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Abstract In this paper, we introduce one type of Markov-Modulated Poisson Pro-
cess (MMPP) whose arrival times are associated with state-dependent marks. Statisti-
cal inference problems including the derivation of the likelihood, parameter estimation
through EM algorithm and statistical inference on the state process and the observed
point process are addressed. A goodness-of-fit test is proposed for MMPP with state-
dependent marks by utilizing the theories of rescaling marked point process. We also
perform some numerical simulations to indicate the effects of different marks on the
efficiencies and accuracies of MLE. The effects of the attached marks on the esti-
mation tend to be weakened for increasing data sizes. Then we apply these methods
to characterize the occurrence patterns of New Zealand deep earthquakes through a
second-order MMPP with state-dependent marks. In this model, the occurrence times
and magnitudes of the deep earthquakes are associated with two levels of seismicity
which evolves in terms of an unobservable two-state Markov chain.

Keywords MMPP · Hidden Markov model · EM algorithm · Exponential family ·
New Zealand deep earthquakes · Marked point process

1 Introduction

The topic of the current paper is a type of Markov-modulated Poisson process (MMPP),
in which the occurrence times of the point process are attached to marks. More
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accurately, it is a marked doubly stochastic point process for which the stochastic
intensity of the ground process, and the mark distribution are determined by an under-
lying irreducible finite Markov chain. Such an extension of MMPP has potential appli-
cations in spatial–temporal point patterns, multivariate point processes or other point
processes with attached mark.

MMPP is particularly useful in modelling time-varying intensity rate processes
such as traffic flows of communication networks, Internet traffic flows and queuing
systems. A collection of properties of ordinary MMPP is given in Fischer and Meier-
Hellstern (1993). The parameter estimation for MMPP through EM algorithm and its
comparison with downhill simplex algorithm are addressed by Ryden (1996a). Jensen
(2005) discusses the likelihood process of MMPP with discrete type marks.

In this paper, we obtain an extension for the likelihood of MMPP with marks and
outline a procedure for parameter estimation by the EM algorithm. We pay especial
attention to the case when the marks come from an exponential family distribution.
Then we discuss the inference of the state process and the observed point process. A
method of assessing the goodness-of-fit for MMPP with marks based on the rescal-
ing theory of the marked point process (Vere-Jones and Schoenberg 2004) is also
suggested. Then we present some simulations to show the effects of the additional
marks on the estimation efficiencies and accuracies. The effects are demonstrated by
comparing the variances of the estimates for series of events with fixed number of
observations simulated from a MMPP without mark and MMPPs attached by several
pairs of marks, in which the infinitesimal generator and the intensity rates are assumed
identical and the state-dependent distributions of the marks are separated in different
degrees, so that the effects posed by the additional marks are comparable.

In the last section, we apply these methods to the deep earthquakes around the North
Island of New Zealand. Catalogue completeness and homogeneity are demonstrated
by cusum (cumulative sum) charts and coverage information of monitoring networks
in the early period. We suggest the main occurrence patterns of New Zealand deep
earthquakes, in a relatively large time scale, is the time-varying seismic behaviour. A
switching Poisson model, which is a Poisson process with the Poisson rates switching
between two levels according to an unobserved two-state Markov chain, is proposed
to characterize the time-varying seismic activities. In this model, the magnitudes of
the earthquakes are treated as marks whose distributions are also dependent on the
underlying Markov chain.

2 The likelihood

We denote the infinitesimal generator matrix of the underlying irreducible
Markov chain X (t) by Q = (qi j )r×r with its (i, i)-th element −qi =̂qii satisfying
qi = ∑

j : j �=i qi j , i = 1, . . . , r and qi j > 0 for i �= j . The observed marked point
process is specified by the conditional intensity rate λX (t) fX (t)(z), where λX (t) is the
conditional intensity rate of the ground process N (t) and fX (t)(z) is the probability
density of the mark with respect to a reference measure μ on the mark space Z con-
ditional on the current state of X (t). The initial distribution π ′ = (π1, . . . , πr ) of the
Markov chain is chosen according to the stationary vector which satisfies π ′Q = 0 and
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Markov modulated Poisson process 89

π ′1 = 1, where 1 is a column vector with all entries being unity. The internal history
generated by this process is denoted by F = {Ft }t≥0. The order r of the Markov chain
is also called the order of the MMPP. Given the occurrence times and associated marks
(ti , zi ), i = 0, 1, . . . , n over [0, T ] and assuming t0 = 0, the likelihood is obtained as
following:

Let Xk = X (tk) and Yk = tk − tk−1. Note that the sequence (Xi , Yi , Zi )
n
i=1 which

is equivalent to the sequence (Xi , ti , Zi )
n
i=1 forms a Markov sequence. For any y > 0

and Borel set B ∈ B(Z), the transition probability for this sequence is given by

P {Xk = j, Yk ≤ y, Zk ∈ B|Xk−1 = i}
= P {Xk = j, Yk ≤ y|Xk−1 = i} P{Zk ∈ B|Xk = j}
=

