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Abstract We propose a method for selecting variables in latent class analysis, which
is the most common model-based clustering method for discrete data. The method
assesses a variable’s usefulness for clustering by comparing two models, given the
clustering variables already selected. In one model the variable contributes informa-
tion about cluster allocation beyond that contained in the already selected variables,
and in the other model it does not. A headlong search algorithm is used to explore the
model space and select clustering variables. In simulated datasets we found that the
method selected the correct clustering variables, and also led to improvements in clas-
sification performance and in accuracy of the choice of the number of classes. In two
real datasets, our method discovered the same group structure with fewer variables. In
a dataset from the International HapMap Project consisting of 639 single nucleotide
polymorphisms (SNPs) from 210 members of different groups, our method discovered
the same group structure with a much smaller number of SNPs.

Keywords Bayes factor · BIC · Categorical data · Feature selection · Model-based
clustering · Single nucleotide polymorphism (SNP)

1 Introduction

Latent class analysis is used to discover groupings in multivariate categorical data.
It models the data as a finite mixture of distributions, each one corresponding to a
class (or cluster or group). Because of the underlying statistical model it is possible
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12 N. Dean, A. E. Raftery

to determine the number of classes using model selection methods. But the model-
ing framework does not currently address the selection of the variables to be used;
typically all variables are used in the model.

Selecting variables for latent class analysis can be desirable for several reasons. It
can help interpretability of the model, and it can also make it possible to fit a model
with a larger number of classes than would be possible with all the variables, for iden-
tifiability reasons. In general, removing unnecessary variables and parameters can also
improve classification performance and the precision of parameter estimates.

In this paper, we propose a method for selecting the variables to be used for clus-
tering in latent class analysis. This is based on the method of Raftery and Dean (2006)
for variable selection in model-based clustering of continuous variables. The method
assesses a variable’s usefulness for clustering by comparing two models, given the
clustering variables already selected. In one model the variable contributes informa-
tion about cluster allocation beyond that contained in the already selected variables,
and in the other model it does not. We then present a new search algorithm, based on
Badsberg (1992), for exploring the space of possible models. The resulting method
selects both the variables and the number of classes in the model.

In Sect. 2 we review some aspects of latent class analysis and in Sect. 3 we describe
our variable selection methodology. In Sect. 4 we give results from simulated data and
in Sect. 5 we give results for two real datasets, including one with a large number of
variables and a much smaller number of data points. Issues arising with the method
are discussed in Sect. 6.

2 Latent class analysis

2.1 Latent class analysis model

Latent class analysis was proposed by Lazarsfeld (1950a,b) and Lazarsfeld and Henry
(1968) and can be viewed as a special case of model-based clustering, for multivari-
ate discrete data. Model-based clustering assumes that each observation comes from
one of a number of classes, groups or subpopulations, and models each with its own
probability distribution (Wolfe 1963; McLachlan and Peel 2000; Fraley and Raftery
2002). The overall population thus follows a finite mixture model, namely

x ∼
G∑

g=1

πg fg(x),

where fg is the density for group g, G is the number of groups, πg are the mixture
proportions, 0 < πg < 1, ∀g and

∑G
g=1 πg = 1. Often, in practice, the fg are from

the same parametric family (as is the case in latent class analysis) and we can write
the overall density as:

x ∼
G∑

g=1

πg f (x | θg),

where θg is the set of parameters for the gth group.
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Latent class analysis variable selection 13

In latent class analysis, the variables are usually assumed to be independent given
knowledge of the group an observation came from, an assumption called local inde-
pendence. Each variable within each group is then modeled with a multinomial density.
The general density of a single variable x (with categories 1, . . . , d) given that it is in
group g is then

x | g ∼
d∏

j=1

p1{x= j}
jg ,

where 1{x = j} is the indicator function equal to 1 if the observation of the variable
takes value j and 0 otherwise, p jg is the probability of the variable taking value j in
group g, and d is the number of possible values or categories the variable can take.

Since we are assuming conditional independence, if we have k variables, their joint
group density can be written as a product of their individual group densities. If we
have x = (x1, . . . , xk), we can write the joint group density as:

x | g ∼
k∏

i=1

di∏

j=1

p1{xi = j}
i jg ,

where 1{xi = j} is the indicator function equal to 1 if the observation of the i th
variable takes value j and 0 otherwise, pi jg is the probability of variable i taking
value j in group g and di is the number of possible values or categories the i th vari-
able can take. The overall density is then a weighted sum of these individual product
densities, namely

x ∼
G∑

g=1

⎛

⎝πg

k∏

i=1

di∏

j=1

p1{xi = j}
i jg

⎞

⎠ ,

where 0 < πg < 1, ∀g and
∑G

g=1 πg = 1.
The model parameters {pi jg, πg : i = 1, . . . , k, j = 1, . . . , di , g = 1, . . . , G}

can be estimated from the data (for a fixed value of G) by maximum likelihood using
the EM algorithm or the Newton–Raphson algorithm or a hybrid of the two. These
algorithms require starting values which are usually randomly generated. Because the
algorithms are not guaranteed to find a global maximum and are usually fairly depen-
dent on good starting values, it is routine to generate a number of random starting
values and use the best solution given by one of these. In Appendix B, we present an
adjusted method useful for the cases where an inordinately large number of starting
values is needed to get good estimates of the latent class models and G > 2.

Goodman (1974) discussed the issue of checking whether a latent class model
with a certain number of classes was identifiable for a given number of variables. A
necessary condition for identifiability when there are G classes and k variables with
numbers of categories d = (d1, . . . , dk) is
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14 N. Dean, A. E. Raftery

k∏

i=1

di >

(
k∑

i=1

di − k + 1

)
× G.

This basically amounts to checking that there are enough pieces of information (or cell
counts or pattern combinations) to estimate the number of parameters in the model.
However, in practice, not all possible pattern combinations are observed (some or
many cell counts may be zero) and so the actual information available may be less.
When selecting the number of latent classes in the data, we consider only numbers of
classes for which this necessary condition is satisfied.

For reviews of latent class analysis, see Clogg (1981), McCutcheon (1987), Clogg
(1995) and Hagenaars and McCutcheon (2002).

