 100.0  67.3 93.5 99.5 99.8

0.9 100.0 100.0 100.0  90.5 99.5 100.0 100.0

0.5 76.8 84.4 69.0  34.6 40.6 56.0 57.6

3/4 07 97.0 98.7 91.1 57.5 70.6 81.6 86.5

0.9 99.6 99.9 97.6 717 93.6 96.4 98.1

0.5 22.8 255 243 10.4 10.0 12.3 13.2

1/4 07 95.3 97.1 87.0 380 42.5 49.3 56.9

0.9 100.0 100.0 100.0 8.8 48.9 83.2 96.8

0.5 31.4 323 28.9 13.3 14.5 16.5 15.7

K 12 07 98.7 93.8 934 629 70.4 74.9 75.1

0.9 100.0 100.0 100.0 974 100.0 100.0 100.0

0.5 14.4 14.9 16.1 8.4 8.6 8.6 10.2

3/4 07 67.6 68.5 574 337 343 34.5 313

0.9 99.7 99.9 955 715 92.7 92.6 93.8

0.5 237 25.1 24.9 11.4 8.6 8.2 9.5

14 07 91.0 91.2 78.1 53.5 485 455 39.9

0.9 100.0 100.0 100.0 15.9 61.4 90.7 97.4

0.5 50.1 50.4 40.1 233 21.8 225 19.6

KA 12 07 99.8 99.8 96.6 753 84.7 84.3 83.1

0.9 100.0 100.0 1000 97.7 99.9 100.0 100.0

0.5 41.4 40.9 34.0 17.3 18.4 19.7 17.4

3/4 07 94.1 93.5 804 545 62.9 66.4 63.3

0.9 100.0 100.0 983 813 95.1 97.8 98.8

0.5 28.4 293 28.5 15.8 14.2 13.6 13.0

/4 07 94.5 95.5 827 472 46.8 46.2 41.8

0.9 100.0 100.0 100.0 19.1 53.9 83.9 94.0

0.5 70.7 72.5 584 323 373 38.2 30.5

K§H 12 07 99.9 100.0 992 84.38 90.9 94.0 91.6

0.9 100.0 100.0 100.0  96.5 100.0 100.0 100.0

0.5 67.8 68.0 544 286 335 353 34.0

3/4 07 98.2 98.4 90.5  61.8 75.2 81.2 80.2

0.9 99.8 99.9 990  76.7 95.8 97.9 98.5
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Delta

Fig. 2 Graphical representation of the data from Table 2 showing the power of the tests of .74 based on
R, Sn, Ty, and J,,L with L € {3, 4, 5, 6}, as estimated from 1,000 samples of size n = 100 from the mixture
copula (11)

States Department of Agriculture. Five variables were measured on a sample of 747
women aged between 25 and 50 years, namely daily calcium intake (in mg); daily iron
intake (in mg); daily protein intake (in g); daily vitamin A intake (in pg), and daily
vitamin C intake (in mg).

McNeil and Neslehova (2010) used this data set to illustrate the so-called Liou-
ville copulas, which constitute an asymmetric extension of the Archimedean class of
dependence models. These authors found that the subsample of the daily intake of
calcium, iron, and protein was best described by the Clayton—Liouville copula with
parameter (1, 3, 4), which is an asymmetric generalization of the Clayton model. This
result suggests a strongly asymmetric dependence structure between the intakes of
calcium and iron, and between the intakes of calcium and protein; the copula of the
intakes of iron and protein appears only mildly asymmetric.

Here, the hypothesis 77 of symmetry was tested for every pair using the Cramér—
von Mises statistic S,,. The latter emerged as the most powerful test statistic from the
simulations discussed in Sect. 6. The resulting P values, computed on the basis of
M = 1,000 bootstrap replicates, are reported in Table 4. Rank plots of pairs that were

Table 4 P values (in percentage) of the test based on S, for the nutrient data

Variable Calcium Iron Protein Vitamin A Vitamin C
Calcium 0.3 0.0 0.0 18.1
Tron 40.2 0.2 0.4
Protein 0.4 13.6
Vitamin A 62.0

Values that lead to rejection of the symmetry hypothesis .77 at the 5% level are highlighted in bold
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Fig. 3 Rank plots for the pairs identified as asymmetric (P < 5%) in the nutrient data set

identified as asymmetric (P < 5%) are displayed in Fig. 3, whereas Fig. 4 shows pairs

for which the dependence appears to be symmetric.