∫ y

0

∫

B
e′

i exp{(Q − �)t}�ϒ(z)e jμ(dz)dt, (1)

where � = diag(λ1, . . . , λr ), ϒ(z) = diag( f1(z), . . . , fr (z)) and ei is a unit column
vector with the i th entry being unity. See Meier-Hellstern (1987) for the derivation of
the second equality in the above equations. We characterize a MMPP by (π, Q,�, θ),

where θ are parameters in ϒ(z). Given that the initial distribution is stationary vector
π , the likelihood for the observations (Yi , zi )

n
i=1 is written by

L(π, Q,�, θ) = π ′ exp{(Q − �)Y1}�ϒ(z1) · · · exp{(Q − �)Yn}�ϒ(zn)1. (2)

To evaluate the likelihood and other statistics involved in MMPP with marks effi-
ciently, we introduce the forward and backward probabilities as in the context of the dis-
crete-time hidden Markov models. The forward and backward probability densities are
defined by αt (i)=̂Pr{ points occur at t1, . . . , tN (t) with marks z1, . . . , zN (t) in (0, t]
and X (t)= i} and βt ( j)=̂Pr{ points occur at tN (t)+1, . . . , tN (T ) with marks zN (t)+1,

. . . , zN (T ) in (t, T ] given X (t) = j}, respectively. Denote Lk = exp{(Q − �)

Yk}�ϒ(zk). For 0 < t < T , the forward and backward probabilities are written
by αt (i) = π ′L1 · · · L N (t) exp{(Q − �)(t − tN (t))}ei and βt ( j) = e′

j exp{(Q −
�)(tN (t)+1 − t)}�ϒ(zN (t)+1)L N (t)+2 · · · Ln1 respectively. The likelihood in terms
of this device is obviously L(π, Q,�, θ) = ∑r

i=1 αt (i)βt (i) for all t ∈ (0, T ).
The likelihood is invariant under the permutation of states. It is still possible that

seemingly different MMPPs may have the same laws. For the MMPP with marks,
two point processes N (t, z) and N (t, z) are equivalent if and only if their conditional
intensity rates λX (t) fX (t)(z) and λX (t) f X (t)(z) have the same laws. The question of
under what conditions two MMPPs are equivalent can be translated into the same
question of discrete-time hidden Markov models through Poisson randomization of
the continuous-time Markov chain X (t) and utilizing results of Ito et al. (1992) on the
identifiability of discrete-time hidden Markov model (see also Ryden (1996b)).

3 Parameter estimation through EM algorithm

The EM algorithm (Dempster et al. 1977) is an iterative method for MLE in incom-
plete data problem which bears several appealing properties. It is easily implemented
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since it only involves two steps in each iteration: taking expectations of the complete
data likelihood with respect to missing data and maximizing the conditional expecta-
tion which in many cases is in explicit form, particularly for the exponential family.
Furthermore, it is numerically stable for that each iteration returns with an increased
likelihood. More exactly, let log Lc(φ|X, Y) denote the complete data log-likelihood,
in which X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are observations and missing data,
respectively. In E-step, the expectation of the complete data log-likelihood given the
observations, namely Q(φ) = E(log Lc(φ|X, Y)|X), is evaluated. In M-step, Q(φ)

is maximized with respect to φ. Then the iteration steps are repeated until some con-
vergence criterion is met; see McLachlan and Krishnan (1997) for a comprehensive
introduction of the EM algorithm and its extensions.

The key point of using the EM algorithm, as Asmussen et al. (1996) and Ryden
(1996a) point out, is taking the whole trajectory of the Markov chain X (t) as missing
data. Here, we omit the detailed derivation of the likelihood of the Markov chain and
the complete likelihood of MMPP. Readers are suggested to refer to Ryden (1996a).
Note that the complete likelihood is partitioned into the likelihood of the underlying
Markov chain X (t) and the conditional likelihood of MMPP arrivals associated with
marks conditioned on X (t). The complete data log-likelihood of this extended MMPP
can be summarized by a group of sufficient statistics in the form:

log LC(π, Q,�, θ)

=
r∑

i=1

⎧
⎨

⎩
log πi 1{X (0) = i} − (qi + λi )Ti +

∑

j : j �=i

Ni j log qi j + Ni log λi

⎫
⎬

⎭

+
n∑

i=1

log fXi (zi )

= log LC
1 (π, Q,�) + log LC

2 (θ), (3)

in which Ti =̂
∫ T

0 1{X (t) = i} dt is the sojourn time of X (t) in state i, Ni, j =̂#{t : 0 <

t ≤ T, X (t−) = i, X (t) = j} is the number of transition times of X (t) from i to j and
Ni =̂

∫ T
0 1{X (t) = i} dN (t) is the number of arrivals occurred in the state i . We limit

our attention only on those marks whose distributions have no common parameters
with log LC

1 (π, Q,�). Such a simplification is sufficient for most practically interested
problems at this stage. Therefore, log LC

1 (π, Q,�) and log LC
2 (θ) can be maximized

separately within M-step after taking expectations conditioned on the observations,
i.e. the arrival times and associated marks.