2.2 Selecting the number of latent classes

Each different value of G, the number of latent classes, defines a different model for
the data. A method is needed to select the number of latent classes present in the data.
Since a statistical model for the data is used, model selection techniques can be applied
to this question.

In order to choose the best number of classes for the data we need to choose the
best model (and the related number of classes). Bayes factors (Kass and Raftery 1995)
are used to compare these models.

The Bayes factor for comparing model Mi versus model M j is equal to the ratio of
the posterior odds for Mi versus M j to the prior odds for Mi versus M j . This reduces
to the posterior odds when the prior model probabilities are equal. The general form
for the Bayes factor is:

Bi j = p(Y | Mi )

p(Y | M j )
,

where p(Y |Mi ) is known as the integrated likelihood of model Mi (given data Y ).
It is called the integrated likelihood because it is obtained by integrating over all the
model parameters, namely the mixture proportions and the group variable probabili-
ties. Unfortunately the integrated likelihood is difficult to compute (it has no closed
form) and some form of approximation is needed for calculating Bayes factors in
practice.

In our approximation we use the Bayesian information criterion (BIC), which is
very simple to compute. The BIC is defined by

BIC = 2 × log(maximized likelihood) − (no. of parameters) × log(n), (1)

where n is the number of observations.
Twice the logarithm of the Bayes factor is approximately equal to the difference

between the BIC values for the two models being compared. We choose the number
of latent classes by recognizing that each different number of classes defines a model,
which can then be compared to others using BIC. Keribin (1998) showed BIC to be
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Latent class analysis variable selection 15

consistent for the choice of the number of components in a mixture model under cer-
tain conditions, when all variables are relevant to the grouping. A rule of thumb for
differences in BIC values is that a difference of less than 2 is viewed as barely worth
mentioning, while a difference greater than 10 is seen as constituting strong evidence
(Kass and Raftery 1995).

3 Variable selection in latent class analysis

3.1 Variable selection method

At any stage in the procedure we can partition the collection of variables into three
sets: Y (clust), Y (?) and Y (other), where:

• Y (clust) is the set of variables already selected as useful for clustering,
• Y (?) is the variable(s) being considered for inclusion into/exclusion from Y (clust),
• Y (other) is the set of all other variables.

Given this partition and the (unknown) clustering memberships z we can recast the
question of the usefulness of Y (?) for clustering as a model selection question. The
question becomes one of choosing between two different models, M1 which assumes
that Y (?) is not useful for clustering, and M2 which assumes that it is.

The two models are specified as follows:

M1 : p(Y |z) = p(Y (clust), Y (?), Y (other)|z)
= p(Y (other)|Y (?), Y (clust))p(Y (?))p(Y (clust)|z),

M2 : p(Y |z) = p(Y (clust), Y (?), Y (other)|z) (2)

= p(Y (other)|Y (?), Y (clust))p(Y (?), Y (clust)|z)
= p(Y (other)|Y (?), Y (clust))p(Y (?)|z)p(Y (clust)|z),

where z is the (unobserved) set of cluster memberships. Model M1 specifies that, given
Y (clust), Y (?) is independent of the cluster memberships (defined by the unobserved
variables z), that is, Y (?) gives no further information about the clustering. Model
M2 implies that Y (?) does provide information about clustering membership, beyond
that given just by Y (clust). The difference between the assumptions underlying the two
models is illustrated in Fig. 1, where arrows indicate dependency.

We assume that the remaining variables Y (other) are conditionally independent of
the clustering given Y (clust) and Y (?) and belong to the same parametric family in both
models.

This basically follows the approach used in Raftery and Dean (2006) for model-
based clustering with continuous data and Gaussian clusters. One difference is that
conditional independence of the variables was not assumed there, so that instead of
p(Y (?)) in model M1 we had p(Y (?)|Y (clust)). This assumed conditional independence
instead of full independence, i.e. the assumption in model M1 previously was that
given the information in Y (clust), Y (?) had no additional clustering information. Note,
that unlike Fig. 1 in Raftery and Dean (2006) there are no lines between the subsets of
variables Y (clust) and Y (?) in Fig. 1, due to the conditional independence assumption.
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Fig. 1 Graphical Representation of Models M1 and M2 for Latent Class Variable Selection. In model M1,
the candidate set of additional clustering variables, Y (?), is independent of the cluster memberships, z, given
the variables Y (clust) already in the model. In model M2, this is not the case. In both models, the set of
other variables considered, Y (other), is conditionally independent of cluster membership given Y (clust) and
Y (?), but may be associated with Y (clust) and Y (?)

Models M1 and M2 are compared via an approximation to the Bayes factor which
allows the high-dimensional p(Y (other)|Y (clust), Y (?)) to cancel from the ratio. The
Bayes factor, B12, for M1 against M2 based on the data Y is given by

B12 = p(Y |M1)/p(Y |M2),

where p(Y |Mk) is the integrated likelihood of model Mk (k = 1, 2), namely

p(Y |Mk) =
∫

p(Y |θk, Mk)p(θk |Mk) dθk . (3)

In (3), θk is the vector-valued parameter of model Mk , and p(θk |Mk) is its prior
distribution (Kass and Raftery 1995).

Let us now consider the integrated likelihood of model M1,
p(Y |M1) = p(Y (clust), Y (?), Y (other)|M1). From (2), the model M1 is specified by
three probability distributions: the latent class model that specifies p(Y (clust)|θ1, M1),
and the distributions p(Y (?)|θ1, M1) and p(Y (other)|Y (?), Y (clust), θ1, M1). We denote
the parameter vectors that specify these three probability distributions by θ11, θ12, and
θ13, and we assume that their prior distributions are independent. Then the integrated
likelihood itself factors as follows:
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Latent class analysis variable selection 17

p(Y |M1) = p(Y (other)|Y (?), Y (clust), M1) p(Y (?)|M1) p(Y (clust)|M1), (4)

where

p(Y (other)|Y (?), Y (clust), M1) =
∫

p(Y (other)|Y (?), Y (clust), θ13, M1) p(θ13|M1) dθ13.