These findings confirm the observations of McNeil and Neslehova (2010) concern-
ing the asymmetric dependence in the pairs (calcium, iron) and (calcium, protein). In
contrast, the hypothesis of a symmetric dependence between the intakes of iron and
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its element in position (i, j) can be expressed in the form

A

protein

Aij=20-U;vU)A =V, vV) =20 -U; vV)A-U; vV V).

02 04
(1, v) = n~ V21T

0.0

A

D

where 1 is an n x 1 vector of 1’s and P, (u, v) is the n x 1 vector with ith element

protein was rejected neither by the test based on S, nor by the tests based on R, T,
P, (u, v) defined in Equation (6). Further introduce the n x n matrix

Fig. 4 Rank plots for the pairs identified as symmetric (P > 5%) in the nutrient data set
and JF; the corresponding P values ranged from 23.1 to 97.0%.

Proof of Proposition 1 For arbitrary (u, v) € [0, 1]2, let

Appendix: Technical arguments
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One then has
1 Ll 5 1 -
R, = — {D,(u,v)}*dvdu = — 1'Al.
n Jo 0 n

The expression for S, follows upon noting that the mea§ureACA‘n assigns a weight of
1/n to each pair of pseudo-observations (Uy, V1), ..., (U,, V,). One gets

Lot A A
Si=y [ ] Bute 0P aou ) = 25 3B, @ W)
n.Jo Jo n k=1

1 < A A
= — > 1T Pk, Vo))~
n k=1
Finally, let I;; = [i/n, (i + 1)/n) x [j/n, (j +1)/n) foralli, j € {1, ..., n}. Note
that

w,v) el = (u) el;= [qn(u v) = Cy(i/n, j/n),
Co(v,u) = Cy(j/n,i/n).
Consequently,
T, = sup |Cp(u, v) — Cp(v,u)| = ~ max sup 1C (11, v) — Cy (v, )|
(u,v)€[0,1]? i, je(lienn) (g, el
= max él‘l (ia i) - én (i5 l_) ’
I<i<j<sn non nn
as claimed. a

Proof of Proposition 2 It follows from the Continuous Mapping Theorem thatasn —
00, one has ID) ~~ D, where D(u V) = C(u V) — (C(v u) forall (u, v) € [0, 1]*. Note
that under 74, one has Cl(u, v) = Cz(v, u) for all (u, v) € (0, 1)2. Accordingly, the
limiting process D can be expressed in the alternative form

D(u, v) = D(u, v) — C1(u, v) D(u, 1) — Co(u, v) D(1, v),

where D(u, v) = C(u, v) — C(v, u) forall (u, v) € [0, 112. The process D is a centred
Gaussian random field whose covariance function at any u, v, s, t € [0, 1] is given by

cov{D(u, v), D(s, )} = cov{C(u, v) — C(v, u), C(s, t) — C(¢, s)}
=Ic,v,s,t)—Ic,u,s, t)—ITc,v, t,s)+Ic(v,u,t,s).

Now under %), one has I'c(u, v, s, t) = I'c(v, u, t,s)forallu, v, s, t € [0, 1]. Hence
Ip(u, v, s,t) = cov{D(u, v), D(s, 1)} = 2Ic(u, v, 5,1) — 20 (u, v, t, )

forall u, v, s, t € [0, 1], as claimed. |
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Proof of Proposition 3 Let C be a regular symmetric copula. Given that R, and T},
are continuous functionals of }ﬁ)n, their weak limits can easily be deduced from Prop-
osition 2, as a direct application of the Continuous Mapping Theorem. The argument
for S, is more subtle.