In general, we suppose the mark distribution comes from an exponential family
distribution in its canonical form f (z) = h(z) exp{θT t (z)}/c(θ), where the sufficient
statistic t (z) and parameter vector θ are d dimensional vectors, h(z) and c(θ) are
scalar functions. The parameter space 
 is a d-dimensional convex set such that

 = {θ : ∫

h(z) exp{θT t (z)}dz < ∞}. Note that in the E-step the conditional
expectation Q1(π, Q,�)=̂E{log LC

1 (π, Q,�)|FT } depends only on the expecta-
tions of the sufficient statistics (Ti , Ni j , Ni ) for parameters Q and �. They can be

123
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written as E{Ni |FT } = ∑n
k=1 αtk (i)βtk (i)/L , E{Ti |FT } = ∫ T

0 αt (i)βt (i) dt/L and

E{Ni j |FT } = ∫ T
0 αt (i)qi jβt ( j) dt/L , see Asmussen et al. (1996). We denote them by

N∗
i , T ∗

i and N∗
i j , respectively, throughout later discussions. After taking conditional

expectation of log LC
2 (θ) given the history of the marked point process and ignoring

terms without θ , we have

Q2(θ) =̂ E
{

log LC
2 (θ)|FT

}

=
r∑

k=1

E

{

θT
k

(
n∑

i=1

t (zi )1(Xi = k)

)

− Nk log c(θk)

∣
∣
∣
∣FT

}

+
n∑

i=1

log h(zi )

=
r∑

k=1

{

θT
k

(
n∑

i=1

αti (k)βti (k)

L
t (zi )

)

− N∗
k log c(θk)

}

+
n∑

i=1

log h(zi ). (4)

M-step is followed by maximizing Q1(π, Q,�) and Q2(θ), respectively, since
they have no parameters in common. After an explicit M-step in Q1(π, Q,�), the
parameters in log LC

1 (π, Q,�) are updated by

q̂i j = N∗
i j

T ∗
i

, λ̂i = N∗
i

T ∗
i

, i �= j, 1 ≤ i, j ≤ r. (5)

The resulting equation is same as that given by Ryden (1996a) except for additional
marks incorporated into the forward, backward equations to update T ∗

i , N∗
i j and N∗

i .
On maximization of Q2(θ) with respect to θ in 
, it follows that

∂ Q2(θ)

∂θk
=

n∑

i=1

αti (k)βti (k)

L
t (zi ) − N∗

k

c(θk)

∂c(θk)

∂θk
. (6)

Note that Eθ {t (z)} = ∂ log c(θ)
∂θ

, the M-step requires θ to be chosen by solving the
equation

Eθk (t (z)) = 1

N∗
k

n∑

i=1

αti (k)βti (k)

L
t (zi ). (7)

If the above equation can be solved in 
, then it is uniquely solvable due to the
convexity property of minus the log likelihood of the regular exponential family.

We list several examples to demonstrate applications of the method.

Example 1 Assume each attached mark is an indicator of the class to which the point
belongs. Then such a MMPP with discrete marks forms a multivariate MMPP with
intensity rate λX (t)

∏
j (p( j)

X (t))
1(z= j),where

∑
j p( j)

k = 1, p( j)
k > 0, 1 ≤ j ≤ M, 1 ≤

k ≤ r. Rewrite the mark distribution in its canonical form fk(z) = exp{∑ j 1(z =
j) log p( j)

k } and note that the sufficient statistic 1(z = j) satisfies Eθk {1(z = j)} =
p( j)

k , One obtains
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p̂( j)
k = 1

N∗
k

n∑

i=1

αti (k)βti (k)

L
1 (zi = j),

see also Jensen (2005).

Example 2 When the mark of the MMPP is exponential distributed variable with prob-
ability density f (z) = θ exp{−θ z}1{z > 0}, the expectation value of the sufficient
statistic z given θ = θk is Eθk (z) = 1

θk
. The explicit EM estimation is given by

θ̂k = N∗
k

(
n∑

i=1

αti (k)βti (k)

L
zi

)−1

. (8)

This example is used for modelling the deep earthquakes (see Sect. 6.2).

Example 3 Suppose the mark variable is p-variate normal distribution Np(μ,�) with
canonical probability density exp{− 1

2 (V(zz′)V(�−1) − 2μ′�−1z)} 1
c(μ,�)

, where V

is the vectorization of a matrix and c(μ,�) = (2π)p/2|�|1/2 exp{ 1
2μ′�−1μ}. The

expectation of the sufficient statistics (z, zz′) for parameter (μ,�) is

{
Eθk (z) = μk;
Eθk (zz′) = �k + μkμ

′
k .