Similar results hold for p(Y (?)|M1) and p(Y (clust)|M1). Similarly, we obtain

p(Y |M2) = p(Y (other)|Y (?), Y (clust), M2) p(Y (?), Y (clust)|M2), (5)

where p(Y (?), Y (clust)|M2) is the integrated likelihood for the latent class model for
(Y (?), Y (clust)).

The prior distribution of the parameter, θ13, is assumed to be the same under M1 as
under M2. It follows that

p(Y (other)|Y (?), Y (clust), M2) = p(Y (other)|Y (?), Y (clust), M1).

We thus have

B12 = p(Y (?)|M1)p(Y (clust)|M1)

p(Y (?), Y (clust)|M2)
, (6)

which has been greatly simplified by the cancelation of the factors involving the
potentially high-dimensional Y (other). The integrated likelihoods in (6) are still hard
to evaluate analytically, and so we approximate them using the BIC approximation of
(1).

3.2 Headlong search algorithm

Given these models we need to find a method for creating partitions of the variables
at each step. Initially we need enough variables to start Y (clust) so that a latent class
model for G > 1 can be identified. If a latent class model on the set of all variables is
identifiable for G > 1, we choose the largest number of classes that can be identified,
and we then estimate the model. For each category of each variable, we then calculate
the variance of its probability across groups. For each variable, we add up these vari-
ances and rank the variables according to this sum. The rationale is that variables with
high values of this sum have high between-group variation in probability, and hence
may be more useful for clustering.

Given this ranking we choose the top k∗ variables, where k∗ is the smallest number
of variables that allow a latent class model with G > 1 to be identified. This is our
starting Y (clust). The other variables can be left in their ordering based on variability
for future order of introduction in the headlong algorithm.

If the above strategy is not possible, we instead proceed as follows. We calculate
the minimum number of variables needed for identification of a latent class model
with G > 1. We then select a number of random subsets each with this number
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of variables. Then for the initial Y (clust) we choose the variable set that gives the
greatest overall average variance of categories’ probabilities across the groups (given
the best latent class model identified). If the minimum number of variables is small
enough, we enumerate all possible subsets to choose the best initial Y (clust), instead of
sampling.

Once we have an initial set of clustering variables, Y (clust), we can proceed with
the inclusion and exclusion steps of the headlong algorithm.

First we must define the constants upper and lower . The constant upper is the
quantity above which the difference in BIC for models M2 and M1 will result in a
variable being included in Y (clust) and below which the difference in BIC for models
M2 and M1 will result in a variable being excluded from Y (clust). The constant lower
is the quantity below which the difference in BIC for models M2 and M1 will result in
a variable being removed from consideration for the rest of the procedure. A natural
value for upper is 0, by which we mean that any positive difference in BIC for models
M2 and M1 is taken as evidence of a variable’s usefulness for clustering and any neg-
ative difference is taken as evidence of a variable’s lack of usefulness. A difference of
lower is taken to indicate that a variable is unlikely to ever be useful as a clustering
variable and is no longer even checked. In general a large negative number such as
−100 (which by our rule of thumb would constitute strong evidence against) makes a
sensible value for lower .

• Inclusion Step: Propose each variable in Y (other) singly in turn for Y (?). Calculate
the difference in BIC for models M2 and M1 given the current Y (clust).
If the variable’s BIC difference is:
– between upper and lower , do not include in Y (clust) and return variable to the

end of the list of variables in Y (other);
– below lower , do not include in Y (clust) and remove variable from Y (other);
– above upper , include variable in Y (clust) and stop inclusion step.
If we reach the end of the list of variables in Y (other), the inclusion step is stopped.

• Exclusion Step: Propose each variable in Y (clust) singly in turn for Y (?) (with the
remaining variables in Y (clust) not including current Y (?) now defined as Y (clust)

in M1 and M2). Calculate the difference in BIC for models M2 and M1. If the
variable’s BIC difference is:
– between upper and lower , exclude the variable from (the original) Y (clust) and

return variable to the end of the list of variables in Y (other) and stop exclusion
step;

– below lower , exclude the variable from (the original) Y (clust) and from Y (other)

and stop exclusion step;
– above upper , do not exclude the variable from (the original) Y (clust).
If we reach the end of the list of variables in Y (clust) the exclusion step is
stopped.

If Y (clust) remains the same after consecutive inclusion and exclusion steps the
headlong algorithm stops because it has converged.
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Table 1 Model parameters used
to generate binary data example

Variable Probability of success

Class 1 (mixture Class 2 (mixture
proportion = 0.6) proportion = 0.4)

1 0.6 0.2

2 0.8 0.5

3 0.7 0.4

4 0.6 0.9

5 0.5 0.5

6 0.4 0.4

7 0.3 0.3

8 0.2 0.2

9 0.9 0.9

10 0.6 0.6

11 0.7 0.7

12 0.8 0.8

13 0.1 0.1

4 Simulated data results

4.1 Binary simulated data example

Five hundred points were simulated from a two-class model satisfying the local inde-
pendence assumption. There were four variables separating the classes (variables 1–4)
and nine noise variables, i.e. variables that have the same probabilities in each class
(variables 5–13). The actual model parameters are shown in Table 1.

When we estimated the latent class model based on all thirteen variables, BIC
selected a two-class model. Since we simulated the data and hence know the actual
membership of each point, we can compare the correct classification with that pro-
duced by the model estimated using all the variables. The number of observations
incorrectly classified by this model was 123. The number of observations that would
be incorrectly classified by using the model with the actual parameter values is 110.
The estimated parameters from the model with all variables are given in Table 2.

The variables ordered according the variability of their estimated probabilities (in
decreasing order) are: 1, 3, 2, 4, 11, 7, 5, 6, 13, 9, 8, 10, 12. As expected, the first
four variables are the clustering variables. We note that the difference between the
true probabilities across groups is 0.4 for variable 1 and 0.3 for variables 2–4. Since
variable 1 therefore gives better separation of the classes, we would expect it to be
first in the list. The number of variables needed in order to estimate a latent class
model with at least 2 classes is 3. So the starting clustering variables are {1, 3, 2}.
The individual step results for the variable selection procedure starting with this set
are given in Table 3.