First introduce some notation. Let €[0, 1]* be the space of functions f : [0, 1? >
R that are continuous, and write 2[0, 1]? for the space of functions f that are con-
tinuous from the upper right quadrant and have limits from the other quadrants; here,
both spaces are equipped with the uniform norm. Furthermore, denote by BV1[0, 1]
the subspace of Z[0, 1]? consisting of functions with total variation bounded by 1.

A direct application of the Continuous Mapping Theorem implies that as n —
o0, (D2, C,) ~ (D?, C) on £°[0, 11> x £°[0, 1]%. Write

D2, Cy) = n'{(An, Cn) — (A, O)),

where A = 0 and A4, = n1/2(én — é,,T)z. Now consider the map @ : £*°[0, 1]2 X
BV/[0, 17> — R defined by

D (a, B) =/ adp.
(0,172

One then has
nS, = n'*{®(A,, C,) — @ (A, O)).

In view of Lemma 4.3 of Carabarin-Aguirre and Ivanoff (2010), the map @ is
Hadamard differentiable tangentially to %[0, 1]> x 2[0, 1]> at each («, B) in
€10, 11* x BV{[0, 11 such that [ |da| < co. An application of the Functional
Delta Method (van der Vaart and Wellner 1996, Theorem 3.9.4) implies that nS,, ~~

<1§£A’C)(]f))2, (@) as n — oo, where
@, (D% C) =/ Ad<f:+/ D?dc =/ D2 dc.
(0,1 (0,11 (0,11
This is the desired conclusion. O

Proof of Proposition 4 Let C be a regular copula, which may or may not be symmet-
ric. As stated in Sect. 3, it follows from the Continuous Mapping Theorem that the
statistics R, and 7,, converge in probability to the measures of asymmetry R(C) and
T (C), respectively. To determine the limit of S,,, write

1S = SO < [Yal + 1Zal
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where
1 1 R R .
Vn =/ /{an,v)—cn<v,u>}2dcn(u,v>
0 0
1 1
—/ / {C(u,v) — C(v, w)}* dCy(u, v)
0 0
and

1 1 1 1
;,,:/ / {C(u,v)—C(v,u)}2dén(u,v)—/ /{C(u,v)—C(v,u)}de(u,v).
0 JoO 0 0

Because
HCo(u, v) — Cp(v, )} — {Cu, v) — C(v, )}
=|Cp(u,v) — C(u,v) — Cp(v,u) + C(v, u)|
X|Co(ut, v) + C(u, v) — Co(v, 1) — C(v, u)|
<8 sup  [Cu(u,v) — Clu, v)l,
(u,v)€l0,1]?
one gets

A P
lynl <8 sup  |Cp(u,v) — C(u,v)| = 0.
(u,v)€[0, 172

Turning to &, set ¢y = (C — C )2 and observe that

1 1 n . .
| [ tewy - cwwp aéyun =+ > v (&, 5) .
0 JoO n izl n n

The formula on the right-hand side is a bivariate linear rank statistics, which converges
to fo] fol ¥ (u, v) dC (u, v) almost surely by Proposition A.1 (i) in Genest et al. (1995).

This means that ¢, — 0 almost surely, and hence |, | £ 0asn — oco. O
Proof of Proposition S For (u, v) € [0, 113, let
n S(h)
CM (u,v) =n~1/? Z(W — 1)]1(0,» <u, Vi <v)
i=1 n
and observe that in view of formula (7), one has

DM (u, v) = {CP (u, v) — Cr (. V) CP(u, 1) — Copu, v) CW (1, )}
—(CP (v, ) — Cru, v) CP (1, 1) — Capu, v) TP (v, 1))
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If .54 holds, then for all (u, v) € (0, 1)%, one has

Cl(u, v) = Cz(v, u) and Cz(u, v) = Cl(v, u).

Invoking Proposition 4.2 of Segers (2012) and the fact that as n — oo, é,fh) — 1

almost surely by the Law of Large Numbers, one can conclude that
By, DY, ..., BI) w B, B, ..., BOD),

where DD, ..., D™) are independent copies of ID, as claimed. ]
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