Thus, in terms of Eq. (7), the closed form of EM iteration step is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ̂k = 1

N∗
k

n∑

i=1

αti (k)βti (k)

L
zi ;

�̂k =
n∑

i=1

αti (k)βti (k)

L N∗
k

zi z
′
i −

( n∑

i=1

αti (k)βti (k)

L N∗
k

zi

)( n∑

i=1

αti (k)βti (k)

L N∗
k

z′
i

)

.

Example 4 The above procedure is not automatically applicable for those marks from
non-exponential family distribution. For instance, the t-distribution does not belong
to the exponential family, but it has many applications in applied statistics. We assume
the mark variable Z comes from the multivariate t-distribution tp(μ,�, ν) with loca-
tion parameter μ, positive definite inner matrix � and ν degrees of freedom. Given
weight u, Z |u ∼ N (μ,�/u), where the random variable U corresponding weight u
is distributed as �( 1

2ν, 1
2ν). For known ν, a closed form EM step can be obtained for

the T-type mark since Z |u and u are from exponential family distribution. We treat not
only the whole trajectory of the Markov chain but also the mark Z as missing data.
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Then the second part log LC
2 of the complete-data log likelihood is written by

log LC
2 (θ) = c −

r∑

k=1

Nk

2
log

∣
∣�k

∣
∣ −

n∑

i=1

r∑

k=1

ui

2
μ′

k�
−1
k μk1{Xi = k}

−
n∑

i=1

r∑

k=1

ui

2

(
Z ′

i�
−1
k Zi − 2μ′

k�
−1
k Zi

)
1{Xi = k} +

n∑

i=1

g(ui ),

(9)

where c and g(ui ) are terms without unknown parameters. In the E-step, the con-
ditional expectation will be taken both over (Zi Z ′

i , Zi )1(Xi = k) and ui given the
observed marked point process and current values of parameters. It turns out that the
conditional distribution of Ui is distributed as Ui

∣
∣Zi ∼ �(m1, m2), where m1 =

1
2 (ν + p) and m2 = 1

2 (ν + (Zi − μ)′�−1(Zi − μ)). So we have U∗
i =̂E(Ui

∣
∣Zi ) =

ν+p
ν+(Zi −μ)′�−1(Zi −μ)

. After the execution of an explicit E-step, each Ui is replaced by

U∗
i and if we denote

αti (k)βti (k)

L by pti (k), the parameters are updated by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ̂k =
n∑

i=1

U∗
i Zi pti (k)

∑n
i=1 U∗

i pti (k)
;

�̂k =
n∑

i=1

U∗
i (Zi Z ′

i − 2μ̂k Z ′
i + μ̂kμ̂k

′
)pti (k)

N∗
k

.

4 Statistical inference on the state process and observed point process,
model evaluation

There exist state smoothers for MMPP such as those given by Elliott and Malcolm
(2005). Much the same as in the context of discrete-time hidden Markov models, a
computationally efficient algorithm, fixed point smoothing algorithm, is available to
estimate the probability of the underlying Markov chain in a given state at a specific
time conditioned on all available observations, which only involves the forward and
backward probabilities (see MacDonald and Zucchini (1997, pp 85)). Let p̂t (i) =
P{X (t) = i |FT }. After taking conditional expectation of 1{X (t) = i} conditioned on
observations, one obtains

p̂t (i) = αt (i)βt (i)
∑r

j=1 αt ( j)βt ( j)
, (10)

which is obviously continuous with respect to t .
For the purpose of simulation, model evaluation and prediction based on the inten-

sity rate of MMPP, we estimate the intensity rate of MMPP by the conditional expec-
tation of λX (t) fX (t)(z) = ∑r

i=1 λi fi (z)1{X (t) = i} conditioned on the observations,
namely,
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λ̂(t, z)=̂
r∑

i=1

λ̂i f̂i (z)pt (i) =
r∑

i=1

λ̂i f̂i (z)
αt (i)βt (i)

∑
αt (i)βt (i)

. (11)

It is a weighted sum of all intensity rates λ̂i f̂i (z) which suggests MMPP is a mix-
ing process with Markov dependence. From Eq. (11), the estimated ground intensity
is given by λ̂(t) = ∑r

i=1 λ̂i
αt (i)βt (i)

L and the conditional mark density is given by

f̂ (t, z) = ∑r
i=1 f̂i (z)

αt (i)βt (i)λ̂i∑
αt (k)βt (k)λ̂k

.