When clustering on the four selected variables only, BIC again chose 2 classes as
the best fitting model. Comparing the classification of the observations based on the
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Table 2 Estimated parameters
for the model involving all
variables for the binary data
example

Variable Probability of success

Class 1 (mixture Class 2 (mixture
proportion = 0.56) proportion = 0.44)

1 0.60 0.19

2 0.85 0.56

3 0.71 0.35

4 0.61 0.86

5 0.57 0.44

6 0.37 0.45

7 0.35 0.21

8 0.16 0.19

9 0.89 0.93

10 0.59 0.62

11 0.82 0.64

12 0.80 0.80

13 0.06 0.13

Table 3 Results for each step of the variable selection procedure for the binary data example

Variable(s) Step type Clustering No. of Independence Difference Result
proposed BIC classes BIC

1, 3, 2 Inclusion −1,976.35 2 −1,981.25 4.90 Accepted

4 Inclusion −2,565.37 2 −2,573.62 8.25 Accepted

11 Inclusion −3,148.76 2 −3,146.72 −2.04 Rejected

4 Exclusion −2,565.37 2 −2,573.62 8.25 Rejected

Note that the third and fourth row list the variables with the highest and lowest BIC difference respectively
(i.e. all others were examined as well)

estimates from this model with the correct classification we found that 110 observa-
tions had been misclassified. This seems to be optimal given that this is also the error
from classifying based on the actual model parameters. The estimated parameters from
the model using only selected variables are given in Table 4.

4.2 Non-binary simulated data example

One thousand points were simulated from a three-class model satisfying the local
independence assumption. There are four variables that separate the classes (variables
1–4) and six noise variables that have the same probabilities in each class (variables
5–10). The actual model parameters are given in Tables 5 and 6. Several other sets
of parameters were used to simulate similar datasets where the algorithm gave results
similar to this example; results are omitted.
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Table 4 Estimated parameters
for the model involving only the
selected variables for the binary
data example

Probability of success

Variable Class 1 (mixture Class 2 (mixture
proportion = 0.64) proportion = 0.36)

1 0.56 0.17

2 0.83 0.52

3 0.72 0.26

4 0.63 0.89

Table 5 Actual clustering parameters for the model with data from variables with different numbers of
categories

Variable Category Probability of category

Class 1 (mixture Class 2 (mixture Class 3 (mixture
proportion = 0.3) proportion = 0.4) proportion = 0.3)

1 1 0.1 0.3 0.6

2 0.1 0.5 0.2

3 0.8 0.2 0.2

2 1 0.5 0.1 0.7

2 0.5 0.9 0.3

3 1 0.2 0.7 0.2

2 0.2 0.1 0.6

3 0.3 0.1 0.1

4 0.3 0.1 0.1

4 1 0.1 0.6 0.4

2 0.5 0.1 0.4

3 0.4 0.3 0.2

When we estimated the latent class model based on all ten variables, BIC selected
a 2-class model; recall that the actual number of classes is 3. The difference between
BIC values for a 2-class and a 3-class model based on all the variables was 68. Again,
since we have simulated the data and know the true membership of each point, we
can compare the partition given by the true classification with that produced by the
2-class model estimated using all the variables. A cross-tabulation of the true mem-
berships versus the estimated memberships from the 2-class model with all variables
is as follows:

True classes

Estimated classes
1 2

1 293 25
2 85 324
3 245 28
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Table 6 Actual non-clustering parameters for the model with data from variables with different numbers
of categories

Variable Category Probability of category

Class 1 (mixture Class 2 (mixture Class 3 (mixture
proportion = 0.3) proportion = 0.4) proportion = 0.3)

5 1 0.4 0.4 0.4

2 0.5 0.5 0.5

3 0.1 0.1 0.1

6 1 0.2 0.2 0.2

2 0.4 0.4 0.4

3 0.1 0.1 0.1

4 0.3 0.3 0.3

7 1 0.2 0.2 0.2

2 0.3 0.3 0.3

3 0.3 0.3 0.3

4 0.1 0.1 0.1

5 0.1 0.1 0.1

8 1 0.2 0.2 0.2

2 0.8 0.8 0.8

9 1 0.7 0.7 0.7

2 0.1 0.1 0.1

3 0.2 0.2 0.2

10 1 0.1 0.1 0.1

2 0.2 0.2 0.2

3 0.1 0.1 0.1

4 0.6 0.6 0.6

The misclassification rate from the model with the actual parameters was 19.9%.
If we match each true class to the best estimated class in the 2-class model with all
variables we get a misclassification rate of 38.3%. If we assume that we knew the
number of classes in advance to be 3 then the misclassification rate for the 3-class
model with all variables is 25.7%. However this is knowledge that is not typically
available in practice.

The variables ordered according the variability of their estimated probabilities in
the 2-class model (in decreasing order) were: 2, 3, 1, 4, 6, 9, 7, 10, 8, 5. The first four
variables are the clustering variables. The number of variables needed in order to esti-
mate a latent class model with at least 2 classes is 3. So the starting clustering variables
were {2, 3, 1}. The individual step results for the variable selection procedure starting
with this set are given in Table 7.

When clustering on the four selected variables only, BIC this time chose 3 clas-
ses as the best fitting model. Comparing the partition from classifying observations
based on the estimates from this model and the correct partition we found that the
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Table 7 Results for each step of the variable selection procedure for the data from variables with different
numbers of categories

Variable(s) Step type Clustering No. of Independence Difference Result
proposed BIC classes BIC

2, 3, 1 Inclusion −6,122.65 2 −6,193.37 70.72 Accepted

4 Inclusion −8,235.05 3 −8,330.71 95.66 Accepted

8 Inclusion −9,261.46 3 −9,248.28 −13.18 Rejected

2 Exclusion −8,235.05 3 −8,322.40 87.36 Rejected

Note that the third and fourth row list the variables with the highest and lowest BIC difference respectively
(i.e. all others were examined as well)

Table 8 Estimated parameters for the model involving only the selected variables for the data from variables
with different numbers of categories

Variable Category Probability of category

Class 1 (mixture Class 2 (mixture Class 3 (mixture
proportion = 0.40) proportion = 0.43) proportion = 0.16)

1 1 0.10 0.34 0.85

2 0.10 0.49 0.13

3 0.80 0.17 0.02

2 1 0.49 0.12 0.82

2 0.51 0.88 0.18

3 1 0.21 0.64 0.17

2 0.27 0.14 0.63

3 0.25 0.13 0.08

4 0.27 0.09 0.12

4 1 0.14 0.53 0.39

2 0.47 0.10 0.47

3 0.39 0.37 0.14

misclassification rate was 23.8%. The estimated parameters from the model using
only selected variables are given in Table 8.

The misclassification results are summarized in Table 9. In addition to the
misclassification rate, we show the Rand Index (Rand 1971) and the Adjusted Rand
Index (Hubert and Arabie 1985).

5 Real data examples

5.1 Hungarian heart disease data

This dataset consists of five categorical variables from a larger dataset (with 10 other
continuous variables) collected from the Hungarian Institute of Cardiology, Budapest
by Andras Janosi, M.D. (Detrano et al. 1989; Gennari et al. 1989). The outcome of
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Table 9 Misclassification summary for the data from variables with different numbers of categories

Variables No. of Misclassification Rand Adjusted Rand
included classes selected rate (%) index index

All 2 38.3 0.65 0.30
All 3a 25.7 0.72 0.40
1, 2, 3, 4 3 23.8 0.74 0.43
a The number of classes was constrained to this value in advance. Recall that the minimum misclassification
rate from the model based on the actual parameters is 19.9%

interest is diagnosis of heart disease (angiographic disease status) into two categories:
<50% diameter narrowing and >50% diameter narrowing in any major vessel. The
original paper (Detrano et al. 1989) looked at the data in a supervised learning context
and achieved a 77% accuracy rate. Originally there was information about 294 sub-
jects but 10 subjects had to be removed due to missing data. The five variables given
are gender (male/female) [sex], chest pain type (typical angina/atypical angina/non-
anginal pain/asymptomatic) [cp], fasting blood sugar >120 mg/dl (true/false) [fbs],
resting electrocardiographic results (normal/having ST-T wave abnormality/showing
probable or definite left ventricular hypertrophy by Estes’ criteria) [restecg] and exer-
cise induced angina (yes/no) [exang].

When BIC is used to select the number of classes in a latent class model with all
of the variables, it decisively selects 2 (with a difference of at least 38 points between
2 classes and any other identifiable number of classes). When the variables are put in
decreasing order of variance of estimated probabilities between classes the ordering
is the following: cp, exang, sex, restecg and fbs.

Observations were classified into whichever group their estimated membership
probability was greatest for. The partition estimated by this method is compared with
the clinical partition below:

<50% narrowing >50% narrowing
Class 1 134 13
Class 2 47 90

If class 1 is matched with the <50% class and class 2 with the >50% class there is a
correct classification rate of 78.9%. This gives a sensitivity of 87.4% and a specificity
of 74%.

The variable selection method chooses 3 variables: cp, exang and sex. BIC selects 2
classes for the latent class model on these variables. The partition given by this model
is the same as the one given by the model with all variables. The largest difference in
estimated group membership probabilities between the two latent class models is 0.1.
The estimated model parameters in the variables common to both latent class models
and the mixing proportions differ between models by at most 0.003. Both models
have the same correct classification, specificity and sensitivity rate. Thus our method
identifies the fact that it is possible to reduce the number of variables from 5 to 3 with
no cost in terms of clustering.
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Table 10 Estimated parameters for the model involving all variables for Hungarian heart disease data

Variable Category Probability of category

Class 1 (mixture Class 2 (mixture
proportion = 0.494) proportion = 0.506)

Chest pain type Typical angina 0.07 0.00

Atypical Angina 0.64 0.08

Non-anginal pain 0.29 0.08

Asymptomatic 0.00 0.83

Exercise induced No 0.98 0.42

Angina Yes 0.02 0.58

Gender Female 0.38 0.16

Male 0.62 0.84

Resting Normal 0.82 0.80

Electrocardiographic Having ST-T wave abnormality 0.15 0.20

Results Showing probable or definite 0.03 0.01

left ventricular hypertrophy

by Estes’ criteria

Fasting blood sugar False 0.94 0.92

>120 mg/dl True 0.06 0.08

Table 11 Estimated parameters for the model involving the selected variables for Hungarian heart disease
data

Variable Category Probability of category

Class 1 (mixture Class 2 (mixture
proportion = 0.498) proportion = 0.502)

Chest pain type Typical angina 0.07 0.00

Atypical angina 0.64 0.08

Non-anginal pain 0.28 0.08

Asymptomatic 0.00 0.84

Exercise induced angina No 0.97 0.42

Yes 0.03 0.58

Gender Female 0.38 0.16

Male 0.62 0.84

The estimated parameters for the latent class model with all variables included is
given in Table 10 and the estimated parameters for the latent class model with only
the selected variables included is given in Table 11.

5.2 HapMap data

The HapMap project (The International HapMap Consortium 2003) was set up to
examine patterns of DNA sequence variation across human populations. A consortium
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Table 12 Information on the
subject populations for the
HapMap data

Code Descriptions Number of
individuals

CEU Utah residents with ancestry
from Northern and Western
Europe

60

CHB Han Chinese in Beijing,
China

45

JPT Japanese in Tokyo, Japan 45

YRI Yoruban in Ibadan, Nigeria
(West Africa)

60

Table 13 BIC values for
different sets of variables and
different numbers of classes for
the HapMap data

Data Two classes Three classes Four classes

All variables −142,711 −141,418 −146,662

Selected variables −93,471 −91,147 −94,491

with members including the United States, United Kingdom, Canada, Nigeria, Japan
and China is attempting to identify chromosomal regions where genetic variants are
shared across individuals. One of the most common types of these variants is the single
nucleotide polymorphism (SNP). A SNP occurs when a single nucleotide (A, T, C or
G) in the genome differs across individuals. If a particular locus has either A or G then
these are called the two alleles. Most SNPs have only two alleles.

This dataset is from a random selection of 3,389 SNPs on 210 individuals (out of
4 million available in the HapMap public database). Of these 801 had complete sets
of measurements from all subjects and a further subset of 639 SNPs had non-zero
variability. Details of the populations and numbers of subjects are given in Table 12.