Rescaling a marked point process (Vere-Jones and Schoenberg 2004) technique
is very useful for point process model evaluation (Baddeley et al. 2005). The detec-
tion of deviations of the residual point process (Ogata 1988) from a standard process,
the homogeneous unit rate Poisson process with stationary mark, forms a key tool
to suggest deficiencies and even illuminate possible improvements or alternatives of
current models. Vere-Jones and Schoenberg (2004) show that under quite general
conditions by changing each point from (tk, zk) to (

∫ tk
0 λ(t, zk)dt, zk), the collec-

tion of these rescaled ones forms a stationary compound Poisson process with unit
ground intensity and stationary mark distribution on the rescaled space. Especially
when the mark admits a univariate continuous cumulative distribution function F(z)
with respect to a reference probability measure μ(dz), the doubly transformed points
(
∫ tk

t0
λ(t, zk)dt, F(zk)) form a unit rate planar Poisson process over R × [0, 1] (see

also Daley and Vere-Jones (2008, chapter 14.6)). On numerically evaluating

�(tk, zk) =
∫ tk

t0

1

L

r∑

i=1

λi fi (zk)αt (i)βt (i)dt, (12)

we are computing the integral of the matrix exponential involved in MMPP with
marks, a numerical technique which can be implemented through matrix eigenvalue
decomposition (Ryden 1996a), Poisson randomization (Klemm et al. 2003) or a certain
matrix exponential in higher order (Van Loan 1978). Then the usual tests for Poisson
processes such as the K -functions, L-functions and nearest neighbor tests etc. can be
applied to evaluate the goodness-of-fit of the proposed hidden Markov models (see
Cressie (1991)). For instance, the estimated K -functions K (d) which indicates the
proportion of paired points per unit area within a specified distance d is a powerful
test to detect clustering or regularity appearing in the spatial point pattern.

5 Implementation and simulation study

5.1 Implementation

One step of EM iterations is carried out as follows:
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1) In E-step, update the forward, backward probabilities: let α(0)= π, α(k)= α(k −
1) exp{(Q − �)Yk}�ϒ(zk), β(n + 1)= 1 and β(k)= exp{(Q − �)

Yk}�ϒ(zk)β(k + 1), for k = 1, . . . , n.
2) Calculate Ai j = ∑n

k = 1 α(k − 1)
∫ tk

tk−1
exp{(Q − �)(t − tk−1)}ei e′

j exp{(Q −
�)(tk−t)}�ϒ(zk) dtβ(k+1), Bi =∑n

k = 1 α(k)ei e′
iβ(k+1) and Ci = ∑n

k = 1 α(k)

ei e′
iβ(k + 1)t (zk).

3) In M-step, update the parameters by: q̂i j = q0
i j

Ai j
Aii

, λ̂i = Bi
Aii

and solving Eθi (t (z))=
Ci
Bi

to obtain θi , where q0
i j is obtained from the previous EM steps.

To avoid the overflow or underflow problem in computation, it is necessary to
employ scale procedures in the EM iteration steps (see Roberts et al. (2006)).

5.2 Simulation study

For MMPP without marks, it is noted by Lu (2009) that the better the intensity rates
are separated, the better the estimates are close to the true values for given number
of observations when Q fixed. Intuitively, due to an increase of the mutual informa-
tion between the observed point process and the underlying Markov chain brought by
additional marks, the estimates of MMPP attached by state-dependent marks should
be better than that of MMPP without marks when the infinitesimal generator Q and
the intensity rates λi remain unchanged. To confirm this, we illustrate several simula-
tions to compare the efficiencies and accuracies of the estimates for several types of
MMPPs: one of them is MMPP without marks and the others are MMPP associated
with several different types of state-dependent marks whose Q matrix and intensity
rates � are identical. We also demonstrate that among MMPP with marks whose Q
matrix and intensity rates � are identical, the better the mark distributions are sep-
arated , the better the estimates are close to the true values of the model parameters
even for different types of marks. How well the mark distributions are separated is
measured by the Kullback–Leibler divergence.

One approach to appraise how the accuracies and efficiencies of the MLEs vary
according to different types of marks attached to MMPP is by evaluating the observed
Fisher information, i.e. minus the second-order derivative of the log likelihood func-
tion given the observations. However, directly evaluating the Fisher information or
the observed Fisher information requires the derivatives of matrix exponential and
its products, which is unfortunately numerically complicated. Existing approximation
methods are not accurate enough to the level to enable delicate effects posed from
different types of marks to be compared and demonstrated in detail. We turn to Monte
Carlo simulations.

Assume all types of MMPP with or without marks in the simulation have identical
infinitesimal generator Q = ( −1 1

0.5 −0.5

)
and the intensity rates � = diag(5, 1). We

attach four pairs of marks to MMPP observations, e.g. (N (0, 1), N (1, 1)), (N (0, 1),

N (1, 0.52)), (exp(2.5), exp(3)) and (exp(1), exp(10)) which are denoted by
MMPP(1), MMPP(2), MMPP(3) and MMPP(4), respectively, throughout later discus-
sions. MMPP without marks is denoted by MMPP(0). The Kullback–
Leibler divergences dK L(·, ·) of these four pairs of marks comparatively satisfy
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Fig. 1 Histograms of estimated q1 and λ1 for 1000 replicates obtained from simulated series of events
with 1000 observations

dK L(exp(2.5), exp(3))< dK L(N (0, 1), N (1, 1)) < dK L(N (0, 1), N (1, 0.52))< dK L

(exp(1), exp(10)). Then we generate many series of events with 1000 observations
according to the parameters of MMPP and MMPP with the four pairs of marks listed
above, each one of them repeats 1000 times. For each series of MMPP observations,
the parameter estimation is implemented through the EM algorithm.