There are two possible correct groupings of the data. The first one is into three
groups: European (CEU), African (YRI) and Asian (CHB + JPT), and the second is
into four groups: European (CEU), African (YRI), Japanese (JPT) and Chinese (CHB).

When all 639 SNPs are used to build latent class models, BIC selects the best num-
ber of classes as 3. The resulting estimated partition matches up exactly with the first
3-group partition. The variable selection procedure selects 413 SNPs as important
to the clustering, reducing the number of variables by over a third. Using only the
selected variables, BIC again selects a 3-class model whose estimated partition again
gives perfect 3-group classification. The BIC values for models using both sets of data
from 2 to 4 classes are given in Table 13. Note that comparing within rows in Table 13
is appropriate, but comparing between rows is not because different rows correspond
to different datasets.

The HapMap project is also interested in the position of SNPs that differ between
populations, so we can look at the distribution of all 639 SNPs across the 22 chro-
mosomes and compare it to the distribution of the selected SNPs. This is presented in
Fig. 2.
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Fig. 2 Distribution of SNPs for full and selected variable sets on the set of 22 chromosomes

Although the subset of SNPs that these data come from are a random sample, it
may be that some are close to each other on the same chromosome. Since genetic
variants close to each other on a chromosome tend to be inherited together, this sug-
gests that the conditional independence assumption for LCA may not hold in this case.
Incorporating these dependencies may be beneficial.

6 Discussion

We have proposed a method for selecting variables in latent class analysis. In our sim-
ulated datasets the method selected the correct variables, and this also led to improved
classification and more accurate selection of the number of classes. In both real data
examples, the data were classified equally accurately by the smaller set of variables
selected by our method as by a larger set. The HapMap data provided an example of
the “n � p” type, and there our method reduced the number of variables (SNPs in
that case) by over a third without any degradation in classification performance.

In general it appears to be a better idea to select variables before estimating the
clustering model in both the discrete and continuous cases. We have seen that inclu-
sion of noise variables can degrade the accuracy of both model estimation and choice
of the number of clusters.

In terms of estimation of the model, including variables with no cluster structure
can either smear out separated clusters/classes or introduce spurious classes. It is diffi-
cult without any extra knowledge to know what can happen in advance. From looking
at the simulations and data sets presented here as well as others, it would appear that
these problems are most likely to occur when separation between the classes is poor.
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The headlong search algorithm is different from the greedy search algorithm
described in Raftery and Dean (2006) in two ways:

1. The best variable (in terms of the BIC difference) is not necessarily selected in
each inclusion and exclusion step in the headlong search.

2. It is possible that some variables are not looked at in any step after a certain point
in the headlong algorithm (after being removed from consideration).

The headlong search is substantially faster than the greedy search and in spite of
point 2 above, usually gives comparable or sometimes better results (perhaps due to
the local nature of the search).

Galimberti and Soffritti (2006) considered the problem of finding multiple cluster
structures in latent class analysis. In this problem the data are divided into subsets,
each of which obeys a different latent class model. The models in the different subsets
may include different variables. This is a somewhat different problem from the one we
address here, but it also involves a kind of variable selection in latent class analysis.

Keribin (1998) showed that BIC was consistent for choice of the number of com-
ponents in a mixture model under certain conditions, notably assuming that all vari-
ables were relevant to the clustering. Empirical evidence seems to suggest that when
noise/irrelevant variables are present, BIC is less likely to select the correct number of
classes. The general correctness of the BIC approximation in a specific case of binary
variables with two classes in a naive Bayes network (which is equivalent to a 2-class
latent class model with the local independence assumption satisfied) was looked at
by Rusakov and Geiger (2005). The authors found that although the traditional BIC
penalty term of # of parameters × log(# of observations) (or half this depending on
the definition) was correct for regular points in the data space, it was not correct for
singularity points (with two different types of singularity points requiring two adjusted
versions of the penalty term). The first type of singularity points were those sets of
parameters that could arise from a naive Bayes model with all but at most 2 links
removed (type 1) and those that could arise from a model with all links removed
(type 2), representing a set of mutually independent variables. Similarly in the case of
redundant or irrelevant variables being included (which is closely related to the two
singularity point types) they found that the two adjusted penalty terms were correct.
These issues with clustering with noise variables reinforce the arguments for variable
selection in latent class analysis.

Appendix A: Headlong search algorithm for variable selection
in latent class analysis

Here we give a more complete description of the headlong search variable selection
and clustering algorithm for the case of discrete data modeled by conditionally inde-
pendent multinomially distributed groups. Note that for each latent class model fitted
in this algorithm one must run a number of random starts to find the best estimate of
the model (in terms of BIC). We recommend at least 5 for small to medium problems
but for bigger problems hundreds may be needed to get a decent model estimate. The
issue of getting good starting values without multiple generation of random starts is
dealt with in Appendix B.
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• Choose Gmax, the maximum number of clusters/classes to be considered for the
data. Make sure that this number is identifiable for your data! Define constants
upper (default 0) and lower (default −100), where upper is the quantity above
which the difference in BIC for models M2 and M1 will result in a variable being
included in Y (clust) and below which the difference in BIC for models M2 and M1
will result in a variable being excluded from Y (clust), and lower is the quantity
below which the difference in BIC for models M2 and M1 will result in a variable
being removed from consideration for the rest of the procedure.

• First step One way of choosing the initial clustering variable set is by estimating a
latent class model with at least 2 classes for all variables (if more classes are iden-
tifiable, estimate all identifiable class numbers and choose the model with the best
number of classes via BIC). Order the variables in terms of variability of their esti-
mated probabilities across classes. Choose the minimum top variables that allow at
least a 2-class model to be identified. This is the initial Y (clust). We do not require
that the BIC difference between clustering and a model with a single class for our
Y (clust) to be positive at this point because we need a set of starting variables for the
algorithm. These can be removed later if there are not truly clustering variables.
Specifically we estimate the {pi jg, i = 1, . . . , k, j = 1, . . . , di , g = 1, . . . , G}
where k is the number of variables, di is the number of categories for the i th
variables and G is the number of classes. For each variable i we calculate V (i) =∑di

j=1 V ar(pi jg). We order the variables in decreasing order of V (i): y(1),

y(2), . . . , y(k) and find m the minimum number of top variables that will iden-
tify a latent class model with G ≥ 2.