The histograms of the estimates for MMPPs attached by marks and MMPP with-
out marks clearly indicate the effects of different marks on the estimation errors (see
Figs. 1 and 2). From the histograms, it is evident that the estimates are more and more
centralized about the true values of the parameters when the paired marks are more
and more separated in terms of the Kullback–Leibler divergence (see also the stan-
dard deviations of the estimates in Table 1). The standard deviations of the estimates
in Table 1 confirm that the accuracies and efficiencies of MLEs are in the order of the
Kullback–Leibler divergences of the paired marks.

It is worth noting that the difference of the standard deviations of the estimates
between MMPP(0) and MMPP(3) are very small, suggesting very weak leverage effect
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Fig. 2 Histograms of estimated q1 and λ1 for 1000 replicates obtained from simulated series of events
with 1000 observations

Table 1 Standard deviations for
Q and � according to 1000
replicates obtained from
simulated series of events with
1000 observations

SD MMPP(0) MMPP(1) MMPP(2) MMPP(3) MMPP(4)

q1 0.242 0.198 0.174 0.240 0.152

q2 0.123 0.102 0.076 0.122 0.067

λ1 0.368 0.314 0.276 0.366 0.265

λ2 0.123 0.096 0.075 0.122 0.068

posed by the paired marks (exp(2.5), exp(3)). The simulation study for MMPP(3) is
an analogy to the real application in the next section.

Similar comparisons for MMPP(0) and MMPP(3) with larger data sizes are dem-
onstrated. When the data sizes n are increased to 5000, the histograms and standard
deviations of estimates for MMPP(0) and MMPP(3) are given in Fig. 3 and Table 2,
respectively. From Table 2, it suggests that the estimates are roughly convergent to
the true values of the parameters at the rate of 1/

√
n. When comparing MMPP(0)

and MMPP(3), It is more clear that the leverage effects posed by the paired marks
(exp(2.5), exp(3)) on the estimation is even weaker.
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Fig. 3 Histograms of estimated q1 and λ1 for 1000 replicates obtained from simulated series of events
with 5000 observations

Table 2 Standard deviations for
Q and � according to 1000
replicates obtained from
simulated series of events with
5000 observations

SD q1 q2 λ1 λ2

MMPP(0) 0.1004 0.0525 0.1612 0.0558

MMPP(3) 0.0997 0.0521 0.1605 0.0554

6 Applications to the deep earthquakes

6.1 Catalogue completeness and homogeneity

The data used in this study are selected from New Zealand catalogue within the confine
defined in Fig. 4 starting from 1945 to 2007 at depth greater than 45 km with mag-
nitude greater than 5 in Richter scale. Generally speaking, the selected deep events
are well located, either under the land area or near the shore. However, due to the
sparse monitoring network coverage and limited detectability of the instruments in
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Fig. 4 Epicentral distribution of the deep earthquakes. The legends indicate the depths d and magnitudes
M of the deep earthquakes. The deep earthquakes with their epicentre circled by dash lines and the lower
boundary of the map are used in this study

early periods, the epicentres might be in significant error. So, we limit our analysis
only on the temporal patterns rather than both spatial and temporal patterns together.
Before doing so, the completeness and homogeneity of the catalogue data are evalu-
ated according to the coverage information of monitoring networks in the early period
and cusum (cumulative summation) statistics.

From the study of Vere-Jones et al. (1964), it is concluded that the catalogue cov-
erage would be incomplete below surface 50 km for events with magnitude less than
five between 1942 and 1961. The events we select are still within the confines of rea-
sonable coverage in this early period. Afterwards, the catalogue coverage is improved
for smaller events because of the upgradations of the monitoring networks in 1960s
and late 1980s. We further confirm this by using magnitude frequency relation and
reverse Cusum statistics.

The left top plot in Fig. 5 indicates the selected events are magnitude complete since
the logarithms of the frequencies of magnitudes nearly form a straight line as supposed
for a complete catalogue according to Gutenberg–Richter magnitude-frequency law.
The right-top plot gives the cumulative magnitude of events at three levels with mag-
nitude greater than 5, 5.5 and 6, respectively. The cumulative magnitude curves show
steeper slopes at late 1980s when the monitoring networks were under upgradations. It
is mainly ascribed to a period of active seismicity starting from late 1980s rather than
improved instrumental detectability. The bottom row plots are cumulative frequency
and(or) magnitude deducted by a reference mean value x obtained by averaging over
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most recent period when the catalogue is believed to be homogeneous and complete.
These reverse cumulative plots should be read in a reverse direction, from the pres-
ent to the back, since they are obtained by calculating the corresponding quantities∑

i (xi −x) from the most recent period to the past. The quantities that we are interested
in should not be the absolute values, but the slopes which give indications of when
and how the earthquake activities are changed relative to the most recent period. Gen-
erally, a fast dropping slope in cumulative frequency combined with a fast ascending
slope in cumulative magnitude at early periods may suggest catalogue incomplete-
ness due to limited instrumental detectability and sparse monitoring networks at early
periods.

Here, both the cumulative monthly frequency
∑

( fi − f ) and cumulative magnitude∑
(mi − m) based on event by event scale show dropping slopes between early 1960s

and late 1980s. This should be interpreted as seismic quiescent period as pointed out
by Reyners (1989) rather than catalogue incompleteness since both plots show nearly
horizontal slopes in the early period.

In conclusion, the catalogue might still miss some events, but the effect of the
missing tends to be limited and should not affect general conclusions.
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Fig. 6 Yearly counts of the deep events

6.2 Model and model fitting

Generally speaking, the deep earthquakes rarely have following sequences with numer-
ous small aftershocks which decay in terms of Omori’s law. Some deep earthquakes
even do not have aftershocks at all (see Frohlich (2006)). Partly because of these fac-
tors, those models usually used for the shallow earthquakes fit the deep earthquakes
less satisfactory. Instead, the main evolution feature of the deep earthquakes around
the North Island of New Zealand is that the deep earthquakes vary from time to time,
active in one period, relatively quiescent in another (see the yearly occurrence numbers
of events in Fig. 6). The mechanism and reason behind this time-varying behaviour are
still not well-understood. It is this lack of interpretability forming the main motivation
of applying the “hidden” Markov model. We suggest a switching Poisson model, a
second-order MMPP, to characterize the occurrence patterns of New Zealand deep
earthquakes.

The occurrence times and magnitudes of the deep earthquakes are fitted through
a second-order MMPP with marks; two levels of seismicity are associated with seis-
mic active state (state 1) and seismic quiescent state (state 2), respectively. In this
model, the magnitudes of the earthquakes are treated as marks which are exponen-
tially distributed variables according to Gutenberg-Richter law (see the left top of
Fig. 5). The magnitude distributions are also dependent on the underlying Markov
process. Parameter estimation of this model is implemented according to equation (8)
in Example 2. Whether the magnitude distribution is also varying simultaneously with
the occurrence rate is demonstrated by comparing the model performance of MMPP
with state-dependent marks , MMPP with state-independent marks and Poisson model
with stationary marks according to some information theoretical criterion.

The initial values used in the EM iteration procedure should be selected carefully. A
natural approach is to approximate the continuous time process by time discretization
as set out in Deng and Mark (1993). In this procedure, the time interval is divided
into many small bins and the number of arrivals in each bin is counted. By assum-
ing that the state transitions occur only at bin boundaries, the model can be treated
as discrete-time hidden Markov model with Poisson observations. After performing
fixed point smoothing procedure for discrete-time hidden Markov models, the distri-
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Table 3 Estimates of second-order MMPP with state-dependent marks (model (1)) and MMPP with
state-independent marks (model (2))

q1 q2 λ1 λ2 θ1 θ2 log L

model(1) 0.1824 0.2299 7.491 12.928 3.06 2.38 760.455

model(2) 0.1637 0.1483 7.225 12.423 2.65 θ1 = θ2 758.329

butions of marks can be specified accordingly. Therefore, the initial values in the EM
iteration steps for parameters of the marks are obtainable. Then, the transition rate
qi j and the intensity rates λi can be straight-forwardly converted from the discrete-
time hidden Markov model, i.e. qi j = pi j/h and λi = bi/h, where pi j is the state
transition probability of the discrete-time Markov chain, bi is the Poisson parame-
ter of the discrete-time hidden Markov model and h is the bin width. We also use
different initial values in the EM iteration steps to validate the convergence results.
Generally speaking, the initial values have no significant influence on the conver-
gence results, and the iteration solutions begin to converge within hundreds steps.
The estimated parameters Q, � and the decaying parameters θs in the magnitude
distributions are listed in Table 3. The time scale in the estimation is about 1 year
(365 days).

The probabilities of the underlying Markov chain in the second state (the seismic
active state) are obtained by the fixed point smoothing algorithm according to equa-
tion (10) in Sect. 4 which gives the probabilities of the underlying Markov chain in
the second state. We evaluate this probability at many pre-selected points and con-
nect them by straight lines. Since these quantities are continuous with respect to t , this
approach is sufficient to indicate the evolution of the underlying process. The evolution
of the observed ground process are similarly demonstrated according to Eq. (11). The
magnitude versus time, the estimated probabilities of the underlying Markov chain in
the second state (seismic active state) and the estimated ground intensity are given in
Fig. 7.