Y (clust) = {y(1), y(2), . . . , y(m)},
Y (other) = {y(m+1), . . . , y(k)}.

If the previous method is not possible (data cannot identify latent class model for
G > 1) then split the variables randomly into subsets with enough variables to
identify a latent class model for at least 2 classes, estimate the latent models for
each subset and calculate the BICs, estimate the single class (G = 1) models for
each subset and calculate these 1 class BICs and choose the subset with the highest
difference between latent class model (G ≥ 2) and 1 class model BICs as the
initial Y (clust).
Specifically look at the list of numbers of categories d = (d1, . . . , dk) and work
out the minimum number of variables m that allows a latent class model for G ≥ 2
to be identified. Split the variables into S subsets of at least m variables in each.
For each set Ys, s = 1, . . . , S estimate:

BICdiff(Ys) = BICclust(Ys) − BICnot clust(Ys),

where BICclust(Ys) = max2≤G≤Gmaxs{BICG(Ys)}, with BICG(Ys) being the BIC
given in (1) for the latent class model for Ys with G classes and Gmaxs being the
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maximum number of identifiable classes for Ys , and BICnot clust(Ys) = BIC1(Ys).
We choose the best variable subset, Ys1 , such that

s1 = arg max
s:Ys∈Y

(BICdiff(Ys))

and create

Y (clust) = Ys1

and

Y (other) = Y\Ys1 ,

where Y\Ys1 denotes the set of variables Y excluding the subset Ys1 .
• Second step Next we look at each variable in Y (other) singly in order as the new

variable under consideration for inclusion into Y (clust). For each variable we look
at the difference between the BIC for clustering on the set of variables including
the variables selected in the first set and the new variable (maximized over number
of clusters from 2 up to Gmax) and the sum of the BIC for the clustering of the
variables chosen in the first step and the BIC for the single class latent class model
for the new variable. If this difference is less than lower the variable is removed
from consideration for the rest of the procedure and we continue checking the next
variable. Once the difference is greater than upper we stop and this variable is
included in the set of clustering variables. Note that if no variable has difference
greater than upper we include the variable with the largest difference in the set
of clustering variables. We force a variable to be selected at this stage to give one
final extra starting variable.
Specifically, we split Y (other) into its variables y1, . . . , yD2 . For each j in 1, . . . , D2
until BICdiff(y j ) > upper , we compute the approximation to the Bayes factor in
(6) by

BICdiff(y j ) = BICclust(y j ) − BICnot clust(y j ),

where BICclust(y j ) = max2≤G≤Gmaxj{BICG(Y (clust), y j )} with BICG(Y (clust), y j )

being the BIC given in (1) for the latent class clustering model for the dataset
including both the previously selected variables (contained in Y (clust)) and the new
variable y j with G classes, and BICnot clust(y j ) = BICreg +BICclust(Y (clust)) where
BICreg is BIC1(y j ) and BICclust(Y (clust)) is the BIC for the latent class clustering
model with only the currently selected variables in Y (clust).
We choose the first variable, y j2 , such that

BICdiff(y j2) > upper

or if no such j2 exists,

j2 = arg max
j :y j ∈Y (other)

(BICdiff(y j ))
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and create

Y (clust) = Y (clust) ∪ y j2

and

Y (other) = Y (other)\y j2 ,

where Y (clust) ∪ y j2 denotes the set of variables including those in Y (clust) and
variable y j2 .

• General Step [Inclusion part] Each variable in Y (other) is proposed singly (in order),
until the difference between the BIC for clustering with this variable included in
the set of currently selected clustering variables (maximized over numbers of clus-
ters from 2 up to Gmax) and the sum of the BIC for the clustering with only the
currently selected clustering variables and the BIC for the single class latent class
model of the new variable, is greater than upper .

• The variable with BIC difference greater than upper is then included in the set of
clustering variables and we stop the step. Any variable whose BIC difference is
less than lower is removed from consideration for the rest of the procedure. If no
variable has BIC difference greater than upper no new variable is included in the
set of clustering variables
Specifically, at step t we split Y (other) into its variables y1, . . . , yDt . For j in
1, . . . , Dt we compute the approximation to the Bayes factor in (6) by

BICdiff(y j ) = BICclust(y j ) − BICnot clust(y j ), (7)

where BICclust(y j ) = max2≤G≤Gmaxj{BICG(Y (clust), y j )}, with BICG(Y (clust), y j )

being the BIC given in (1) for the latent class clustering model for the dataset
including both the previously selected variables (contained in Y (clust)) and the new
variable y j with G clusters, and BICnot clust(y j ) = BICreg+BICclust(Y (clust)) where
BICreg is the single class latent class model for variable y j and BICclust(Y (clust)) is
the BIC for the clustering with only the currently selected variables in Y (clust).
We check if BICdiff(y j ) > upper ,
if so we stop and set

Y (clust) = Y (clust) ∪ y j if BICdiff(y j ) > upper

and

Y (other) = Y (other)\y j if BICdiff(y j ) > upper

if not we increment j and re-calculate BICdiff(y j ). If BICdiff(y j ) < lower we
remove it from both Y (clust) and Y (other).
If no j has BICdiff(y j ) > upper leave Y (clust) = Y (clust) and Y (other) = Y (other).

• General Step [Removal part] Each variable in Y (clust) is proposed singly (in order),
until the difference between the BIC for clustering with this variable included in
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the set of currently selected clustering variables (maximized over numbers of clus-
ters from 2 up to Gmax) and the sum of the BIC for the clustering with only the
other currently selected clustering variables (and not the variable under consid-
eration) and the BIC for the single class latent class model of the variable under
consideration, is less than upper .

• The variable with BIC difference less than upper is then removed from the set of
clustering variables and we stop the step. If the difference is greater than lower
we include the variable at the end of the list of variables in Y (other). If not we
remove it entirely from consideration for the rest of the procedure. If no variable
has BIC difference less than upper no variable is excluded from the current set of
clustering variables
In terms of equations for step t +1, we split Y (clust) into its variables y1, . . . , yDt+1 .
For each j in 1, . . . , Dt+1 we compute the approximation to the Bayes factor in
(6) by

BICdiff(y j ) = BICclust − BICnot clust(y j ),

where BICclust = max2≤G≤Gmax{BICG(Y (clust))} with BICG,m(Y (clust)) being the
BIC given in (1) for the model-based clustering model for the dataset includ-
ing the previously selected variables (contained in Y (clust)) with G clusters, and
BICnot clust(y j ) = BICreg + BICclust(Y (clust)\y j ) where BICreg is the single class
latent class model for variable y j and BICclust(Y (clust)\y j ) is the BIC for the clus-
tering with all the currently selected variables in Y (clust) except for y j .
We check if BICdiff(y j ) < upper ,
if so we stop and set

Y (clust) = Y (clust)\y j if BICdiff(y j ) < upper

and

Y (other) = Y (other) ∪ y j if lower < BICdiff(y j ) < upper

if not we increment j and re-calculate BICdiff(y j ). If BICdiff(y j ) < lower we
remove it from both Y (clust) and Y (other).
If no j has BICdiff(y j ) < upper leave Y (clust) = Y (clust) and Y (other) = Y (other).

• After the first and second steps the general step is iterated until consecutive inclu-
sion and removal proposals are rejected. At this point the algorithm stops as any
further proposals will be the same ones already rejected.

Appendix B: Starting values for latent class analysis
in the headlong search algorithm

In the previous appendix we discussed the details of the headlong algorithm for latent
class variable selection. In each step multiple latent class models for different set of
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data/variables and classes are estimated. Previously we have only mentioned that start-
ing values are generated randomly for each model several times and the best (in terms
of BIC/likelihood) of the resulting estimated models is chosen as the single estimate
for a particular latent class model. This means that for each different dataset and each
different number of classes we are required to generate random starting values and
estimate the model via EM numerous times. For datasets with reasonable numbers of
variables this is not too computationally expensive but for more complex datasets it
is burdensome. Also with increasing numbers of observations and/or variables and/or
classes more random starts are needed to have any confidence in finding the global
maximum likelihood for the model as the likelihood surface becomes more complex,
with increasing numbers of local maxima.

Because of the stepwise nature of the algorithm we can use models estimated
before to give good starting values for new models. By starting values here we mean
the matrix z of conditional probabilities of membership in the different classes for
each observation.

At the end of each step (either inclusion or exclusion) we have a set of currently
selected clustering variables. At some point in the step we have estimated the latent
class model for this set over a range of classes (or sometimes just one, 2 classes) and
chosen the model with the number of classes that gives us the highest BIC. We can
call this model LCAcurrent and the number of classes in this best model for the current
set of clustering variables Gcurrent. We can also save the z matrix for this model and
call it zcurrent.

In our next step we will be either looking at models for Y (clust) with a new additional
variable (inclusion step) or models for Y (clust) leaving out one of the current clustering
variables. It seems obvious that a reasonable starting z matrix for models involving the
new dataset (which is either a sub- or super-set of the old one) and number of classes
Gcurrent would be zcurrent, because the dataset will only have changed by one variable.
So instead of randomly generating multiple z matrixes (or other starting parameters)
to try to get the global maximum likelihood for our latent class model, we merely use
what we believe to be a good set starting z matrix (which hopefully will be reasonably
close to the global maximum in the new likelihood space).

However, we may still wish to have good starting values for the new dataset with
different numbers of classes, Gcurrent ±c. But our zcurrent will be an n ×Gcurrent matrix
(where n is the number of observations) and we need n × (Gcurrent ±c) matrices. How
can we sensibly create a new matrix with c more/less columns given our zcurrent?

We will look at the case for +1 and −1 separately (the analog for general +c and
−c should be obvious). It will be rare in practice to need more than ±1 at each step as
the number of identifiable classes will only generally increase fairly slowly with the
number of variables selected.

For −1 we want to reduce the number of columns of our zcurrent by 1. A sensible
way to do this is to collapse the two closest classes (in terms of Euclidean distance
in the parameter space). We calculate the distances between the classes’ estimated
parameters/probabilities from LCAcurrent and select the closest two. We then simply
remove the two columns corresponding to those classes from zcurrent and replace them
with one column equal to the sum (across rows) of the removed columns. This is our
new starting z matrix for the model with Gcurrent − 1 classes. In terms of a single
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observation with probability p1 of being in the first chosen class and probability p2 of
being the second chosen class we are saying the observation has probability p1 + p2 of
being in the new class created from the amalgamation of the two, i.e. the observation
will be in the new class if he is in either of the old classes. Note that if we wish to, we
can weight the distances with the mixing proportions, making it more likely that we
would join smaller close classes.

For −c we can use the resulting matrix from the process described in the previous
paragraph to estimate the model for Gcurrent − 1 classes and then reduce the resulting
estimated z from this model by one column in the same fashion, continuing on in the
same way until we have removed c columns.

For +1 we want to increase the number of columns of our zcurrent by 1. An obvious
way to do this is by splitting a class in two. We choose the largest class (in terms of
mixing proportions). We then remove the column corresponding to that class from
zcurrent and call this w and estimate a two class latent class model using the data points
weighted by w. Obviously we have returned to problem of needing starting values for
estimating our 2-class model. However usually a small number of randomly generated
starts, say 5, for this number of classes will result in an estimated model achieving
the global maximum likelihood and this is usually not too computationally expensive.
Once we have our 2-class model estimate of the z matrix, called z2, we can multiply
this by w and add the resulting two columns to the original zcurrent (less the removed
column), giving us a starting z matrix for estimating the Gcurrent + 1 class model. We
can think of w as being the conditional probability of an observation being in the old
selected class and then the new z2 matrix as being the probability for an observation
being in either of the two new sub-classes given it was in the old class.

Again for +c we can use the resulting matrix from the process described in the
previous paragraph to estimate the model for Gcurrent +1 classes and then increase the
resulting estimated z from this model by one column in the same fashion, continuing
on in the same way until we have added c columns.
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