The AIC values for the three models, i.e. MMPP with state-dependent marks,
MMPP with state-independent marks and Poisson model with stationary marks are
listed in Table 4. From Table 4, it is suggested that the MMPP with state-indepen-
dent marks is much better than Poisson model with stationary marks. The MMPP
with state-dependent marks outperforms both MMPP with state-independent marks
and Poisson model with stationary marks. Considering the marks can only exert very
limited leverage effects on the estimation as suggested in Figs. 1, 2 and 3 and Tables 1
and 2, the difference of AIC between MMPP with state-dependent marks and MMPP
with state-independent marks is still not negligible.

By 10000 Monte-Carlo simulations, the likelihood ratio of MMPP with state-depen-
dent marks and MMPP with state-independent marks for an event with magnitude
greater than 6 is approximately 1.36 when assuming the seismicity is in active state.
But when assuming the seismicity being relatively quiescent, the likelihood ratio for
an event with magnitude greater than 6 is decreased to about 0.698. These simulations
suggest that in the second state, it is more likely for a medium size or large earthquake
occurring.
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Fig. 7 Magnitude versus time plot, estimated probabilities of X (t) in state 2 and estimated intensity rate
of the ground process

Table 4 The AIC values of the three nested models: MMPP with state-dependent marks (model (1)),
MMPP with state-independent marks (model (2)) and Poisson model with stationary marks (model (3)) for
the deep earthquakes

Model Model (1) Model (2) Model (3)

AIC −1508.9 −1506.6 −1489.9

The residual point process obtained by rescaling the arrival times and marks accord-
ing to Eq. (12) is demonstrated in Fig. 8. We use the estimated K-function K (d) which
indicates the proportion of paired points per unit area within a specified distance d to
detect deviations of the residual point process from a unit rate planar Poisson process.
After performing K -test via Ripley’s correction for the boundary effect over the dou-
bly rescaled marked point process, no obvious clustering or regularity pattern can be
detected in the transformed process (see Fig. 9).

A full third-order MMPP are also considered in this analysis. The estimated param-
eters and the likelihood are listed in Table 5. From Table 5, it is clearly indicated that
even for a reduced model when two of intensity rates and (or) two of the mark dis-
tributions are identical, the third-order MMPP will not outperform the second-order
MMPP in terms of AIC since the gain of the likelihood is very limited even for the full
model, and a reduced model with parameters defined in a restricted parameter space
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process. The solid line gives the estimated K-function for the doubly rescaled process and the dash line
indicates the theoretical values of the K-function for a Poisson process

has at least ten parameters, six parameters for the transition rates, four parameters for
the occurrence rates and the decaying parameters of the magnitude distributions. Also,
in Table 5, two transition rates are very close to zero, which strongly suggests lack of
information about the type of state transitions due to limited available observations.
At this stage, we will not assume particular parametrization for the Q matrix to allow
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Table 5 Estimated parameters of the third order MMPP with state-dependent marks

q12 q13 q21 q23 q31 q32 λ1

0.742 4e–10 1e–07 0.178 0.136 0.067 3.89

λ2 λ3 θ1 θ2 θ3 LL

8.32 12.967 2.57 3.16 2.33 763.43

Table 6 95% confidence intervals and standard errors for parameters of model (1) listed in Table 3 obtained
from 1000 bootstrap replications

q1 q2 λ1 λ2 θ1 θ2

C.I. [0.04, 0.81] [0.04, 0.86] [5.8, 8.6] [10.7, 15.3] [2.54, 3.79] [2.34, 3.01]

SE 0.271 0.261 0.757 1.19 0.313 0.172

some qi j being zeros, since we have no prior information of the underlying process
about which state transitions are actually avoided. Generally speaking, a third-order
MMPP with or without restrictions in the parameter space is over-fit for this relatively
small data set (600 observations).

We also evaluate the estimation errors of parameters in MMPP with state-depen-
dent marks (model (1)) appearing in Table 3. The estimation errors are estimated by
parametric bootstrap methods. We simulate 1000 series of events within the same
observation period as the real data according to the estimated parameters of MMPP
(1) in Table 3. Then the parameters of the model are estimated via the EM algorithm
for each series of simulated data. From the 1000 bootstrap replicates, we obtain the
95% bootstrap percentile confidence intervals and the standard errors given in Table 6.
From Table 6, it is observed that the estimates are slightly unstable for this small data
set, particularly for the transition rates in Q matrix.

6.3 Conclusions

From this analysis, we conclude that the main pattern of New Zealand deep earth-
quakes is its time-varying behaviour of occurrence rates, which is well characterized
by a switching Poisson model. The magnitude distribution of the deep earthquakes
tends to vary correspondingly with the occurrence rates of events. The associations
between the occurrence rates and magnitude distributions suggest that it is more likely
for a medium size or large deep earthquake occurring around the North Island in New
Zealand when the deep seismicity is in seismic active state.
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